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Abstract

In panel data econometrics the Hausman test is of central importance to select an
efficient estimator of the models’ slope parameters. When testing the null hypothesis
of no correlation between unobserved heterogeneity and observable explanatory vari-
ables by means of the Hausman test model disturbances are typically assumed to be
independent and identically distributed over the time and the cross section dimension.
The test statistic lacks pivotalness in case the iid assumption is violated. GLS based
variants of the test statistic are suitable to overcome the impact of nuisance parameters
on the asymptotic distribution of the Hausman statistic. Such test statistics, however,
also build upon strong homogeneity restrictions that might not be met by empirical
data. We propose a bootstrap approach to specification testing in panel data models
which is robust under cross sectional or time heteroskedasticity and inhomogeneous
patterns of serial correlation. A Monte Carlo study shows that in small samples the
bootstrap approach outperforms inference based on critical values that are taken from
a χ2-distribution.
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1 Introduction

The use of cross country or regional panel data is recently becoming more and more popular
in macro- and spatial econometrics. Typical fields where panel data models are employed
cover, for instance, tests of the purchasing power parity, models of growth, international
or interregional trade, or empirical approaches to urban crime or environmental economics
(Baltagi and Kao, 2000; Anselin, Florax and Rey, 2004). A core issue in panel specification
testing is the selection of an efficient estimator in presence of unobserved heterogeneity.
The Hausman test has become a prominent means of inference against correlation between
individual effects and observable explanatory variables (Hausman, 1978).

Typical assumptions underlying traditional panel data models are absence of serial error
correlation and homoskedasticity over both the time and cross section dimension. Model
disturbances are easily justified to stem from an iid distribution in case of microeconometric
studies where often a set of anonymous households or firms enters the analysis. Even for
such widespread applications of panel models, however, (neglected) dynamic features might
show up in autocorrelated error terms. In applied macroeconometrics serial error correlation
is likely to emerge whenever an economy or region only partially absorbs a shock within
the unit of time used as the sampling frequency. The presumption of time invariant error
variances may also be criticized. In econometrics of financial data time dependent variances
have attracted a huge theoretical and empirical interest (Bollerslev, Chou and Kroner, 1992).
Similarly, with respect to macroeconometrics, shifts in the variations of disturbances may
occur as a consequence of (fiscal or monetary) policy changes, central bank interventions or
regime switches. Cross sectional patterns of second order heterogeneity are also more the
rule than an exception. For instance, one may intuitively expect that larger economies (or
urbanized regions) are likely to respond to exogenous shocks at a different scale in comparison
with smaller economies (or rural regions).

Occasionally panel data models are formalized with some pattern of serial correlation
(Lillard and Willis, 1979; Baltagi, 2001, Chapter 5). Then, correlation is typically specified
parsimoniously with some first order autoregressive parameter. Over all members of the
cross section a first order autocorrelation scheme might fail to provide a uniformly accurate
approximation of the true underlying pattern of error dynamics. Moreover, it is likely that
the autocorrelation parameter, if it exists, is cross section specific. Obviously, when allow-
ing serially correlated disturbances within a panel data framework potential directions of
covariance misspecification are magnifold.

The asymptotic distribution of common panel specification test statistics derived under
an iid assumption will depend on nuisance parameters if model disturbances are actually
heteroskedastic over time, serially correlated or lack homogeneity over the cross section. On
the one hand neglecting such forms of heterogeneity may invalidate conclusions obtained
under an unrealistic modelling framework. On the other hand deriving first order asymp-
totic approximations is often cumbersome in presence of nuisance parameters. Under such
circumstances bootstrap approaches are in widespread use to obtain robust critical values
for a particular test statistic.

It is the purpose of this paper to contribute a robust approach to test for correlation
between unobserved random effects and explanatory variables in panel data models by means
of the Hausman test. It retains its validity in panels with finite time series dimension, under
cross sectional heteroskedasticity, and (possibly time varying or cross section specific) serial
error correlation. The proposed method exploits a convenient feature of the wild bootstrap
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which copes with heteroskedasticity of model disturbances (Wu, 1986; Liu, 1988; Mammen,
1993) and cross sectional error correlation (Herwartz and Neumann, 2005).

The remainder of the paper is organized as follows: The panel model and the test statistic
of interest are given in the next section. Then, Section 3 provides a bootstrap approach to
generate critical values for the Hausman statistic. A simulation study, given in Section 4,
illustrates the finite sample performance of the resampling scheme. Moreover, the effects of
nuisance parameters on inference by means of critical values taken from the χ2-distribution
will be addressed. Section 5 provides a few empirical examples which have attracted some
interest in panel data econometrics. Conclusions are drawn in Section 6. An Appendix
provides the proofs of the asymptotic results and gives further details on the empirically
investigated data sets.

2 The model and the test statistic

2.1 A panel model with generalized covariance structure

Consider the common panel data model with random individual effects by observation

yit = x′itβ + ν + uit, uit = αi + eit (i = 1, . . . , N ; t = 1, . . . , T ). (1)

Defining Yi = (yi1 . . . , yiT )′, Xi = (xi1, . . . , xiT )′ and ei = (ei1, . . . , eiT )′ we can rewrite (1) in
matrix notation as

Yi = Xiβ + ν11T + ui, ui = αi11T + ei (i = 1, . . . , N) (2)

or, with Y = (Y ′
1 , . . . , Y

′
N)′, X = (X ′

1, . . . , X
′
N)′, u = (u′1, . . . , u

′
N)′, α = (α111

′
T , . . . , αN11′T )′

and e = (e′1, . . . , e
′
N)′,

Y = Xβ + ν11NT + u, u = α + e. (3)

In (1) xit is a K × 1 random vector of explanatory variables. Accordingly, β is a K
dimensional parameter vector, ν denotes an intercept term and 11R is an R-dimensional
vector consisting of 1’s. By assumption, the random individual effects αi ∼ (0, σ2

αi
) are

independent from the disturbances eit. Note that in case σ2
α1

= . . . = σ2
αN

= 0 the pooled
regression is obtained as a special case of (1). With respect to the covariance of the mean
zero innovations eit we allow a pattern of serially correlated but cross sectionally uncorrelated
error terms. Then, with E[ei] = 0T the latter scenario is formalized as

E[eie
′
j] = δij Σei

, (4)

where Σei
is a positive definite matrix of dimension T × T and δij is the Kronecker delta.

As formalized in (4) covariance features of error terms are more general in comparison
with traditional approaches to modelling panel data. According to (4) model disturbances
may stem from cross sectionally heterogenous distributions and show time specific second
order features. With regard to serial correlation the general specification covers e.g. the first
order autoregressive model put forth by Lillard and Willis (1979). The latter formalizes time
dependence of eit in the usual manner, i.e.

eit = ρeit−1 + εit, εit ∼ iid(0, σ2
ε ). (5)
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The autocorrelation structure assumed in Lillard and Willis (1979) is, however, very restric-
tive owing to the postulates of an exponentially decaying autocorrelation function on the
one hand and cross sectional homogeneity on the other hand. As alternative specifications
one may regard error terms following a higher order autoregression or some moving average
structure. For a brief review of alternative parametric suggestions and their treatment for
feasible GLS estimation in the context of panel data the reader may consult Baltagi (2001,
Chapter 5.2). In any case, the more general error distribution complicates (E)GLS estima-
tion of the models’ slope parameters and, more importantly, introduces a source of potential
misspecification of the model.

Given the likelihood of cross section specific covariance features it appears more natural
to allow general unspecified patterns of second order features in macroeconometric or spatial
panel data models as formalized in (1) and (4). Analyzing the latter specification this
section will introduce generalized estimators one of which is efficient if individual effects
and explanatory variables are uncorrelated. As it is typical in panel data modelling the
latter feature is subjected to specification testing by means of a (generalized) Hausman
statistic which is also provided below. Since misspecification might be seen as a crucial
issue in this vein of econometric modelling we will also discuss the distributional features of
the generalized Hausman statistic under misspecification of the covariance pattern. Before
introducing generalized estimators and test statistics we make the following assumptions:

(A1) (i) α1, . . . , αN , e1, . . . , eN are conditionally on X = (X ′
1, . . . , X

′
n)′ independent,

(ii) E(ei | X) = 0T , E(αi | X) = 0,

(iii) there exist positive constants C1 and C2 such that
var(αi | X) = σ2

αi
, 0 < C1 ≤ σ2

αi
≤ C2 < ∞,

Cov(ei | X) = Σei
, C1IT ¹ Σei

¹ C2IT (A ¹ B if B − A is positive
semidefinite),

(iv) the random variables (e2
it)i,t and (α2

i )i are conditionally on X uniformly integrable,
that is,

sup
i∈N

max
1≤t≤T

E
(
e2

itI(|eit| > c)
∣∣ X

) −→
c→∞

0,

sup
i∈N

E
(
α2

i I(|αi| > c)
∣∣ X

) −→
c→∞

0,

(v) the random variables (‖X ′
iXi‖)i∈N are uniformly integrable, that is,

sup
i∈N

E [‖X ′
iXi‖I(‖X ′

iXi‖ > c)] −→
c→∞

0.

2.2 Generalized estimators

Denote X = (11NT X) and Σ := Cov(u) = Diag[Σ1, . . . , ΣN ], where Σi = Σei
+ σ2

αi
11T 11′T . An

efficient estimator of β is given as

β̂GLS =

(
X ′Σ−1X − X ′Σ−111NT 11′NT Σ−1X

11′NT Σ−111NT

)−1 (
X ′Σ−1 − X ′Σ−111NT 11′NT Σ−1

11′NT Σ−111NT

)
Y

= A−1
N

N∑
i=1

aN,iYi, (6)
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where

AN =
1

N

(
X ′Σ−1X − X ′Σ−111NT 11′NT Σ−1X

11′NT Σ−111NT

)
,

aN,i =
1

N

(
X ′

iΣ
−1
i − 1

11′NT Σ−111NT

X ′Σ−111NT 11′T Σ−1
i

)
.

