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Abstract

Observation-driven models provide a flexible framework for modelling time
series of counts. They are able to capture a wide range of dependence struc-
tures. Many applications in this field of research are concerned with count
series whose conditional distribution given past observations and explana-
tory variables is assumed to follow a Poisson distribution. This assumption
is very convenient since the Poisson distribution is simple and leads to mod-
els which are easy to implement. On the other hand this assumption is often
too restrictive since it implies equidispersion, the fact that the conditional
mean equals the conditional variance. This assumption is often violated in
empirical applications. Therefore more flexible distributions which allow for
overdispersion or underdispersion should be used. This paper is concerned
with the use of alternative distributions in the framework of observation-
driven count series models. In this paper different count distributions and
their properties are reviewed and used for modelling. The models under
consideration are applied to a time series of daily counts of asthma presen-
tations at a Sydney hospital. This data set has already been analyzed by
Davis et al. (1999, 2000). The Poisson-GLARMA model proposed by these
authors is used as a benchmark. This paper extends the work of Davis et al.
(1999) to distributions which are nested in either the generalized negative
binomial or the generalized Poisson distribution. Additionally the maximum
likelihood estimation for observation-driven models with generalized distrib-
utions is presented in this paper.

Keywords: Count series, observation-driven models, GLARMA, dicrete dis-
tributions

JEL classification: C13, C22, C25
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1 Introduction

A series of observations {Yt}T
t=0 indexed by the time t is called a count series

if Yt ∈ N0 ∀t. Count series arise typically in applications where the number
of certain events or happenings during a certain time period is the object of
interest. Examples of count series are the number of incidences of a certain
disease (poliomyelitis in the U.S.: Zeger, 1988 or asthma cases in a hospital
in Campbelltown: Davis et al. 1999) and the number of transaction price
movements of a certain financial instrument measured in multiples of the
minimum tick size (IBM stocks at the New York Stock Exchange: Rydberg
and Shephard, 2003; Henkel shares at Frankfurt Stock Exchange: Liesenfeld
and Pohlmeier, 2003 and options on shares of the Bayer AG: Czado and
Kolbe, 2004).
A wide variety of models for count series have been discussed in literature
among others Markov chains (Cox and Miller, 1965), hidden Markov models
(MacDonald and Zucchini, 1997), discrete and integer valued ARMA type
models (DARMA and INARMA, Jacobs and Lewis, 1978; Alzaid and Al-Osh,
1988, 1990) and models based on a extension of the generalized linear mod-
els proposed e.g. by Zeger (1988), Shephard (1995) and Davis et al. (1999).
Following the systematic introduced by Cox (1981), these models can be
characterized either as observation-driven or parameter-driven. This classi-
fication is based on the theory and terminology of state-space models. State
space models consist of two constituting equations referred to as observation
and state equation. The observation equation constitutes the distribution
of the output variable given the state variable. The state equation specifies
the behaviour of the state variable. For both parameter- and observation-
driven models the observation equation is the same. The differences between
these models are based on the specification of the state equation. Parameter-
driven models induce the serial dependence by a latent variable which evolve
independently of the past observations of the outcome variable. Davis at
al. (1999) point out that for parameter-driven models the statistical prop-
erties are easy to derive as well as the fact that the regression parameters
can be interpreted in a meaningful way. On the other hand estimation for
these models requires computational effort since the likelihood function is
not easily calculated. In observation-driven models the serial dependence is
introduced by specifying the state variable explicitly as a function of past
outcomes. According to Davis at al. (1999) prediction of counts and the
calculation of the likelihood function is easy for observation-driven models.
On the other hand the disadvantages of this model type are the fact that
statistical characteristics, e.g. stationarity and ergodicity, are difficult to de-
rive and interpretation of the parameters is not simple.
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This paper focus on the use of different discrete distributions for observation-
driven models. The models proposed in this paper are illustrated with data
of the daily number of asthma cases in a hospital in Campbelltown (Sydney,
Australia). These data have been already analyzed by Davis at al. (1999).
In their work Davis at al. (1999) propose a Poisson-GLARMA model us-
ing seasonal variables as regressors and with lags 1, 3, 7, 10 for the AR
component and no moving average component. This model will be used as
a benchmark for models using alternative count distributions. In order to
make the different approaches comparable the same regressors and the same
AR components will be used across all models.
The major objective of this paper is to illustrate the impact of using alterna-
tive distributions in observation-driven models for count series on the ability
of the models to fit the data. The paper is organized as follows.Section 2
presents the general set up for observation driven models. Section 3 presents
different discrete distributions and some of their properties. Estimation and
inference issues are discussed in section 4. The results of fitting the models
to the number of asthma presentations at a hospital in Campbelltown are
presented in Section 5 while section 6 concludes.

2 The Model

In the general setup it is assumed that given the past history (denoted
by Ft−1), Yt | Ft−1 ∼ g(µt, λt), where g(·) is the probability mass func-
tion. The first two conditional moments are given by E [Yt | Ft−1] = µt and
V ar [Yt | Ft−1] = σ2

t . In order to include external regressors the conditional
mean is connected to the process Wt via a link function. In this paper for
all models under consideration the same link function µt = exp(Wt) is used
where Wt = x>t β +Zt. In this model xt is a series of regressor variables with
dimension r × 1. Using the model proposed by Davis et al. (2003) the term
Zt which is responsible for the correlation structure of Yt can be expressed
as an infinite sum of past errors Zt =

∑∞
i=1 πiεt−i where:

εt =
Yt − µt

σt

. (1)

The infinite moving average can be specified in terms of a finite number of
parameters. One way to parameterize the moving average weights πi is to
express them as the coefficients of an autoregressive-moving average filter:

π(B) =
∞∑
i=1

πi B
i =

θ(B)

φ(B)
− 1
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where:

θ(B) = 1 + θ1B
1 + θ2B

2 + · · ·+ θqB
q

φ(B) = 1− φ1B
1 − φ2B

2 − · · · − φpB
p.

are polynomials in the backshift operator (B) with having all their zeros
outside the unit circle. Therefore Zt can be expressed by:

Zt =

p∑
i=1

φi (Zt−i + εt−i) +

q∑
i=1

θt−i εt−i. (2)

In this set up different distributions with probability mass functions g(·)
can be used for modelling count series. In the following section the count
distributions under consideration will be presented.

3 Distributions

As already mentioned in the previews section Yt, µt, σ
2
t , λt depend on time.

In order to have easy notation the subscript will be ignored in this section.

Poisson Distribution
The standard choice in many applications for count data is the Poisson dis-
tribution with the pmf given by:

P (Y = y) =
e−µµy

y!
.

