
Herwartz, Helmut; Xu, Fang

Working Paper

A new approach to bootstrap inference in functional
coefficient models

Economics Working Paper, No. 2007-15

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Department of Economics

Suggested Citation: Herwartz, Helmut; Xu, Fang (2007) : A new approach to bootstrap inference in
functional coefficient models, Economics Working Paper, No. 2007-15, Kiel University, Department
of Economics, Kiel

This Version is available at:
https://hdl.handle.net/10419/22031

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22031
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


A new approach to bootstrap inference in 
functional coefficient models

by Helmut Herwartz and Fang Xu

Economics Working Paper

No 2007-15



A new approach to bootstrap inference in functional

coefficient models

Helmut Herwartz∗ and Fang Xu†

June 2007

Abstract: We introduce a new, factor based bootstrap approach which is robust
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1 Introduction

A useful extension of the classical linear regression model are functional (varying) co-

efficient models where model parameters may change with the value of other variables

(factors). Functional specifications can be traced back to generalized linear models

(Nelder and Wedderburn 1972). To formalize the functional coefficient, parametric

representations such as finite order polynomials or Fourier expansions, or otherwise

nonparametric approaches can be employed (Cleveland, Grosse and Shyu 1992, Hastie

and Tibshirani 1993, Chen and Tsay 1993). A natural specification issue in these mod-

els is to infer whether the functional coefficient model holds with a specified paramet-

ric form. Modeling the functional coefficient parametrically, the parametric form is

compared with another parametric alternative. Modeling the functional coefficient

nonparametrically, the alternative is the semiparametric regression. In this area of

hypothesis testing, F−type tests are widely applied since the model of interest can

easily be evaluated under both the null and the alternative hypothesis.

Thereto, bootstrap based inference is broadly used if the asymptotic distribution

of a test statistic is difficult or impossible to derive analytically. This may arise as

a consequence of nuisance parameters affecting a test statistic, for instance, due to

neglected heteroskedasticity. For the case of (asymptotically) pivotal test statistics,

moreover, particular bootstrap schemes might outperform the first order asymptotic

approximations by faster convergence to the nominal significance levels (Beran 1988,

Hall and Titterington 1989). For a goodness-of-fit test statistic based on compar-

ing the residual sum of squares from parametric and semiparametric functional re-

gressions, Cai, Fan and Yao (2000), henceforth (CF&Y), advocate a residual based

bootstrap approach. However, owing to possibly heterogenous error terms, residual

based bootstrap inference could lack robustness. To deal with heteroskedasticity, pairs

bootstrap (Freedman 1981) and wild bootstrap (Wu 1986, Liu 1988) can be applied.

Härdle and Mammen (1993) consider the case of a test statistic that is based on the

integrated squared difference between a parametric and a nonparametric estimate.

They show that under the null hypothesis the pairs bootstrap based approximation

does not consistently estimate the distribution of the test statistic while the wild

bootstrap approximation does.

The particular interest of this paper is to test the hypothesis that the functional

coefficient is constant, i.e. factor independent. We propose a new, factor based boot-

strap approach to obtain critical values for contrasting the model estimates obtained

under the null and the alternative hypothesis. Similar to pairs bootstrap, the new

scheme does not require to estimate model residuals that are subsequently used for

resampling. Instead, the underlying factors, governing parameter variation only un-

der the alternative hypothesis, are drawn with replacement. The approach is shown

to cope with heteroskedasticity since the relationship between the error term vari-
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ance and the corresponding regressors is retained. Furthermore, in the framework of

semiparametric regressions the factor based bootstrap might be more advantageous

than wild, pairs or residual based bootstrap inference. This might be due to the

fact that the former is likely better immunized against adverse effects of under- or

oversmoothing in nonparametric regression than the latter approaches.

The properties of the residual based (RB), wild (WB), pairs (PB) and factor

based bootstrap (FB) inference in functional coefficient models with finite samples

are compared by means of a simulation study. Our Monte Carlo exercises cover

both parametric and semiparametric alternative hypotheses. Moreover, presuming a

parametric pattern for the functional coefficient, the asymptotic behavior of the test

statistic and the corresponding factor based bootstrap approximation are investigated.

At last, we apply functional coefficient models to a between regression of domestic

investment on domestic saving. The enormous interest on the saving-investment (SI)

relation in macroeconomic literature is trigged by the so called ‘Feldstein Horioka

puzzle’ (Feldstein and Horioka 1980). What this relation measures is still a disputed

topic. Via functional coefficient models potential determinants of the SI relation can

be detected.

The remainder of the paper is organized as follows: In the next section we in-

troduce the functional coefficient model and the considered test statistic. The four

alternative bootstrap approaches (RB, WB, PB and FB) are discussed in Section

3. Asymptotic results for the FB approximation are also given in this Section. We

compare these approaches by means of Monte-Carlo simulations in Section 4. In Sec-

tion 5 the saving-investment relation is investigated via functional coefficient models.

Section 6 summarizes briefly our main findings and concludes. Details proofs for the

asymptotic validity of the FB approximations are given in the Appendix, which also

provides a list of cross section members considered in the empirical example.

2 The functional coefficient model

2.1 Representation and assumptions for the parametric case

A functional coefficient regression can be given as

yi =
K∑

j=1

β
j
(ui)xij + ei, i = 1, ..., N, (1)

where K and N denote the number of regressors and available observations, respec-

tively, with K assumed to be fixed. In model (1) yi depends in a possibly nonlinear

fashion on explanatory variables xi1 to xiK , including a constant. The error terms

e1, ..., eN are independent with mean zero and variance σ2
i . Single coefficients β

j
are
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functions of a random variable ui, called the factor henceforth. Let the functional co-

efficient have the form β
j
(ui) = β1j + β2jfj(ui), where fj(ui) is assumed to be known.

Then, given the parametric representation, (1) can be estimated by applying OLS to

the regression

yi =
K∑

j=1

(β1jxij + β2jxijfj(ui)) + ei.