In the special case of Σei
= σ2

eIT and σ2
αi

= σ2
α we have that Σ−1 = 1

σ2
e
Diag[IT−φT 11T 11′T , . . . , IT−

φT 11T 11′T ], where φT = σ2
α/(σ2

e + Tσ2
α). Therefore, we obtain that X ′Σ−1X = 1

σ2
e
(X ′X −

X ′Diag[PT , . . . , PT ]X + (1 − TφT )X ′Diag[PT , . . . , PT ]X, 1
N

X ′Σ−111NT 11′NT Σ−1X = 1
σ2

e
(T −

T 2φT )X ′PNT X and 11′NT Σ−111NT = 1
σ2

e
N(T − T 2φT ). This implies

X ′Σ−1X − X ′Σ−111NT 11′NT Σ−1X

11′NT Σ−111NT

=
1

σ2
e

{
X ′(INT −Diag[PT , . . . , PT ])X + (1− TφT )X ′Diag[PT , . . . , PT ]X

− N(T − T 2)X ′PNT X
}

=
1

σ2
e

{∑
i,t

x̃itx̃
′
it + T (1− TφT )

∑
i

x̃ix̃
′
i

}
,

where xi = 1
T

∑T
t=1 xit, x̃it = xit − xi, x = 1

N

∑N
i=1 xi and x̃i = xi − x. Analogously we can

see that

(
X ′Σ−1 − X ′Σ−111NT 11′NT Σ−1

11′NT Σ−111NT

)
Y =

1

σ2
e

{∑
i,t

x̃itỹit + T (1− TφT )
∑

i

x̃iỹi

}
,

which leads, because of T (1− TφT ) = T σ2
e

σ2
e+Tσ2

α
, to the common random effects estimator

β̂GLS =

(∑
i,t

x̃itx̃
′
it + T

σ2
e

σ2
e + Tσ2

α

∑
i

x̃ix̃
′
i

)−1 (∑
i,t

x̃itỹit + T
σ2

e

σ2
e + Tσ2

α

∑
i

x̃iỹi

)
;

see also Baltagi (2001, Chapter 2).

If E(αi | Xi) does not necessarily vanish, then β̂GLS is in general not a consistent estimator
of β. In this case we can augment the design matrix X with the NT × N -matrix W =
Diag[11T , . . . , 11T ] and obtain from (3) the equation

Y = X

(
δ
β

)
+ u, (7)

where X = (W X), δ = (ν + E(α1 | X1), . . . , ν + E(αN | XN))′ and u = u − W (E(α1 |
X1), . . . , E(αN | XN))′. Then, an efficient estimator of β is the (generalized) fixed effect or
least squares dummy variable estimator (LSDV)

β̂FE =
(
X ′Σ−1X − X ′Σ−1W (W ′Σ−1W )−1W ′Σ−1X

)−1

(
X ′Σ−1 − X ′Σ−1W (W ′Σ−1W )−1W ′Σ−1

)
Y.

β̂FE is the (unique) best linear unbiased estimator (BLUE) of β in model (7), that is, it

can be written in the form LY , where unbiasedness of β̂FE requires that LX = IK and
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LW = 0K×N while optimality means that Cov(β̂FE) = LΣL′ is minimal under these side
conditions. However, since all matrices L satisfying these side conditions fulfill LΣL′ =
LDiag[Σe1 , . . . , ΣeN

]L′ it follows that β̂FE is equal to the BLUE in model (7) with Cov(u) =

Σe := Diag[Σe1 , . . . , ΣeN
]. Therefore, β̂FE can also be written as

β̂FE =
(
X ′Σ−1

e X − X ′Σ−1
e W (W ′Σ−1

e W )−1W ′Σ−1
e X

)−1

(
X ′Σ−1

e − X ′Σ−1
e W (W ′Σ−1

e W )−1W ′Σ−1
e

)
Y

= B−1
N

N∑
i=1

bN,iYi, (8)

where

BN =
1

N
X ′Σ−1

e X − X ′Σ−1
e W (W ′Σ−1

e W )−1W ′Σ−1
e X

=
1

N

N∑
i=1

(
X ′

iΣ
−1
ei

Xi − 1

11′T Σ−1
ei

11T

X ′
iΣ

−1
ei

11T 11′T Σ−1
ei

Xi

)
,

bN,i =
1

N

(
X ′

iΣ
−1
ei
− 1

11′T Σ−1
ei

11T

X ′
iΣ

−1
ei

11T 11′T Σ−1
ei

)
.

In the special case of Σei
= σ2

eIT this estimator simplifies to the standard LSDV estimator

β̂FE =
(
X ′(INT − W (W ′W )−1W ′)X

)−1
X ′(INT − W (W ′W )−1W ′)Y

=

(∑
i,t

x̃itx̃
′
it

)−1 ∑
i,t

x̃itỹit;

see Baltagi (2001, Chapter 2).

2.3 The Hausman statistic

As mentioned OLS or GLS estimation of the slope parameters in (1) will be biased if the
individual effects αi are correlated with (some of) the explanatory variables xit,1, . . . , xit,K .
On the other hand, under assumption (A1,iii) the GLS estimator is to be preferred over the
OLS or LSDV estimator since it exploits the underlying error covariance structure efficiently.
Moreover, estimation of N fixed effects is avoided such that model evaluation does not suffer
from problems arising from incidential parameters. Summarizing the latter arguments a test
for correlation between individual effects and explanatory variables is essential for the selec-
tion of an efficient estimator that is to be applied for the model in (1). The Hausman statistic
(Hausman, 1978) has become a prominent tool to test the null hypothesis that individual
effects are uncorrelated with the variables in xit against the alternative of correlation, i.e.

H0 : E(αi|Xi) = 0 vs. H1 : E(αi|Xi) 6≡ 0 for at least one i. (9)

For this paper we allow the error terms ei to have some general covariance pattern as
formalized in (4). Accordingly, we consider a GLS based modification of the Hausman

statistic. It follows from least squares theory that Cov(β̂GLS | X) = 1
N

A−1
N , Cov(β̂FE | X) =

1
N

B−1
N and, since β̂GLS is efficient under (A1), we have also that Cov(

√
N(β̂FE − β̂GLS) |

X) = B−1
N − A−1

N (Hausman, 1978). Moreover, it follows from assumption (A2) below that
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B−1
N −A−1

N is a positive definite matrix if N is sufficiently large. For simplicity of presentation
we assume that this holds true even for all N . Now the Hausman statistic is defined as

HN = N(β̂FE − β̂GLS)′
(
B−1

N − A−1
N

)−1
(β̂FE − β̂GLS). (10)

Note that
√

N(β̂FE − β̂GLS) =
N∑

i=1

CN,iui, (11)

where CN,i =
√

N(B−1
N bN,i − A−1

N aN,i). Accordingly, the Hausman statistic allows a repre-
sentation as a quadratic form in the underlying model disturbances, i.e.

HN =

∥∥∥∥∥
(
B−1

N − A−1
N

)−1/2
N∑

i=1

CN,iui

∥∥∥∥∥

2

. (12)

In the case that the covariance parameters are unknown but respective estimators are avail-
able we can estimate the matrices AN and BN by ÂN and B̂N . In this case we consider the
statistic with estimated covariance parameters

ĤN = N(
̂̂
βFE − ̂̂

βGLS)′
(
B̂−1

N − Â−1
N

)−1

(
̂̂
βFE − ̂̂

βGLS), (13)

where
̂̂
βFE and

̂̂
βGLS are estimated LSDV and GLS (ELSDV and EGLS) estimators. The

corresponding quadratic form representation of ĤN is analogous to (12).

To derive the asymptotic properties of the Hausman statistic we make the following as-
sumptions:

(A2) It holds that AN
P−→ A and BN

P−→ B, as N →∞, where B and A−B are positive
definite matrices.

Proposition 1. Suppose that (A1) and (A2) are fulfilled. Then, as N →∞,

HN
d−→ χ2(K). (14)

Furthermore, if ÂN and B̂N are consistent estimators of AN and BN , that is, ‖ÂN−AN‖ P−→
0 and ‖B̂N −BN‖ P−→ 0, and if

√
N(

̂̂
βFE − ̂̂

βGLS)
d−→ N (0K , B−1 − A−1), then

ĤN
d−→ χ2(K). (15)

The asymptotic results in (14) and (15) are both derived for the case of a finite time

dimension T . Owing to consistency of β̂GLS and β̂FE their difference vanishes under (A1)
and (A2) as T → ∞. For the case of an underlying iid covariance structure Ahn and

Moon (2001) show that as T → ∞ Cov[β̂FE − β̂GLS] converges sufficiently fast to ensure a
nondegenerate limit distribution of the standard Hausman statistic.

As argued before any (cross sectionally homogeneous) a-priori formalization of panel co-
variance features is likely subjected to misspecification. Therefore we also consider the
realistic case where the presumed covariance pattern differs from the unknown covariance
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structure. We will still assume that the true covariances are given by (A1,iii), that is, Σ is

the covariance matrix of u as above. Let now Σ̃ denote the covariance specification which is
actually used for constructing the (feasible) LSDV and GLS estimators and the test statis-

tic. Denote by ÃN , ãN,i, B̃N , b̃N,i and C̃N,i the analogues of AN , aN,i, BN , bN,i and CN,i,
respectively, where for each term the true covariance matrix Σ is replaced by the presumed
(false) covariance matrix Σ̃. In this case, the difference between the two panel estimators

writes as
√

N(
̂̃
βFE − ̂̃

βGLS) =
∑N

i=1 C̃N,iui, which leads to the test statistic

H̃N = N

(
̂̃
βFE − ̂̃

βGLS

)′ (
B̃−1

N − Ã−1
N

)−1
(

̂̃
βFE − ̂̃

βGLS

)
(16)

=

∥∥∥∥∥
(
B̃−1

N − Ã−1
N

)−1/2
N∑

i=1

C̃N,iui

∥∥∥∥∥

2

.

Analogously to the correctly specified case, the matrix B̃−1
N − Ã−1

N is necessarily positive

semidefinite since it is equal to Cov(
√

N(
̂̃
βFE− ̂̃

βGLS) | X) if Cov(u) were equal to Σ̃ rather

than Σ. Regularity of B̃−1
N − Ã−1

N follows from assumption (A3) below, for N sufficiently
large. For simplicity of presentation, we assume again that this holds true for all N .

Finally, if estimates of the covariances are involved, we obtain the statistic

̂̃HN =

∥∥∥∥∥
(

̂̃
B
−1

N − ̂̃
A
−1

N

)−1/2 N∑
i=1

̂̃
CN,iui

∥∥∥∥∥

2

, (17)

where
̂̃
AN ,

̂̃
BN and

̂̃
CN,i are the analogues of ÃN , B̃N and C̃N,i, respectively, with the

presumed (false) covariances Σ̃ replaced by their estimates
̂̃
Σ.