A special characteristic of the Poisson model is equidispersion, the fact that
mean and variance are equal: µ = σ2. This fact is often too restrictive. In
many applications one can observe overdispersion. This observation is the
justification for using more complicated count distributions.

Negative Binomial Distribution
An alternative model which allows for overdispersion is the negative binomial
distribution, with the following probability mass function:

P (Y = y) =
Γ(y + λ)

Γ(1 + y)Γ(λ)

(
λ

λ+ µ

)λ(
µ

λ+ µ

)y

(3)

and the variance given by: σ2 = µ(1 + µ/λ). There exist two different types
of negative binomial distributions which differ with respect to the definition
of λ. The first model (NB-I) uses λ = µ/α0 while the second model (NB-II)
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uses λ = 1/α0. This affects the variance function. While for the NB-I model
the variance is given by: σ2 = µ(1 + α0) in the NB-II model the variance
is a second degree polynomial of the mean: σ2 = µ(1 + α0µ). Therefore a
NB-II regression e.g. proposed by Lawless (1987) is able to model overdis-
persion in a more flexible way. It is important to know that the negative
binomial distribution is not part of the one parameter exponential family
used in the standard theory of generalized linear models e.g. McCullagh and
Nelder(1989). Nevertheless the negative binomial distribution is part of a
more general definition of the exponential family introduced by Jørgenson
(1986).

Generalized Negative Binomial Distribution
The two types of negative binomial distributions can be nested in a more
general approach proposed by Cameron and Trivedi (1986) or Saha and Dong
(1997). The probability mass function of the generalized negative binomial
model uses the same two parameter probability mass function as given in
expression (3). It gains more flexibility by including another parameter in
the definition of λ:

λ =
µα1

α0

.

In this distribution the variance is given by σ2 = µ + α0µ
2−α1 . The NB-I

can be obtained by setting α1 = 1 while the NB-II model can be found in
the case of α1 = 0. In the case of α0 → 0 one gets the standard Poisson model.

Geometric Distribution
In addition to the two types of negative binomial distributions there exists
another discrete distribution which is nested in the generalized negative bi-
nomial distribution. In the case of λ = 1 expression (3) results in:

P (Y = y) =

(
1

1 + µ

)(
µ

1 + µ

)y

.

The variance in this case is given as a second order polynomial of the mean:
σ2 = µ(1+µ). It is easy to see that the Geometric distribution is also nested
in the NB-II distribution in the case α0 = 1.

Generalized Poisson Distribution
The pmf of the generalized Poisson distribution proposed by Consul and Jain
(1973) is given by:

P (Y = y) =

{
κ[κ+λy]y−1e−[κ+λy]

y!

0 for y > m, when λ < 1
(4)
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with the restrictions: κ > 0, max
{
−1,− κ

m

}
≤ λ ≤ 1 where m is the largest

positive integer for which κ + mλ > 0 when λ < 0. The first two moments
are given by µ = κ/(1 − λ) and σ2 = κ/(1 − λ)3 = µ/(1 − λ)2. A different
parametrization proposed by Consul and Famoye (1992) expresses the pmf
of the generalized Poisson distribution as a function of its mean:

P (Y = y) =

{
µ[µ+(ρ−1)y]y−1ρ−ye

− 1
ρ [µ+(ρ−1)y]

y!

0 for y > m, when ρ < 1
(5)

with the adjusted restrictions: µ > 0, ρ ≥ max
{

1
2
, 1− µ

m

}
where m is the

largest positive integer for which µ+m(ρ−1) > 0 when ρ < 0. The variance
can be expressed as a function of the parameter ρ and the mean: σ2 = µρ2.
The fact that the variance is a linear function of the mean seems to be too
restrictive. In order to allow for more flexible relations between the mean
and the variance a restricted version of the generalized Poisson was proposed
by Consul (1989).

Restricted Generalized Poisson Distribution
The restricted generalized Poisson distribution results by substituting λ =
α0κ for λ in expression (4):

P (Y = y) =

{
κy [1+α0y]y−1e−κ[1+α0y]

y!

0 for y > m, when α0 < 0 .
(6)

The parameters have the following restrictions: κ > 0, max
{
− 1

κ
,− 1

m

}
≤

α0 ≤ 1
κ
, wherem is the largest positive integer for which κ(1+mα0) > 0 when

α0 < 0. The mean and the variance of the generalized Poisson distribution
in restricted form are given by µ = κ/(1 − α0κ) and σ2 = κ/(1 − α0κ)

3 =
µ(1 + α0µ)2 respectively. The variance is a third degree polynomial of the
mean. This allows for more flexibility when modelling overdispersion. The
restricted generalized Poisson distribution can also be expressed as a function
of its mean:

P (Y = y) = κy (1 + α0y)
y−1e−κ(1+α0y)

y!

κ =
µ

1 + α0µ
.

The restricted and the unrestricted forms of the generalized Poisson regres-
sion model can be nested in a two-parameter hybrid generalized Poisson
model proposed by Santos Silva (1997).
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Hybrid Generalized Poisson Distribution
The hybrid generalized Poisson (HGP-I) distribution is given by:

P (Y = y) = κy (1 + λy)y−1e−κ(1+λy)

y!

κ =
µ

1 + λµ
λ = α0µ

α1 .

The variance is given by: σ2 = µ(1 + λµ)2. In this model both parameters
α0 and α1 need to be estimated. The restricted generalized Poisson model
(abbreviated by HGP-II) can be obtained by setting α1 = 0. In the case of
α1 = −1 one gets the HGP-III model which is identical with the generalized
Poisson model in expression (5). The parameter ρ in the generalized Poisson
models is then equivalent to (1 + α0). The standard Poisson model can be
obtained by setting α0 = 0.

Modified Borel Distribution
Another distribution of interest is a modified Borel distribution, which is
nested in the HGP-I model. In the case of λ = 1 one finds the following pmf:

P (Y = y) = κy (y + 1)y−1e−κ(1+y)

y!

κ =
µ

1 + µ
.

This probability mass function is different to the one presented by Borel
(1942) and Tanner (1953). The Borel distribution in its original form does
not include events {Y = 0}. By shifting the original distribution one finds
a modified Borel distribution which is defined on N0. A random variable
following this modified Borel distribution has the variance: σ2 = µ(1 + µ)2.
It is easy to see that the modified Borel distribution is also a special case of
the HGP-II model for α0 = 1.