Thus, model (1) can be written as

yi = z′i1β1 + z′i2β2 + ei, (2)

= z′iβ + ei, (3)

where z′i1 = (xi1, ..., xiK), z′i2 = (f1(ui)xi1, ..., fK(ui)xiK), β1 = (β11, ..., β1K)′, β2 =

(β21, ..., β2K)′, z′i = (z′i1,z
′
i2) and β = (β′1,β

′
2)
′ is a 2K dimensional parameter vector.

The corresponding matrix forms are

y = Z1β1 + Z2β2 + e, (4)

= Zβ + e, (5)

where y = (y1, ..., yN)′, Z ′
1 = (z11, ..., zN1), Z ′

2 = (z12, ..., zN2), Z ′ = (z1, ..., zN)

and e = (e1, ..., eN)′. We make the following assumptions concerning the functional

coefficient model:

(A1) Factor variables u1, u2, ..., uN are independent, with common distribution µ;

zi2 = g(ui) with g being a real continuous function from R to RK ;

(A2) E(||ui||4) < ∞ with || · || denoting the Euclidean norm;

||g(u)||4 is continuous and ||g(u)||4 = O(||u||4) as N →∞;

(A3) The matrix Z1 is fixed;

(A4) E(ziei) = 0;

E(e2
i ziz

′
i) = Vi, a nonnegative definite matrix, with lim

N→∞

(
1
N

N∑
i=1

Vi

)
= V , a

nonnegative definite matrix and plim

(
1
N

N∑
i=1

e2
i ziz

′
i

)
= V ;

E(ziz
′
i) = Σi, a positive definite matrix, with lim

N→∞
( 1

N

N∑
i=1

Σi) = Σ, a positive

definite matrix and plim

(
1
N

N∑
i=1

ziz
′
i

)
= Σ;

(A5) lim
N→∞

1
N

σ2
i = σ2 and plim

(
1
N

e′e
)

= σ2.
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For the later purposes of resampling within the functional coefficient model As-

sumption (A1) ensures that drawing from {ui}N
i=1 with replacement generates boot-

strap samples of factors sharing their distribution with the factor sample. Further-

more, through the continuous mapping g the distribution of zi2 can be defined. As-

sumption (A2) consists of 4th moment related conditions that ensure E(||zi||2) < ∞
and E(||zi||2e2

i ) < ∞. A comparable construction can be seen in Freedman (1981).

To determine the asymptotic properties of the OLS estimator,

β̂ = β + (Z ′Z)−1Z ′e,

we consider the limiting distribution of

√
N(β̂ − β) =

(
Z ′Z
N

)−1 (
Z ′e√

N

)
.

It follows by Assumption (A4) that 1√
N

Z ′e
d→ N(0, V ), and, as N →∞,

√
N(β̂ − β)

d→ N(0, Σ−1V Σ−1).

If the error terms in (1) are homoskedastic, E(e2
i |zi) = E(e2

i ) = σ2, then V = σ2Σ,

and thus,

√
N(β̂ − β)

d→ N(0, σ2Σ−1).

An important specification issue in the framework of functional coefficient models

is to distinguish scenarios of constant and functional parameters. For testing a stan-

dard regression model against the functional alternative we formalize the following

pair of hypotheses:

H0 : β2 = 0 vs. H1 : β2 6= 0. (6)

The considered goodness-of-fit test statistic compares the fitting accuracy of the em-

pirical model under both hypotheses,

TN = (RSS0 − RSS1)/RSS1. (7)

The underlying quantities in (7), RSSi, i = 0, 1, are obtained from restricted (H0)

and unrestricted (H1) OLS regressions, i.e.

RSS0 =
N∑

i=1

(
yi − z′i1β̂

(0)

1

)2

, (8)

RSS1 =
N∑

i=1

(
yi − z′i1β̂

(1)

1 − z′i2β̂
(1)

2

)2

. (9)

Note that in case of homoskedastic error terms, NTN is asymptotically distributed as

χ2(K) under the null hypothesis.
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2.2 Semiparametric case

In case of an unknown or unspecified functional form β
j
(ui), the model in (1) is a

semiparametric regression,

yi = z′i1β(u) + ei, β(u) = (β
1
(u), ..., β

K
(u))′. (10)

A semiparametric estimator similar to the Nadaraya-Watson estimator (Nadaraya

1964, Watson 1964) can be applied to estimate β(u) . Consider model (10) in matrix

form

y = Z1β(u) + e.

The semiparametric estimator is obtained as

β̂(u) = (Z ′
1WZ1)

−1Z1
′Wy. (11)

In (11) u is a local point, W = diag{Kh(u1−u), . . . , Kh(uN −u)}, Kh(·) = K(·/h)/h,

with K(·) being a kernel function and h is the bandwidth parameter.

As for the parametric case, testing the flexible semiparametric model in (10)

against a constant coefficient regression is of immediate interest. CF&Y propose

to distinguish the functional from a constant coefficient model by means of resam-

pling the TN statistic in (7) adapted to the semiparametric framework. Their proposal

amounts to contrasting the hypotheses

H0 : β = β1 vs. H1 : β 6= β1. (12)

In analogy to (9), a semiparametric estimator of RSS1 is

RSS1 =
N∑

i=1

(yi − z′i1β̂(ui))
2. (13)

It is worthwhile mentioning that in the case of unknown form of fj(ui) Fourier se-

ries or other parametric approximation might be used instead. As such, the goodness-

of-fit tests could have higher power against specific alternatives. However, contrasting

two parametric forms might be inferior to testing a parametric form under H0 against

a semiparametric alternative owing to potential inconsistency (Horowitz and Härdle

1994).