For our asymptotic considerations we assume additionally

(A3) It holds that ÃN
P−→ Ã and B̃N

P−→ B̃, as N →∞, where B̃ and Ã− B̃ are positive

definite matrices. Furthermore,
∑N

i=1 C̃N,iΣiC̃
′
N,i

P−→ D, where D is a non-vanishing
matrix.

In contrast to the result in Proposition 1, the Hausman statistics H̃N and
̂̃HN converge

now in distribution to a random variable which is a weighted sum of independent χ2(1)
random variables.

Proposition 2. Suppose that (A1), (A2) and (A3) are fulfilled. Then, as N →∞,

H̃N
d−→

K∑
i=1

λiZ
2
i ,

where Z1, . . . , ZK are independent standard normal random variables and λ1, . . . , λK are the
eigenvalues of the matrix (B̃−1 − Ã−1)−1/2D(B̃−1 − Ã−1)−1/2.
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Furthermore, if
̂̃
AN and

̂̃
BN are consistent estimators of ÃN and B̃N , that is, ‖ ̂̃AN −

ÃN‖ P−→ 0 and ‖ ̂̃
BN − B̃N‖ P−→ 0, and if

∑N
i=1

̂̃
CN,iui

d−→ N (0K , D), then

̂̃HN
d−→

K∑
i=1

λiZ
2
i .

3 Bootstrapping the Hausman statistic

As stated in Proposition 2 misspecification of the covariance structure of the innovations
entering a panel model is likely to imply that the (generalized) Hausman test statistic lacks
pivotalness. In this case its asymptotic distribution might be difficult if not impossible to
derive analytically. As a particularly important case of misspecification in macroeconometric
models one may regard the imposition of cross sectionally homogeneous covariance features
whenever the true error distribution varies over the cross section. Under such circumstances
a bootstrap approach could be adopted to generate robust critical values for a respective
test statistic promising valid inference under the null hypothesis. Owing to particular issues
raised for the Hausman test, as cross and intra sectional heteroskedasticity, the so-called
wild or external bootstrap (Wu, 1986) can be seen as a natural tool for determining critical
values in our context. Addressing the case of heteroskedasticity of unknown form Liu (1988)
and Mammen (1993) have established the wild bootstrap to approximate the distribution
of studentized statistics and F-type tests in static linear regression models, respectively.
Recently, Herwartz and Neumann (2005) have used the wild bootstrap to mimic a cross
sectional correlation pattern observed in systems of error correction models. The latter
idea can be adopted for the present case of the Hausman test to imitate covariance features
characterizing model disturbances over the finite time dimension. For the general convenience
of the wild bootstrap it is worthwhile to mention that its implementation does not require
any a-priori parametric guess concerning the actual error covariance structure from which
model disturbances are drawn.

According to the different versions of the Hausman statistic in (10), (13), (16) and (17)
resampling the statistic may proceed under alternative degrees of knowledge of the underlying
covariance structure. For the following exposition we assume that an analyst has access to
the true covariance structure (Σ) but will have to estimate a set of structural parameters
describing the latter. As an example we take the case where error terms eit follow a first
order autoregression as given in (5). Resampling the remaining variants of the Hausman

statistic will be completely analogous except for the (estimated) covariance matrix (Σ, Σ̃,
̂̃
Σ)

entering the initial statistic and its bootstrap counterparts. Resampling ĤN proceeds along
the following steps:

1. Estimate consistently the structural variance and correlation parameters entering Σ
as e.g. σ2

ε , σ2
α and ρ in case of the first order autocorrelation model (5). Owing

to consistency under both hypotheses choosing the ordinary LSDV is natural for this
purpose. Conditional on the first step estimate the slope parameters of the panel model

under the null and the alternative hypothesis by means of the feasible estimators
̂̂
βGLS

and
̂̂
βFE. (

̂̂
βGLS and

̂̂
βFE are the analogues of β̂GLS and β̂FE with Σ̂ instead of Σ.)
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From the latter step the covariance matrix of
̂̂
βFE − ̂̂

βGLS is available and the test

statistic ĤN in (13) can be computed.

2. Using the slope estimates
̂̂
βFE, an implied estimator of the intercept parameter is

obtained as ν̂ = ȳ − x̄′β̂FE, with ȳ = (NT )−1
∑

i,t yit and x̄ denoting the K × 1-
dimensional vector of unconditional means of explanatory variables. From the latter
estimator residuals û = Y − ν̂11NT −Xβ̂FE are obtained.

3. For s = 1, . . . , S, with S sufficiently large,

• draw bootstrap variables u∗i having the second order features of ûi as

u∗i = ûi · ηi, ηi ∼ (0, 1), (18)

where ηi, i = 1, . . . , N , is a sequence of independent random variables, also inde-
pendent of the variables in the model;

• obtain a bootstrap version of the Hausman statistic Ĥ∗
N from its quadratic form

representation as

H∗
N =

∥∥∥∥∥
(
B̂−1

N − Â−1
N

)−1/2
N∑

i=1

ĈN,iu
∗
i

∥∥∥∥∥

2

, (19)

where ÂN , B̂N , ĈN are the estimated counterparts of AN , BN , CN defined in con-
nection with (8), (6) and (11), respectively.

4. Decision: Reject H0 with significance level γ if ĤN exceeds c∗γ, the (1 − γ)-quantile

of Ĥ∗
N .

The central ingredient of the bootstrap procedure is the imitation of the first two moments
of ei = (ei1, . . . , eiT )′ by means of the quantity

u∗i = (u∗i1, . . . , u
∗
iT )′ = ηi (ûi1, . . . , ûiT )′ = ηiûi.

The basic reason for the wild bootstrap to work for vector-valued random variables can be
seen from the relation

1

N

N∑
i=1

Cov(u∗i | X, u1, . . . , uN) =
1

N

N∑
t=1

ûiû
′
i =

1

N

N∑
i=1

uiu
′
i + oP (1) =

1

N

N∑
i=1

Cov(ui) + oP (1),

such that, on average, the bootstrap reflects the true underlying covariances. Note that the
latter are allowed to exhibit some variation over the cross section as formalized by assumption
(A1,iii).

Several approaches to draw ηi are available from the literature (Mammen, 1993; Liu, 1988)
and differ with respect to the low order moments of ei imitated by the bootstrap design. For
the Monte Carlo study and empirical exercises in this paper ηi is drawn from the Rademacher
distribution (Liu, 1988; Davidson and Flachaire, 2001), i.e.

P (ηi = 1) = P (ηi = −1) = 0.5. (20)
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Having discussed the implementation of the wild bootstrap scheme we will state the
asymptotic features of the bootstrap distribution in the following. For this purpose denote
XN = (X, u1, . . . , uN). We will show that the bootstrap counterpart H∗

N of the Hausman
statistic has the same asymptotic behavior as HN . Since the conditional distribution of H∗

N

given XN is itself random we obtain convergence of these distributions to their common limit
only in probability. To better distinguish between the two random mechanisms involved, we
describe weak convergence by a certain metric. Inspired by Bickel and Freedman (1981), we
define a distance d between two distributions P and Q on Rp as

d(P, Q) = inf
(X,Y ): X∼P,Y∼Q

E [‖X − Y ‖ ∧ 1] .

It is clear that d defines a metric and it can be shown that weak convergence of (PN)N∈N
to P is equivalent to d(PN , P ) −→

N→∞
0. (For the sufficiency part, note that PN =⇒ P implies

that one can construct on an appropriate probability space random variables (ZN)N∈N and
Z with respective distributions PN and P such that ZN

a.s.−→ Z; see e.g. Theorem IV.3.13 in
Pollard (1984, p. 71). This, however, implies d(PN , P ) −→

N→∞
0 by dominated convergence.)

Proposition 3. Suppose that (A1) and (A2) are fulfilled. Then, as N →∞,

d
(L(H∗

N | XN), χ2(K)
) P−→ 0.

Propositions 1 and 3 together imply that the bootstrap test has asymptotically the correct
size.

Theorem 1. Suppose that (A1) and (A2) are fulfilled. Then

PH0

(HN > c∗γ
) −→

N→∞
γ.

In the case of incorrectly specified covariances we obtain analogous results: Denote by
H̃∗

N the analogue to H̃N given in (16).

Proposition 4. Suppose that (A1), (A2) and (A3) are fulfilled. Then, as N →∞,

d

(
L(H̃∗

N | XN),
K∑

i=1

λiZ
2
i

)
P−→ 0,

where Z1, . . . , ZK and λ1, . . . , λK are as in Proposition 2.

Denote by c̃∗γ the (1 − γ)-quantile of L(H̃∗
N | XN). Propositions 2 and 4 together imply

that the bootstrap test has asymptotically the correct size.

Theorem 2. Suppose that (A1), (A2) and (A3) are fulfilled. Then

PH0

(
H̃N > c̃∗γ

)
−→
N→∞

γ.
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4 Monte Carlo analysis

As argued above the bootstrap approach to test the null hypothesis that individual effects αi

and explanatory variables xit are uncorrelated allows for numerous deviations from standard
assumptions typically made in the analysis of stationary panel data models. Error terms ei

may have a non-diagonal covariance matrix Σei
, formalizing e.g. serial correlation. Along its

diagonal the covariance matrix Σei
might also collect time specific variances. As a particular

merit of the more general model setting it might be seen that the covariance matrix Σei
is

allowed to vary over the cross section. Finally, the unobservable mean zero error components
in αi are allowed to have second order properties that differ over the cross section.

The Monte Carlo study documented in this section will address the performance of the
bootstrap method in finite samples over the possible violations of homogeneity assumptions
typically made in stationary panel data models. Moreover, the finite sample properties of
bootstrap and standard (E)GLS inference are compared. To compute the Hausman statistic
an analyst may start from alternative assumptions on the distributional characteristics of
the underlying model disturbances. EGLS estimation of the variance of eit depends on the
analyst’s guess concerning the prevalence of serial correlation. Since any presumption on the
correlation pattern could be wrong the Monte Carlo analysis also sheds light on the finite
sample properties of (E)GLS inference based on a false presumption concerning the serial
correlation parameter. In particular we address the effect of neglecting the potential of serial
correlation implied by presuming ρ = 0.

