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Abstract. We derive microscopic foundations for a well-known
probabilistic herding model in the agent-based finance litera-
ture. Lo and behold, the model is quite robust with respect
to behavioral heterogeneity, yet structural heterogeneity, in the
sense of an underlying network structure that describes the very
feasibility of agent interaction, has a crucial and non-trivial im-
pact on the macroscopic properties of the model.
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“Investors spend a substantial part of their leisure time dis-
cussing investments, reading about investments, or gossiping
about others’ successes or failures in investing.” (Robert J. Shiller)

1 Introduction

Financial time series are characterized by a number of robust statistical
regularities that show up across different countries, assets, and time fre-
quencies. The two most prominent features concern the fluctuations in the
prices of financial assets, which exhibit heavy tails and clustered volatility,
and there are strong indications that both the distribution of large returns
as well as the autocorrelation of transformations of returns are power-laws
(see, e.g., Ding et al., 1993; Gopikrishnan et al., 1998; Lobato and Savin,
1998; Lux and Ausloos, 2002; Pagan, 1996).

While traditional finance has paid little attention to scaling laws, a va-
riety of artificial financial market models with heterogeneous interacting
agents have been recently proposed in order to account for the observed
scaling laws (see, e.g., Brock and Hommes, 1997; Cont and Bouchaud, 2000;
Iori, 2002; Kirman, 1991; Lux and Marchesi, 1999). The central ingredient
of agent-based approaches is typically the behavioral heterogeneity among
agents, who follow various rules by forming expectations or beliefs on
which they act. Popular examples are models in the spirit of Brock and
Hommes (1997), where agents choose a particular trading strategy based
on its past profitability, or the models inspired by Kirman (1991), where
agents exhibit herding tendencies in their choice of trading strategies. Struc-
tural heterogeneity, in the sense of an underlying network structure that de-
fines social and institutional relationships, and thereby the very feasibility
of agent interaction, has played a minor role so far.1 This is not overly sur-
prising, given that behavioral heterogeneity initially went a long way in
replicating the stylized facts of financial time series.

Following Lux (2006), we distinguish three broad model classes in agent-
based finance: (i) dynamical systems models with switches between attrac-
tors, (ii) critical systems approaches, and (iii) herding models.

1The model of Cont and Bouchaud (2000) is a notable exception; their results depend
directly on the underlying network structure, in particular on a critically tuned random
graph.
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The models in the first category are inspired by the work of Brock and
Hommes (1997) which, contrary to models in the other two categories,
are not interaction-based since their heterogeneous and boundedly ratio-
nal agents do not interact with each other, but merely through the price
mechanism. The metaphor of a Walrasian auctioneer implicitly assumes
that the underlying network structure is a ‘star,’ where the auctioneer is
placed at the center of the network. The drawback of this class of models
is that they need fine-tuning of their “signal-to-noise ratio” around unity
in order to resemble the stylized facts.2 In the second category, several
authors have proposed to exploit the properties of well known critical sys-
tems from the statistical physics literature (see, e.g., Cont and Bouchaud,
2000; Iori, 2002; Bornholdt, 2001; Stauffer and Sornette, 1999). The underly-
ing network structures in the criticality models are typically regular lattice
structures that are routinely utilized in a branch of physics known as per-
colation theory (see, e.g., Stauffer and Aharony, 1994). These critical sys-
tems approaches, however, show an extreme dependence of the resulting
power laws on carefully adjusted model parameters near criticality,3 and
leave open how or why the market could self-organize into such a critical
state. In the third category, herding approaches (see, e.g., Kirman, 1991,
1993; Lux and Marchesi, 1999; Alfarano et al., 2005) emphasize the pro-
cesses of social interaction among agents who display a tendency to follow
the crowd. Herding models implicitly assume either a fully connected net-
work, where everyone can in principle directly interact with everyone else,
or some regular structure that confines interactions to a local neighborhood.
The drawback of the herding-based paradigm is that many of the proposed
models are not robust with respect to an enlargement of system size, which
usually coincides with the total number of agents, say, N. In many cases,
the interesting properties of fluctuations in returns, namely their peculiar
time-dependence structure and the power law decay of the return distribu-
tion, progressively disappear as soon as the number of agents is enlarged,

2The noise component that is responsible for switches between attractors in the deter-
ministic ‘skeleton’ of these models needs to be superimposed on the macroscopic level. If it
is too ‘small,’ the deterministic forces dominate; if it is too ‘large,’ the stochastic component
dominates the system. Thus a fine-tuning of the variance in the added noise seems crucial
for obtaining realistic time-series.

3While Cont and Bouchaud (2000) do not use a regular network structure, the above
criticism applies as well to their model because their results depend on the critical tuning
of a random graph.

2



showing instead Gaussian fluctuations and a weak degree of temporal de-
pendence (see, e.g., Egenter et al., 1999). Given the computational nature
of most agent-based models, it is often not possible to determine analyti-
cally whether a specific model exhibits this N-dependence effect or not.4 It
is clearly not our ambition to engage in arguments about the relative ad-
vantages or drawbacks of the various agent-based approaches. Instead we
start by focusing our attention on the crucial impact that network structure
has on the statistical equilibrium outcome of “type-(iii)” models, i.e. those
that are built around a generic probabilistic herding mechanism.

