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1 Introduction

Many empirical studies have shown that expected utility theory (EU), in particular its crucial

independence axiom, does not provide an accurate description of people’s actual choice behav-

ior. This evidence has motivated researchers to develop alternative more flexible models. One

prominent class of these alternatives is rank-dependent utility (RDU), which was introduced

by Quiggin (1981, 1982), and which is the basis of prospect theory (Tversky and Kahneman

1992, Luce and Fishburn 1991).2

Most derivations of RDU require some structural richness on the set of consequences because

the proposed preference conditions focus on the derivation of continuous cardinal utility. In

those approaches the weighting functions are obtained as a bonus. In this paper we follow the

traditional approach put forward by von Neumann and Morgenstern (1944) by focusing on the

structure naturally offered by the probability interval, and we provide preference conditions

that focus on the derivation of the probability weighting function. Typical for this approach is

that cardinal utility is obtained as a bonus.

Axiomatizations of general RDU, without invoking any structural assumptions on the set

of consequences, have been provided by Nakamura (1995) and more recently by Abdellaoui

(2002) and Zank (2004). In these approaches the weighting function is unrestricted. Empirical

evidence, however, suggests a particular pattern for probability weighting: small probabilities

are overweighted while large ones are underweighted. Specific parametric forms have been

proposed in the literature to accommodate these features. Some involve a single parameter

(Karmarkar 1978, 1979, Röell 1987, Currim and Sarin 1989, Tversky and Kahneman 1992,

Luce, Mellers and Chang 1993, Hey and Orme 1994, Safra and Segal 1998) while others use

2Because prospect theory comes down to RDU if consequences are of the same sign (that is either all gains

or all losses), the arguments presented in this paper apply to prospect theory as well.
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two or more parameters (Bell 1985, Goldstein and Einhorn 1987, Currim and Sarin 1989,

Lattimore Baker and Witte 1992, Prelec 1998). A recent experimental investigation of various

parametric weighting functions by Stott (2006) favors the variant of Prelec (1998).

Despite the large interest in parametric specifications for the weighting function under RDU,

little research has been invested in the axiomatic foundation of testable preference conditions in

the RDU framework with general lotteries. There exist, however, several recent foundations re-

stricted to binary lotteries where one consequence is the zero payoff (see e.g. Luce 2000, Narens

1996, Luce 2001, Aczél and Luce 2006, al-Nowaihi and Sanjit Dhami 2006). The motivation

for restricting the analysis to binary lotteries stems from the descriptive shortcomings of the

independence conditions required to derive RDU for general lotteries (for a review see Marley

and Luce 2005). Additionally, once cardinal utility is derived, RDU for binary lotteries can be

reduced to a simple and tractable multiplicative form. However, this approach rests on addi-

tional technical assumptions. Indeed, all preference foundations we are aware of require a rich

topological structure for the set of consequences (Safra and Segal 1998, Prelec 1998, Gonzalez

and Wu 1999). This means that those models cannot immediately be adopted to many real

world applications because the set of consequences may lack such additional structure (e.g.,

health). As a consequence, it is unclear how to extend the existing preference foundations and,

therefore, it is unclear whether these models remain valid for general outcomes.

Our goal is to derive parametric weighting functions by employing behavioral conditions.

The preference foundations presented in this paper apply to general sets of consequences, which

makes the resulting models generally applicable. Except for weak ordering and continuity, the

properties that we propose are all implied by the independence axiom. For instance, we retain

stochastic dominance and, in line with all rank-dependent theories, we assume comonotonic

independence. These two implications ensure additive separability. But further assumptions
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on preferences are required to derive the separation of probability weights and utility. In fact,

by focusing on specific functional forms for the weighting functions, the preference conditions

that characterize these forms deliver this latter separation free of charge. This is an important

difference compared to the afore mentioned derivations.

Specific implications of the independence axiom have been analyzed before and, although

the focus has not been on the weighting function under RDU, there are some common aspects

underlying those preference conditions and the ones proposed in this paper. Machina (1989)

distinguished two properties, termed mixture separability and replacement separability, respec-

tively. Mixture separability demands that the preference between two lotteries is invariant to

mixing them with a common degenerate lottery. Replacement separability holds if the prefer-

ence between two lotteries remains unaffected when in both lotteries a common consequence

with identical probability is replaced by any different consequence. We explore the implications

of these separability conditions within our rank-dependent framework, where we have to restrict

these conditions. It turns out that our restricted conditions can be employed to characterize

RDU with a power weighting function and RDU with a linear or an exponential weighting

function.

However, the separability conditions are descriptively problematic. For example, they are

violated by the two famous paradoxes of Allais (1953). More precisely, the common ratio effect

constitutes a direct violation of our version of mixture separability that generates the power

weighting function, while the common consequence effect provides a violation of our version

of replacement separability. More generally, because the afore mentioned weighting functions

each involve a single parameter, they cannot accommodate at the same time probabilistic

risk seeking and probabilistic risk aversion within the probability interval. That is, they are

incompatible with the inverse-S shaped form, concave for small probabilities and convex for
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large probabilities, that received extensive empirical support (e.g., Camerer and Ho 1994, Wu

and Gonzalez 1996, Tversky and Fox 1995, Gonzalez and Wu 1999, Abdellaoui 2000, Bleichrodt

and Pinto 2000, Kilka and Weber 2001, Abdellaoui, Vossmann and Weber 2005).

To accommodate mixed probabilistic risk attitudes, we need to relax the previous preference

conditions further, namely to hold only on specific subsets of the probability interval. This way,

we can provide foundations for inverse-S shaped weighting functions under RDU, which are

entirely based on behavioral preference conditions that do not require additional structural

assumptions on the set of consequences.

Our analysis of inverse-S shaped weighting functions focuses on functional forms that may

involve three parameters. One parameter describes the probabilistic risk attitudes for small

probabilities while a second one describes such attitudes for large probabilities. The role of

the third parameter is to separate the region of probabilistic risk aversion from the region

of probabilistic risk seeking. As it turns out, these parametric forms are in agreement with

the interpretation of modeling sensitivity towards changes from impossibility and certainty, as

proposed by Tversky and Kahneman (1992). In particular, the parameters can be used to

measure the degrees of sensitivity, and to quantify the relative sensitivity between certainty

and impossibility.

The organization of the paper is as follows. In Section 2 general notation and preliminary

results are presented. We indicate how the results of Wakker (1993) and Chateauneuf and

Wakker (1993) can be used to derive additive separability, the latter property being a common

point of departure for all our models. Next, we proceed with a separation of the independence

axiom of EU into specific variants of the separability conditions proposed by Machina (1989). In

Section 3 we analyze mixture separability restricted to worst consequences, and in Section 4 we

analyze replacement separability restricted to best and worst consequences. Section 5 analyses
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the implications of mixture separability now restricted to the best consequence. Finally, in

Section 6 we provide results for parametric inverse-S shaped probability weighting functions

and Section 7 concludes. All proofs are deferred to the Appendix.