4.1 The simulation design

4.1.1 The considered data generating processes

The data generating process (DGP) used for the simulations is the following homogeneous
model

yit = 1 + xit,1 + xit,2 + eit, t = 1, . . . , T, i = 1, . . . , N, (21)

where the right hand side variables xit,2 are drawn once from a Gaussian distribution, xit,2 ∼
N (0, 1), and then fixed over all replications of the experiment. Similarly, variables xit,1 are
generated according to the model

xit,1 = µi + ξit, ξit ∼ N (0, 9), µi = 6(i− 1)/(N − 1).

Owing to the deterministic component µi the unconditional level of xit,1 is ordered equidis-
tantly over the cross section between values of 0 and 6. Individual effects αi are also drawn
from the normal distribution. Nesting the null and the alternative hypothesis of the Hausman
test the data generating model for the individual effects is

αi = δµi + σα,iζi, ζi ∼ N (0, 1). (22)

As formalized in (22) individual effects αi and explanatory variables xit,1 will be correlated if
δ 6= 0. Under the null hypothesis δ = 0. Note that the variance of individual effects could be
homogeneous, Var(αi) = σ2

α,i = σ2
α, or heterogeneous over the cross section, Var(αi) = σ2

α,i.

Cross section specific vectors of error terms ei are drawn from a T -dimensional normal
distribution as

ei = G′
ivi, vi ∼ N (0, IT ), G′

iGi = Σei
, (23)
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where IT is the T -dimensional identity matrix and Gi is an upper triangular matrix obtained
from a Cholesky decomposition of Σei

. The particular choices of Σei
having typical elements

σ
(ei)
kl cover the following cases (DGPs):

• Case 1: Cross sectionally homogeneous patterns of serial correlation with uncondi-
tional unit variance. The variance of individual effects is unity over the cross section.
Summarizing the latter features we have the following specification:

Σei
= Σe = ((σei

kl))k,l, σ
(ei)
kl = ρ|k−l|, ρ = 0.5, σ2

α,i = σ2
α = 1. (24)

• Case 2: Cross sectionally varying patterns of serial correlation with an unconditional
variance of unity, obtaining

σ
(ei)
kl = ρ

|k−l|
i , ρi = 0.3 + 0.4(i− 1)/(N − 1). (25)

As in case 1 the variance of individual effects is σ2
α,i = σ2

α = 1.

• Case 3: Homoskedastic individual effects σ2
α,i = 1 and homogeneous patterns of se-

rial correlation, ρi = ρ, coupled with time dependent second order properties of eit.
Formally the latter scenario reads as

σ
(ei)
kl =

{
σ2

e,k if k = l,

ρ|k−l|
√

σ2
e,kσ

2
e,l, ρ = 0.5, if k 6= l

, (26)

with σ2
e,k = 0.6 + 0.8(k − 1)/(T − 1). Note that by generation of the time varying

second order moments it holds that var(eit) = 1.

• Case 4: Cross sectionally homogeneous patterns of serial correlation, ρi = ρ, combined
with an error variance of eit that depends on the cross section, eit ∼ (0, σ2

e,i). The
variance of the individual effects is σ2

α,i = 1 throughout. For a typical element of the
covariance matrix of ei we have in this case

σ
(ei)
kl =

{
σ2

e,k if k = l,

ρ|k−l|σ2
e,i, ρ = 0.5, if k 6= l

, (27)

where σ2
e,k = 0.6 + 0.8(k − 1)/(N − 1).

• Case 5: Cross sectionally homogeneous covariance of eit as given in case 1 combined
with a cross section specific variance of individual effects. For the variance of individual
effects we choose:

σ2
α,i = 0.6 + 0.8(i− 1)/(N − 1). (28)

All particular choices of model parameters imply that, unconditionally, the autocorrela-
tion parameter is ρ̄ = 0.5. Moreover, E[α2

i ] = 1 and var(eit) = 1. For the Monte Carlo
experiments we will take the perspective of an analyst regarding all processes as stemming
from a cross sectionally homogeneous first order autocorrelation model as given in (5). Thus,
the presumed covariance matrix Σ depends on the parameters ρ, σ2

α and σ2
ε . Unconditional

moments var(eit) = 1 and ρ̄ = 0.5 imply for the latter variance parameter an unconditional

choice of σ2
ε = var(eit)(1 − ρ̄2) = 0.75 required when implementing H or H̃. Note that a

parameter selection σ2
α = 1, σ2

ε = 0.75, ρ = 0.5 only corresponds to the true underlying
covariance pattern (H) if the actual data stem from a DGP given under case 1 above. In
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all remaining cases the presumed covariance structure is in some direction misspecified such
that the DGPs 2 to 5 are suitable to investigate the empirical size features of H̃ type statis-
tics. For the DGPs 2 to 5 it will be of interest to which extent the empirical properties
of GLS inference are adversely affected if parametric assumptions are postulated that hold
on average but fail when conditioning on either the time or cross section dimension. In
analogy to these scenarios, implementing the Hausman statistic with estimated covariance

parameters will obtain statistics of type Ĥ (DGP 1) and
̂̃H (DGPs 2 to 5).

All considered scenarios except for DGP 5 formalize invariant second order features of
individual effects αi. For this particular model it is worthwhile to point out that along com-
mon lines of panel data modelling the true underlying parameters σ2

α,i cannot be estimated
consistently. In this case the bootstrap approach is particularly promising since it allows
robust inference even under a false presumption concerning the individual effects’ variances.

4.1.2 Alternative test statistics

Instead of a-priori stating specific parameter settings feasible versions of the Hausman statis-
tic will require some first step parameter estimates. For the Monte Carlo analysis EGLS

based test statistics Ĥ and
̂̃H are computed along two alternative strategies that are both

in an analyst’s opportunity set.

• Estimation of all unknown parameters
In the first place an analyst may proceed from the assumption that model disturbances
show serial correlation which is invariant over the cross section. Then, the following
strategy could be adopted to obtain parameter estimates entering EGLS inference.
Firstly a LSDV regression obtains estimated model disturbances êit and estimates of
the individual effects α̂i. The unconditional variance of the serially correlated error
terms is estimated as

v̂ar(eit) = σ̂2
ε /(1− ρ̂2) =

1

(N(T − 1)−K)

N∑
i=1

T∑
t=1

ê2
it. (29)

The autocorrelation parameter ρ is also estimated from LSDV residuals by means of a
pooled OLS regression, i.e.

ρ̂ =

∑N
i=1

∑T
t=2 êi,têi,t−1∑N

i=1

∑T
t=2 ê2

i,t−1

. (30)

From (29) an estimator for the variance parameter of the disturbances eit is obtained
as

σ̂2
ε = v̂ar(êit)(1− ρ̂2). (31)

Finally a variance estimator (Nerlove, 1971) for the individual effects might be deter-
mined as

σ̂2
α =

1

N − 1

N∑
i=1

(α̂i − ᾱ)2, ᾱ =
1

N

N∑
i=1

α̂i. (32)

Since σ2
α is estimated as the empirical variance of estimated fixed effects σ̂2

α its estimate
does not depend on the a-priori choice or estimate of ρ. The estimator in (32) is
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consistent as N →∞ and nonnegative by construction. Owing to the latter property
it might be particularly useful in Monte Carlo experiments.

Apart from the estimators given in (29), (32) and (31) one may also evaluate the vari-
ance parameters by means of other approaches going back to Swamy and Arora (1972),
Wallace and Hussain (1969) or Amemiya (1971). The focus of this paper lies, however,
on the characterization of finite sample features offered by alternative venues to obtain
critical values for the Hausman statistic. Therefore, we expect that the relative mer-
its of resampling as an alternative to (falsely) stating an asymptotic χ2-distribution
will not depend on the particular implementation of EGLS inference. The a-priori as-
sumption of time or cross sectionally invariant parameters might also be relaxed when
adopting EGLS methods. A-priori information necessary to justify conditional param-
eter estimation is, however, often not available. From this perspective the generality
of the bootstrap methodology is immediately clear as it obtains asymptotically correct
critical values even under some misspecification of the actual covariance pattern.

• Conditional estimation of variance parameters

In the second place an analyst might proceed by imposing some a-priori restrictions on
the model parameters and will then, accordingly, estimate the remaining unrestricted
parameters conditional on the former choice. Along these lines it is here of particular
interest how alternative a-priori assumptions concerning the autoregressive parameter
affect the outcome of inference. We will consider three alternative a-priori restrictions
made for the autoregressive parameter, namely ρ = 0, 0.25, 0.5. The first choice resem-
bles the widespread situation where the potential of serial correlation is neglected. The
second parameter selection implies that the analyst underestimates the true (uncondi-
tional) level of the autoregressive parameter. Choosing ρ = 0.5 mirrors the (unrealistic)
scenario where an analyst has access to the true underlying unconditional correlation
parameter.

4.1.3 Further remarks

To implement the bootstrap procedure we use the so-called Rademacher distribution given
in (20). The number of bootstrap replications is set to S = 199. Investigating size and power
properties the parameter δ in (22) is chosen as δ = 0 and δ = 0.1, respectively. With regard
to the power features of the alternative testing strategies we consider the case of a relatively
weak violation of the null hypothesis. When choosing higher values for δ it might become
difficult to distinguish (trivial) power properties across alternative methods of inference.
The considered time series dimensions are T = 5, 10, 20, 50. Since the asymptotic theory
outlined in Sections 2 and 3 has been set out under the assumption of a fixed time dimension
T and N → ∞ the cross section dimensions are chosen as N = 5, 10, 20, 50, 100. Each
panel data model is generated 2000 times.

4.2 Monte Carlo results

4.2.1 Provision of size estimates

Empirical rejection frequencies obtained for alternative implementations of the Hausman test
are provided in Table 1 and Table 2. For space considerations detailed simulation results are
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given for selected panel dimensions N, T . The nominal level corresponding to most results
listed in these tables is γ = 5%. On some aggregate level empirical test features obtained at
the 10% significance level are also given. To facilitate the interpretation of the empirical size
estimates bold entries indicate that the nominal and empirical size differ with 5% significance.
Significant size distortions are diagnosed in case the empirical rejection frequencies obtained
under the null hypothesis are not covered by a confidence interval constructed around the
nominal level as γ ± 1.96

√
γ(1− γ)/2000. Setting, for instance γ = 0.05, 4.04% and 5.96%

are obtained as lower and upper bound of the latter confidence interval, respectively. When
varying the nominal level of the tests, it turns out that in relative terms the empirical
performance of alternative test procedures is very similar. For the latter reason we do not
provide detailed results obtained from inference at the 10% nominal level.