3 Bootstrap procedures

In this section we introduce the factor based bootstrap (FB) to test the pair of hy-

potheses in (6) by means of TN in (7). For a comprehensible comparison between

the new procedure and other common bootstrap techniques we also reconsider briefly

residual based (RB), wild (WB) and pairs bootstrap (PB) inference. Contrasting

parametric models we briefly sketch these resampling schemes in turn.
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3.1 Residual based, pairs and wild bootstrap

3.1.1 Residual based bootstrap

The idea of random resampling with replacement, the so called “bootstrap”, was orig-

inally proposed by Efron (1979) who has also suggested a residual based resampling

scheme for regression models. To determine critical values for the TN statistic, RB

consists of the following steps:

1) Bootstrap residuals {e∗i }N
i=1 are drawn with replacement from centered residuals

{êi −
N∑

i=1

êi/N}N
i=1 with êi obtained under H1,

êi = yi − z′i1β̂
(1)

1 − z′i2β̂
(1)

2 .

2) A bootstrap sample {y∗i }N
i=1 consistent with H0 is y∗i = z′i1β̂

(0)

1 + e∗i .

3) Given the sample {y∗i , zi1, ui}N
i=1, RSS∗0 and RSS∗1 are calculated analogously to

(8) and (9) to determine the bootstrap test statistic T ∗
N .

4) Steps 1) to 3) are performed R times with R chosen sufficiently large. If TN

exceeds the (1 − α)-quantile of {T ∗(r)
N }R

r=1 H0 is rejected with significance level

α.

3.1.2 Wild bootstrap

Implemented via sampling with replacement RB builds upon an iid assumption to

hold for error terms ei. Consequently, RB fails to mimic distributional features of

nonspherical disturbances. For the case of heteroskedasticity, WB is widely used. This

bootstrap approach goes back to a proposal of Wu (1986) and has been established by

Liu (1988) to evaluate the asymptotic distribution of studentized statistics in static

linear regression models under heteroskedasticity of unknown form. The first step of

WB generates the bootstrap residuals {e∗i }N
i=1 from unrestricted model estimates as

e∗i = êivi, êi = yi − z′i1β̂
(1)

1 − z′i2β̂
(1)

2 ,

where the random variable vi is independent of the data, E(vi) = 0 and E(v2
i ) = 1.

There are numerous variants to specify the distribution of vi that basically differ with

regard to the finite order moments of êi mimicked by the WB (Liu 1988, Mammen

1993). We choose one of the simplest, the so–called Rademacher distribution as

recommended by Davidson and Flachaire (2001),

vi =

{
−1 with probability 0.5

1 with probability 0.5.
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Note that owing to E[v4
i ] = 1 also fourth order features of êi are retained by this

particular implementation of WB. Once {e∗i }N
i=1 is obtained, the remaining steps are

the same as those for RB.

3.1.3 Pairs bootstrap

Pairs bootstrap as an alternative avenue to address heteroskedastic error distributions

has been originally advocated by Freedman (1981). Opposite to RB and WB, PB

processes tuples of observed dependent and explanatory variables:

1) Bootstrap samples {y∗i ,z∗i1, u∗i }N
i=1 are drawn with replacement from {yi−z′i1β̂

(1)

1 −
z′i2β̂

(1)

2 + z′i1β̂
(0)

1 ,zi1, ui}N
i=1.

2) A bootstrap variant of TN is then obtained from restricted and unrestricted

estimation using the bootstrap sample. Given the sample {y∗i ,z∗i1, u∗i }N
i=1 , RSS∗0

and RSS∗1 are calculated analogously to (8) and (9) to determine the bootstrap

test statistic T ∗
N .

3) Once T ∗
N is obtained the iteration and test decision are as described in step 4)

of RB.

Under the PB approach bootstrap variants of the dependent variable y∗i are gener-

ated from the estimated dependent variable under the null hypothesis (z′i1β̂
(0)

1 ) plus

the estimated error terms under the alternative (yi − z′i1β̂
(1)

1 − z′i2β̂
(1)

2 ). As such,

the distribution of the bootstrap test statistic T ∗
N can approximate the distribution

of TN under the null hypothesis even if the alternative model holds. For the F -test

statistic, Mammen (1993) shows that its distribution under the null hypothesis co-

incides asymptotically with the corresponding WB and PB counterparts under some

regularity conditions.

3.2 Factor based bootstrap

FB proceeds from the perspective that under H0 the factor variable does not exert any

impact on the parameter of interest. FB does not process first step residual estimates

as it is the case for RB, WB and PB. The following steps are involved:

1) Bootstrap factor variables {u∗i }N
i=1 are drawn with replacement from {ui}N

i=1.

2) Based on the sample {yi, zi1, u
∗
i }N

i=1, RSS∗0 and RSS∗1 are calculated analogously

to (8) and (9) and the bootstrap statistic T ∗
N is obtained. Note that in this case,

RSS∗0 and RSS0 are identical since ui has no influence on yi under H0.
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3) Once T ∗
N is obtained the iteration and test decision are as described in step 4)

of RB.

Opposite to PB, the FB scheme leaves the dependent and explanatory variables un-

changed, i.e. the variables in yi and zi1 are fixed throughout. As a further distinction

in comparison with PB we note that while PB samples z∗i2 = (f1(u
∗
i )x

∗
i1, ..., fK(u∗i )x

∗
iK)′

retain the ‘numerical support’ of zi2 = (f1(ui)xi1, ..., fK(ui)xiK)′, FB samples z∗i2 =

(f1(u
∗
i )xi1, ..., fK(u∗i )xiK)′ differ numerically from the population quantities.

The following propositions assert that the asymptotic properties of conditional FB

based OLS estimates approximate their unconditional, population counterparts under

the null hypothesis β2 = 0. Moreover, the FB variant T ∗
N is stated to obey the same

asymptotic features as TN under H0. Formal proofs for propositions 1 to 2 are given

in Appendix 1.

Proposition 1 Assume model (5) with conditions (A1)-(A4). Under the null hy-

pothesis β2 = 0 and along almost all sample sequences, given zi2 for 1 ≤ i ≤ N , as

N →∞,

a) Z∗′Z∗/N
p→ Σ;

b)
√

N(β̂
∗ − β̂)

d→ N(0, Σ−1V Σ−1).