2 Preliminaries

Let X denote the set of consequences. For simplicity of exposition, we assume a finite set of

consequences, such that X = {x0, . . . , xn} for n ≥ 3. A lottery is a finite probability distri-

bution over the set X. It is represented by P = (p̃0, x0; . . . ; p̃n, xn) meaning that probability

p̃j is assigned to consequence xj ∈ X, for j = 0, . . . , n. Let L denote the set of all lotter-

ies. A preference relation < is assumed over L, and its restriction to subsets of L (e.g., all

degenerate lotteries) is also denoted by <. The symbol Â denotes strict preference while ∼

denotes indifference. We assume that no two consequences in X are indifferent, and further,

that consequences are ordered from worst to best, i.e., x0 ≺ · · · ≺ xn.

In this paper we present several preference conditions which become more transparent if

formulated for decumulative distributions instead of lotteries. With this in mind we can identify

lotteries with their corresponding decumulative probability distribution through the mapping

P 7→ (p1, . . . , pn),

where pj =
Pn

i=j p̃i denotes the likelihood of getting at least xj, j = 1, . . . , n. As the set of

consequences is fixed we have simplified the notation above by suppressing the consequences

and by noting that the worst consequence x0 always has decumulative probability equal to 1.

Therefore, the set of lotteries L is identified with the set {(p1, . . . , pn) : 1 ≥ p1 ≥ · · · ≥ pn ≥ 0},

which consists of probability tuples that are rank-ordered from highest to lowest.

In what follows we provide preference conditions for < in order to represent the preference
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relation over L by a function V . That is, V is a mapping from L into the set of real numbers,

IR, such that for all P,Q ∈ L,

P < Q⇔ V (P ) ≥ V (Q).

This necessarily implies that < must be a weak order, i.e. < is complete (P < Q or P 4 Q for

all P,Q ∈ L) and transitive (P < Q and Q < R implies P < R for all P,Q,R ∈ L).

The preference relation satisfies (probability-wise) monotonicity if P Â Q whenever pj ≥ qj

for all j = 1, . . . , n and P 6= Q. The preference relation < satisfies Jensen-continuity on the

set of lotteries L if for all lotteries P Â Q and R there exist ρ, µ ∈ (0, 1) such that

ρP + (1− ρ)R Â Q and P Â µR+ (1− µ)Q.

Amonotonic weak order that satisfies Jensen-continuity on L also satisfies the stronger Euclidean-

continuity on L (see Abdellaoui 2002, Lemma 18). We can then invoke a classical result of

Debreu (1954) to derive the following statement:

Theorem 1 Assume that the preference relation < on the set of decumulative distributions

L is a Jensen-continuous monotonic weak order. Then there exists a continuous function V :

L → IR, strictly increasing in each decumulative probability, that represents <. The function

V is unique up to strictly increasing continuous transformations. ¤

Next, we focus on two forms of separability properties. The first property will ensure that

the function in Theorem 1 is additively separable. The second family of properties is concerned

with the separation of utility and probability weighting, and is discussed in the subsequent

sections.

To derive additive separability we require independence of common decumulative probabili-

ties. To define this property we introduce some useful notation. For i ∈ {1, . . . , n}, P ∈ L and
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α ∈ [0, 1], we denote by αiP the distribution that agrees with P except that pi is replaced by

α. Whenever this notation is used it is implicitly assumed that pi−1 ≥ α ≥ pi+1 (respectively,

α ≥ pi+1 if i = 1 and pi−1 ≥ α if i = n) to ensure that αiP ∈ L. Similarly, for I ⊂ {1, . . . , n}

we write αIP for the distribution that agrees with P except that pi is replaced by α for i ∈ I,

whenever the probabilities in αIP are ranked from highest to lowest.

The preference relation < satisfies comonotonic independence if αiP < αiQ ⇔ βiP < βiQ

for all αiP,αiQ,βiP, βiQ ∈ L.

Comonotonic independence is a weak form of replacement separability as analyzed in Machina

(1989). Recall that replacement separability demands that the preference between two lotteries

is invariant when common consequences with equal probability are replaced by other com-

mon consequences. Comonotonic independence restricts replacement separability such that

when comparing two lotteries, common consequences can be replaced by other common conse-

quences only if they have a common decumulative likelihood. On reflection, one observes that

this restriction implies that only common consequences of adjacent rank can be replaced.

Without the comonotonicity restriction on decumulative distributions in L we could adopt

well-known results of Debreu (1960) to derive additive separability of the representing function

in Theorem 1. Deriving additive separability on rank-ordered sets is not trivially extended from

Debreu’s classical result, but invokes more complex mathematical tools. The next theorem

follows by using results of Wakker (1993) and Chateauneuf and Wakker (1993).

Theorem 2 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by an additive function

V (P ) =
nX

j=1

Vj(pj),
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with continuous strictly monotonic functions V1, . . . , Vn : [0, 1] → IR which are bounded

except maybe V1 and Vn which could be infinite at extreme probabilities (i.e., at 0, or 1).

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence.

The functions V1, . . . , Vn are jointly cardinal, that is, they are unique up to location and

common scale. ¤

In the next sections we provide preference foundations for specific rank-dependent utility

models using as common point of departure the results obtained above. Before proceeding we

recall the general form of rank-dependent utility.

Rank-dependent utility (RDU) holds if the preference relation is represented by the function

V (P ) = u(x0) +
nX

j=1

w(pj)[u(xj)− u(xj−1)], (1)

where the utility function u : X → IR agrees with < on X, and the weighting function w :

[0, 1] → [0, 1] is strictly increasing and continuous with w(0) = 0 and w(1) = 1. Under RDU

utility is cardinal and the weighting function is uniquely determined. If the weighting function

is linear then RDU reduces to EU.

For completenes we recall the classical preference condition leading to EU. The preference

relation < satisfies vNM-independence (short for von Neumann-Morgenstern independence) if

for all P,Q,R ∈ L and all α ∈ (0, 1) it holds that

P < Q⇔ αP + (1− α)R < αQ+ (1− α)R.

In concluding this section, note without proof, two immediate implications of vNM-independence

and weak ordering: monotonicity and comonotonic independence, which were introduced be-

fore.
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3 Common Ratio Invariant Preferences

One of the difficulties of EU is to accommodate preferences that exhibit the common ratio

effect. Allais (1953) compared the choice behavior for the following two decision problems. In

problem 1 there is the choice between the following lotteries:

A1 = (1, 1M) and B1 = (0.2, 0M ; 0.8, 5M),

where M denotes $-millions. In problem 2 the choice is between

A2 = (0.95, 0M ; 0.05, 1M) and B2 = (0.96, 0M ; 0.04, 5M).

The literature has reported (e.g. Allais 1953, MacCrimmon and Larsson 1979, Chew and

Waller 1986, Wu 1994) that a significant majority of people exhibited a preference for A1 in

the first choice problem and a preference for B2 in the second choice problem. Substituting EU

immediately reveals that this leads to a conflicting relationship.