Each row of Table 1 or Table 2 collects rejection frequencies for a given implementation
of the Hausman statistic over the five alternative DGPs. Since critical values for each test
are taken from the χ2(2)-distribution and, alternatively, determined by means of a bootstrap
scheme the overall number of rejection frequencies in each row of these tables is 10. Each
panel in Table 1 or Table 2 consists of five rows which in turn correspond to alternative
implementations of the Hausman statistic: A GLS version (H or H̃) using the unconditional

parameter choices (σ2
ε = 0.75, σ2

α = 1, ρ = 0.5) and four alternative test statistics (Ĥ and
̂̃H)

building on first step estimates of all or some parameters entering the covariance matrix Σ̂.

To facilitate the overall comparison of alternative tools of inference for a given DGP or
over alternative specifications of the underling DGPs the last two columns of Table 1 and
Table 2 and the last four rows of Table 2 provide row and columnwise summary measures of
the absolute frequencies of significant over- or undersizing. For the latter aggregated results
we distinguish between inference using critical values taken from the χ2(2)-distribution (H)
and generated by means of the bootstrap scheme (H∗). Aggregating over all Monte Carlo
experiments we also give the latter statistics as obtained from inference at the 10% signif-
icance level. Since the asymptotic results given in Sections 2 and 3 apply for the case of a
fixed time dimension and N →∞ empirical violations of the nominal test levels should not
be overvalued whenever the cross section dimension does not exceed the time dimension. For
the latter reason Table 2 also provides columnwise summary statistics conditional on Monte
Carlo experiments with N > T .

4.2.2 An overall assessment of empirical size features

Before discussing empirical size properties of alternative tests in more detail it is tempting
to take a view at some aggregated results. In sum, we perform Monte Carlo experiments for
20 alternative combinations of the panel dimensions N and T . For one half of these settings
we have T < N , such that one may expect asymptotic results to better apply for this latter
subset in comparison with experiments where N ≤ T . Recall that each panel in Table 1
or Table 2 contains empirical results for 5 DGPs and 5 alternative implementations of the
Hausman test. In total 20 · 5 · 5 = 500 (10 · 5 · 5 = 250) experiments are conducted for
both venues to obtain critical values (for experiments with T < N). To evaluate the overall

performance of a particular test implementation (H or H̃ implemented with χ2(2) critical
values, say) one may consider the absolute number of empirical size estimates violating
the nominal level with 5% significance. Since 100 experiments are performed for each test
implementation one would expect (as N → ∞) about five significant size distortions under
independence of the sampling experiments. For the subset of experiments with N > T about
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3 significant size violations are to be expected, accordingly.

Absolute frequencies of violations of the nominal test levels are listed in the bottom rows
of Table 2 and are also collected in Table 3. Aggregating over all Monte Carlo experiments we
obtain that testing at a nominal level of 5% (10%) χ2(2) and bootstrap critical values involve
378 and 229 (370 and 237) significant violations of the nominal size, respectively. Concen-
trating on experiments with T < N the absolute frequencies of size violations obtained at the
5% (10%) nominal level are 101 and 34 (168 and 37) for inference with χ2(2) and bootstrap
critical values, respectively. Although the latter views at the simulation results might suffer
from aggregation over heterogeneous items it is apparent from the summary statistics given
in Table 3, that the bootstrap method delivers more accurate critical values for the respective
test statistics as relying on the χ2(2)-distribution. For the interpretation of the latter result
it is worthwhile to recall that the χ2(2)-distribution is hardly the true asymptotic distribu-
tion for most simulated test statistics. Simulation results for cases with N > T are likely to
reflect the adverse effects of falsely presuming an asymptotic χ2-distribution more precisely.
Conditional on experiments with N > T GLS and EGLS inference obtain similar results
regarding the prevalence of empirical size distortions. In particular, two bootstrap EGLS
versions turn out to show empirical features coming closer to the expected frequency of size
violations. The latter either require to estimate all three model parameters or condition the
estimation of the variance parameters on the presumption ρ = 0.25. For both implementa-
tions of the test only 6 and 7 significant violations of the nominal 5% level are documented,
respectively. Aggregating in the same way over alternative DGPs it turns out that most
favorable results are obtained for bootstrap inference performed at the 10% level for DGPs
belonging to Case 2 or Case 4, which obtain 3 and 5 significant size violations, respectively.
Both classes of DGPs are characterized by cross sectionally varying serial correlation fea-
tures. In comparison to the latter DGPs the bootstrap approach performs somewhat worse
for DGP 5 (cross section specific variance of individual effects) which obtains 13 and 11
significant size violations when the nominal test level is 5% and 10%, respectively.

Interestingly, over all performed experiments size violations of the bootstrap venue are
overrejections throughout. Taking critical values from the χ2-distribution significant under-
as well as oversizing may result depending on the underlying DGP and the implemented test
statistic.

4.2.3 Empirical test features for given panel dimensions

Having discussed the performance of competing test procedures at an aggregated level we
turn next to an evaluation of single Monte Carlo experiments. GLS based inference shows
large significant oversizing irrespective of the underlying DGP when both panel dimensions
are rather small (N = T = 5). The bootstrap approach attains empirical rejection fre-
quencies which are about half of the corresponding quantities obtained when critical values
are taken from the χ2-distribution. EGLS based inference with critical values from the
χ2(2)-distribution yields empirical size estimates that are closer to the nominal level and, in
addition, cannot be distinguished with 5% significance from the former for some experiments.
Owing to more accurate size features it appears at the first sight that bootstrap inference
is preferable to common inference using χ2-quantiles as critical values. Note, however, that
none of the competing procedures can be justified on the basis of asymptotic arguments since
the small data dimensions are unlikely sufficient to invoke convergence to the postulated limit
distributions. The different performance of GLS and EGLS based inference shows that in
case of a very small cross sectional dimension conclusions obtained from Hausman testing
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should be treated with care.

For experiments performed with N = 10 and T = 5 GLS based inference using quan-
tiles of the χ2-distribution still suffers from significant oversizing with empirical rejection
frequencies exceeding twice the nominal test level, throughout. Implementing the Hausman
test with variance parameters estimated unrestrictedly or conditional on the false presump-
tion ρ = 0 obtains empirical rejection frequencies about 1% over all considered DGPs. The
bootstrap procedure shows significant oversizing for some DGPs but its size estimates are
closer to the nominal level than corresponding estimates obtained when using χ2(2)-quantiles
as critical values. As it might be expected the imposition of ‘realistic’ a-priori restrictions
(ρ = 0.5) improves the empirical features of standard inference drastically such that the
empirical significance levels cannot be distinguished from their nominal counterparts with
5% significance.

When further increasing the cross section dimension for a fixed T the effects of nuisance
parameters invalidating asymptotic pivotalness of the Hausman statistic become more ap-
parent. Aggregating the outcomes of χ2(2) based inference over the 5 considered DGPs it
turns out that for T = 5 and N = 50, 100 at least 22 out of 25 experiments show signif-
icant size distortions. In contrast, the corresponding resampling schemes do not give any
significant size distortion.

Monte Carlo experiments with time series dimension T = 10 offer analogous results as
discussed for the cases where T = 5. Size distortions diagnosed for standard inference based
on critical values from the χ2(2)-distribution persist over alternative dimensions of the cross
section N = 5, 10, 50. Bootstrap based empirical size estimates differ insignificantly from
the nominal level for all experiments with cross section dimension N = 50. Interestingly,
conditioning EGLS inference on the false presumption ρ = 0 obtains accurate empirical size
features in case T = 10 and N = 100 even when using quantiles of the χ2(2)-distribution as
critical values.

4.2.4 Asymptotic properties

To briefly sketch the asymptotic features of alternative implementations of the Hausman
statistic under different DGPs Table 4 gives empirical size estimates obtained for a fixed
time dimension T = 5 combined with rather large cross section dimensions N = 500, 1000.
Obviously size distortions are the rule when employing quantiles of the χ2(2)-distribution as
critical values for the Hausman statistic. Whereas the GLS version, assuming the underlying
model parameters to equal their true unconditional values, amounts in most cases to signif-
icant oversizing EGLS statistics yield empirical size estimates that are below their nominal
counterparts.

4.2.5 Power estimates

Selected power results (T = 5, 10, N = 5, 10, 50) are displayed in Table 5. Since some imple-
mentations of the Hausman test turn out to show large size distortions we report unadjusted
power estimates. Apparently all implemented test procedures have some power against the
null hypothesis of no correlation between individual effects and the explanatory variables.
Regarding, for instance, the case with T = 10 and N = 50 almost all empirical rejection
frequencies estimated under the alternative hypothesis are about twice the corresponding
quantities obtained under the null hypothesis. From the latter relation one may draw two
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conclusions: Firstly, reliance on robust resampling methods does not go along with power
losses. Secondly, similar to empirical size, power features are more or less invariant with
respect to the sources of misspecification underlying DGP2 to DGP5 in comparison with
DGP1.

5 Empirical examples

To illustrate some cases for robust Hausman testing in empirical practice we consider three
data sets that have been discussed in the literature before and which are available from the net
http://www.wiley.com/legacy/wileychi/baltagi/datasets.html (Baltagi, 2001). The empirical
examples cover (see Appendix 7.2 for detailed representations):

• an investment equation for US firms (Grunfeld, 1958),

• a Cobb-Douglas production function modelling the impact of public capital on the
GDP of US states (Munnell, 1990; Baltagi and Pinnoi, 1995),

• a model of gasoline demand in the OECD (Baltagi and Griffin, 1983).

For each empirical model three EGLS based Hausman statistics are provided in Table 6.
In analogy to the discussion in Section 4.1.2 these are obtained from estimating the variance
parameters jointly with the serial correlation coefficient ρ and conditional on the presump-
tions of no (ρ = 0.0) and moderate serial correlation (ρ = 0.5). Critical values for standard
inference are taken from χ2(K)-distributions, where K = 2, 4, 3 when modelling US firm
investment, productivity of public capital and gasoline demand, respectively. Alternatively,
critical values are determined by means of the wild bootstrap.

Estimates of the autoregressive parameter are at least ρ̂ = .664 and likely significant. For
all Hausman test statistics ’uniform’ test decisions are obtained when using χ2(K) critical
values. The null hypothesis of no correlation between individual effects and the explanatory
variables is rejected at conventional significance levels when modelling gasoline demand or
productivity of public capital. Regarding the investment function of US firms the null
hypothesis cannot be rejected such that for this model GLS estimation seems appropriate.