Proof: See Appendix 1.

Proposition 2 Assume model (5) with conditions (A1)-(A5). Under the null hy-

pothesis β2 = 0 and along almost all sample sequences, given zi2 for 1 ≤ i ≤ N , as

N →∞,

sup
0<c<∞

|P (T ∗
N ≤ c) − P (TN ≤ c)| p−→ 0.

Proof: See Appendix 1.

Precisely stated, it is the conditional distribution of TN given {yi, zi}N
i=1 to which

the bootstrap distribution of T ∗
N converges. As a consequence of Proposition 2, NT ∗

N

converges to a χ2(K) distribution under homoskedastic error terms. Moreover, it

is worth mentioning that assumption (A1) on the independence of factor observa-

tions u1, u2, ..., uN might be relaxed since the factor has no impact on the dependent

variable at all under the null hypothesis. Thus, the asymptotic features of the test

statistic under the null hypothesis should not be influenced when allowing some form

of dependent, e.g. serially correlated, factor observations. For convenience of proving

the asymptotic properties of the test statistic under H0, however, we rely on (A1)

stating independence of {ui}N
i=1.
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Throughout, this section has been focussed on contrasting two parametric hypoth-

esis by means of the TN statistic. The implementation of resampling schemes in

case of the nonparametric functional form β
j
(ui) in (1) is straightforward. Then, as

advocated by CF&Y, êi is obtained as êi = yi − z′i1β̂(ui) in step 1) of RB. Corre-

spondingly, WB variants will draw e∗i = êivi. PB and FB samples are drawn from

{yi − z′i1β̂(ui) + z′i1β̂
(0)

1 , zi1, ui}N
i=1 and {yi, zi1, u

∗
i }N

i=1, respectively. Finally, RSS∗1 is

calculated analogously to (13) instead of (9) for all four bootstrap approaches.

4 Monte-Carlo analysis

This section provides a comparison of the four bootstrap methods by means of Monte

Carlo (MC) experiments. We investigate the empirical features of the alternative

designs for resampling TN , testing the parametric null hypothesis against a parametric

or a semiparametric alternative. Throughout, MC exercises cover 2000 replications

with the number of bootstrap draws chosen as R = 299.

4.1 The simulation design

Specifying regression (1) we consider the following data generating model

yi = β(ui)xi + ei, β(ui) = 0.13 + sin(ui), i = 1, ..., N, (14)

where ui is sampled from the Gaussian distribution. The regressor variables {xi}N
i=1

are drawn once from the Gaussian distribution and then fixed over all MC replications.

To evaluate size and power features of competing inferential approaches {yi}N
i=1 are

generated according to a sequence of alternative models indexed by η,

yi =

(
1

N

N∑
i=1

β(ui) + η

[
β(ui)− 1

N

N∑
i=1

β(ui)

])
xi + ei,

where η = 0.05q with q = 0, 1, 2, ..., 20 . The constant coefficient model is obtained for

q = 0 whereas the strongest parameter variation is realized in case q = 20 obtaining

a model

yi = (0.13 + sin(ui))xi + ei.

The error terms {ei}N
i=1 in (14) are simulated as a normally distributed variable

with mean zero and variance σ2
i , where both homogeneous (σ2

i = 1) and hetero-

geneous (σ2
i = 0.8|xi|) variances are considered. MC sample sizes cover the cases

N = 50, 100, 200 and N = 400.

For parametric modeling, we employ the regression

yi = β0 + β1xi + β2xi sin(ui) + ei,
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such that the constant coefficient model can be formulated as H0 : β2 = 0. For

semiparametric modeling, we apply the kernel estimator (11) to the regression

yi = β
1
(ui) + β

2
(ui)xi + ei.

The considered null hypothesis is that both β
1
(ui) and β

2
(ui) are constant. Regarding

the kernel function, we use the Gaussian kernel, K(·/h) = (2π)−1/2 exp(−0.5(·/h)2),

where h = 1.06ŝuN
−1/5 and ŝu is the standard error estimate available from the

factor observations. For a detailed discussion of the nonparametric toolkit the reader

is referred to Härdle, Müller, Sperlich and Werwatz (2004).

4.2 Size features

Table 1 shows the empirical size of the goodness-of-fit-tests at the 5% nominal level.

Results from parametric and semiparametric modeling are shown in Panel A and

Panel B, respectively. For parametric modeling, in addition to bootstrap inference

(RB, WB, PB and FB) a common F -statistic, (N − K)TN
H0∼ F (1, N − K), is also

employed to test the constant coefficient model.

First consider the results for parametric modeling (Panel A). Tests via RB and

the conventional F -test over-reject the null hypothesis when error terms are het-

eroskedastic, since both tests build upon an iid assumption. Under homoskedastic

model disturbances, the empirical size is between 0.045 and 0.057 (RB) and between

0.046 and 0.051 (F -test). In contrast, relaxing the assumption of iid error terms to

independent but heteroskedastic error terms does only slightly increase the rejection

probability of the WB, PB and FB tests. These tests provide similar empirical sizes

comparing both cases of residual variances. The empirical size obtained via FB is

almost uniformly closer to 0.05 in comparison with WB and PB. While WB and PB

inference yields empirical size estimates being close to 0.05 for N = 400, it over-rejects

H0 in smaller samples (N = 50, 100, 200) with 5% significance.

Now turn to the results for semiparametric modeling (Panel B). Under heteroskedas-

tic error terms only PB and FB based inference show valid empirical significance lev-

els. While the size estimates from PB and FB are mostly close to 0.05, corresponding

quantities from RB and WB are between 0.160 and 0.254 and 0.158 and 0.197, respec-

tively. The slight increase of FB based rejection frequencies under H0 to 0.07 is an

artefact of the set of simulated samples. Under homoskedastic error terms PB based

inference constantly underrejects the null hypothesis with empirical sizes between 0.03

and 0.035. At the same time WB based inference strongly overrejects under H0 with

empirical sizes between 0.156 and 0.182. In contrast, RB and FB based inference

provide empirical sizes being close to 0.05.
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4.3 Power features

Size adjusted power estimates are displayed in Figure 1. Each graph in Figure 1

shows simulations results from the sample with same length and error distributions.