Table 1 given on the next page summarizes of the different distributions and
their properties.
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Generalized Poisson Generalized Negative Binomial

λ α0µ
α1 1

α0
µα1

σ2 µ(1 + λµ)2 µ(1 + µ
λ
)

α0 free free free 1 0 → 0 1 free free free

α1 free 0 −1 0 not 0 1 0 free
relevant

Model HGP-I HGP-II HGP-III mod. Borel Poisson Geometric NB-I NB-II GNB

σ2 µ(1 + α0µ
1+α1)2 µ(1 + α0µ)2 µ(1 + α0)2 µ(1 + µ)2 µ µ(1 + µ) µ(1 + α0) µ(1 + α0µ) µ(1 + α0µ

1−α1)

Table 1: Overview: Alternative count models.
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4 Estimation and Inference

4.1 Maximum Likelihood Estimation

In order to estimate the model parameters the use of a modified maximum
likelihood approach is appropriate. The modification of the standard like-
lihood approach is necessary since the model specifies only a conditional
distribution g(µt, λt | Ft−1). The partial likelihood function is given by:

L(δ) =
T∏

t=1

g(yt, µt(δ), λt(δ) | Ft−1) .

The corresponding log-likelihood function is given by:

`(δ) =
T∑

t=1

f(yt, µt(δ), λt(δ) | Ft−1)

where: f(·) = log g(·). The maximum likelihood estimates can be obtained
by solving the score equation:

S(δ) =
T∑

t=1

∂`t(δ)

∂δ
= 0 .

In order to calculate the score function one has to take care about the fact
that `t(δ) depends on δ via µt and λt which itself depends on µt, α0 and α1.
The derivation of the log-likelihood function is discussed in detail in appendix
1. Due to the fact that the score function for observation-driven models is
highly nonlinear in δ it cannot be solved analytically. The maximization can
be done by using numerical algorithms which are implemented in most of the
statistical software packages. The results given in section (5) were obtained
by using the BFGS-Algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970) which is implemented in R (http://www.r-project.org).

4.2 Inference

After fitting a model to observed data one likes to answer the question
whether or not certain parameters are statistically significant and whether
or not one model performs in total better than another one. In order to an-
swer these questions one need knowledge ore at least reasonable assumptions
about the distribution of the estimators. In the framework of generalized lin-
ear models which uses distributions which belong to the exponential family
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one can proof that the maximum likelihood estimator δ̂ of the model para-
meters is consistent and asymptotically normal distributed (e.g. Fahrmeir
and Kaufmann, 1985 or McCullagh and Nelder, 1989):

√
n(δ̂ − δ0)

d→ N(0,Ω)

where:

Ω̂ = −
(

1

n

∂2`(δ)

∂δ∂δ>
|δ=δ̂

)−1

.

The problem in applying these results to the models proposed in this paper is
twofold. First some of the distributions used for modelling in this paper are
not part of the exponential family. By using these distributions one leaves the
framework in which the asymptotical properties were proofed. Second even if
a distribution which belongs to the exponential family is used for modelling
the validity of the normality assumption for the estimator is still questionable
since the model does not deal with independent identically distributed data.
Furthermore a central limit theorem for the maximum likelihood estimators
is currently not available for the general observation-driven model. Davis
et al. (2003) provide proofs for a simple Poisson-GLARMA model which
justify the use of the properties above. Based on the results of Davis et al.
(2003) it seems to be reasonable to assume the validity of the properties given
above for observation-driven models which use distributions which are part
of the exponential family. The use of these results for the distributions under
consideration in this paper can be justified by the following arguments. The
Poisson, the Geometric and the modified Borel distribution belong to the
exponential family (e.g. Winkelmann, 2000 chap.2). For given α0 the NB-II
belongs to the exponential family too (e.g. Winkelmann, 2000). The same
can be shown for the restricted generalized Poisson distribution (see appendix
2). The NB-II and the HGP-II distribution is nested in the generalized
negative binomial and in the HGP-I respectively. The Poisson distribution is
nested in all distribution under consideration. These relations show that all
distributions under consideration in this paper are connected to exponential
family. Due to the absence of a central limit theorem this connection to the
exponential family together with the results given by Davis et al. (2003)
should be enough to justify the use of the asymptotic results given above
for the maximum likelihood estimators of β, φ and θ. This assumption is
not made for the estimators of α0 and α1 therefore in table 3 no statements
concerning significance are made for the estimates of these parameters.
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5 Example

5.1 Data

In order to illustrate the impact of using alternative distributions the models
presented in this paper are applied to a time series of daily asthma incidences
in a single hospital in Campbelltown in the metropolitan area of Sydney.
The observations were made in the time period from 1 January 1990 to
31 December 1993 on a daily basis, in total 1461 observations. The series
is plotted in figure 1. It shows periodical behaviour. Its autocorrelation
function given in the same figure shows significant autocorrelations. The
data set has been analyzed by Davis et al. (1999) who propose a Poisson-
GLARMA model with autoregressive components for lag 1, 3, 7 and 10.
Furthermore Davis el al. (1999) include trigonometric functions as external
regressors to describe the periodic behaviour in addition to regressors for
Sunday and Monday effects. Due to the fact that the Poisson model is easy
to implement it will be used as a benchmark in this analysis. In order to
make the different approaches comparable the same regressors and the same
AR components were used across all models.

5.2 Computational Issues

Since the maximization of the log-likelihood function is done by an itera-
tive numerical algorithm starting values of δ need to be specified. Similar
to Davis et al. (2003) the estimation of the Poisson-GLARMA model was
initialized with the standard generalized linear model Poisson regression es-
timates without the autoregressive moving average terms together with zero
initial values for εt (t ≤ 0). The estimation of the time series models using
the modified Borel and the Geometric distribution was initialized in the same
way. Since the Geometric distribution is nested in the negative binomial dis-
tribution type II (NB-II) the estimation of this models was initialized by
the estimates of the time series Geometric model and starting value α0 = 1.
The estimates of the Geometric time series model were used as initial values
for the generalized negative binomial model together with the starting val-
ues α0 = 1 and α1 = 0. The estimation of the NB-I model was initialized
with standard non-time series negative binomial regression estimates. The
Poisson-GLARMA estimates of the mean were used to calculate the initial
value of α0:

α̂0 =
1

T − r − p− q

T∑
t=1

(yt − µ̂t)
2

µ̂t

− 1 .
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The estimates of the time series modified Borel model together with α0 = 1
or α0 = 1, α1 = 0 were used as initial values for the estimation of the
HGP-II model and HGP-I model respectively. The estimation of the HGP-
III model was initialized with Poisson-GLARMA estimates. The series of
Poisson-GLARMA estimates of the mean was used to calculate the initial
value of α0:

α̂0 =

√√√√ 1

T − r − p− q

T∑
t=1

(yt − µ̂t)2

µ̂t

− 1 .