Adopting the bootstrap to generate critical values for the Hausman statistic the null
hypothesis is rejected with 5% significance when modelling investment behavior of US firms.
In addition, with respect to gasoline demand in the OECD bootstrap based inference at the
5% level obtains conclusions which are at odds with the highly significant statistics evaluated
by means of the χ2(3)-quantile. Modelling the productivity of public capital both conditional
versions of the Hausman statistic are not significant when employing critical values from
the bootstrap. Both choices ρ = 0, 0.5, however, are clearly distinct from the estimated
serial correlation coefficient ρ̂ = .801 such that conclusions based on the conditional EGLS
statistics may suffer from power loss. Estimating the correlation parameter from the data
the Hausman statistic is significant at the 5% level according to the bootstrap distribution.

As argued throughout the paper specification testing in panel data models relies heavily
on the presumption of time or cross sectional homogeneity of the distributional features of
error terms. To underscore that actual error distributions are heterogeneous over the time
dimension Table 6 also gives Hausman statistics for 4 separate subsamples of the example
data. Owing to space considerations we focus on results obtained from EGLS inference where
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all covariance parameters are estimated. For all these subsamples the actual time dimension
is either T = 4 or T = 5 such that the cross sectional dimension exceeds the former by
a factor of 2 (investment behavior) to 9 (production function). Therefore one may expect
that the asymptotic theory as outlined in this work better applies for the Hausman statistics
obtained from the subsample information. Time dependent estimates of the parameters
entering the presumed covariance structure are also shown in Table 6. From the simulation
results documented in Table 1 we have the impression that bootstrap methods are to be
preferred for inference in case of such panel dimensions since they show correct empirical size
features and offer in the same time some power against correlation between individual effects
and explanatory variables. Estimation results for the correlation as well as for the variance
parameters indicate that the covariance structure underlying the panel models varies over
time. All subsample specific estimates ρ̂ are substantially smaller than the overall estimates
discussed above such that the latter might be spurious owing to the neglected time variation.

Regarding inference using quantiles of χ2-distributions as critical values the evidence
offered from subsample modelling is mostly in line with the conclusions discussed above for
the ‘large’ sample. Since the estimated covariance patterns lack time homogeneity, however,
the latter results might not hold at the presumed 5% significance level. Bootstrap inference
in subsamples reveals that correlation between unobservable heterogeneity and explanatory
variables is more typical for particular subperiods in case of investment (1950-54) and gasoline
demand (1975-78) modelling. Regarding the productivity of public capital three out of four
subsample test statistics are significant at conventional levels according to bootstrap based
critical values.

6 Conclusions

In this paper we address the issue of testing for correlation between unobserved panel het-
erogeneity and explanatory variables under general covariance structures of underlying error
distributions. We consider the case of a finite time dimension while N → ∞. The consid-
ered second order features cover (cross sectionally varying patterns of) serial correlation or
time heteroskedasticity. For the determination of critical values we propose a wild bootstrap
scheme that retains its validity even in case the presumed covariance structure differs from
the true second order features of error terms. In the latter case nuisance parameters are
likely to invalidate asymptotic pivotalness of the generalized Hausman statistic.

Finite sample features involved when critical values for the Hausman statistic are taken
from the χ2-distribution or estimated alternatively by means of the bootstrap are examined.
We find that the bootstrap approach is characterized by more accurate empirical size features
at least when the cross section dimension exceeds the time dimension. Standard inference
by means of critical values from the χ2-distribution suffers from both, weaker empirical size
features in small samples under correct covariance specification, and nonpivotalness in case
second order features are misspecified.

Summarizing the empirical test results it is apparent that panel covariance homogeneity
is likely exceptional at least when modelling longitudinal data. In the light of potential
heterogeneity robust critical values promise actual significance levels which are close to the
nominal test levels. The considered subsamples underscore, in addition, that correlation
between individual effects and explanatory variables might also undergo some form of time
variation. In the latter case it is important to have tools of inference at hand that show
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accurate empirical features in case of a small time dimension.

Throughout our analysis proceeds under the (common) assumption of cross sectional
independence which might be at odds with macroeconomic or spatial panel data. Recent
contributions to spatial econometrics or panel unit root testing allow for cross sectional error
correlation. Immunizing the Hausman statistic against cross sectional error correlation is an
important issue of further research.

7 Appendix

7.1 Proofs

Proof of Proposition 1. We obtain from (11) that

Cov

(
N∑

i=1

CN,iui

∣∣∣∣∣ X

)
= Cov

(√
N(β̂FE − β̂GLS)

∣∣∣ X
)

= B−1
N − A−1

N

P−→ B−1 − A−1.

Furthermore, we obtain from the uniform integrability of (‖X ′
iXi‖)i∈N that, for arbitrary

c > 0,

P

(
max

1≤i≤N
‖X ′

iXi‖ > cN

)
≤

N∑
i=1

P (‖X ′
iXi‖ > cN)

≤ 1

cN

N∑
i=1

E[‖X ′
iXi‖I(‖X ′

iXi‖ > cN)] −→
N→∞

0.

In other words, we have that max1≤i≤N ‖Xi‖ = oP (
√

N), which implies that cN = max1≤i≤N ‖CN,i‖
= oP (1). Hence, we obtain by (A1,iv) that, for arbitrary ε > 0,

N∑
i=1

E
(‖CN,iui‖2I (‖CN,iui‖ > ε)

∣∣X
)

≤
N∑

i=1

‖CN,i‖2 E
(
u2

i I (|ui| > ε/cN)
∣∣ X

)

= oP (1) ·
N∑

i=1

‖CN,i‖2 = oP (1), (33)

that is, a conditional Lindeberg condition is fulfilled. Now we obtain by the Lindeberg-Feller
central limit theorem that

(
B−1

N − A−1
N

)−1/2√
N(β̂FE − β̂GLS)

d−→ N (0K , IK),

which implies by the continuous mapping theorem

HN = N(β̂FE − β̂GLS)′
(
B−1

N − A−1
N

)−1
(β̂FE − β̂GLS)

d−→ χ2(K).

The second assertion (15) follows immediately from ‖ÂN −AN‖ P−→ 0 and ‖B̂N −BN‖ P−→
0.
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Proof of Proposition 2. Analogous to the proof of Proposition 1.

Proof of Proposition 3. We will first show that

d

(
L

(
(B−1

N − A−1
N )−1/2

N∑
i=1

CN,iu
∗
i

∣∣∣∣∣XN

)
,N (0K , IK)

)
P−→ 0, (34)

which implies by the continuous mapping theorem that

d
(L (H∗

N | XN) , χ2(K)
) P−→ 0.

(34) will actually follow from

d

(
L

(
(B−1

N − A−1
N )−1/2

N∑
i=1

CN,iuiηi

∣∣∣∣∣XN

)
,N (0K , IK)

)
P−→ 0 (35)

and

TN :=
N∑

i=1

CN,i(ûi − ui)ηi
P−→ 0. (36)

It follows from (33) that there exists a null sequence (εN)N∈N such that

E

(
N∑

i=1

‖CN,iui‖2I(‖CN,iui‖2 > εN)

∣∣∣∣∣ X

)
P−→ 0.

Let γN,i = CN,iuiI(‖CN,iui‖ ≤ εn). It follows from the latter display that

N∑
i=1

CN,iuiu
′
iC

′
N,i =

N∑
i=1

γN,iγ
′
N,i + oP (1). (37)

Using E(
∑N

i=1 CN,iuiu
′
iC

′
N,i | X) = B−1

N − A−1
N we obtain that

∥∥∥∥∥E

(
N∑

i=1

γN,iγ
′
N,i | X

)
− (B−1

N − A−1
N )
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≤
N∑

i=1

E
(‖CN,iui‖2 I(‖CN,iui‖ > εN)

∣∣ X
) P−→ 0. (38)

For the (k, l)-th entry of the matrix
∑N

i=1 γN,iγ
′
N,i, we have

E
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]2
∣∣∣∣∣∣
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)
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2
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)
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(
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2
k

∣∣ X
)
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N

N∑
i=1

E
(
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2
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which implies that
N∑

i=1

γN,iγ
′
N,i = E

(
N∑

i=1

γN,iγ
′
N,i

∣∣∣∣∣X

)
+ oP (1). (39)

From (37), (38) and (39) we conclude that

N∑
i=1

CN,iuiu
′
iC

′
N,i = B−1

N − A−1
N + oP (1),

which implies that

Cov

(
(
B−1

N − A−1
N

)−1/2
N∑

i=1

CN,iuiηi

∣∣∣∣∣XN

)

=
(
B−1

N − A−1
N

)−1/2
N∑

i=1

CN,iuiu
′
iC

′
N,i

(
B−1

N − A−1
N

)−1/2 P−→ IK . (40)

Moreover, since
∑N

i=1 ‖CN,iui‖2 P−→ tr(B−1−A−1) and, according to (33), P (max1≤i≤N ‖CN,iui‖ >

c | X) ≤ (1/c2)
∑N

i=1 E[‖CN,iui‖2I(‖CN,iui‖ > c) | X]
P−→ 0 we obtain, for arbitrary ε > 0,

that

N∑
i=1

E∗ (‖CN,iuiηi‖2I (‖CN,iuiηi‖ > ε)
∣∣XN

)

≤
N∑

i=1

‖CN,iui‖2E∗ (
η2

i I (‖CN,iui‖|ηi| > ε)
∣∣XN

) P−→ 0,

that is, we have again a conditional Lindeberg condition being fulfilled. Therefore, (35)
follows from (40) by the Lindeberg-Feller central limit theorem.

Now it remains to prove (36). We have that

TN = −
N∑

i=1

CN,iXi(β̂FE − β)ηi.

Since E∗(η2
i | XN) = 1 we obtain that

E∗ (‖TN‖2 | XN

)
=

N∑
i=1

(β̂FE − β)′X ′
iC

′
N,iCN,iXi(β̂FE − β)

≤ ‖β̂FE − β‖2 · max
1≤i≤N

‖X ′
iXi‖ ·

N∑
i=1

C ′
N,iCN,i

= OP (N−1) · oP (N) · OP (1) = oP (1),

that is, (36) holds also true.

Proof of Proposition 4. Analogous to the proof of Proposition 3.