Power curves for parametric modeling are always located above corresponding curves

obtained from semiparametric modeling. The nominal significance level of alternative

test procedures is adjusted such that their empirical size is 5%. Since size adjustment

is not sensible in case of heavy distortions under H0 we do not discuss power features

for RB based inference under heteroskedasticity and WB resampling in the semipara-

metric modeling framework. All displayed size adjusted power curves increase in η and

approach unity as η → 1. For parametric modeling, goodness-of-fit tests via RB, WB,

PB and FB and F−tests provide very similar power estimates in case the underlying

error terms are homoskedastic. As can be seen from the upper cluster in the lower

left panel of Figure 1, power estimates for N = 400 cannot be distinguished from

each other. When model disturbances are heteroskedastic tests via FB are slightly

more powerful than tests relying on WB or PB in small samples (upper clusters in the

right hand side panel of Figure 1). For semiparametric modeling RB and PB perform

slightly better than FB under homoskedastic errors (the lower clusters in the graphs

of the left panel). Accordingly, under heteroskedastic errors tests via PB are slightly

more powerful than tests via FB, as can be seen from the lower clusters in the right

hand side panels of Figure 1.

5 An empirical example

In this section, we provide an application of the functional coefficient model to the

saving-investment relation. By means of a between regression for OECD countries

Feldstein and Horioka (1980), henceforth F&H , document a strong correlation linking

domestic investment and saving, which is argued to signal a low capital mobility. To

find other factors than capital mobility governing the SI relation, F&H employed

augmented between regressions,

I∗i = α + (β1 + β2w̄i)S∗i + ei, i = 1, ..., N. (15)

Variables in (15) are defined as I∗i = 1/T
T∑

t=1

I∗it, S∗i = 1/T
T∑

t=1

S∗it, where I∗it = Iit/Yit

and S∗it = Sit/Yit, and Iit, Sit and Yit denote gross domestic investment, gross domestic

saving and the gross domestic product (GDP) in time t and country i, respectively.

The time average wi = 1/T
∑

t wit is a measure of some factor characterizing the i-th

member of the cross section. As particular factor variables wit entering (15), F&H use

the rate of population growth, the degree of openness, measured as the sum of exports

and imports in relation to GDP, and log GDP. To diagnose factor dependence, F&H

refer to the significance of coefficient estimates β̂2. However, they could not find that
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any of the considered factors significantly influences the link between domestic saving

and investment.

A potential drawback of the specification (15) may lie in the presumed linear factor

dependence. For this reason, we apply the following functional coefficient model to

the SI relation,

Ĩ∗i = β(w̃i)S̃
∗
i + ei. (16)

The measure for domestic investment and saving is mean adjusted in (16) so that

only the slope coefficient is factor dependent, i.e. Ĩ∗i = I∗i − 1/N
∑

i I
∗
i and S̃∗i =

S∗i − 1/N
∑

i S
∗
i . Thus, regression (16) is a semiparametric counterpart to regression

(15). To provide comparable results over alternative measures wit the factor variable

in (16) is standardized, i.e. w̃i = (wi− 1/N
∑

i wi)/σ(wi), with σ(wi) being the cross

sectional standard deviation of wi. Moreover, it is tempting to allow both the constant

and slope coefficient in the between regression to be factor dependent. Therefore, we

also consider the functional coefficient model,

I∗i = β
1
(w̃i) + β

2
(w̃i)S∗i + ei, (17)

where I∗i , S∗i and w̃i are defined as before. We estimate models (16) and (17) via

kernel smoothing and obtain the corresponding TN statistics. The null hypotheses for

(16) and (17) are H0 : β(w̃i) = β0 and H0 : β
1
(w̃i) = β1, β

2
(w̃i) = β2, respectively,

with β0, β1 and β2 being constant parameters.

To investigate the factor dependent SI relation, we use three non overlapping cross

sections with annual data from 1971 to 2002 drawn from the World Development

Indicators CD-Rom 2004 published by the World Bank. These cross sections are 97

countries from all over the world (W97), major OECD members (O26) and mostly

less developed economies (L71) obtained as W97 minus O26. A list of investigated

economies is given in Appendix 2. Applying a t-test for β2 = 0 in regression (15),

only the population growth rate has a significant impact on the SI relation in L71

with β̂2 ≈-0.045. Thus, similar to the results in F&H, applying common t−statistics

the evidence in favor of factor dependence is weak.

The Tn statistics jointly with p-values obtained from R = 499 RB, WB, PB and

FB samples are provided in Table 2. Results from models (16) and (17) are shown

in Panel A and B, respectively. First of all, RB and WB based p-values are almost

always much smaller than the FB counterparts. These results are consistent with the

findings in the MC analyses obtained when simulating under heteroskedastic error

terms. Since WB turned out to be vastly oversized in semiparametric modeling, we

only discuss the results from RB, PB and FB henceforth.

As can be seen in Panel A of Table 2, the SI relation is found to be significantly

affected by the population growth and openness ratio. Both factors have p-values
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in L71 and W97 smaller than 10%. When Model (17) is used (Panel B), they also

have significant impacts on the constant and slope coefficient jointly at the 5% level

in L71 and W97. Although log GDP is found to have an insignificant impact on

the SI relation (Panel A), it affects both the constant and slope coefficient in Model

(17) jointly with 10% significance via RB based inference (Panel B). This may reflect

partially the influence of GDP growth on the investment rate directly. In addition,

it can be seen that all p-values via RB, PB and FB in O26 exceed 10% for both

models (16) and (17). On the one hand, this might be due to the reduced power

of the test given only 26 observations. On the other hand, it can be caused by the

smaller variation of the data in OECD countries, i.e. the relative homogeneity of

OECD countries according to the population growth rate and the openness of goods

markets.