5.3 Results

The parameter estimates of the models are given in table 3. The estimates
of δ do not differ very much accross the models concerning the value of the
estimates and their significance. Nevertheless the models using the modi-
fied Borel and the Geometric distribution are rather different to all other
models under consideration. Another interesting fact is the result that for
both the HGP-I and the GNB model the value of α̂0 is close to zero. This
gives rise to the presumption that these models do not differ significantly
from the Poisson model. The results of a likelihood ratio test presented in
table 2 can help answering this question. Based on the results presented in
this table one can conclude that starting from a Poisson model all alterna-
tives (HGP-III, HGP-II, HGP-I, NB-I, NB-II and GNB) increase the model
fit significantly. Similar results can be found for the likelihood ratio test
when starting from the modified Borel or the Geometric distribution. The
values of the test statistic are very large for these models, confirming the
impression that the model using both the modified Borel and the Geometric
distribution are rather different to the other alternatives. Another interest-
ing point is the fact that starting from a HGP-II or NB-II model the use
of the HGP-I model or GNB respectively does not increase the model fit
significantly. This can be explained by the fact that both the HGP-II and
the NB-II distribution already have a flexible variance function which covers
a wide range of overdispersion. Therefore the additional parameter leading
to the generalized distributions is not necessary.

Additional to the results of the likelihood ratio test table 4 provides the
values of different model fit statistics. In this tabel for each model the fol-
lowing quantities are presented: the number of paramters, the value of the
log-likelihood function evaluated at the estimates, the likelihood ratio test
for a model using the intercept only an the time series model, three types
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of pseudo R2 (McFadden, 1973; Maddala, 1983 and Veall and Zimmermann,
1992), the root mean squared error and two information criteria (Akaike,
1973 and Schwarz 1978). From the results given in this table one can see
that based on the value of the log-likelihood function evaluated at the esti-
mates and based on the Akaike information criterion (AIC) the HGP-I model
fits the data best. In the Schwarz information criterion (BIC) including ad-
ditional parameters is penalized stronger than in the AIC. Therefore based
on this criterion the Poisson model should be chosen. Based on the pseudo
R2 the Poisson model fits the data best while a model selection based on the
RMSE will not lead to a unique decision. The values of the fit statistics also
confirm the presumption that the modified Borel and the Geometric distrib-
ution lead to rather different results. Both models show worse results for all
the characteristics mentioned above. Figure 2 and 3 illustrate these findings.
These graphics show the estimated mean and variance for each model. The
rather different properties of the models using the modified Borel and the
Geometric distribution become obvious in these plots. In the plots of these
two models the variance exceeds the mean very much.

Another point of interest is the behaviour of the residuals. If the model is
specified correctly the estimated residuals will have an expected value of zero
and unit variance. Furthermore its first two moments should be uncorrelated.
Table 5 summarizes the characteristics of the model residuals. With excep-
tion of the models using the modified Borel and the Geometric distributions
and the Box-Pierce test on autocorrelation of the squares residuals for lag
10 non of the model residuals show significant deviation from the assumed
behaviour. Similar the the previews findings the models using the modified
Borel and the Geometric distribution show different residual characteristics.
This can be seen as an indication that these models are not sufficient for
the data set under consideration. Figure 4 and 5 show the autocorrelation
function of the model residuals. None of theses plots shows significant auto-
correlations.

Finally one can see that among all models under consideration in this paper
pairs of models with equivalent properties can be found. Concerning their
characteristics the following pairs of almost equal models can be found: The
modified Borel and the Geometric model, the NB-I and the HGP-III, the NB-
II and the HGP-II, the HGP-I and the GNB model. The pair wise similarity
can be seen by the presence of some type of symmetry around the column
containing the results of the Poisson model in tables 3 to 5.
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6 Conclusion

This paper analyzes and illustrates the use of alternative discrete distribu-
tions in the framework of observation-driven models for count series.
Observation-driven models are a flexible approach for modelling a wide range
of serial dependence in count data. Although the Poisson distribution is
widely used in modelling count data it has some disadvantages since it as-
sumes equidisperion. This paper shows that the ability of a model to fit the
data can be improved significantly by using distributions which are able to
cover overdispersion. Among eight alternative distributions the GNB, the
NB-II, the HGP-II and the HGP-I can be considered as serious competi-
tors to the approach using the Poisson distribution. On the other hand the
Geometric, the NB-I, the modified Borel and the HGP-III distribution does
not improve the model since they use less flexible variance functions. Further
research can be done in analyzing the impact of using alternative count distri-
butions on out-of-sample forecasting properties of observation-driven models.

Acknowledgements
I gratefully acknowledge the support of William Dunsmuir (Professor and
Head of the Department of Statistics at the University of New South Wales)
for providing both the data of daily asthma admissions at the hospital in
Campbelltown and the S-Plus program for calculating the derivatives of Zt

recursively.

14



Appendix 1: Estimation

As already mentioned the conditional probablity mass function depends on
µt and λt. Furthermore λt depends on α0, α1 and µt as well. The parameters
of interest are collected in the vector δ = (β>, φ>, θ>, α0, α1)

> which has
dimensions (r+ p+ q+2)× 1. In order to derive a general expression for the
maximum likelihood estimation two additional vectors need to be introduced:
u = (0, 0, · · · , 0, 1, 0)>, v = (0, 0, · · · , 0, 0, 1)>. Both vectors have the same
dimensions as δ. The first derivative of the log-likelihood function is given
by:

∂`t
∂δ

=
∂`t
∂Wt

∂Wt

∂δ
+
∂`t
∂α0

u+
∂`t
∂α1

v

=

[
∂`t
∂µt

∂µt

∂Wt

+
∂`t
∂λt

∂λt

∂µt

∂µt

∂Wt

]
∂Wt

∂δ
+
∂`t
∂λt

∂λt

∂α0

u+
∂`t
∂λt

∂λt

∂α1

v .

The second derivative is given by:

∂2`t
∂δ∂δ>

=
∂2`t
∂W 2

t

∂Wt

∂δ

[
∂Wt

∂δ

]>
+ u

∂2`t
∂α0∂Wt

[
∂Wt

∂δ

]>
+ v

∂2`t
∂α1∂Wt

[
∂Wt

∂δ

]>
+

∂`t
∂Wt

∂2Wt

∂δ∂δ>
+

∂2`t
∂α0∂Wt

∂Wt

∂δ
u> +

∂2`t
∂α0∂α1

vu> +
∂2`t
∂α2

0

uu>

+
∂2`t

∂α1∂Wt

∂Wt

∂δ
v> +

∂2`t
∂α0∂α1

uv> +
∂2`t
∂α2

1

vv> .