Looking at the implications of vNM-independence we can observe that common ratio type

behavior is not in conflict with monotonicity and neither with comonotonic independence. It

is a different aspect of vNM-independence that is violated by such preferences, which gives

rise to the following property. The preference relation < satisfies common ratio invariance for

decumulative distributions if

(p1, . . . , pn) ∼ (q1, . . . , qn)⇔ (αp1, . . . , αpn) ∼ (αq1, . . . , αqn),

whenever (p1, . . . , pn), (q1, . . . , qn), (αp1, . . . , αpn), (αq1, . . . , αqn) ∈ L.

Common ratio invariance for decumulative distributions says that shifting proportionally

probability mass from good consequences to the worst consequence (or doing the opposite)

leaves preferences unaffected.
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Common ratio invariance for decumulative distributions is a weak form of mixture separabil-

ity (Machina 1989). The latter demands that a preference between two lotteries is maintained

if each of the lotteries is mixed with any common consequence. In contrast, common ratio

invariance for decumulative distributions demands that such mixtures are only permitted if the

common consequence is the worst.

The condition has also appeared in Safra and Segal (1998), called zero-independence, where

it has been used in the derivation of a specific version of Yaari (1987)’s dual theory, namely

RDU with linear utility and power weighting function. The next result shows that the condition

is powerful enough to yield RDU-preferences with power weighting without restricting the

generality of the utility function.

Theorem 3 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by rank-dependent utility with a power

weighting function, i.e.,

V (P ) = u(x0) +
nX

j=1

pbj[u(xj)− u(xj−1)],

with b > 0, and monotonic utility function u : X → IR.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and common ratio invariance for decumulative distributions.

The function u is cardinal. ¤

It has previously been documented that preferences exhibiting the paradoxical common ratio

effect exclude RDU preferences with power weighting. Our result above demonstrates that it

is precisely this class of RDU-preferences with power weighting, including EU-preferences, that
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cannot accommodate common ratio effect preferences. That the result is very general can also

be inferred from the fact that, except for monotonicity, no further restrictions apply to utility.

4 Extreme Replacement Separability

We start in this section by reconsidering the common consequence paradox of Allais (1953), and

relate this to a new preference condition concerning the replacement of common consequences.

The common consequence paradox originates from observing behavior among the following

pairs of choice problems. In problem 3 the choice is between

A3 = (1, 1M) and B3 = (0.01, 0M ; 0.89, 1M ; 0.1, 5M),

and in problem 4 the choice is between

A4 = (0.89, 0M ; 0.11, 1M) and B4 = (0.9, 0M ; 0.1, 5M).

It has been observed in experiments that a significant majority of people exhibit a preference

for A3 in the former choice problem and a preference for B4 in the latter choice problem (e.g.

Allais 1953, MacCrimmon and Larsson 1979, Chew and Waller 1986, Wu 1994, but see also

related evidence in Wakker, Erev and Weber 1994, Birnbaum and Navarette 1998, Birnbaum

2004). If one writes the previous lotteries as decumulative distributions over consequences 0,

1M , and 5M , then one can immediately see that A4 = (0.11, 0) and A3 = A4 + (0.89, 0), and

that B4 = (0.1, 0.1) and B3 = B4 + (0.89, 0). Clearly, exhibiting initially A3 Â B3 together

with a second preference A4 ≺ B4 directly violates vNM-independence but not monotonicity

and neither comonotonic independence.

In the common consequence paradox the interpretation is that people are sensitive to re-

placing the good common consequence of getting “1 Million with probability 0.89” with a bad
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common consequence of getting “0 with probability 0.89.” Therefore, also replacement sepa-

rability (Machina 1989) is violated. Although empirically it has to be verified, we think that

such sensitivity would also be exhibited when the best consequence is replaced by the worst

consequence, which leads to the folowing property. The preference relation < satisfies extreme

replacement separability if

(p1, . . . , pn) ∼ (q1, . . . , qn)⇔ (p1 + α, . . . , pn + α) ∼ (q1 + α, . . . , qn + α),

whenever (p1, . . . , pn), (q1, . . . , qn), (p1 + α, . . . , pn + α), (q1 + α, . . . , qn + α) ∈ L.

The following theorem shows that for RDU-preferences the only weighting functions that

are able to accommodate extreme replacement separability are linear or exponential ones.

Theorem 4 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is either represented by expected utility, or it is represented

by rank-dependent utility with an exponential weighting function, i.e.,

V (P ) = u(x0) +
nX

j=1

ecpj − 1
ec − 1 [u(xj)− u(xj−1)],

with c 6= 0, and monotonic utility function u : X → IR.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and extreme replacement separability.

The function u is cardinal. ¤

Note that RDU-preferences satisfying both common ratio invariance for decumulative dis-

tributions and extreme replacement separability can only be represented by EU. This follows

immediately by observing that the only possible weighting function that is common in Theorems

3 and 4 is the linear weighting function w(p) = p.
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5 A Dual Analysis

The properties considered in the previous sections can easily be formulated for cumulative

distributions. Jensen-continuity, monotonicity, comonotonic independence, and also extreme

replacement separability have mathematically equivalent counterparts which are obtained by

simply replacing the decumulative distributions by the corresponding cumulative ones. How-

ever, doing the same for the afore mentioned common ratio invariance property leads to a

different but closely related property. This can be inferred from the corresponding RDU-

representation with a weighting function that is the dual of a power function (see Theorem 5

below).

Before we formulate this new property we note that if a lottery is written as a decumulative

distribution P = (p1, . . . , pn) then writing the same lottery as a cumulative distribution results

in P̃ = (1 − p1, . . . , 1 − pn). The difference in the latter notation lies in the interpretation

of the cumulative probability 1 − pi, which now refers the likelihood of getting at most xi−1,

i = 1, . . . , n, whereas the decumulative probability pi was associated with the consequences xi,

i = 1, . . . , n. We denote by L̃ the set of cumulative distributions.

The preference relation < satisfies common ratio invariance for cumulative distributions if

(1− p1, . . . , 1− pn) ∼ (1− q1, . . . , 1− qn)

⇔

(α(1− p1), . . . , α(1− pn)) ∼ (α(1− q1), . . . , α(1− qn)),

whenever (1−p1, . . . , 1−pn), (1−q1, . . . , 1−qn), (α(1−p1), . . . , α(1−pn)), (α(1−q1), . . . , α(1−

qn)) ∈ L̃.

This variant of common ratio invariance, which says that shifting probability mass propor-

tionally from all consequences to the best consequence leaves preferences unaffected, is also
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a weak form of mixture separability (Machina 1989). We get the following analog result to

Theorem 3.

Theorem 5 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by rank-dependent utility with a dual power

weighting function, i.e.,

V (P ) = u(x0) +
nX

j=1

[1− (1− pj)
d][u(xj)− u(xj−1)],

with d > 0, and monotonic utility function u : X → IR.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and common ratio invariance for cumulative distributions.

The function u is cardinal. ¤

Note that, similarly to the arguments presented at the end of the previous section, RDU-

preferences satisfying both common ratio invariance for cumulative distributions and extreme

replacement separability can only be represented by EU. Also, RDU-preferences satisfying both

common ratio invariance properties must be EU-preferences.