To illustrate the variation of the SI relation, we display the functional estimates

of SI relation over the support of −2 ≤ w̃i ≤ 2 for the considered factors. Since the

variations of β̂
2
(w̃i) from Model (17) are very similar to those of β̂(w̃i) from Model

(16), we show only the latter in Figure 2. Furthermore, since the SI relation is found

unaffected by any considered factors in O26 and also not affected by log GDP for

all samples according RB, PB and FB based tests (Panel A of Table 2), plots in the

first row and first column of Figure 2 are not discussed further. Focusing on the local

estimates of SI relation conditional on the population growth rate in L71 and W97

(the last two plots in the second row of Figure 2), a clear trending pattern of the

estimated SI relation is not observed. However, conditioning the SI relation on the

openness ratio obtains a decreasing functional pattern for L71 and W97 (the last two

plots in the bottom row of Figure 2). This supports the view that economies with

more integrated goods markets tend to have lower SI relations.

6 Conclusions

A new factor based bootstrap approach is introduced to test parameter invariance

against a functional alternative. Modeling the functional coefficient parametrically,

the bootstrap approximation of the distribution of the goodness-of-fit test statistic

is shown to be valid asymptotically under the null hypothesis. The new bootstrap

scheme is shown to be robust against heteroskedastic error distributions. Furthermore,

for small samples factor based inference outperforms the wild bootstrap and the pairs

bootstrap counterpart that are also known to cope with heteroskedasticity. When

the functional coefficient is modeled nonparametrically, only tests via FB provide

correct empirical size estimates. At last, applying functional coefficient models to

the investment regression on savings, a variation of the saving retention coefficient

given the value of the population growth rate and the openness ratio is confirmed and
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illustrated.

Since classical linear regression models can be treated as particular functional

coefficient models containing constant functions, the application of the factor based

bootstrap inference might be extended to these models. We regard this as a possible

issue for the future research.

Appendix

Appendix 1

In Appendix 1, asymptotic properties of the FB approximation of the OLS estimator

and TN under the constant coefficient model are shown. Most arguments are based

on results in Section 8 of Bickel and Freedman (1981), henceforth B&F.

Before we begin to investigate the asymptotic properties of the FB approximations,

it is useful to introduce the following Lemma. Let B denote a finite-dimensional

Euclidean space with the Euclidean norm || · || with Γp = Γp(B) being the set of

probabilities γ on the Borel σ-field of B, such that
∫ ||x||pγ(dx) < ∞. Let dp be the

Mallows metric (Mallows 1972). If s and m are distributions, then dp(s,m) is the

infimum of E(||S −M ||p)1/p over all pairs of random vectors S and M , where S has

law s and M has law m. Let µg−1 and µNg−1 be distributions on RK and belong to

Γ4. A typical point in RK is zi2. Following (A1), z12,z22, ..., zN2 are independent

with common distribution µg−1.

Lemma 1 If d4(µNg−1, µg−1) → 0, then

a) the µNg−1 -law of zi2ei(µN , ui) converges to the µg−1-law of zi2ei(µ, ui) in d2,

b) the µNg−1-law of ei(µN , ui) converges to the µg−1-law of ei(µ, ui) in d2,

c) the µNg−1-law of ei(µN , ui)
2 converges to the µg−1-law of ei(µ, ui)

2 in d1.

PROOF. a) Firstly, considering zi2ei = zi2(yi − z′iβ), the µNg−1 -law of zi2ei(µN , ui)

converges weakly to the µg−1-law of zi2ei(µ, ui) as long as zi2(yi−z′iβ) is a continuous

function of zi2. Secondly,

||zi2ei(µN , ui)||2 = ||zi2||2ei(µN , ui)
2

= ||zi2||2y2
i − ||zi2||22yiz

′
iβ + ||zi2||2β′zizi

′β. (18)

By integrating (18) with respect to µNg−1 and applying Lemma 8.3c of B&F, it can

be shown that
∫
||zi2ei(µN , ui)||2µNg−1(dzi2) →

∫
||zi2ei(µ, ui)||2µg−1(dzi2).
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Thus, a) is proved according to Lemma 8.3a of B&F.

b) The statement follows the same argument as the previous one.

c) According to the statement b) that the µNg−1-law of ei(µN , ui) converges to the

µg−1-law of ei(µ, ui) in d2, c) is proved by using Lemma 8.5 of B&F with the relevant

φ(ei) = e2
i .

Now turn to FB. Given the sample {ui}N
i=1, the bootstrap factors u∗1, u

∗
2, ..., u

∗
N

are independent, with common distribution µN . In the original data, the estimated

residual for model (3) is

êi = yi − z′iβ̂. (19)

In the bootstrap data, the residual is given as

e∗i = yi − z∗i
′β̂, (20)

where z∗i
′ = (xi1, ..., xiK , f1(u

∗
i )xi1, ..., fK(u∗i )xiK) as long as the null hypothesis β2 = 0

is true, i.e. ui has no influence on β
j
. The corresponding residual estimate is then

ê∗i = yi − z∗i
′β̂∗. (21)

In the following, the conditional law of
√

N(β̂∗ − β̂) is shown to converge weakly to

the unconditional law of
√

N(β̂−β). The proof is similar to the one for the pairwise

bootstrap provided in Freedman (1981).

Lemma 2 d4(µN , µ) → 0 as N →∞.

PROOF. According to (A2), µN and µ ∈ Γ4, and then apply Lemma 8.4 of B&F.

Lemma 3 If d4(µN , µ) → 0 then d4(µNg−1, µg−1) → 0.