This general representation of the second derivative contains expressions
which need to be specified further:

∂2`t
∂W 2

t

=
∂2`t
∂µ2

t

(
∂µt

∂Wt

)2

+
∂`t
∂µt

∂2µt

∂W 2
t

+
∂2`t
∂λ2

t

(
∂λt

∂µt

∂µt

∂Wt

)2

+
∂`t
∂λt

[
∂2λt

∂µ2
t

(
∂µt

∂Wt

)2

+
∂λt

∂µt

∂2µt

∂W 2
t

]
∂2`t

∂αk∂Wt

=
∂2`t
∂λ2

t

∂λt

∂αk

∂λt

∂µt

∂µt

∂Wt

+
∂`t
∂λt

∂2λt

∂αk∂µt

∂µt

∂Wt

∂2`t
∂αk∂αl

=
∂2`t
∂λ2

t

∂λt

∂αk

∂λt

∂αl

+
∂`t
∂λt

∂2λt

∂αk∂αl

.
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For deriving the expressions above it is important to know that based on the
link function we have:

∂µt

∂αk

=
∂2µt

∂αk∂Wt

= 0 .

Similar to `t the residuals εt depend on δ via µt and λt which itself depend on
α0 and α1. These facts must be considered when calculating the derivatives:

∂εt
∂δ

=
∂εt
∂Wt

∂Wt

∂δ
+
∂εt
∂α0

u+
∂εt
∂α1

v

=

[
∂εt
∂µt

∂µt

∂Wt

+
∂εt
∂λt

∂λt

∂µt

∂µt

∂Wt

]
∂Wt

∂δ
+
∂εt
∂λt

∂λt

∂α0

u+
∂εt
∂λt

∂λt

∂α1

v

∂2εt
∂δ∂δ>

=
∂2εt
∂W 2

t

∂Wt

∂δ

[
∂Wt

∂δ

]>
+ u

∂2εt
∂α0∂Wt

[
∂Wt

∂δ

]>
+ v

∂2εt
∂α1∂Wt

[
∂Wt

∂δ

]>
+

∂εt
∂Wt

∂2Wt

∂δ∂δ>
+

∂2εt
∂α0∂Wt

∂Wt

∂δ
u> +

∂2εt
∂α0∂α1

vu> +
∂2εt
∂α2

0

uu>

+
∂2εt

∂α1∂Wt

∂Wt

∂δ
v> +

∂2εt
∂α0∂α1

uv> +
∂2εt
∂α2

1

vv> .

In the expression of the second derivative of εt some components need to be
specified more precisely:

∂2εt
∂W 2

t

=
∂2εt
∂µ2

t

(
∂µt

∂Wt

)2

+
∂εt
∂µt

∂2µt

∂W 2
t

+
∂2εt
∂λ2

t

(
∂λt

∂µt

∂µt

∂Wt

)2

+
∂εt
∂λt

[
∂2λt

∂µ2
t

(
∂µt

∂Wt

)2

+
∂λt

∂µt

∂2µt

∂W 2
t

]
∂2εt

∂αk∂Wt

=
∂2εt
∂λ2

t

∂λt

∂αk

∂λt

∂µt

∂µt

∂Wt

+
∂εt
∂λt

∂2λt

∂αk∂µt

∂µt

∂Wt

∂2εt
∂αk∂αl

=
∂2εt
∂λ2

t

∂λt

∂αk

∂λt

∂αl

+
∂εt
∂λt

∂2λt

∂αk∂αl

.

These results depend on the derivatives of εt with respect to µt and λt.
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Based on the definition of εt its derivatives are given by:

∂εt
∂µt

= − 1

σt

− 1

2

εt
σ2

t

∂σ2
t

∂µt

∂εt
∂λt

= −1

2

εt
σ2

t

∂σ2
t

∂λt

∂2εt
∂µ2

t

=
1

σ3
t

∂σ2
t

∂µt

+
3

4

εt
σ4

t

(
∂σ2

t

∂µt

)2

− 1

2

εt
σ2

t

∂2σ2
t

∂µ2
t

∂2εt
∂λ2

t

=
3

4

εt
σ4

t

(
∂σ2

t

∂λt

)2

− 1

2

εt
σ2

t

∂2σ2
t

∂λ2
t

.

For deriving these results the following facts are useful:

∂µt

∂Wt

=
∂2µt

∂W 2
t

= µt

∂

∂µt

σt =
∂

∂µt

√
σ2

t =
1

2

1

σt

∂σ2
t

∂µt

.

The derivatives of `t and εt depend on the derivatives of Wt which are given
by:

∂Wt

∂δ
= x>t +

∂Zt

∂δ

∂2Wt

∂δ∂δ>
=

∂2Zt

∂δ∂δ>
.

Based on its definition given in expression (2) the derivatives of Zt need to
be calculated recursively (see Davis et al, 2004):

∂Zt

∂δ
=

p∑
i=1

[
∂φi

∂δ
(Zt−i + εt−i) + φi

(
∂Zt−i

∂δ
+
∂εt−i

∂δ

) ]

+

q∑
i=1

[
∂θi

∂δ
εt−i + θi

∂εt−i

∂δ

]
.
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In particular (as shown by Davis et al., 2004):

∂Zt

∂βk

=

p∑
i=1

φi

(
∂Zt−i

∂βk

+
∂εt−i

∂βk

)
+

q∑
i=1

θi
∂εt−i

∂βk

∂Zt

∂φk

= Zt−k + εt−k +

p∑
i=1

φi

(
∂Zt−i

∂φk

+
∂εt−i

∂φk

)
+

q∑
i=1

θi
∂εt−i

∂φk

∂Zt

∂θk

=

p∑
i=1

φi

(
∂Zt−i

∂θk

+
∂εt−i

∂θk

)
+ εt−k +

q∑
i=1

θi
∂εt−i

∂θk

∂Zt

∂αk

=

p∑
i=1

φi

(
∂Zt−i

∂αk

+
∂εt−i

∂αk

)
+

q∑
i=1

θi
∂εt−i

∂αk

.