23



Proof of Theorem 1. Since χ2(K) is a continuous distribution we conclude from Proposi-
tion 1 that

sup
−∞<z<∞

∣∣P (HN ≤ z) − P
(
χ2(K) ≤ z

)∣∣ −→
N→∞

0, (41)

and from Proposition 3

sup
−∞<z<∞

∣∣P (H∗
N ≤ z | XN) − P

(
χ2(K) ≤ z

)∣∣ P−→ 0. (42)

The assertion of the theorem follows now directly from (41) and (42).

Proof of Theorem 2. Analogous to the proof of Theorem 1.

7.2 The empirical models

1. Investment equation (Grunfeld, 1958)

Iit = ν + β1Fit + β2Cit + uit,

where

Iit = annual real gross investment,

Fit = real value of the firm (shares outstanding),

Cit = real value of the capital stock.

The panel consists of N = 10 large US manufacturing firms over T = 20 years (1935-
1954).

2. Cobb-Douglas production function (Munnell, 1990; Baltagi and Pinnoi, 1995).

yit = ν + β1k
(1)
it + β2k

(2)
it + β3lit + β4Uit + uit,

where

yit = log gross state product,

k
(1)
it = log public capital including highways and streets,

water and sewer facilities and other public buildings and structures,

k
(2)
it = log private capital stock,

lit = log labor input measured as employment in nonagricultural payrolls,

Uit = state unemployment rate.

The panel consists of annual observations for N = 48 contiguous states over the period
1970-1986.

3. Gasoline demand (Baltagi and Griffin, 1983)

log

(
Gas

Car

)

it

= ν + β1 log

(
Y

Pop

)

it

+ β2 log

(
Pmg

Pgdp

)

it

+ β3 log

(
car

pop

)

it

+ uit,
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where

Gas

Car
= motor gasoline consumption per car,

Y

Pop
= real per capita income,

Pmg

Pgdp

= real motor gasoline price,

Car

Pop
= stock of cars per capita.

The panel consists of annual observations across N = 18 OECD countries over T = 19
years (1960 - 1978).
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[N ; T ] DGP1 DGP2 DGP3 DGP4 DGP5
∑

H H∗ H H∗ H H∗ H H∗ H H∗ H H∗
GLS [5; 13.5 6.20 13.4 5.95 13.8 6.80 13.1 6.10 16.6 8.05 5 4
EGLS(ρ̂) 5] 3.30 7.70 4.85 6.95 5.20 7.75 4.60 7.05 3.80 8.80 2 5
(ρ = 0) 0.00 6.85 0.00 6.25 0.00 7.15 0.00 7.25 0.00 8.80 5 5
(ρ = 0.25) 0.00 6.90 11.8 6.20 10.9 7.80 11.6 6.75 13.4 9.35 5 5
(ρ = 0.5) 0.80 6.40 1.20 5.95 1.00 6.50 1.25 6.10 1.75 8.25 5 4
GLS [10; 11.1 5.85 11.4 5.55 12.4 6.60 11.3 5.60 13.4 6.55 5 2
EGLS(ρ̂) 5] 1.20 6.10 1.15 5.60 0.85 6.00 1.20 5.50 1.00 5.95 5 2
(ρ = 0) 1.25 5.95 0.70 5.40 0.60 5.95 0.80 5.40 0.70 5.75 5 0
(ρ = 0.25) 1.30 6.80 8.00 5.40 8.00 6.40 7.85 5.30 8.60 6.20 5 3
(ρ = 0.5) 4.70 5.85 4.30 5.45 4.75 6.65 4.20 5.60 4.85 6.60 0 2
GLS [50; 6.45 4.70 6.25 4.45 6.10 5.05 5.95 4.45 7.10 5.40 4 0
EGLS(ρ̂) 5] 3.25 5.30 3.15 5.00 3.00 4.90 3.30 4.75 3.20 5.45 5 0
(ρ = 0) 3.25 5.30 3.30 5.35 3.15 5.10 3.55 4.95 3.30 5.35 5 0
(ρ = 0.25) 2.95 5.05 3.85 4.65 4.20 4.95 3.80 4.55 4.30 5.20 3 0
(ρ = 0.5) 3.00 4.70 3.15 4.40 2.75 5.00 3.10 4.40 3.05 5.55 5 0
GLS [100; 6.85 5.50 6.35 4.25 6.40 4.50 6.15 4.25 6.60 4.75 5 0
EGLS(ρ̂) 5] 3.80 5.35 3.70 4.85 3.25 4.30 3.70 4.75 3.25 4.95 5 0
(ρ = 0) 4.00 5.30 3.70 4.80 3.40 4.20 3.70 4.75 3.40 5.05 5 0
(ρ = 0.25) 3.60 5.70 3.35 4.85 3.45 4.45 3.35 4.55 3.65 4.85 5 0
(ρ = 0.5) 3.95 5.40 3.65 4.25 3.35 4.60 3.50 4.20 3.50 4.70 5 0
GLS [5; 37.1 9.50 38.1 9.00 37.5 9.35 38.2 9.15 40.0 8.30 5 5
EGLS(ρ̂) 10] 18.0 9.25 17.1 9.40 20.6 9.70 17.0 8.75 18.9 9.70 5 5
(ρ = 0) 0.00 9.05 0.00 9.00 0.00 8.80 0.00 9.35 0.00 8.35 5 5
(ρ = 0.25) 0.00 9.25 11.8 9.25 11.6 10.3 11.4 9.75 12.8 10.6 5 5
(ρ = 0.5) 35.7 9.20 36.5 8.85 36.0 9.30 36.8 8.65 38.0 8.15 5 5
GLS [10; 11.8 7.00 12.6 6.60 11.5 7.85 11.9 6.60 15.6 8.10 5 5
EGLS(ρ̂) 10] 1.95 7.45 2.20 6.70 2.00 7.90 2.25 6.60 2.90 8.35 5 5
(ρ = 0) 1.40 7.45 1.55 6.10 1.30 8.55 1.65 6.60 1.95 8.45 5 5
(ρ = 0.25) 1.45 7.40 8.30 6.70 7.50 8.35 8.10 6.45 9.80 8.55 5 5
(ρ = 0.5) 5.85 7.00 5.50 6.55 5.40 7.85 5.60 6.60 8.10 8.10 1 5
GLS [50; 6.40 4.90 6.10 5.35 6.75 5.60 5.90 5.45 7.00 5.55 4 0
EGLS(ρ̂) 10] 3.05 5.35 3.35 5.75 3.45 5.50 3.40 5.80 3.85 5.60 5 0
(ρ = 0) 3.70 5.35 4.00 5.40 3.75 5.55 3.75 5.55 3.90 5.45 5 0
(ρ = 0.25) 3.00 5.35 4.85 5.65 5.15 5.50 4.80 5.55 5.65 5.30 1 0
(ρ = 0.5) 2.90 4.90 3.65 5.35 3.90 5.55 3.65 5.50 4.00 5.55 5 0
GLS [100; 6.55 5.20 7.05 5.60 6.80 5.25 6.85 5.60 7.10 5.05 5 0
EGLS(ρ̂) 10] 3.70 5.50 4.15 5.60 4.20 5.45 4.05 5.50 4.05 4.90 1 0
(ρ = 0) 4.50 5.65 4.80 5.80 4.85 5.60 4.70 5.85 5.20 5.35 0 0
(ρ = 0.25) 3.70 5.60 5.05 5.65 4.70 5.55 4.85 5.55 5.05 5.05 1 0
(ρ = 0.5) 4.05 5.30 4.05 5.60 3.90 5.20 4.10 5.55 3.95 5.05 2 0

Table 1: Selected size estimates for GLS (H, H̃) and EGLS based versions (Ĥ,
̂̃H) of the

Hausman test over various DGPs introduced in Section 4.1.1. H and H∗ indicate if χ2(2) or
bootstrap critical values are used, respectively. Bold faced entries correspond to empirical
rejection frequencies that are not covered by a 95% confidence band around the nominal
level γ =5%. The last two columns report how often the empirical size over 5 DGPs differs
from the nominal level with 5% significance.
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[N ; T ] DGP1 DGP2 DGP3 DGP4 DGP5
∑

H H∗ H H∗ H H∗ H H∗ H H∗ H H∗
GLS [10; 8.05 7.75 8.55 7.15 8.75 7.00 8.25 7.20 10.7 7.45 5 5
EGLS(ρ̂) 20] 1.80 7.50 2.00 6.45 2.30 6.95 2.05 6.75 2.50 7.60 5 5
(ρ = 0) 1.15 6.75 1.25 5.85 1.60 7.50 1.30 5.75 1.80 8.15 5 3
(ρ = 0.25) 1.00 7.30 7.55 6.10 7.70 7.40 7.25 6.00 9.25 7.85 5 5
(ρ = 0.5) 3.45 7.75 3.65 7.10 3.45 7.05 3.65 7.20 3.70 7.45 5 5
GLS [50; 5.45 5.25 5.35 5.00 6.10 5.55 5.40 4.90 6.20 5.65 2 0
EGLS(ρ̂) 20] 3.35 5.30 3.75 4.90 3.45 5.50 3.85 4.85 3.80 5.50 5 0
(ρ = 0) 3.95 5.15 4.00 5.05 4.20 5.45 3.90 5.00 4.15 5.05 3 0
(ρ = 0.25) 3.60 5.25 5.20 4.90 5.15 5.50 5.15 4.80 5.40 5.65 1 0
(ρ = 0.5) 3.50 5.25 3.80 5.00 3.55 5.60 3.75 4.90 3.85 5.65 5 0
GLS [100; 5.50 5.15 6.00 5.05 5.30 5.00 5.90 5.00 5.00 4.75 1 0
EGLS(ρ̂) 20] 4.00 5.10 4.10 5.05 3.10 5.05 4.05 4.90 3.65 4.80 3 0
(ρ = 0) 4.25 4.95 4.65 5.05 4.10 5.20 4.55 4.70 4.10 4.90 0 0
(ρ = 0.25) 3.90 5.50 5.25 5.10 4.05 5.05 5.15 5.00 4.40 5.10 1 0
(ρ = 0.5) 3.95 5.15 4.00 5.05 2.95 4.95 4.15 5.00 3.45 4.65 4 0
GLS [50; 4.80 4.85 4.95 4.90 5.40 5.70 4.80 5.10 5.45 5.55 0 0
EGLS(ρ̂) 50] 3.55 4.80 3.75 4.95 3.70 5.85 3.80 5.00 3.80 5.50 5 0
(ρ = 0) 3.80 4.75 4.10 5.20 4.20 5.50 4.10 4.95 4.15 5.15 1 0
(ρ = 0.25) 3.70 4.70 4.90 5.15 5.35 5.80 4.90 5.05 5.60 5.30 1 0
(ρ = 0.5) 3.50 4.85 3.75 4.90 3.70 5.70 3.75 5.10 3.70 5.55 5 0
GLS [100; 5.00 4.75 5.80 5.00 5.35 4.90 5.90 5.10 5.20 4.70 0 0
EGLS(ρ̂) 50] 3.85 4.70 4.65 5.00 4.40 4.90 4.85 5.00 4.45 4.75 1 0
(ρ = 0) 4.30 4.80 4.95 5.55 4.95 4.85 4.95 5.50 4.50 5.00 0 0
(ρ = 0.25) 4.10 4.80 5.90 5.20 5.90 4.70 5.95 5.20 5.60 4.90 0 0
(ρ = 0.5) 3.85 4.75 4.60 5.00 4.35 4.90 4.75 5.15 4.50 4.70 1 0∑