PROOF. Firstly, µNg−1 → µg−1 weakly because µN → µ weakly and g is contin-

uous given (A1). Secondly, according to Lemma 8.3c of B&F,
∫ ||g(u)||4µN(du) →∫ ||g(u)||4µ(du) follows from (A2). This convergence is equivalent to

∫ ||x||4µNg−1(dx) →∫ ||x||4µg−1(dx). Therefore, d4(µNg−1, µg−1) → 0 according to Lemma 8.3a of B&F.

Proof of Proposition 1. For the bootstrap quantity

√
N(β̂∗ − β̂) =

(
Z∗′Z∗

N

)−1 (
Z∗′e∗√

N

)

=

(
Z1

′Z1/N Z1
′Z∗

2/N

Z∗
2
′Z1/N Z∗

2
′Z∗

2/N

)−1 (
Z1

′e∗/
√

N

Z∗
2
′e∗/

√
N

)
, (22)
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the corresponding population quantity is

√
N(β̂ − β) =

(
Z ′Z
N

)−1 (
Z ′e√

N

)

=

(
Z1

′Z1/N Z1
′Z2/N

Z2
′Z1/N Z2

′Z2/N

)−1 (
Z1

′e/
√

N

Z2
′e/
√

N

)
. (23)

The Mallows metric of order 1 between the second diagonal element in the first part

of the quantities in (22) and (23) is,

d1

(
1

N
Z∗

2
′Z∗

2,
1

N
Z ′

2Z2

)
= d1

(
1

N

N∑
i=1

z∗i2z
∗
i2
′,

1

N

N∑
i=1

zi2z
′
i2

)
.

According to Lemma 8.6 of B&F,

d1

(
1

N

N∑
i=1

zi2z
′
i2,

1

N

N∑
i=1

z∗i2z
∗
i2
′
)
≤ d1(zi2z

′
i2, z

∗
i2z

∗
i2
′). (24)

The right hand side of (24) goes to 0 as N → ∞. This follows from Lemma 3

introduced before and Lemma 8.5 of B&F with the relevant function φ(zi2) = zi2z
′
i2.

Furthermore, the squared Mallows metric of order 2 between the upper diagonal

element in the first part of the quantities in (22) and (23),

{
d2

(
1

N
Z1

′Z∗
2,

1

N
Z1

′Z2

)}2

≤ 1

N2
trace(Z1

′Z1) {d2 (zi2,z
∗
i2)}2 , (25)

according to Lemma 8.9 of B&F, Lemma 3 and Assumption (A3). The right hand

side of (25) goes to 0 as N → ∞ since 1
N

trace(Z1
′Z1) is finite and d2 (zi2,z

∗
i2) → 0

given Lemma 3. Combining the argument that the Mallows metrics between 1
N

Z∗
2
′Z∗

2

and 1
N

Z ′
2Z2 and between 1

N
Z1

′Z∗
2 and 1

N
Z1

′Z2 converge to zero, the conditional law

of 1
N

Z∗′Z∗ converges weakly to the unconditional law of 1
N

Z ′Z. Since the latter

converges in probability to Σ given Assumption (A4), part a) of Proposition 1 is

proved.

Analogously, the squared Mallows metric of order 2 between the first element in

the second part of the quantities in (22) and (23),

{
d2

(
1√
N

Z1
′e∗,

1√
N

Z1
′e

)}2

≤ 1

N
trace(Z1

′Z1) {d2 (ei, e
∗
i )}2 , (26)

according to Lemma 8.9 of B&F and Lemma 1b. The right hand side of (26) goes to

0 as N →∞ since 1
N

trace(Z1
′Z1) is finite and d2 (ei, e

∗
i ) → 0 given Lemma 1b.

At last, the Mallows metric of order 2 between the second element in the second

part of the quantities in (22) and (23) is,

{
d2

(
1√
N

Z∗
2
′e∗,

1√
N

Z ′
2e

)}2

=

{
d2

(
1√
N

N∑
i=1

z∗i2e
∗
i ,

1√
N

N∑
i=1

zi2ei

)}2

.
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According to Lemma 8.7 of B&F,

{
d2

(
1√
N

N∑
i=1

z∗i2e
∗
i ,

1√
N

N∑
i=1

zi2ei

)}2

≤ {d2 (z∗i2e
∗
i ,zi2ei)}2 . (27)

The right hand side of (27) goes to 0 as N → ∞. This follows from Lemma 1a.

Thus, the conditional law of 1√
N

Z∗′e∗ converges weakly to the unconditional law of
1√
N

Z ′e since 1√
N

Z1
′e and 1√

N
Z ′

2e converge weakly to 1√
N

Z1
′e∗ and 1√

N
Z∗

2
′e∗ accord-

ingly. Owing to joint asymptotic normality of 1√
N

Z1
′e and 1√

N
Z2

′e the asymptotic

distribution of 1√
N

Z∗′e∗ is N(0, V ).

Combining the argument that 1
N

Z∗′Z∗ converges in probability to Σ and the con-

ditional law of 1√
N

Z∗′e∗ converges weakly to N(0, V ), part b) of Proposition 1 is

proved.

Proof of Proposition 2. The null hypothesis of a constant coefficient model

(H0 : β2 = 0) can be formulated as

H0 : Rβ = 0,

where R = (0K×K , IK) with 0K×K and IK denoting a K×K matrix of zeros and the K

dimensional identity matrix. As such, the test statistic TN in (7) can be equivalently

formulated as

NTN =
(Rβ̂)′(R(Z ′Z)−1R′)−1(Rβ̂)

σ̃2
= B′B, (28)

where B = (R(Z ′Z)−1R′)−1/2Rβ̂/σ̃ and σ̃2 = 1
N

N∑
i=1

ê2
i with êi being the OLS residual

in (19). The corresponding bootstrap statistic for (28) is then,

NT ∗
N =

(Rβ̂∗)′(R(Z∗′Z∗)−1R′)−1(Rβ̂∗)
σ̃∗2

= B∗′B∗, (29)

where B∗ = (R(Z∗′Z∗)−1R′)−1/2Rβ̂∗/σ̃∗ and σ̃∗2 = 1
N

N∑
i=1

ê∗2i with ê∗i being the OLS

residual in (21). According to previous arguments for Proposition 1,

R(Z∗′Z∗/N)−1R′)−1/2
√

NRβ̂∗
d→ R(Z ′Z/N)−1R′)−1/2

√
NRβ̂.

