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Abstract

In this paper we discuss the influence of using different production functions on
modeling the resource extraction rates and economic growth. The focus is set on the
modeling of the production sector, which requires either non-renewable resources,
renewable resources or a combination of both resources for production. There are
great differences between the possible assumptions when modeling the substitution
process between the different input factors. It is shown that the existence of an
optimal extraction rate in conjunction with economic growth depends on the spec-
ification of the production function even if the same parameterization is used. The
target is to provide an overview on the different possibilities of modeling, and to
support the decision which kind of production function should be used for modeling
different aspects of economic growth.
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1 Introduction

In recent years, the substitution of different energies is among the most prominent issues
in environmental economics. This is due to the fact that there has to be an alternative
to burning fossil fuels and emitting carbon dioxide into the environment, an alternative
which causes less damage. In addition, we have to keep in mind that the stock of non-
renewable resources is limited, and the depletion of the total stock of natural resources
including the renewable ones has to be prevented.

This paper focuses on the influence of using different production functions on modeling
the resource extraction rates and economic growth. A wide field of economic research
deals with use of non-renewable and renewable resources and their optimal depletion or
extraction rates. In the past most researchers concentrated on non-renewable resources,
while in recent years renewable resource became the focus of attention. As both kinds
of resources are determined by different properties, most research is done by focusing on
only one of the two subject areas. By using both resources in one model, the substitution
effects can be shown.

Most models are first developed in a very general way without specifying any functions.
Often the Cobb-Douglas specification is used to visualize and clarify the results, because
of its simplicity and easy mathematical structure. It can be shown that, if you use
different kinds of specifications of production functions, you will receive different results.

In the second section, an overview of the different kinds of specifications of produc-
tion functions is given. Models using either only non-renewable resources, only renewable
resources, or both types of resources are analyzed. Section three presents a basic theoret-
ical model, which is taken as a basis for our comparing study in section four, where the
different kinds of production functions are used for finding the optimal solution in these
models. For visualization, the model is solved numerically with one set of calibrated vari-
ables. Section five shows the main conclusions. To keep the model clear a mathematical
appendix is added.

2 Different Kinds of Specification

2.1 General Distinction of Production Function

Different kinds of production functions are used by various economists. There are four
main types in the theoretical and empirical literature, the Cobb-Douglas (CD) and the
Constant Elasitcity of Substitution (CES) production functions, as well as production
functions with variable elasticity of substitution (VES) and Leontief production func-
tions. The last one is quite uninteresting if you analyze economic growth because of
the assumption that there exists a fixed input ration and the scarcest factor limits the
production (cf. Meyer et al. (1998) pp. 21-22). The special feature of the first two kinds
of production functions is that they start from the assumption of constant elasticity of
substitution. They are common in economic modeling because they involve quite easy
mathematical solving. Production functions with a changing elasticity of substitution are
quite complex in modeling and, therefore, hardly ever used.

All production functions incorporate different kinds of inputs as capital, labor, hu-
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man capital, energy and/or different resources, land and other factors as pollution or
environmental quality. Thereby each paper concentrates on the main inputs relevant for
the research question to simplify the model. This paper concentrates on the energy and
resource aspects of the production functions and on how they are linked.

Resources in total have to be divided into different groups. There are renewable
resources, which grow over time, and non-renewable resources, which do not. Often non-
renewable is used as synonymous with exhaustible; this is not completely correct because
over-exploitation of renewable resources also leads to exhaustion.

To compare the different models more easily, a general notation is used. The variables
used by the cited authors are renamed. Equations are used, where Y is the total produc-
tion output, K is the capital stock, L is the labor force, Z is the non-renewable resource
used for production, S is the stock of the non-renewable resource, R is the renewable
resource used for production and A is the stock of the renewable resource, P describes
the technical progress. The production coefficients of Cobb-Douglas production functions
are marked with αi, with i = 1, 2, ..,∞ and the constraint

∑

αi = 1. Further notations
are made when necessary.