The second derivatives of Zt need to be calculated recurslively too:

∂2Zt

∂δ∂δ>
=

p∑
i=1

[
∂φi

∂δ

(
∂Zt−i

∂δ>
+
∂εt−i

∂δ>

)
+

(
∂Zt−i

∂δ
+
∂εt−i

∂δ

)
∂φi

∂δ>

]

+

p∑
i=1

φi

(
∂2Zt−i

∂δ∂δ>
+
∂2εt−i

∂δ∂δ>

)
+

q∑
i=1

[
∂θi

∂δ

∂εt−i

∂δ>
+
∂εt−i

∂δ

∂θi

∂δ>

]

+

q∑
i=1

θi
∂2εt−i

∂δ∂δ>

in particular for certain k and l:

∂2Zt

∂βk∂βl

=

p∑
i=1

φi

(
∂2Zt−i

∂βk∂βl

+
∂2εt−i

∂βk∂βl

)
+

q∑
i=1

θi
∂2εt−i

∂βk∂βl

∂2Zt

∂βk∂φl

=
∂Zt−l

∂βk

+
∂εt−l

∂βk

+

p∑
i=1

φi

(
∂2Zt−i

∂βk∂φl

+
∂2εt−i

∂βk∂φl

)
+

q∑
i=1

θi
∂2εt−i

∂βk∂φl

∂2Zt

∂βk∂θl

=

p∑
i=1

φi

(
∂2Zt−i

∂βk∂θl

+
∂2εt−i

∂βk∂θl

)
+
∂εt−l

∂βk

+

q∑
i=1

θi
∂2εt−i

∂βk∂θl

∂2Zt

∂βk∂αl

=

p∑
i=1

φi

(
∂2Zt−i

∂βk∂αl

+
∂2εt−i

∂βk∂αl

)
+

q∑
i=1

θi
∂2εt−i

∂βk∂αl

18



∂2Zt

∂φk∂φl

=
∂Zt−k

∂φl

+
∂εt−k

∂φl

+
∂Zt−l

∂φk

+
∂εt−l

∂φk

+

p∑
i=1

φi

(
∂2Zt−i

∂φk∂φl

+
∂2εt−i

∂φk∂φl

)

+

q∑
i=1

θi
∂2εt−i

∂φk∂φl

∂2Zt

∂φk∂θl

=
∂Zt−k

∂θl

+
∂εt−k

∂θl

+

p∑
i=1

φi

(
∂2Zt−i

∂φk∂θl

+
∂2εt−i

∂φk∂θl

)

+
∂εt−l

∂φk

+

q∑
i=1

θi
∂2εt−i

∂φk∂θl

∂2Zt

∂φk∂αl

=
∂Zt−k

∂αl

+
∂εt−k

∂αl

+

p∑
i=1

φi

(
∂2Zt−i

∂φk∂αl

+
∂2εt−i

∂φk∂αl

)
+

q∑
i=1

θi
∂2εt−i

∂φk∂αl

∂2Zt

∂θk∂θl

=

p∑
i=1

φi

(
∂2Zt−i

∂θk∂θl

+
∂2εt−i

∂θk∂θl

)
+
∂εt−k

∂θl

+
∂εt−l

∂θk

+

q∑
i=1

θi
∂2εt−i

∂θk∂θl

∂2Zt

∂θk∂αl

=

p∑
i=1

φi

(
∂2Zt−i

∂θk∂αl

+
∂2εt−i

∂θk∂αl

)
+
∂εt−k

∂αl

+

q∑
i=1

θi
∂2εt−i

∂θk∂αl

∂2Zt

∂αk∂αl

=

p∑
i=1

φi

(
∂2Zt−i

∂αk∂αl

+
∂2εt−i

∂αk∂αl

)
+

q∑
i=1

θi
∂2εt−i

∂αk∂αl

.

The results given above are general in the sense that expressions which de-
pend on the form of the distribution function used for modelling are not
specified in detail. It is obvious that the derivatives of `t with respect to
µt and λt depend on the functional form of the distribution function. The
derivatives of λt itself depend on the specific distribution function too. Fi-
nally the derivatives of εt depend on the derivatives of the variance function
(see expression 7) which is specified by the choice of the distribution. Since
all distributions under consideration in this paper are nested either in the
generalized negative binomial distribution or in the hybrid generalized Pois-
son distribution of type I, the remaining derivatives are given for these two
general cases only. The results for all other distributions under consideration
can be found by substituting the corresponding values of α0 and α1 in the
following expressions and simplifying the results by using basic mathematical
transformations.
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Generalized Negative Binomial Distribution:

`t(δ) = ψ(0)(yt + λt)− ψ(0)(1 + yt)− ψ(0)(λt) + yt log(µt) + λt log(λt)

− (yt + λt) log(λt + µt)

∂`t
∂µt

=
λt(yt − µt)

µt(λt + µt)

∂`t
∂λt

= ψ(1)(yt + λt)− ψ(1)(λt) + log

(
λt

λt + µt

)
− yt − µt

λt + µt

∂2`t
∂µ2

t

= − λtyt

µ2
t (λt + µt)

− λt(yt − µt)

µt(λt + µt)2

∂2`t
∂λ2

t

= ψ(2)(yt + λt)− ψ(2)(λt) +
λtyt + µ2

t

λt(λt + µt)2

∂λt

∂µt

= α1
λt

µt

,
∂λt

∂α0

= − λt

α0

,
∂λt

∂α1

= λtWt

∂2λt

∂µ2
t

= α1(α1 − 1)
λt

µ2
t

,
∂2λt

∂α2
0

=
2λt

α2
0

,
∂2λt

∂α2
1

= λtW
2
t ,

∂2λt

∂α0∂α1

= − λt

α0

Wt

∂σ2
t

∂λt

= −µ
2
t

λ2
t

,
∂σ2

t

∂µt

= 1 + 2
µt

λt

∂2σ2
t

∂λ2
t

=
2µ2

t

λ3
t

,
∂2σ2

t

∂µ2
t

=
2

λt

where:

ψ(j)(x) =
∂j

∂xj
log Γ(x) .
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Hybrid Generalized Poisson Distribution Type I:

`t(δ) = yt log

[
µt(1 + λtyt)

1 + λtµt

]
− µt(1 + λtyt)

1 + λtµt

− log [1 + λtyt]− log [yt!]