6 Inverse-S shaped Weighting Functions

The parametric forms derived in the previous sections are somewhat inflexible in modeling

probabilistic risk attitudes. Such risk attitudes are reflected in the curvature of the probability

weighting function (see Chew, Karni and Safra 1987, Yaari 1987, Chateauneuf and Cohen 1994,

Wakker 1994, Abdellaoui 2002, Chateauneuf, Cohen and Meilijson 2004). The afore mentioned

RDU-preferences either exhibit exclusively probabilistic risk aversion (i.e., a convex weighting
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function) or exclusively probabilistic risk seeking (i.e., a concave weighting function) through-

out the probability interval. That is, in Theorem 3 either the parameter b > 1 (w convex) or

b < 1 (w concave); in Theorem 4 either c > 0 (w convex) or c < 0 (w concave); and in Theorem

5 either the parameter d < 1 (w convex) or d > 1 (w concave). While there is theoretical

interest in overall convex/concave probability weighting, empirical findings suggest that a com-

bination of probabilistic risk seeking for small probabilities and probabilistic risk aversion for

large probabilities is an appropriate way of modeling sensitivity towards probabilities. Because

the concave region for small probabilities is followed smoothly by a convex region for larger

probabilities (Tversky and Kahneman 1992, Tversky and Fox 1995, Wu and Gonzalez 1996,

Abdellaoui 2000), such weighting functions are referred to as inverse-S shaped.

A few parametric forms have been proposed for inverse-S shaped weighting functions (Kar-

markar 1978, 1979, Goldstein and Einhorn 1987, Currim and Sarin 1989, Lattimore, Baker

and Witte 1992, Tversky and Kahneman 1992, Prelec 1998), and their parameters have been

estimated in many empirical studies (Camerer and Ho 1994, Tversky and Fox 1995, Wu and

Gonzalez 1996, Gonzalez and Wu 1999, Abdellaoui 2000, Bleichrodt and Pinto 2000, Kilka and

Weber 2001, Etchart-Vincent 2004, Abdellaoui, Vossmann and Weber 2005). Most of these

parametric forms lack an appropriate axiomatic underpinning. This is problematic because

it is unclear what kind of preference condition must be assumed to generate such weighting

functions, and therefore, it is unclear what kind of behavioral properties are captured within a

specific parametric family of weighting functions.

Axiomatizations have been proposed for the class of weighting functions introduced by Pr-

elec (1998) (see also Luce 2001, Aczél and Luce 2006). The class introduced by Goldstein and

Einhorn (1987) has been discussed in Gonzalez and Wu (1999), where necessary preference con-

ditions have been proposed. In the axiomatic derivation of these families of weighting functions
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it is necessary to assume a rich set of consequences, and further, the representing functional

must also be continuous with respect to consequences. From an empirical point of view, this

dependence on consequences is a demanding restriction. A further restrictive point in these

axiomatizations is that a representing functional, where the continuous utility is already sepa-

rated from probability weighting, must be assumed prior to invoking the additional invariance

property that generates the required parametric form. An open and from an empirical point of

view important question is whether, on their own, those characterizing properties are powerful

enough to induce such a separation once additive separability as given in Theorem 2 has been

derived.

Recall that the results presented in the previous sections are free of restrictions on the

richness of the set of consequences, and also free of additional separability conditions that

ensure RDU to hold prior to invoking the invariance properties. But note at the same time

that these preference conditions are too rigid to permit inverse-S shaped probability weighting

functions under RDU.We would like to have both preference conditions for general consequences

and also axiomatizations that allow for inverse-S shaped weighting functions under RDU. In

what follows we propose such preference conditions, and show that these lead to new families

of parametric weighting functions.

To derive RDU with inverse-S shaped weighting functions we restrict the preference condi-

tions presented in Sections 3—5 to hold only on specific intervals of probabilities. An analogous

approach for general, non-parametric weighting functions and capacities was pursued by Tver-

sky and Wakker (1995) and Wakker (2001). This seems to be a reasonable compromise because,

as we show below, these conditions are still powerful enough to separate utility from probability

weighting if additive separability holds, that is, if they are added in statement (ii) of Theorem

2. The idea, in line with the empirical evidence, is to impose a first invariance condition for
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distributions involving small probabilities and a second invariance property for distributions

involving large probabilities. This will then give sufficient flexibility in deriving the required

weighting functions. However, as we indicate in the next subsection, some unwarranted features

relating to the utility functions may occur.

6.1 Switch-power Weighting Functions

The results presented in this subsection focus on the class of weighting functions which are

power functions for probabilities below some p̂ ∈ (0, 1), and dual power functions above p̂, i.e.,

w(p) =

⎧⎪⎪⎨⎪⎪⎩
cpa, if p 6 p̂,

1− d(1− p)b, if p > p̂,

with the parameters involved as discussed below. We call these functions switch-power weighting

functions.

We presented the function above with five parameters a, b, c, d and p̂. However, these reduce

to four because of continuity of w on [0, 1], and if differentiability at p̂ is assumed, which seems

plausible in this context, a reduction to three parameters is obtained. Let us elaborate on these

reductions. Continuity at 0 implies that a > 0, and monotonicity implies that c > 0. Continuity

at 1 implies that b > 0, and monotonicity implies that d > 0. Continuity and differentiability

at p̂ relates a, c to b, d and p̂ through

c =
1

p̂a
− d(1− p̂)b

p̂a
,

and

c =
db(1− p̂)b−1

ap̂a−1
,
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respectively. Combining the two gives

c = p̂−a
∙

bp̂

bp̂+ a(1− p̂)

¸
,

d = (1− p̂)−b
∙

a(1− p̂)

bp̂+ a(1− p̂)

¸
.

If 0 < a ≤ 1 the probability weighting function is concave on (0, p̂), and if 0 < b ≤ 1 it is

convex on (p̂, 1), hence has an inverse-S shape. For a, b ≥ 1 we have a S-shaped probability

weighting function, which is convex on (0, p̂) and concave on (p̂, 1). When p̂ approaches 1 or

0, the weighting function reduces to a power weighting function or a dual power weighting

function, respectively. Moreover, substitution of p̂ into w gives

w(p̂) =
bp̂

bp̂+ a(1− p̂)

= 1− a(1− p̂)

bp̂+ a(1− p̂)
,

from which one can easily derive the relationship

w(p̂) 6 p̂⇔ b 6 a.

In particular, this shows that whenever a = b the weighting function intersects the 45◦ line

precisely at p̂ (see Figure 1). One should also note that in this case the derivative of w at p̂

equals a, and therefore this parameter controls for the curvature of the weighting function. The

parameter p̂, however, indicates whether the interval for overweighting of probabilities is larger

than the interval for underweighting, and therefore controls for the elevation of the weighting

function (see also Gonzalez and Wu (1999) for a similar interpretation of the parameters in the

“linear in log-odds” weighting function of Goldstein and Einhorn (1987)).
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Figure 1: A two parameter switch-power weighting function.