2.2 Using Only Non-renewable Resources

In a special issue of the Review of Economic Studies in 1974 the first economic growth
models which included the influence of non-renewable resources as it is considered today
were published. Stiglitz (1974a,b) uses the following Cobb-Douglas production function

Y = Kα1
· Lα2

· Zα3
· eP ·t (1)

The stock of the resource develops with

Ṡ = −Z (2)

If a non-renewable resource is used in production, the steady-state is the path along which
consumption is growing. There is only one state where the capital-output ratio K/Y and
the ratio of used resource to resource stock Z/S are constant. It can only be reached
due to the rate of resource augmenting technological progress P . In case the economy
departs from this path, there exists a finite time horizon after which consumption stops
growing and the resource is fully exhausted. Pezzey and Withagen (1998) proved that
in a model with static technology and non-renewable resources the optimal consumption
path is single-peaked, when maximizing total utility. From some point in time it always
declines monotonically.

Dasgupta and Heal (1974) use a quite different approach to solve the same problem.
They use a CES production function in the form of

Y =
(

β ·Kθ + (1− β) · Zθ
)

1

θ (3)

where 0 < β < 1 and θ = σ−1

σ
with 0 ≤ σ ≤ ∞. How the substitution parameter β is

determined is further discussed by Klump and Preissler (2000) pp. 51-52. In the case of
σ ≤ 1 the non-renewable resources are essential to production. For σ < 1 the evolution
of the stock of the non-renewable resources develops as before. The production and
therefore the consumption level rises at first, but tends to zero during time. For σ = 1,
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the production function is not defined, because θ = 0. It leads to the special case of a
Cobb-Douglas production function, as used in (1). If σ > 1, there is no problem because
the resource is inessential for production. To overcome this results technical change is
introduced at a specific date T , when a perfect substitute for the non-renewable resource,
in form of a flow of services at a constant rate, is discovered. At point T the economy
switches, and production and consumption rise again.

A quite similar approach is used by Scholz and Ziemes (1999). Research activity in a
growing amount of different firms N leads to an increasing variety of capital inputs Xi,
which can overcome the scarcity of the essential input of the non-renewable resources.
The production function reads as follows

Y = P ·

N
∑

i=1

(

Xα1
i

)

· Lα2
· Zα3 (4)

Even though research activities do not directly reduce the non-renewable input, they
decrease the energy-intensity of output as they increase the productivity of all factors.
A similar approach is used by Antony (2010), in which research activity is not only
addressing the resource sector but also the labor sector. Because of the not-resource-
or energy-specific forces at work, the results of models where the scarcity of resources
is compensated by research in other fields, are not completely satisfying (Pittel and
Rübbelke, 2011, p. 8).

In the model of de V. Cavalcanti et al. (2001) the used resource is as well non-
renewable, but in contrast to the other models the authors assume that new reserves
can be found and old fields can be developed to produce more resources. Both activities
require investments I by the owner. Now, in contrast to (2), the development of the stock
of the non-renewable resources reads

Ṡ = −Z + I (5)

The production function is nearly the same as (3), despite the fact that the technological
progress is now labor augmenting. Stürmer and Schwerhoff (2012) use the same idea;
they assign that the stock of the non-renewable resources is growing by innovations in
the extraction technology. Both models lead to long-run growth because the resource is
in fact non-renewable, but at the same time inexhaustible.

So far it is shown that, in theory, long-run growth under special circumstances is
possible. There is a wide critical literature about this topic, due to the fact that the
previously discussed models do not consider that the use of non-renewable resources is
associated to negative environmental externalities. On the one hand, the negative effect
of pollution Q by the use of non-renewable resources can be incorporated into the utility
function, on the other hand, into the production function. Grimaud and Rougé (2005)
use a fairly standard Cobb-Douglas production function Y = Lα1 · Zα2 · P λ. Pollution is
generated by the use of the resource within the production process. The pollution effect
is incorporated into a separable instantaneous utility function with a negative partial
derivation

U (C,Q) =
C1−ǫ1

1− ǫ1
−

Q1+ǫ2

1 + ǫ2
(6)

Under optimal conditions, a non-selfish present generation, or a generation with prefer-
ence for environment quality, decelerates the extraction of the resource. But in a decen-
tralized economy the negative effect of the use of the resource is not incorporated and the
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same types of households would generate even faster resource depletion. In contrast to
Grimaud and Rougé (2005), Schou (2000) introduces the pollution into the production
function with constant returns to scale with respect to the variable inputs of a firm.