∂`t
∂µt

=
yt − µt

µt(1 + λtµt)2

∂`t
∂λt

=
(yt − µt)

2

(1 + λtyt)(1 + λtµt)2
− yt

1 + λtyt

∂`2t
∂µ2

t

= − yt

µ2
t (1 + λtµt)2

− 2λt

µt(1 + λtµt)3

∂2`t
∂λ2

t

= − yt(yt − µt)
2

(1 + λtyt)2(1 + λtµt)2
− 2µt(yt − µt)

2

(1 + λtyt)(1 + λtµt)
+

y2
t

(1 + λtyt)2

∂λt

∂µt

= α1
λt

µt

,
∂λt

∂α0

= µα1
t ,

∂λt

∂α1

= λtWt

∂2λt

∂µ2
t

= α1(α1 − 1)
λt

µ2
t

,
∂2λt

∂α2
0

= 0 ,
∂2λt

∂α2
1

= λtW
2
t ,

∂2λt

∂α0∂α1

= µα1
t Wt

∂σ2
t

∂λt

= 2µ2
t (1 + λtµt) ,

∂σ2
t

∂µt

= (1 + λtµt)(1 + 3λtµt)

∂2σ2
t

∂λ2
t

= 2µ3
t ,

∂2σ2
t

∂µ2
t

= 2λt(2 + 3λtµt) .
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Appendix 2: Exponential Family

Following the notation used by Dobson 1991, a density or probability mass
function g(y, ϑ) belongs to the exponential family with the natural parameter
ϑ if it has the form:

g(y, ϑ) = exp {a(y)b(ϑ) + c(ϑ) + d(y)} (7)

for some known functions a(·), b(·), d(·) and d(·).

For the probability mass function of the restricted generalized Poisson dsitri-
bution given in expression (6) one finds:

g(y) =
κy [1 + α0y]

y−1 e−κ[1+α0y]

y!

= exp

{
y log(κ) + log

(
[1 + α0y]

y−1

y!

)
− κ [1 + α0y]

}

= exp

{
y [ log(κ)− κ α0 ]− κ+ log

(
[1 + α0y]

y−1

y!

)}

Comparing this result with expression (7) it can be seen that:

ϑ = κ

b(ϑ) = log(κ)− κ α0

c(ϑ) = −κ

d(y) = log

(
[1 + α0y]

y−1

y!

)
.

Therefore for given α0 the restricted generalized Poisson distribution belongs
to the exponential family.
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Appendix 3: Tables and Plots

Model under H1

Model under H0 HPG-III HPG-II HPG-I

Poisson 3.526 * 6.930 * 9.534 *
mod. Borel 1381.0 * 1383.6 *
HGP-III 6.008 *
HGP-II 2.604

NB-I NB-II GNB

Poisson 3.474 * 6.760 * 9.500 *
Geometric 508.09 * 510.83 *
NB-I 6.026 *
NB-II 2.740

Table 2: LRT for alternative count models (∗ significance to the 5 % level).
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HGP-I HGP-II HGP-III mod. Borel Poisson Geometric NB-I NB-II GNB

Intercept 0.532 * 0.533 * 0.534 * 0.531 * 0.532 * 0.534 * 0.534 * 0.533 * 0.532 *
Sunday effect 0.235 * 0.237 * 0.236 * 0.223 0.240 * 0.228 * 0.236 * 0.237 * 0.235 *
Monday effect 0.245 * 0.245 * 0.241 * 0.272 0.244 * 0.256 * 0.241 * 0.245 * 0.246 *
cos(2tπ/365) -0.165 * -0.162 * -0.162 * -0.151 -0.163 * -0.157 * -0.162 * -0.162 * -0.165 *
sin(2tπ/365) 0.358 * 0.361 * 0.360 * 0.357 * 0.362 * 0.358 * 0.360 * 0.361 * 0.357 *
cos(4tπ/365) -0.065 -0.066 -0.065 -0.057 -0.067 -0.061 -0.065 -0.066 -0.065
sin(4tπ/365) 0.014 0.020 0.023 0.012 0.021 0.016 0.023 0.020 0.014
cos(6tπ/365) -0.079 * -0.080 * -0.078 * -0.072 -0.080 * -0.076 -0.078 * -0.080 * -0.079 *
sin(6tπ/365) 0.007 0.008 0.009 -0.008 0.009 0.000 0.009 0.008 0.007
cos(8tπ/365) -0.144 * -0.149 * -0.150 * -0.120 -0.152 * -0.134 * -0.150 * -0.149 * -0.144 *
sin(8tπ/365) -0.058 -0.057 -0.056 -0.049 -0.057 -0.054 -0.056 -0.057 -0.058

φ1 0.041 * 0.048 * 0.049 * 0.080 0.047 * 0.066 0.049 * 0.048 * 0.041 *
φ3 0.045 * 0.050 * 0.050 * 0.100 0.049 * 0.071 0.050 * 0.050 * 0.047 *
φ7 0.058 * 0.061 * 0.061 * 0.142 0.059 * 0.096 0.061 * 0.061 * 0.058 *
φ10 0.042 * 0.043 * 0.042 * 0.080 0.041 * 0.063 0.042 * 0.043 * 0.042 *

α0 0.005 0.023 0.035 0.070 0.046 0.008
α1 1.785 -1.964

Table 3: Parameter estimates for different count models for asthma data (∗ significance to the 5% level).24



HGP-I HGP-II HGP-III mod. Borel Poisson Geometric NB-I NB-II GNB

Paramters 17 16 16 15 15 15 16 16 17

`(δ̂) -2440.125 -2441.427 -2443.129 -3131.935 -2444.892 -2695.557 -2443.155 -2441.512 -2440.142
LRT* 290.956 288.352 284.948 38.442 357.410 115.478 286.580 289.866 292.606
R2

V Z 0.213 0.211 0.209 0.032 0.251 0.093 0.210 0.212 0.214
R2

Mad 0.181 0.179 0.177 0.026 0.217 0.076 0.178 0.180 0.181
R2

McF 0.056 0.056 0.055 0.006 0.068 0.021 0.055 0.056 0.057
RMSE 1.473 1.471 1.471 1.481 1.471 1.475 1.471 1.471 1.473
AIC 4914.250 4914.854 4918.258 6293.87 4919.784 5421.114 4918.310 4915.024 4914.284
BS 5004.127 4999.444 5002.848 6373.173 4999.087 5500.417 5002.900 4999.614 5004.161

Table 4: Model fit statistics (* value of the likelihood ratio test between a model containing only the intercept as
regressor and the time series model).
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HGP-I HGP-II HGP-III mod. Borel Poisson Geometric NB-I NB-II GNB

Mean 0.0009 0.0002 -0.0003 0.0002 0.0061 -0.0002 -0.0003 0.0002 0.0009
Variance 0.9927 0.9821 1.0031 0.1373 1.0746 0.3752 1.0041 0.9839 0.9937

Lag Box-Pierce test statsistic on autocorrelation of the residuals
10 8.066 8.548 8.962 5.664 8.985 6.388 8.961 8.564 8.105
20 10.738 11.220 11.697 7.465 11.717 8.589 11.695 11.238 10.736
30 14.670 15.207 15.668 12.391 15.681 12.947 15.666 15.225 14.667
50 31.407 31.448 31.540 34.269 31.609 31.424 31.538 31.453 31.408
100 78.514 78.812 78.883 84.971 78.960 79.734 78.883 78.818 78.501