In general, when a 6= b, two parameters control for curvature. In that case p̂ need not

demarcate the regions of over and underweighting because it may not lie on the 45◦ line. Nev-

ertheless, p̂ will still influence elevation, however, whether there is more overweighting relative

to underweighting now also depends on the relationship between the magnitudes of the para-

meters a and b. The following figure depicts, for the case of an inverse-S shaped weighting

function, the two scenarios of underweighting (0 < b < a < 1), respectively, overweighting

(0 < a < b < 1) at p̂.
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Figure 2: A 3-parameter function with underweighting respectively overweighting at p̂.
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As it turns out, it is more appropriate to interpret these parameters as was initially pro-

posed by Tversky and Kahneman (1992). All parameters may influence elevation, however,

the main role of p̂ is to demarcate the interval of probabilistic risk aversion from the inter-

val of probabilistic risk seeking. The magnitude of the parameter a indicates diminishing (or

increasing) sensitivity to changes from impossibility to possibility. This can be inferred by

inspecting the derivative of w for probabilities in the range (0,min{p̂, 1 − p̂}). Observe, that

for q ∈ (0,min{p̂, 1− p̂}) we get

w0(p)|p=q = (capa−1)|p=q

= p̂−a
∙

abp̂

bp̂+ a(1− p̂)

¸
qa−1.

Therefore, sensitivity increases if a > 1 and decreases if a < 1. Note that for a = 1 sensitivity is

constant. Note also that the right-derivative at 0, w0(0+) = 0 if a > 1 and is unbounded if a < 1,

the latter indicating extreme sensitivity for changes from possible to impossible. Similarly, as

one moves away from certainty, sensitivity increases if b > 1 and decreases if b < 1, while

for b = 1 sensitivity is constant. There is extreme sensitivity for changes from certainty to

possibility if b < 1.

The switch-power weighting function also allows for a comparison of the sensitivity to

changes from 0 relative to the sensitivity to changes from 1. Considering the ratio of derivatives

at q and 1− q for q ∈ (0,min{p̂, 1− p̂}) we observe

w0(p)|p=q
w0(p)|p=1−q

=

∙
(1− p̂)b−1

p̂a−1

¸
qa−b.

Therefore, this relative sensitivity is constant when a = b, but otherwise there is more (less)

sensitivity for changes from 0 than for changes from 1 if a < b (a > b). As q approaches
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min{p̂, 1− p̂} , the ratio w0(q)/w0(1− q) is decreasing (increasing) towards

w0(p̂)

w0(1− p̂)
=

⎧⎪⎪⎨⎪⎪⎩
[(1− p̂)/p̂]b−1, if p̂ 6 1/2,

[p̂/(1− p̂)]a−1, if p̂ > 1/2.

There are some extreme cases that should be mentioned here. Taking limits when only a

approaches 0 gives a weighting function that equals 0 at 0 and is constant equal to 1 on (0, 1].

Taking limits when only b approaches 0 we get a weighting function that equals 1 at 1 and

is constant equal to 0 on [0, 1). These latter weighting functions do not exhibit continuity or

monotonicity, and therefore fall outside the RDU-functionals considered in this paper. Similarly,

this holds for the classes of weighting functions where a = b and a approaches 0, or when a 6= b

and either a or b approach infinity.

The preference condition that is necessary for RDU with (inverse) S-shaped switch-power

weighting function is defined next. Common ratio invariance (for extreme probabilities) holds

if there exists a probability p̂ ∈ (0, 1) such that

(p1, . . . , pn) ∼ (q1, . . . , qn)⇔ (αp1, . . . , αpn) ∼ (αq1, . . . , αqn),

whenever all (p1, . . . , pn), (q1, . . . , qn), (αp1, . . . , αpn), (αq1, . . . , αqn) ∈ Lp̂ := {R ∈ L : r1 6 p̂}

and

(1− p1, . . . , 1− pn) ∼ (1− q1, . . . , 1− qn)

⇔

(β(1− p1), . . . , α(1− pn)) ∼ (β(1− q1), . . . , α(1− qn)),

whenever (1 − p1, . . . , 1 − pn), (1 − q1, . . . , 1 − qn), (β(1 − p1), . . . , β(1 − pn)), and (β(1 −

q1), . . . , β(1− qn)) ∈ L̃p̂ := {R ∈ L̃ : 1− rn 6 1− p̂}.

Clearly common ratio invariance requires preferences to be immune to common proportional

changes in decumulative probabilities whenever these are all smaller than some p̂ ∈ (0, 1) and
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it does also require immunity of preferences to common proportional changes in cumulative

probabilities if these are all smaller than 1− p̂. As the result below shows, replacing common

ratio invariance for (de)cumulative distributions in (Theorem 3) Theorem 5 with the weaker

common ratio invariance does not necessarily give RDU. As it turns out this property leads

to a more general class of preferences represented by a RDU-like functional that combines a

unique switch-power weighting function with two cardinal utility functions depending on the

evaluated distribution. We state this result before we analyze this aspect further.

Theorem 6 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by an additive representation as in Theorem

2 with functions Vj as follows:

Vj(p) =

⎧⎪⎪⎨⎪⎪⎩
sj[cp

a], if p 6 p̂,

ŝj[1− d(1− p)b], if p > p̂,

for some p̂ ∈ (0, 1) with a, b, c, d > 0, and positive sj, ŝj for all j = 1, . . . , n.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and common ratio invariance.

The parameters p̂, a, b, d are uniquely determined, and c = 1/p̂a − d(1− p̂)b/p̂a. Further the

sj’s and the ŝj’s can be replaced by corresponding tsj’s and tŝj’s for any positive t. ¤

This theorem shows that, by making the sensitivity towards small probabilities independent

from that for large probabilities, a more general functional than RDU is obtained. However,

when we restrict to specific sets of distributions the derived representing functional still gives

RDU. We elaborate on this point next.

23



Take k ∈ {0, . . . , n} and define L(k) := {P ∈ L : pk 6 p̂ < pk+1}. Then, on L(k) the

functions derived in Theorem 6 take the form

Vj(p) =

⎧⎪⎪⎨⎪⎪⎩
sj[cp

a], if p 6 p̂,

ŝj[1− d(1− p)b], if p > p̂,

for some p̂ ∈ (0, 1) with a, b, d > 0, c = 1/p̂a−d(1−p̂)b/p̂a and positive sj, ŝj for all j = 1, . . . , n.

In this case we define u(x0) = 0 and iteratively u(xj) = u(xj−1) + sj for j = 1, . . . , k and

u(xj) = u(xj−1) + ŝj for j = k + 1, . . . , n. This means that on L(k) the preference relation is

represented by

RDUk(P ) = u(x0) +
nX

j=1

w(pj)[u(xj)− u(xj−1)],

with switch-power weighting function

w(p) =

⎧⎪⎪⎨⎪⎪⎩
cpa, if p 6 p̂,

1− d(1− p)b, if p > p̂,

and strictly monotonic cardinal utility u. Hence, RDU has been obtained for < on L(k).

In general, for different values of k, the RDU-functionals (or RDU-restrictions) may not

agree. This shows the price that we pay for further relaxing the common ratio invariance

properties of the previous sections so that they apply only on restricted sets of distributions.