Y = P ·Kα1
· Lα2

· Zα3
·Q−δ (7)

The elasticity of the pollution function depending on the resources is constant, and the
positive effect in production outbalances the negative one of pollution by using the re-
sources. In this case long run growth is only possible under special circumstances. The
resource use must fall over time along the balanced growth path, and the flow of pollu-
tion is bound to get reduced as well. Production does not have to be zero because of the
technological parameters, but there has to be a declining consumption in the long run.

2.3 Using Only Renewable Resources

If you only use renewable resources in production, on first sight there seems to be no
problem. The simplest case is an economy without production, in which the resource
is the only good (Chichilnisky et al., 1998). The dynamics of a renewable resource are
described by

Ȧ = ηA (A)−R (8)

with ηA being the rate of resource generation. In this case, if consumption C is less than
the regeneration rate ηA (A), the stock of the resource A is rising, if it is more, the stock
declines and tends to zero, and at the same time the consumption possibilities are falling.
If a simple production function as

Y = Kα1
·Rα2 (9)

is used, the same results arise, only with the difference that there are higher consumption
possibilities for the same amount of resource due to the capital input (Chichilnisky et al.,
1998, p. 66-69).

Valente (2005) includes in his considerations labor as an essential input, which is grow-
ing with the constant population growth rate and different specifications of technological
progress. They maximize total discounted utility. The production function is the same
as in (1), except for the substitution of the non-renewable Z by the renewable resource
R.

Y = Kα1
· Lα2

·Rα3
· eP ·t (10)

If the rate of resource regeneration ηA (A) is higher than the social discount rate, sustain-
able per capita consumption is possible. But if the rate is relatively low, the time-path
is still single-peaked as in the case of an exhaustible resource.

A different development of the stock of the renewable resources is assumed by Ruiz-
Tamarit and Sánchez-Moreno (2006). As only the not extracted amount (1− r) · A
can be regenerated, the extraction rate r is determined endogenously and influences the
regeneration rate.

Ȧ = ηA (1− r) · A− r · A (11)

They reveal basically the same results; positive long-run growth is possible under an
optimal harvest rate. But this rate is restricted by the regeneration rate of the renewable
resources. Under special circumstances (an impatient society with a high discount rate)
a future collapse could also be the optimal, but not preferable strategy.
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2.4 Using Both Kinds of Resources

The more interesting and realistic cases are those when both, non-renewable and re-
newable, or different kinds of resources are used. There are two possibilities, either the
non-renewable resources are first fully physically depleted and then substituted by the
renewable resources, or there is a smooth process where substitution develops over time
and both resources are used simultaneously. Additionally, Tahvonen and Salo (2001) (p.
1381) introduce the possibility that the substitution process can evolve in both directions
(from renewable into fossil and back into renewable) at different stages of the long run
development of the economy.

Y = Kα1
· (Z +R)α2 (12)

The substitution process depends on the assumed extraction cost functions. This kind
of simple CES production function is also used by Pittel and Bretschger (2010). The
resources are used to produce different intermediates in different sectors with different
resource intensities.

In almost the same manner Grimaud et al. (2007) use a standard Cobb-Douglas
production function to model the production of a homogeneous good. They regard energy
as an input factor which is discribed by a function using non-renewable and renewable
resources as well as human capital (here simplified), see also Popp (2006)

Y = P ·Kα1
· Lα2

· ENERGY α3 (13)

ENERGY =
(

Hθ1 +
(

Zθ2 +Rθ2
)

θ1

θ2

)

1

θ1

(14)

Using this kind of production function for the energy input allows the resources to be
imperfect substitutes. Other users of this kind of production function are Gerlagh and
van der Zwaan (2003). They integrate the CES energy function into the final good
production function by using again a CES function, where the second part consists of the
further inputs.