γ=5% 86 45 74 37 74 51 69 42 75 54
γ=10% 83 49 76 43 72 49 76 45 63 51∑

T<N γ=5% 40 5 31 3 31 8 27 5 32 13
γ=10% 39 9 33 3 33 9 34 5 29 11

Table 2: Selected size estimates for GLS (H, H̃) and EGLS based versions (Ĥ,
̂̃H) of the

Hausman test over various DGPs introduced in Section 4.1.1. See also Table 1. The last rows
show how often the empirical and nominal size differ with 5% significance when aggregating
over all 20 alternative sample sizes used for Monte Carlo analysis, i.e. T = 5, 10, 20, 50, N =
5, 10, 20, 50, 100 for a given DGP and testing device. The last two rows provide the latter
summary measures obtained over simulation experiments with (T < N).
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T < N
H H∗ H H∗ H H∗ H H∗

γ 5% 10% 5% 10%
GLS 67 47 73 48 32 8 38 8
EGLS(ρ̂) 87 46 85 46 40 6 42 6
(ρ = 0) 77 43 70 49 32 5 28 9
(ρ = 0.25) 65 46 64 45 20 7 21 5
(ρ = 0.5) 82 47 78 49 37 8 39 9∑

378 229 370 237 161 34 168 37

Table 3: Summary measures for empirical size estimates for GLS (H, H̃) and EGLS based

versions (Ĥ,
̂̃H) of the Hausman test over various DGPs. See also Table 1. The table shows

the number of violations of the nominal test levels γ = 5%, 10% that are significant at the
5% level. The summation is performed for alternative test devices over all 20 (10, T < N)
considered sample sizes and 5 DGPs. Results for χ2(2) and bootstrap based critical values
are distinguished. Summary statistics for experiments with (T < N) are also provided.

[N ;T ] DGP1 DGP2 DGP3 DGP4 DGP5
H H∗ H H∗ H H∗ H H∗ H H∗

GLS [500; 6.05 4.80 7.30 5.45 6.75 5.10 6.60 5.10 7.15 5.20
EGLS(ρ̂) 5] 3.50 4.95 4.45 5.95 4.10 5.60 4.35 5.90 4.15 5.30
(ρ = 0) 3.60 4.85 4.65 5.90 4.25 5.80 4.60 5.80 4.35 5.35
(ρ = 0.25) 3.05 4.75 4.20 5.80 4.10 5.25 4.15 5.55 4.00 5.45
(ρ = 0.5) 3.15 4.85 4.10 5.40 4.00 5.15 4.00 5.10 3.75 5.25
GLS [1000; 6.85 5.50 6.70 5.25 6.25 5.10 6.65 5.10 6.15 5.10
EGLS(ρ̂) 5] 3.95 5.30 4.05 4.90 3.55 4.95 4.05 5.45 3.60 4.75
(ρ = 0) 4.00 5.35 4.15 5.00 3.95 4.80 4.10 5.45 3.75 4.80
(ρ = 0.25) 3.60 5.85 4.05 5.40 3.55 4.85 3.95 5.35 3.85 4.60
(ρ = 0.5) 4.00 5.40 4.15 5.25 3.30 5.10 3.80 5.15 3.65 5.05

Table 4: Size estimates for GLS (H, H̃) and EGLS based versions (Ĥ,
̂̃H) of the Hausman

test over various DGPs, T = 5, and large cross section dimensions N = 500, 1000. See also
Table 1.

29



[N ;T ] DGP1 DGP2 DGP3 DGP4 DGP5
H H∗ H H∗ H H∗ H H∗ H H∗

GLS [5; 15.6 7.40 14.5 6.15 15.4 6.65 14.2 6.60 17.9 8.30
EGLS(ρ̂) 5] 3.45 8.60 4.65 7.25 5.10 7.90 4.20 7.45 3.25 9.90
(ρ = 0) 0.00 7.25 0.00 6.90 0.00 7.85 0.00 7.05 0.00 9.50
(ρ = 0.25) 0.00 7.75 12.4 6.25 10.5 8.05 12.4 7.40 13.0 9.20
(ρ = 0.5) 1.00 7.80 1.25 6.10 0.70 6.55 1.10 6.60 0.90 8.45
GLS [10; 13.5 6.70 12.7 6.00 14.1 7.35 12.7 6.10 15.0 7.70
EGLS(ρ̂) 5] 1.35 7.70 1.50 7.75 1.25 6.90 1.45 7.70 1.40 7.15
(ρ = 0) 1.50 8.30 1.05 7.20 1.20 7.55 1.05 7.60 1.25 7.30
(ρ = 0.25) 1.55 7.90 8.65 6.30 8.20 7.85 8.85 6.45 9.25 7.70
(ρ = 0.5) 5.35 6.95 4.55 6.10 5.50 7.15 4.50 6.00 5.65 7.55
GLS [50; 11.0 8.65 11.2 7.05 11.3 9.25 10.7 7.25 11.9 8.65
EGLS(ρ̂) 5] 5.90 9.70 4.95 8.10 5.85 9.30 4.95 8.05 6.60 9.65
(ρ = 0) 6.25 9.65 5.15 8.25 5.90 9.40 5.20 7.95 6.70 9.55
(ρ = 0.25) 5.40 9.30 6.75 8.00 6.70 9.15 6.80 8.00 7.55 9.50
(ρ = 0.5) 5.35 8.70 5.25 7.20 5.65 9.35 5.10 7.25 6.20 8.75
GLS [5; 36.4 10.6 37.1 10.1 36.1 10.2 36.5 9.65 37.4 8.65
EGLS(ρ̂) 10] 17.9 9.50 17.1 10.3 19.0 10.2 17.2 9.65 18.8 9.75
(ρ = 0) 0.00 9.35 0.00 10.8 0.00 10.1 0.00 10.3 0.00 9.60
(ρ = 0.25) 0.00 10.3 12.0 10.4 11.7 11.1 11.8 10.9 12.7 10.7
(ρ = 0.5) 34.5 10.9 34.8 9.65 33.9 9.80 34.2 10.0 35.7 9.05
GLS [10; 13.5 7.65 13.9 6.55 13.0 7.60 13.5 6.60 17.8 8.40
EGLS(ρ̂) 10] 1.80 8.10 2.55 6.30 1.90 8.15 2.30 6.65 2.80 8.55
(ρ = 0) 1.35 7.95 1.65 6.60 1.45 8.00 1.60 6.80 2.00 8.05
(ρ = 0.25) 1.65 7.90 9.00 6.40 7.55 8.10 8.65 6.20 10.2 8.25
(ρ = 0.5) 6.15 7.65 5.95 6.55 5.60 7.55 5.85 6.60 7.85 8.35
GLS [50; 13.4 11.9 13.8 11.5 13.6 12.6 13.4 11.7 14.5 11.8
EGLS(ρ̂) 10] 7.30 12.0 8.35 12.1 8.25 13.3 8.35 12.3 8.10 13.0
(ρ = 0) 8.65 11.9 9.65 13.2 9.45 13.4 9.70 13.4 9.55 12.7
(ρ = 0.25) 7.60 11.8 11.0 12.4 10.7 13.3 11.0 12.6 11.0 13.0
(ρ = 0.5) 7.35 11.9 7.85 11.5 8.05 12.7 7.60 11.8 8.25 11.9

Table 5: Selected power estimates for GLS (H, H̃) and EGLS based versions (Ĥ,
̂̃H) of the

Hausman test over various DGPs. See also Table 1.
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ρ̂ σ̂α σ̂e H χ2 H∗

Investment behavior
EGLS ρ̂ .664 85.73 39.46 2.604 .272 .000

ρ = 0 85.73 52.77 2.058 .357 .006
ρ = 0.5 85.73 45.70 2.383 .304 .000

Production function
EGLS ρ̂ .801 0.091 0.023 43.60 .000 .000

ρ = 0 0.091 0.038 8.409 .015 .404
ρ = 0.5 0.091 0.033 15.06 .001 .046

Gasoline demand
EGLS ρ̂ .778 0.348 0.058 10.18 .006 .028

ρ = 0 0.348 0.092 10.54 .005 .102
ρ = 0.5 0.348 0.080 10.05 .007 .050

Specification testing for subperiods (EGLS using ρ̂)
Investment behavior
1935-39 .003 26.06 76.26 2.663 .264 .152

40-44 .171 26.01 89.70 2.005 .367 .521
45-49 .011 34.05 93.52 1.618 .445 .130
50-54 .479 45.28 160.4 3.724 .155 .018

Production function
1970-73 .122 0.018 0.256 25.72 .000 .000

74-77 .273 0.018 0.256 25.72 .000 .000
78-81 .004 0.017 0.121 14.32 .000 .154
82-86 .196 0.019 0.234 21.41 .000 .004

Gasoline demand
1960-64 .131 0.049 0.308 7.39 .028 .228

65-69 .257 0.045 0.277 5.22 .074 .353
70-74 .034 0.042 0.304 9.67 .008 .124
75-78 .118 0.330 0.381 10.2 .006 .046

Table 6: Empirical examples for Hausman testing; Upper panel: Estimated variance, (uncon-
ditional) autocorrelation parameters and Hausman test results for the entire sample period.
H indicates the values of the test statistics with corresponding p-values provided in the last
two columns (critical values from χ2(K)-distribution, wild bootstrap (H∗)). Lower panel:
Hausman test results over subperiods covering T = 4 to T = 5 time points.
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