An additional preference condition is now required to derive RDU for < on L. Such a

condition has been proposed in Zank (2004). There it was shown that, in the presence of The-

orem 2, the probabilistic consistency condition is necessary and sufficient to give general RDU,

hence cardinal utility, without requiring any structural assumptions on the set of consequences.

In this paper we present a version of that condition that is much weaker, and on its own not

sufficient to give RDU, but when added to statement (ii) of Theorem 6 above, the property

implies RDU with switch-power weighting function.
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The preference relation < satisfies consistency if

pI(γ, . . . , γ) ∼ p̂I(δ, . . . , δ)

and

p̂I(γ, . . . , γ) ∼ qI(δ, . . . , δ)

imply

pI\{i}p̂i(γ, . . . , γ) ∼ p̂I\{i}qi(δ, . . . , δ),

whenever I = {1, . . . , i} or I = {i, . . . , n}, i ∈ {1, . . . , n}, and q < p̂ < p are such that the

above distributions are in L.

Note that, given monotonicity and continuity, the first two indifferences can always be

derived locally. Consistency then requires that the measured indifferences for consequence xi

remains valid when measured for consequence xi−1 (respectively xi+1). Under the assumptions

of Theorem 6 the condition will preclude the possibility of having two utility functions that

determine choice behavior. The next result summarizes this point.

Theorem 7 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by RDU with a switch-power utility,

w(p) =

⎧⎪⎪⎨⎪⎪⎩
cpa, if p 6 p̂,

1− d(1− p)b, if p > p̂,

for some p̂ ∈ (0, 1) with a, b, c, d > 0.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence, common ratio invariance and consistency.

The parameters p̂, a, b, d are uniquely determined and c = 1/p̂a − d(1− p̂)b/p̂a. Further, the

utility function u is cardinal. ¤
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Following the line of argument presented above, one can also provide axiomatic character-

izations for RDU with an analog to the switch-power weighting function that first is a dual

power weighting function followed by a power weighting function.

6.2 The Switch-exponential Weighting Function

Let us now consider the switch-exponential weighting function.3 Exploiting continuity at 0 and

1, the general from of this class of weighting functions is

w(p) =

⎧⎪⎪⎨⎪⎪⎩
c(eap − 1), if p 6 p̂,

1− d(eb − ebp), if p > p̂,

with ac > 0, db > 0 by monotonicity, and due to continuity at p̂ it holds that

c =
1

eap̂ − 1 −
d(eb − ebp̂)

eap̂ − 1 .

Requiring differentiability at p̂ implies

c =
db

a

ebp̂

eap̂
,

which, combined with the previous expression for c, allows us to determine both c, d in terms

of a, b, and p̂:

c =
bebp̂

aeap̂(eb − ebp̂) + bebp̂(eap̂ − 1) ,

d =
aeap̂

aeap̂(eb − ebp̂) + bebp̂(eap̂ − 1) .

One can immediately derive the conditions for which there is diminishing (increasing) sensitivity

at 0 and 1. An inverse-S shaped weighting function is obtained if a < 0 and b > 0, while an

S-shaped weighting functions must have a > 0 and b < 0.

3We restrict our analysis to the cases that the weighting function is exponential below some parameter p̂

and exponential above it. As can be inferred from Theorem 4, the characterizing preference condition will allow

also for linearity below or above the parameter p̂.
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In the case of an inverse-S weighting function (i.e., a < 0, b > 0), the condition for over-

weighting at p̂ comes down to

w(p̂) > p̂⇔ −a
b

<
e−ap̂ − 1
eb(1−p̂) − 1

1− p̂

p̂
.

Observe that the sensitivity to changes from impossibility is given by w0(0) = ca and the

sensitivity to changes from certainty is w0(1) = dbeb, and that both expressions must exceed

1 in order to have overweighting for small probabilities and underweighting for large ones. By

substituting for c and d we can determine if there is more sensitivity at 0 compared to sensitivity

at 1 through

w0(0)

w0(1)
=

e(b−a)p̂

eb
.

Note that in the case of an inverse-S shaped weighting function one obtains

w0(0)

w0(1)
> 1⇔ p̂ >

b

b− a
,

hence, whether there is greater sensitivity at 0 compared to 1 will depend on all three parameters

a, b, and p̂. We compare how this relative sensitivity evolves as one moves away from the extreme

probabilities. For q ∈ (0,min{p̂, 1− p̂}) it holds that

w0(p)|p=q
w0(p)|p=1−q

=
e(b−a)p̂

eb
e(a+b)q,

hence relative sensitivity increases if b > −a (decreases if b < −a), reaching its maximum

(minimum) at min{p̂, 1− p̂} as follows:

eb(2p̂−1), if p̂ 6 1/2, or ea(2p̂−1), if p̂ > 1/2.

An analog statement can be concluded for the case of an S-shaped weighting function. Note

that there is constant relative sensitivity if b = −a.
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7 Summary

Our main objective in this paper has been to provide preference foundations for parametric

weighting functions in a general RDU framework where the set of consequences is arbitrary.

Inevitably, these preference foundations have to employ conditions that exploit the mathemat-

ical structure offered by the probability interval. Initially, we have derived three classes of such

RDU-forms with a single parameter for probability weighting. In all these derivations cardinal

utility is obtained as a bonus in addition to the specific parametric form (power, exponential,

or dual power) of the weighting functions.

Building on mixture separability and replacement separability, as introduced by Machina

(1989), we characterized RDU with power, linear, and exponential weighting function. This

shows, once more, the relevance of the vNM-independence axiom and its implications in decision

theory and in particularly for the weighting functions under RDU (and prospect theory). The

power weighting function is directly related to the common ratio pattern of preferences. It

has also been pointed out that the exponential weighting function is directly related to the

common consequence pattern of preferences (Allais 1953), a somewhat surprising connection

that has not been mentioned before in the literature. The dual power weighting function has

no documented EU-paradox to be linked to, but we think that a dual analog of the common

ratio paradox of Allais can easily be constructed. However, viewed from a different perspective,

the preference conditions that give rise to these weighting functions will hopefully lead to a

better understanding of how demanding EU is, and in particular how demanding the vNM-

independence axiom actually is.

The one-parameter classes of weighting functions have shortcomings for descriptive appli-

cations. In particular it not possible to separate sensitivity to changes in small probabilities
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from sensitivity to changes in large probabilities because there is a single parameter that has

to govern both. Empirical studies suggest that there is extreme sensitivity to changes from cer-

tainty or impossibility to possibility, and also that this sensitivity diminishes as one approaches

moderate probabilities. Taking account of this evidence, we have proposed to separate the prob-

ability interval into two exhaustive regions on which the preference conditions that implied the

one-parameter weighting functions still hold. Therefore, we had to specify in advance where the

boundary is that separates the intervals of distinct sensitivity to changes in probabilities, and

this boundary probability appears as one of the parameters in our weighting functions. This is

different to the axiomatization offered by Prelec (1998) and the one suggested in Gonzalez and

Wu (1999) because there the probability value that separates the regions of distinct sensitivity

is implicit in the corresponding preference conditions. It should be noted, however, that those

axiomatizations do not apply to our framework, in particular, because the preference conditions

characterizing those weighting functions may not be well-defined here. Also, Prelec (1998) and

Gonzalez and Wu (1999), in fact, model sensitivity to changes in the logarithm of probabilities

instead of probabilities as we do. From a technical point of view this is an important differ-

ence as the interval of transformed probabilities (by taking the negative of the logarithm of

probabilities) is large enough (i.e., eguals all positive numbers) to generate endogenously, with

the appropriate axiom assumed, two regions in which changes in log-odds point in opposite

direction.4 We think that modeling sensitivity to probability changes is more natural under

RDU, certainly this is the case if one works in the general framework that we have adopted in

4The argument used here is best exemplified for the case of, e.g., positive power functions that apply to

positive numbers. Assume that the power exceeds 1. For log-odds smaller than 1 applying the power function

leads to decreases of the original number, while application to log-odds larger than 1 results in increases. So, 1

naturally demarcates the regions of opposite sensitivity in log-odds.
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this paper.