Y =

(

P ·
(

Kα1
· Lα2

)θ1
+
(

H ·
(

(1− β)) · Zθ2 + β ·Rθ2
)

1

θ2

)θ1
)

1

θ1

(15)

Nearly the same specification for energy production is used by Growiec and Schumacher
(2008). They, additionally, introduce the technological progress, either into the sub-
stitution elasticity θ2 or into the distribution parameter β. Thereby they increase the
flexibility of the model. With the changing substitution elasticity they can figure out the
state where the resources become perfect substitutes.

In contrast to this, in the model of Nguyen and Nguyen-Van (2008) both kinds of
resources are essential for production and cannot be totally substituted.

Y = Kα1
· Lα2

· Zα3
·Rα4 (16)

They have proven the existence of an optimal solution to the social planner’s problem.
An example of applying such a production function to real data of a special country is
given by Lafforgue (2008). André-Garćıa and Cerdá-Tena (2001) use this Cobb-Douglas
production function without labor and capital to show how the output is changed and
if a steady state exists, when different kinds of resources are used. They illustrate three
different cases, the use of two non-renewable, the use of two renewable and the use of one
renewable and one non-renewable resource.
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Another specification is that resources which are used for production are not only
extracted from the stock, but also recycled out of waste, see Pittel et al. (2010). The
share of consumption C which was made out of the resources and waste is added to the
stock of waste, the used amount is deducted.

˙Waste = −UsedWaste+
Waste+ Z

Y
· C (17)

Recycled waste is then used as an essential input in a Cobb-Douglas production function.

3 Basic Model

Now the general model which is taken as the basis for the following comparing study is
introduced. A standard model of endogenous economic growth is used. The production
consists of capital K, labor L, human capital H, technological change P and the two
resources Z and R with the option that not all input factors have to be used. The
general production function reads

Y = F (K,L,H, P, Z,R) (18)

The accumulation of capital is fairly standard

K̇ = Y − C (19)

The stocks of the resources evolve as follows (see (2) and (8))

Ȧ = ηA (A)−R (20)

Ṡ = −Z (21)

Total population equals total labor input. Therefore, the labor force grows exogenously
at the population growth rate n.

L̇ = n (22)

Human capital is only an important input factor in some models. As a standard evolution
of the stock the following is assumed

Ḣ = h (LH,H) (23)

where hLH is the marginal labor productivities in this sector when LH is the share of
labor used in the human capital sector with L = LH + LY .

A representative, infinitely living household, which maximizes the discounted lifetime
utility, is considered

U =

∫

∞

0

u (C) · e−ρ·t (24)

where ρ is the time preference rate. A current value Hamiltonian of the social planner’s
problem is set up with all accumulation equation as constraints

HAM (C,L,R, Z,K,H,A, S, P ) = u (C) + λ1 · K̇ + λ2 · Ȧ+ λ3 · Ṡ + λ4 · Ḣ (25)
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where λi, with i = 1, 2, ..,∞ are the co-state variables. After eliminating them from the
first order conditions, see Appendix A, the following conditions hold

YK = −
U̇C

UC

+ ρ (26)

YK =
ẎR

YR

+ ηA (27)

YK =
ẎZ

YZ

(28)

YK =
˙YLY

YLY

−
˙hLY

hLY

+ hH +
UC · YH

UC · YLY − hLY

(29)

where (26) reflects the Keynes-Ramsey Rule and (27) and (28) the Hotelling Rules for
renewable and nonrenewable resources. Using these conditions (26) to (29) and the law
of motions for the stock variables, it is possible to reveal the corresponding growth rates
and starting values for the control variables.

4 Analyzing the Influence

To analyze the influence of the different production functions on the results of the models,
now the different production functions from Chapter 2 are inserted in the basic model (see
Chapter 3) to solve for the growth rates. The basic specification of the utility function
(24) is1

max

∫

∞

0

C1−ǫ − 1

1− ǫ
e−ρtdt (30)

4.1 Using Cobb-Douglas Production Functions

The first calculations show the influence of the different production functions on the
growth rates, when only non-renewable resources are used or when only renewable re-
sources are used. It is assumed that the size of the population grows exogenously with
n.