Lag Box-Pierce test statistic on autocorrelation of the squared residuals
10 20.236 * 21.125 * 21.824 * 45.720 * 21.645 * 25.602 * 21.811 * 21.148 * 20.295 *
20 23.588 24.643 25.416 52.182 * 25.250 28.426 25.404 24.670 23.647
30 30.813 31.590 32.092 61.139 * 31.919 36.210 32.079 31.605 30.867
50 59.670 58.420 57.409 103.506 * 57.361 70.260 * 57.400 58.372 59.762
100 111.104 112.085 113.134 148.724 * 113.193 113.730 113.133 112.128 111.127

Table 5: Residual characteristics (∗ significance to the 5 % level).
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Figure 1: Astma series (top left) its autocorrelation function (top right) the series µ̂t for an Poisson-GLARMA model
(bottom left) and the autocorrelation function of the estimated Pearson residuals (bottom rigth).
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Figure 2: Estimated mean (red) and variance (blue) for count models nested in the generalized negative binomial
model.
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Figure 3: Estimated mean (red) and variance (blue) for count models nested in the hybrid generalized Poisson model
type I.
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Figure 4: Autocorrelation function for the estimated Pearson residuals of count models nested in the generalized
negative binomial model.
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Figure 5: Autocorrelation function for the estimated Pearson residuals of count models nested in the hybrid gener-
alized Poisson model type I.
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un guichet. Comptes Rendus de l’Académie des Science 214, 452-456.

Broyden, C. G. (1970): The convergence of a class of double rank mini-
mization algorithms. Journal of the Institute of Mathematics and its Appli-
cations 6, 76-90.

Cameron, A. C.; Trivedi, P. K. (1986): Econometric models based on
count data: Comparison and applications of some estimators. Journal of
Applied Econometrics 1, 29-53.

Consul, P. J. (1989): Generalized poisson distributions - properties and
applications. New York: Marcel Decker.

Consul, P. J.; Famoye, F. (1992): Generalized poisson regression model.
Communications in Statistics - Theory and Methods 21, 89-109.

Consul, P. J.; Jain, G. C. (1973): A generalization of the poisson distri-
bution. Technometrics 15, 791-799.

Cox, D. R. (1981): Statistical analysis of time series: Some recent devel-
opments. Scandinavian Journal of Statistics 8, 93-115.

Czado, C.; Kolbe, A. (2004): Statistical analysis of absolute trans-
action price changes of options. Working Paper No.384, Munich Univer-
sity of Technology. http://www-m4.ma.tum.de/Papers/Czado/cc-pubs.html
(20.06.2005)

32



Davis, R. A.; Dunsmuir, W. T. M.; Streett, S. B. (2003): Observation-
driven models for Poisson counts. Biometrika 90, 777-790.

Davis, R. A.; Dunsmuir, W. T. M.; Streett, S. B. (2004): Maximum
Likelihood estimation for an observation driven model for poisson counts.
Revised and resubmitted to Methodology, Computing and Applied Probabil-
ity.

Davis, R. A.; Dunsmuir, W. T. M.; Wang, Y. (1999): Modelling time
series of count data. In: Ghosh, S. (Ed.) Asymptotics, Nonparametrics and
Time Series, 63-114. New York: Marcel Decker.

Dobson, A.J. (1991): An Introduction to Generalized Linear Models. Lon-
don: Chapman and Hall.

Fahrmeir, L.; Kaufmann, H (1985): Consistency and asymptotic nor-
mality of the maximum likelihood estimator in generalized linear models.
Annals of Statistics 13, 342-368.

Famoye, F. (1993): Restricted generalized poisson regression model. Com-
munications in Statistics - Theory and Methods 22, 1335-1354.

Fletcher, R. (1970): A new approach to variable metric algorithms. Com-
puter Journal 13, 317- 322.

Goldfarb, D. (1970): A family of variable metric updates derived by vari-
ational means. Mathematics of Computing 24, 23-26.

Jackobs, P. A.; Lewis, W. A. W. (1978): Discrete time series generated
by mixtures I: correlation and runs properties. Journal of the Royal Statis-
tical Society B 40, 94-105.

Jørgenson, B. (1986): Some properties of exponential dispersion models.
Scandinavian Journal of Statistics 13, 187-197.

Lawless, J. F. (1987): Negative binomial and mixed poisson regression.
The Canadian Journal of Statistics 15, 209-225.

Liesenfeld, R.; Pohlmeier, W. (2003): A dynamic integer count data
model for financial transaction prices. Working Paper, University of Kon-
stanz. http://econometrics.wiwi.uni-konstanz.de/prof/papers.htm (20.06.2005)

33



Maddala, G. S. (1983): Limited-dependent and Qualitative Variables in
Econometrics. New York: Cambridge University Press.

McCullagh, P.; Nelder, J. A. (1989): Generalized linear models. Lon-
don: Chapmann and Hall.

McFadden, D. (1973): Conditional Logit Analysis of Qualitative Choice
Behavior. In: Zarembka, P. (Ed.) Frontiers in Econometrics, 105-142, New
York: Academic Press.

Rydberg, T. H.; Shephard, N. (2003): Dynamics of trade-by-trade price
movements: Decomposition and models. Journal of Financial Econometrics
1, 2-25.

Santos Silva, J. M. C. (1997): Generalized poisson regression for positive
count data. Communications in Statistics - Simulation and Computation 26,
1089-1102.

Saha, A.; Dong, D. (1997): Estimating nested count data models. Oxford
Bulletin in Economics and Statistics 59, 423-430.

Schwarz, G. (1978): Estimating the dimension of a model. Annals of Sta-
tistics 26, 461-464.

Shanno, D. F. (1970): Conditioning of Quasi-Newton methods for func-
tion minimization. Mathematics of Computing 24, 647-656.

Shephard, N. (1995): Generalized linear autoregression. Working Paper,
University of Oxford. http://www.nuff.ox.ac.uk/users/shephard (20.06.2005).

Tanner, J. C. (1953): A problem of inference between two queues. Bio-
metrica 40, 58-69.

Zeger, S. L. (1988): A regression model for time series for counts. Bio-
metrika 75, 621-629.

Veall, M. R,; Zimmermann, K. F. (1992): Pseudo-R´s in the ordinal
probit model. Journal of Mathematical Sociology 16, 332-342.

Winkelmann, R. (2000): Econometric analysis of count data, 3rd ed.
Berlin: Springer-Verlag.

34


	Introduction
	The Model
	Distributions
	Estimation and Inference
	Maximum Likelihood Estimation
	Inference

	Example
	Data
	Computational Issues
	Results

	Conclusion