By specifying exogenously the parameter separating sensitivity regions within the proba-

bility interval, we have also induced additional flexibility for the representing functions. By

simply restricting some preference conditions to hold on particular subsets of the probability

interval, the resulting representing functionals belong to a much larger class than that of RDU-

preferences. That is, although we can obtain unique parametric weighting functions, in general

there may be two cardinal utility functions that govern choice behavior. Further, the number of

parameters that we get for the weighting functions –four– seems too large. To resolve these

issues we have employed additional conditions. To retain RDU with a parametric inverse-S

shaped weighting function we have introduced an axiom that explicitly requires consistency

of measured preferences irrespective of consequences. This then gives a single cardinal utility,

hence RDU. To reduce the number of parameters we assume differentiability of the weighting

function, which, although it seems a reasonable constraint, is enforced exogenously.

However, except for the parametrizations presented in this paper there are no other founda-

tions of RDU in the literature that combine parametric weighting functions and general utility.

The previous parametrizations either lack preference foundations or their preference founda-

tions are meaningful only in the special case of continuous utility. Neither is satisfactory. To

some extent we have been able to resolve these shortcomings. For example, we did this for the

one-parameter classes that we obtained. But, although progress has been made, our attempt

to add more empirical realism and still obtain simple classes of parametric weighting functions

compromises on other aspects. In particular, the problem of endogenizing the separation of the

probability interval into regions of distinct probabilistic risk attitudes or distinct sensitivity,

and thereby also reducing the number of parameters in the weighting functions (instead of

employing differentiability), remains an open question.
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8 Appendix: Proofs

Proof of Theorem 3: That statement (i) implies statement (ii) follows from the specific form

of the representing functional. Jensen-continuity, weak order, and comonotonic independence as

well as monotonicity follow immediate. Common ratio invariance for decumulative distributions

follows from substitution of the RDU-functional with power weighting function.

Next we prove that statement (ii) implies statement (i). Obviously statement (ii) in Theorem

2 is satisfied, hence, there exists an additively separable functional representing the preference

<. We restrict the attention to the case that p1 < 1 and pn > 0 to avoid the problem of dealing

with unbounded V1, Vn. To show that our additive functional in fact is a RDU form with power

weighting function we use results presented in Wakker and Zank (2002). Wakker and Zank did

not have the restrictions that p1 < 1 and pn > 0 but permitted any non-negative rank-ordered

real numbers xi, i = 1, . . . , n because they worked in a setup with monetary outcomes instead

of decumulative probabilities as we do here. But their results apply to our framework with

minor modifications, in particular the restriction p1 6 1 is not posing any difficulty. In their

Lemma A2 they derived a similar additive representation as we have in Theorem 2, and then in

their Lemma A3, using the analog of common ratio invariance for decumulative distributions,

they showed that their additive representation in fact is a RDU form with common positive

power function as “utility” and increasing “weighting function”. To apply their results we just

need to interchange the roles of utility and weighting function. Further, because the functions

Vj, j = 1, . . . , n are proportional they can continuously be extended to 0 and 1 (this follows

from Wakker 1993, Proposition 3.5). Hence, we can conclude that there exist positive numbers

sj such that

Vj(pj) = sjw(pj),
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with w(p) = a + c(p)b, for some real a, b, c. Monotonicity and continuity imply that b, c are

positive, and requiring further that w(0) = 0 and w(1) = 1 shows that a = 0 and c = 1. Hence,

w(p) = pb is established. We define utility iteratively as u(x0) = 0 and u(xj) = u(xj−1) + sj

for j = 1, . . . , n. Therefore, Vj(pj) = w(pj)sj = pbj[u(xj) − u(xj−1)] for j = 1, . . . , n with

strictly monotonic utility u. We can conclude that the additive representation in Theorem 2 is

RDU with a power weighting function and monotonic utility. Therefore statement (i) has been

derived.

Uniqueness results follow from the joint cardinality of the functions Vj in Theorem 2, and

the fact that they are proportional. These properties translate into the weighting function being

unique because it assigns 0 to impossibility and 1 to certainty, and the utility being cardinal.

This concludes the proof of Theorem 3. ¤

Proof of Theorem 4: That statement (i) implies statement (ii) follows from the specific

form of the representing functional. Jensen-continuity, weak order, and comonotonic indepen-

dence as well as monotonicity follow immediate. Extreme replacement separability follows from

substitution of the RDU-functional with linear/exponential weighting function.

Next we prove that statement (ii) implies statement (i). As in the proof of Theorem 3,

statement (ii) in Theorem 2 is satisfied, hence, there exists an additively separable functional

representing the preference <. Attention is initially restricted to the case that p1 < 1 and

pn > 0 to exclude unbounded V1 and Vn. To show that this additive functional is RDU with an

exponential weighting function we use results presented in Zank (2001). Zank did allow for non-

negative vectors with rank-ordered monetary outcomes in his Lemma 7 instead of probabilities

as we have here. However, those results apply to the case considered here if we interchange

the roles of utility and decision weights. Hence, we can conclude that in the representation of
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Theorem 2 the functions Vj are increasing exponential functions, i.e.,

Vj(p) = sj[a exp(cp) + b],

with ac > 0 and sj > 0, and real b (or they are linearVj(p) = sj[ap + b] with a > 0). As

the functions are proportional, we can extend them continuously to all of [0, 1] by Proposition

3.5 of Wakker (1993). We fix scale and location of the otherwise jointly cardinal Vj, i.e.,

Vj(0) = 0, Vj(1) = 1. Hence,

Vj(p) = sj[
ecpj − 1
ec − 1 ],

with c 6= 0 (or Vj(p) = sjp). We use the positive sj’s to define utility as u(x0) = 0 and u(xj) =

u(xj−1) + sj for j = 1, . . . , n. Therefore, the Vj’s are exponential or linear for j = 1, . . . , n and

u is strictly monotonic. Hence, statement (i) has been derived.

Uniqueness results follow by similar arguments as in the proof of Theorem 3. This concludes

the proof of Theorem 4. ¤

Proof of Theorem 5: That statement (i) implies statement (ii) follows from the specific

form of the representing functional. Jensen-continuity, weak order, and comonotonic inde-

pendence as well as monotonicity follow immediate. Common ratio invariance for cumulative

distributions follows from substitution of the RDU-functional with dual power weighting func-

tion.