In case [1] the derivations of the production function (1), Y = Kα1 · Lα2 · Zα3 · eP ·t,
are used and substituted into conditions (26) and (28). The following growth rates result
when only non-renewable resources are used:

gCt =
1

ǫ

((

Kα1−1

t α1Lα2
t Zα3

t eP ·t
)

− ρ
)

(31)

gZt =
Kα1−1

t α1Lα2
t Zα3

t eP ·t − gCtα1− nα2− P

α3− 1
(32)

In case [2] when using production function (10),Y = Kα1 · Lα2 · Rα3 · eP ·t, with only
renewable resources and substituting the derivations into (26) and (27) theses growth

1In the following we set ǫ = 0.8 and ρ = 0.04.
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rates are the result

gCt =
1

ǫ

((

Kα1−1

t α1Lα2
t Rα3

t eP ·t
)

− ρ
)

(33)

gRt =
Kα1−1

t α1Lα2
t Rα3

t eP ·t − gCtα1− nα2− P − ηA
α3− 1

(34)

The first impression may be that the results do not differ much from each other. The
only difference seems to be the regeneration rate ηA in equation (34). The differences are
revealed by taking the dynamics of the stocks into account (for the non-renewable resource
(2) and for the renewable resource (8)). Using the same calibration, the optimal starting
values for C and Z and R, respectively, can be revealed and the growth rates and the
extraction rates, respectively, can be compared.2 In both cases long run economic growth
is possible, depending to a varying degree on the rate of exogenous economic progress P .
In the case of renewable resources [2], even without economic progress, long-run growth
is possible. In the case of non-renewable resources, the economic progress compensates
for the declining amount of resource used for production. If the rate is too low, the whole
economy collapses. With the same amount of economic progress P , the economy of case
[1] starts with a level of supply of about C1

0 = 0.46 units, the economy of case [2] with a
higher level of C2

0 = 0.76 units, due to the fact, that there is a higher input of resources
in the second case (Z1

0 = 0.0006 units compared to R2
0 = 0.14 units). Additionally, the

growth rates have different levels; case [1] grows at 0.22 percent, whereas case [2] grows
at 4.15 percent per period of time. The amount of resources used for production in each
period is increasing in case [2] at a rate of 2.81 percent, in case [1] it is declining at a rate
of -1.96 percent in each period.

If there is no exogenous economic progress in production function (10), there is still
growth at a rate of 1.95 percent per period of time, due to the fact that in each period
more resources are used. The input of renewable resources is growing at a rate of 2.39
percent, in contrast to 2.81 percent in the case of technological progress. The difference
is again based on the technological progress which is also affecting the resources as input
to further production possibilities.

With the current calibration of the model, we receive the same results as if we do not
factor labor as input in the model (result for the production function in equation (9)). If
population growth is considered and if labor is employed as input factor in production,
all rates and values are slightly higher.

The next step is to compare these results to a model where both resources are used.
In the style of (16) we use a CD production function with both resources. Addition-
ally we introduce exogenous technological progress as before (with eP ·t), for a better

2The production coefficients are set to α2 = 1/10, α1 = α3 = 45/100. A constant population is
assumed, n = 0, and the technological progress is P = 1/100. The initial endowment of the stocks are
K0 = 10, S0 = 50, A0 = 50 and one unit of labor is employed. The regeneration rate is set to ηA = 0.04.
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comparability.3 The third case yields to the following growth rates

gCt =
1

ǫ

((

Kα1−1

t α1Lα2
t Rα3

t Zα4
t eP ·t

)

− ρ
)

(35)

gZt =
Kα1−1

t α1Lα2
t Rα3

t Zα4
t eP ·t − (nα2 + P + α3ηA + gCtα1)

α3 + α4− 1
(36)

gRt =
Kα1−1

t α1Lα2
t Rα3

t Zα4
t eP ·t − (nα2 + P + (1− α4) ηA + gCtα1)

α3 + α4− 1
(37)

The differences between the growth rates using different types of resources are again
explained mainly by the rate of regeneration ηA. Additionally, it can be shown that the
growth rates strongly depend on the production coefficient and the used amount of the
other resource. Because of using an essential non-renewable resource in the production
process, the initial consumption level and in unison, the growth rate of consumption are
less than in case [2], but because of the use of the renewable resource higher than in case
[1] (C3

0 = 0.49 growing at 3.34 percent). If there is no technological progress, the growth
rate of consumption tends to zero, being slightly negative. In contrast to the cases, when
only one resource is used, the change of input of the renewable resource is slightly higher
at 2.66 percent than before, and the decline of input of the non-renewable resource is
slightly lower at -1.34 percent.