Since plim(σ̃2) = σ2, B∗ d→ B if plim(σ̃∗2) = σ2. The latter is shown through the

following Lemma. Thus, NT ∗
N

d→ NTN and Proposition 2 is proved.

Lemma 4 Assume model (5) with conditions (A1)-(A5). Under the null hypothesis

β2 = 0 and along almost all sample sequences, given zi2 for 1 ≤ i ≤ N , as N → ∞,

σ̃∗2
p→ σ2.
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PROOF. Firstly σ̃∗2 is a consistent estimator for σ∗2 since, according Proposition 1,

plim σ̃∗2 = plim

(
1

N
ê∗

′
ê∗

)
= σ∗2.

Then by Lemma 8.6 of B&F,

d1

(
1

N

N∑
i=1

e∗i
2,

1

N

N∑
i=1

ei
2

)
≤ d1(e

∗
i
2, ei

2). (30)

The right hand side of (30) goes to zero as N →∞ according to Lemma 2, 3, and 1c.

Thus, σ̃∗2
p→ σ∗2 and the latter converges in conditional probability to σ2 given (30)

and Assumption (A5).

Appendix 2: List of countries

• W97: Algeria; Argentina; Australia; Austria; Bangladesh; Barbados; Belgium;

Benin; Botswana; Brazil; Burkina Faso; Burundi; Cameroon; Canada; Cen-

tral African Republic; Chile; China; Colombia; Congo Dem. Rep.; Congo

Rep.; Costa Rica; Ivory Coast; Denmark; Dominican Republic; Ecuador; Egypt

Arab Rep.; El Salvador; Fiji; Finland; France; Gabon; Gambia; Germany;

Ghana; Greece; Guatemala; Guyana; Haiti; Honduras; Hong Kong, China;

Hungary; Iceland; India; Indonesia; Ireland; Israel; Italy; Jamaica; Japan;

Kenya; Korea, Rep.; Kuwait; Luxembourg; Madagascar; Malawi; Malaysia;

Mali; Malta; Mauritania; Mexico; Morocco; Myanmar; Nepal; Netherlands; New

Zealand; Niger; Nigeria; Norway; Pakistan; Paraguay; Peru; Philippines; Portu-

gal; Rwanda; Saudi Arabia; Senegal; Singapore; South Africa; Spain; Sri Lanka;

Suriname; Swaziland; Sweden; Switzerland; Syrian Arab Republic; Thailand;

Togo; Trinidad and Tobago; Tunisia; Turkey; Uganda; United Kingdom; United

States; Uruguay; Bolivarian Republic of Venezuela; Zambia; Zimbabwe.

• O26: all OECD countries except Czech Republic, Poland, Slovak Republic and

Luxembourg.

• L71: W97 minus O26.
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Table 1: Empirical sizes of the test

σ2
i = 1 σ2

i = 0.8|xi|
N RB WB PB FB F RB WB PB FB F

Panel A: Parametric alternative

50 .049 .078 .065 .051 .048 .144 .092 .076 .058 .142
100 .045 .064 .059 .047 .046 .161 .077 .072 .054 .159
200 .057 .062 .060 .058 .055 .151 .067 .064 .060 .152
400 .046 .052 .051 .045 .051 .147 .054 .056 .050 .144

Panel B: Semiparametric alternative

50 .043 .182 .035 .057 - .160 .197 .061 .061 -
100 .051 .175 .030 .057 - .183 .189 .060 .056 -
200 .045 .167 .034 .052 - .198 .158 .042 .055 -
400 .044 .156 .031 .052 - .254 .177 .047 .070 -

This table reports empirical sizes for the TN statistic employed to the null hypothesis of a constant
coefficient model against a parametric (panel A) and semiparametric (panel B) alternative. MC
exercises include RB, WB, PB and FB resampling and, in the parametric case, also the common
F−statistic. The nominal significance level is 5%.

Table 2: Tests for the factor independent SI relation

TN Statistic RB WB PB FB

factor O26 L71 W97 O26 L71 W97 O26 L71 W97 O26 L71 W97 O26 L71 W97

Panel A: Model without constant

LGDP .193 .047 .031 .194 .549 .639 .072 .888 .774 .188 .862 .832 .353 .741 .820
POP .187 .227 .143 .150 .004 .010 .070 .000 .002 .257 .066 .096 .333 .032 .040
OPN .057 .129 .190 .731 .062 .000 .824 .084 .020 .874 .263 .074 .804 .172 .018

Panel B: Model with constant

LGDP .340 .203 .168 .343 .090 .078 .092 .196 .112 .255 .347 .339 .355 .188 .168
POP .218 .311 .200 .505 .012 .014 .323 .022 .034 .509 .108 .146 .577 .048 .034
OPN .159 .345 .305 .752 .000 .000 .475 .002 .000 .577 .032 .030 .810 .010 .006

This table reports the goodness-of-fit test statistics and the corresponding p-value via RB, WB, PB
and FB. Three factors are considered: the logrithm of GDP (LGDP), the rate of population growth
(POP) and the openness ratio (OPN).
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Figure 1: Size adjusted power estimates given η = 0, 0.05, .., 0.5 for the TN statistic via parametric
(P) and semiparametric modeling (SP). Power curves for the latter cluster below corresponding
figures obtained for the former all over. The solid lines are power estimates from tests via FB, the
dashed lines are from tests via PB, the dashed and dotted lines are from tests via RB, the dotted
lines are from tests via WB and the stars correspond to common F -tests.
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Figure 2: Functional estimates of the SI relation conditional on the logarithm of GDP (LGDP),
the rate of population growth (POP) and the openness ratio (OPN).
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