Next we prove that statement (ii) implies statement (i). Obviously statement (ii) in Theorem

2 is satisfied, hence, there exists an additively separable functional representing the preference

<. We restrict the attention to the case that p1 < 1 and pn > 0 to avoid the problem of

dealing with unbounded V1, Vn. To show that our additive functional is RDU with a dual

power weighting function we use, similarly to the proof of Theorem 3, results of Wakker and

Zank (2002). We define Wj(1 − pj) = Vj(1 − (1 − pj)) (= Vj(pj)) for j = 1, . . . , n. These
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functions are decreasing in (1 − pj) and they give an additive representation as we have in

Theorem 2 but now on the set of cumulative distributions L̃. Using Lemma A3 of Wakker and

Zank (2002) and common ratio invariance for cumulative distributions shows that this latter

additive representation is in fact a RDU form with common positive power weighting function

that is decreasing in cumulative probabilities. Further, because the functions Wj, j = 1, . . . , n

are proportional they can continuously be extended to 0 and 1 (this follows from Wakker 1993,

Proposition 3.5). Hence, there exist positive numbers sj such that

Wj(1− pj) = sjw̃(1− pj)

= Vj(pj),

with w̃(1 − p) = a − c(1 − p)d,for some real a, c, d. Monotonicity and continuity imply that

c, d are positive, and requiring further that w̃(0) = 0 and w̃(1) = 1 shows that a = 0 and

c = 1. Hence, w̃(1 − p) = 1 − (1 − p)d is established, and we define utility iteratively as

u(x0) = 0 and u(xj) = u(xj−1) + sj for j = 1, . . . , n. Therefore, Vj(pj) = w̃(1 − pj)sj =

w̃(1− pj)[u(xj)− u(xj−1)] for j = 1, . . . , n with strictly monotonic utility u. We can conclude

that the additive representation in Theorem 2 is RDU with dual a power weighting function

and monotonic utility. Therefore statement (i) has been derived.

Uniqueness results follow by similar arguments as in the proof of Theorem 3. This concludes

the proof of Theorem 5. ¤

Proof of Theorem 6: That statement (i) implies statement (ii) follows from the specific

form of the representing functional. Jensen-continuity, weak order, and comonotonic indepen-

dence as well as monotonicity follow immediate. For < restricted to Lp̂ (L̃p̂), common ratio

invariance comes down to common ratio invariance for decumulative (cumulative) distribu-

tions and can easily be derived by substitution of the specific RDU-like functional as discussed
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following Theorem 6.

Next we prove that statement (ii) implies statement (i). Obviously statement (ii) in Theorem

2 is satisfied, hence, there exists an additively separable functional representing the preference

<. We restrict the attention to the case that p1 < 1 and pn > 0 to avoid the problem of

dealing with unbounded V1, Vn. Similarly to the proof of Theorems 3 and 5, we use the results

of Wakker and Zank (2002). The arguments used in the proof of Theorem 3 remain valid if we

restrict the analysis to probability distributions in Lp̂. We can conclude that the Vj’s obtained

in Theorem 2 are proportional power functions for decumulative probabilities not exceeding p̂.

That is, there exist positive numbers sj such that

Vj(pj) = sjw(pj),

with w(p) = cpa, for some positive a and c.

Similarly, the arguments used in the proof of Theorem 5 remain valid if we restrict the

analysis to probability distributions in L̃p̂. We can conclude that the Vj’s obtained in Theorem

2 are proportional dual power functions for cumulative probabilities not exceeding 1− p̂. That

is, there exist positive numbers ŝj such that

Vj(pj) = ŝjw(pj),

with w(p) = 1− d(1− p)b, for some positive d and b. Hence, statement (i) has been obtained.

Continuity at p̂ implies that the parameters are related through c = 1/p̂a − d(1 − p̂)b/p̂a.

Uniqueness results follow from the joint cardinality of the functions Vj in Theorem 2, and the

fact that they are proportional. These properties translate into the weighting function being

unique because it assigns 0 to impossibility and 1 to certainty, and that the sj’s and ŝj’s can be

replaced only if re-scaled by a common positive number t. This concludes the proof of Theorem

6. ¤
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Proof of Theorem 7: The proof follows from Theorem 6 and the following arguments.

Suppose that I = {1, . . . , i} for some 1 < i < n, and for given p̂ take p > q, and

γ < δ such that pI(γ, . . . , γ) ∼ p̂I(δ, . . . , δ), p̂I(γ, . . . , γ) ∼ qI(δ, . . . , δ), and by consistency

pI\{i}p̂i(γ, . . . , γ) ∼ p̂I\{i}qi(δ, . . . , δ). Then, taking the first and third indifference, substituting

the functional form described in statement (i) of Theorem 6, and subtracting the two equations,

we get

ŝiw(p) + siw(q) = ŝiw(p̂) + siw(p̂),

after cancelling common terms.

Similarly, taking the first and second indifference we get

iX
j=1

[ŝjw(p) + sjw(q)] =
iX

j=1

[ŝjw(p̂) + sjw(p̂)].

Therefore, for i = 2, we observe

ŝ2w(p) + s2w(q) = ŝ2w(p̂) + s2w(p̂)

and

ŝ1w(p) + s1w(q) + ŝ2w(p) + s2w(q) = ŝ1w(p̂) + s1w(p̂) + ŝ2w(p̂) + s2w(p̂),

where, after substituting the first equation in the latter and cancellation of common terms, we

get the equivalent equations

ŝ2w(p) + s2w(q) = ŝ2w(p̂) + s2w(p̂),

ŝ1w(p) + s1w(q) = ŝ1w(p̂) + s1w(p̂),

from which

ŝ1
s1
=

ŝ2
s2
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follows. More generally it follows by induction on i that

ŝi−1
si−1

=
ŝi
si

holds for all i = 2, . . . , n.5 If one normalizes the positive si’s and ŝi’s such that they each

sum to one, which can always be done, one observes that si = ŝi must hold. Therefore RDU

with a switch-power weighting function has been obtained. This shows that statement (ii)

of the theorem implies statement (i). The proof that statement (i) implies statement (ii)

follows immediate by substitution of the RDU-form with switch-powr weighting function, which

completes the proof of the theorem. ¤
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Utility Representations,” Theory and Decision 58, 77—143.

Nakamura, Yutaka (1995) “Rank Dependent Utility for Arbitrary Consequence Spaces,” Math-

ematical Social Science 29, 103—129.

Narens, Louis (1996), “A Theory of Ratio Magnitude Estimation,” Journal of Mathematical

Psychology 40, 109—129.

Prelec, Drazen (1998), “The Probability Weighting Function,” Econometrica 66, 497—527.

Quiggin, John (1981), “Risk Perception and Risk Aversion among Australian Farmers,” Aus-

tralian Journal of Agricultural Economics 25, 160—169.

Quiggin, John (1982), “A Theory of Anticipated Utility,” Journal of Economic Behaviour and

Organization 3, 323—343.
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