The production function (4) does not alter the results in our set up. Capital K is split
into different capital goods Xi, leading to a different possibility to generate technological
progress. On overview on how technical change is directed can be found in Acemoglu
(2002).

4.2 Using CES Production Functions

Until now, the focus was on the use of the Cobb-Douglas production function, where
all input factors are always essential for production. We now use the more general CES

production function, as introduced in (3), Y =
(

β ·Kθ + (1− β) · Zθ
)

1

θ . The equations
for the calculation of the growth rates when using a non-renewable resource read

gCt =
1

ǫ

(

(

βK
σ−1

σ

t + (1− β)Z
σ−1

σ

t

)

1

σ−1

βK
−

1

σ

t − ρ

)

(38)

gZt = −

(

βK
σ−1

σ

t + (1− β)Z
σ−1

σ

t

)

σ

σ−1 σ

Kt

+ gCt (39)

If instead of the non-renewable resource the renewable resource is used, the growth rate
stays the same, except for the replacement of the resource. In this case the extraction
rate reads

gRt = −

(

βK
σ−1

σ

t + (1− β)R
σ−1

σ

t

)

σ

σ−1 σ

Kt

+ gCt +

(

1 +
R

K

σ−1

σ 1− β

β

)

σηA (40)

There are four different cases [4a-d], depending on the size of the substitution elasticity
σ, which have to be distinguished (see Neumeyer (2000) pp. 321-322). In the case [4a]

3The production coefficients are now set to α2 = 1/10, α1 = α3 = α4 = 3/10. The other parameteri-
zation stays the same.
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when σ > 1 the non-renewable resource is inessential for the production; even if there is
no input of resource into production, constant growth of consumption of 3.33 percent is
possible.4 If, additionally, a proportion of the non-renewable resource is used, the growth
rate may be even higher at the beginning, until the stock of the resource is exhausted.
In the long-run, the growth rate approaches the same rate as without using the resource.
But the level of consumption is higher in each period during the whole time, due to the
fact that the initial consumption level is higher. If a renewable resource is used instead of
the non-renewable one, these effects are even greater. But for those, who include natural
resources in growth theory, this case is quite uninteresting.

More interesting is the case [4b] when σ < 1.5 In this case long-run production is
theoretically possible, even if only non-renewable resources are used; but the actual rate
of consumption is declining relative quickly. The production is declining and after a short
time, there are hardly any goods left for consumption, so that the capital goods also have
to be consumed. The growth rate and the change of the amount of resource extraction
tend to -2.5 percent, which is represented by the term ρ/ǫ in equation (38); the rest of
the equations (38) and (39) tend to zero. If technological progress is introduced (in the
form of enhancement of the total production), economic growth is possible as long as it
compensates for the decline in resource input. In our case, the technological progress
must not necessarily be higher than 2.5 percent because the production is enlarged in
each period.

If only renewable resources are used, long-run growth is possible again, independent
of the size of σ, see equation (40). In the current setting, the final growth rate of
consumption equals the growth rate of the resource and is about 2.5 percent. The size
of σ has influence on the optimal size of the initial levels of consumption and resource
input (C0 = 0.89 units and R0 = 0.16 units); if σ decreases, these levels rise. Depending
on the size of σ, the regeneration rate ηA and the given stock of the resource A have to
be great enough to compensate for the use of the renewable resource and to maintain a
sufficiently high growth of resources.6

As a special case [4c], if σ = 0 is assumed, the production function changes to a
production function of the Leontief type. The input factors become perfect complements.
Substitution is not possible and production is only possible as long as the stock of the
non-renewable resource is not depleted. The time-of-use and production depend on the
ratio of resource used to the total stock per period. This case is trivial, and in the
economics of long-term growth irrelevant because with research and development this
stage can be overcome. If σ = 1 is set, we receive the special case of a Cobb-Douglas
production function and therefore, the same results as in case [1] (see Groth (2007) p.12).

Using CES production functions the results are always quite predicable, except for
the specific case [4d] if σ = 1, and therefore, it becomes a CD production function.

4The calibration set is now β = 0.6 and σ = 1.2. The further variables are set as before.
5Now σ = 0.8 is used.
6For σ = 0.5 the initial stock of A, when the same regeneration rate is assumed, has to be larger,

leading to initial values of C0 = 2.33 and R0 = 1.22.
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The growth functions in case of production function (12), Y = Kα1 · (Z +R)α2 read:

gCt =
Kα1−1

t α1 (Rt + Zt)
α2 eP ·t − ρ

ǫ
(41)

gZt =
(Rt + Zt)

α2+1 α1Kα1−1
t eP ·t

Zt (α2− 1)
+

(−gKtα1 + (1− α2) gRt − P )Rt

Zt (α2− 1)

+
(−gKtα1− P )

(α2− 1)
(42)

gRt =
(Rt + Zt)

α2+1 α1Kα1−1
t eP ·t

Rt (α2− 1)
+

(−gKtα1 + (1− α2) gZt − P − ηA)Rt

Rt (α2− 1)

+
(−gKtα1− P − ηA)

(α2− 1)
(43)

In the production functions (12) as well as in (13) and (15) both kinds of resources are
introduced and combined as a CES production function. The output of this function is
introduced into a CD production function. The resources are treated as intermediates.
Both resource extraction rates are interdependent. Again they mainly differ in the rate
of the resource regenerations ηA in equation (43) and the dynamics of the stocks.7 In this
setting, when technological progress is considered (case [5a]), long-run economic growth
is possible at a rate of 5.05 percent. In comparison to the other cases this rate is quite
high; this is due to missing σ in comparison to cases [4], and due to the additive linkage
of the resources in comparison to case [3]. The initial consumption is at C5a

0 = 0.7, the
renewable resource is extracted at a rate of 2.97 percent, the non-renewable resource at
a rate of -5.0 percent. If there is no technological progress (case [5b]) the optimal initial
consumption reduces to C5b

0 = 0.55, growing at a rate of 2.5 percent. The extraction
rate of the non-renewable resource is slightly higher at -5.5 percent and the one of the
renewable resource slightly lower at 2.5 percent. If in the same setting, as case [5a], the
non-renewable resource is missing, the initial amount of renewable resource has to be
higher; if the renewable resource is missing, the growth rate tends to zero but remains
above zero, so that constant consumption is possible due to the rate of technological
progress.

To simplify the equations (13) and (15) one can choose a broader definition of capital
and subsume under this term the influences of capital, human capital and labor. Then
nearly the same equation as in (12) results, supplemented by the substitution factor
σ.8 In the same setting as before, in the long-run the same growth rates are achieved,
starting at lower initial levels. There is an adjustment path for the extraction rate of
the renewable resource from a higher rate of 5.05 percent to the rate of 2.97 percent.
Associated with this is an adjustment of the growth rate of consumption from 1.6 percent
to 5.05 percent. The seriously complex production functions are chosen, if you want to
model the higher complexity of the reality including further influences on the extraction
rates. For the purpose of mainly making statements about extraction rates and growth
rates and comparing these rates with regard to the different modeling of resources, the
simplified equations will meet the requirements.

7Now α1 = α2 = 0.5 is used.
8Assuming that the resource may be substituted one by one, σ = 0.5 is supposed.
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4.3 Further Modifications on the Production Functions

The difference between the dynamics of the stock of the non-renewable resource described
in equation (2) and in equation (5) is that in the latter there are additional investments
to the stock of the non-renewable resource. These investments are used to develop new
sources for resource extraction. Therefore the total amount of S is not fixed, and if new
sources are made available, economic growth without technological progress is possible
for a longer time (in contrast to case [1], when (1) is used). If equation (11) is used
instead of equation (8) to describe the dynamics of the stock of the renewable resource,
there is a smaller amount available for regeneration. This is due to the fact, that the
extraction takes place at different points of time. This leads to lower initial amounts of the
renewable resource and consumption, and as well to a lower growth rate and extraction
rate, respectively (in contrast to case [2], when (10) is used).

In the functions (6) and (7) the polluting effect of the use of the non-renewable
resource is additionally modeled. In the setting of (6) the pollution effect decreases the
utility, which can be drawn from the consumption goods. In this case only in a setting
of a social planner, the consideration leads to a smaller extraction of the non-renewable
resource because only then the effect on the utility is already beard in mind, when deciding
on the production. A further possibility to consider pollution is, if production function
(7) is used. The extraction rates are lower as in comparison to (1) because the firms
have to pay an additional amount for the pollution. The economics of scale are reduced
identifiable by α1+α2+α3−δ < 1. In equation (17) waste is introduced as an additional
input factor, which may substitute for the declining amounts of natural resources. These
equations are incorporated in this paper to model some further effects that may influence
the extraction rates.

5 Conclusion

In total one can say that, when only non-renewable resources are considered, economic
growth is possible as long as there is a high enough rate of technological progress or when
the non-renewable resource is not essential for the production process. Technological
progress may be on the one hand resource saving or on the other hand supporting the
total production. At first glance, there seems to be no problem at all if only renewable
resources are modeled and no difference depending on which kind of production function is
used. If both kinds of resources are used, the modeling approach has significant influence,
because of the different characteristics of the substitution process. Especially in the case
when CES production functions are used, there may be enormous changes depending on
the size of σ. If the resources are combined as intermediates, the amount used from one
resource always depends on the amount used from the other resource. By calculating
the optimal growth path, this leads to the fact that for the total production a special
amount is necessary, which may be provided by different combinations of inputs from the
resources.

The contribution of this paper is, to give a first impression about the influence of
choosing the one or another production function, on the used models. But there has to
be done further research on specific production functions to analyze all influencing factors,
especially the direction and size of the impact on the extraction rates and therefore, on
the growth rate of the economy.
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A Mathematical Appendix

The first order conditions ∂HAM
∂C

= 0, ∂HAM
∂R

= 0 ∂HAM
∂Z

= 0 ∂HAM
∂LY

= 0 with LH = 1−LY
yield to

λ1 = UC (A.1)

λ2 = λ1 · YR (A.2)

λ3 = λ1 · YZ (A.3)

λ4 =
λ1 · YLY

hLY

(A.4)

From the Euler equations ∂HAM
∂K

= ρλ1 − λ̇1, ∂HAM
∂A

= ρλ2 − λ̇2, ∂HAM
∂S

= ρλ3 − λ̇3,
∂HAM
∂H

= ρλ4− λ̇4 we get

λ̇1

λ1
= ρ− YK (A.5)

λ̇2

λ2
= ρ− ηA (A.6)

λ̇3

λ3
= ρ (A.7)

λ̇4

λ4
= ρ− hH −

λ1 · YH

λ4
(A.8)

The transversality conditions are

lim
0→∞

λ1 ·K · e−ρ·t = lim
0→∞

λ2 ·R · e−ρ·t = lim
0→∞

λ3 · Z · e−ρ·t = lim
0→∞

λ4 ·H · e−ρ·t = 0 (A.9)

Differentiating (A.1) to (A.4) with respect to time divided by (A.1) to (A.4) reveals

λ̇1

λ1
=

U̇C

UC

(A.10)

λ̇2

λ2
=

λ̇1

λ1
+

ẎR

YR

(A.11)

λ̇3

λ3
=

λ̇1

λ1
+

ẎZ

YZ

(A.12)

λ̇4

λ4
=

λ̇1

λ1
+

˙YLY

YLY

−
˙hLY

hLY

(A.13)

and combining with (A.5) to (A.8) and (A.4) and (A.1 ) yields

ρ− YK =
U̇C

UC

(A.14)

ρ− ηA = (ρ− YK) +
ẎR

YR

(A.15)

ρ = (ρ− YK) +
ẎZ

YZ

(A.16)

ρ− hH −
UC · YH

UC · YLY − hLY

= (ρ− YK) +
˙YLY

YLY

−
˙hLY

hLY

(A.17)
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Grimaud, A., Lafforgue, G., and Magné, B. (2007). Innovation Markets in the Policy
Appraisal of Climate Change Mitigation. LERNA Working Papers, (07.12.233), 1–36.
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