Basically, our research is motivated by two observations. The first is
that financial investment decisions carry an important social component,
concisely summarized in the introductory quote by Shiller (1984), and it
seems natural to model social relationships through the framework of var-
ious network structures. The second observation is inspired by a recent
model of Alfarano et al. (2006), which manages to address the problem of
N-dependence analytically, and hints at the importance of structural het-
erogeneity in type-(iii) models. We take the position that the underlying
network structure is directly linked to the problem of N-dependence in this
generic herding mechanism, and we investigate which network structures
would be capable of overcoming the problem. Lo and behold, the network
structures that are immune to an enlargement of system size are not an
entirely unlikely way of organizing social relationships.

2 Probabilistic Herding Model

In a prototypical interaction-based herding model of the Kirman (1993)
type, the population of traders of size N is divided into two groups, say,
X and Y. Depending on the model setup, the two groups are typically
labeled as fundamentalists and chartists, or optimists and pessimists, or
buyers and sellers.

4The crucial dependence on system size also shows up outside of the herding-based
models, e.g. in the genetic learning model of Lux and Schornstein (2005). Intuitively, the
source of N-dependence is the central limit theorem, as already pointed out by Cont and
Bouchaud (2000).
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2.1 Extensive vs Non-Extensive Transition Rates

The interaction among these financial investors is formalized via the fol-
lowing transition rates

π(n → n + 1) = (N − n)
(

a + β
n
N

)
, (1)

π(n → n− 1) = n
(

a + β
(N − n)

N

)
, (2)

where n/N and (N − n)/N are the fractions of agents in either state. The
parameter a expresses idiosyncratic factors for switches between groups,5

and β captures the herding effect. A crucial property of the transition
rates (1) and (2) is their extensivity, i.e. the fact that π(n → n′) = N π(z →
z′) where z = n/N is shorthand for the concentration of agents in one of
the two groups.

An apparently minor modification of the above transition rates would
be to formulate them in the following non-extensive fashion

π+ = π(n → n + 1) = (N − n) (a + bn) , (3)

π− = π(n → n− 1) = n (a + b(N − n)) , (4)

where the herding term now does not depend on the concentration of agents
in the opposite state, but rather on the total number (or occupation num-
ber) of agents in the other state. In this case the above transition rates
no longer relate linearly in N when expressed in terms of concentrations,
π(n → n′) = N2 π(z → z′), and hence we label them as non-extensive. It
turns out that this modification has major implications for the behavior of
the system when the number of agents is enlarged. Alfarano et al. (2006)
demonstrate analytically that the emergence of realistic non-Gaussian dy-
namics is independent of system size in a simple Walrasian asset pricing
model if transition rates are non-extensive, while an approach to Gaussian
behavior occurs under extensive rates.6 They offer an interpretation of the

5Alfarano et al. (2005) have also investigated an asymmetric setting, where the idiosyn-
cratic component a differs among the transition rates, allowing for a preferential direction
of switches between the two states. But the impact of network structure on the generic
herding model does not depend on the symmetry of a, since an asymmetric setting still
leads to an equilibrium beta distribution (though with different parameters ε1, ε2).

6Technically speaking, both sets of transition rates define non-linear Markovian one-step
processes, which can be respectively approximated by a continuous diffusion process, gov-
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various transition rates in terms of “local” versus “non-local” interactions
(corresponding to extensive versus non-extensive transition rates), but they
neither make this notion precise nor do they address how a prevalence of
non-extensive rather than extensive interaction strengths might emerge in
the underlying social processes among agents. Since social interaction in
the form of herding tendencies is a crucial ingredient of these types of mod-
els, we believe that an answer to the above questions needs to be sought via
the network structure that connects individual agents in their social inter-
actions as market participants.

2.2 Microscopic Interpretation of Transition Rates

We start our inquiry into the influence of network structure by deriving
microscopic foundations for the mesoscopic transition rates (1),(2),(3), and
(4). Let n denote the number of agents in state X, so N − n agents are in
state Y. The basic idea is that agents change state for personal reasons or
under the influence of their neighbors, with whom they interact during a
given time period. The transition rate for agent i to switch from state X to
state Y is

ρi(X → Y) = a + λ ∑
j 6=i

DY(i, j), (5)

where a governs the possibility of self-conversion due to idiosyncratic fac-
tors, e.g. the arrival of new (private or publicly available) information,
while the sum captures the influence of the neighbors. Notice that the in-
fluence of i’s neighbors on i is linear in (5), implying that the impact of each
neighbor j carries an equal weight. The parameter λ governs the interac-
tion strength between i and neighbor j, and for now we will assume that

erned by the so-called Fokker-Planck equation. (We provide the corresponding heuristics in
the appendix; for more details, see Alfarano et al., 2006). It turns out that the drift functions
are equal under both, the extensive and non-extensive transition rates, and depend linearly
on the idiosyncratic parameter a. While both diffusion functions depend on the herding
parameter (β and b, respectively), they differ substantially for extensive and non-extensive
transition rates: in the former case, the diffusion is N-dependent, while in the latter case
it is independent of N. This implies that fluctuations will become increasingly negligible
for the system dynamics when the number of agents N is enlarged in the extensive case,
and consequently the resulting time-series of returns will exhibit counter-factual Gaussian
characteristics. In the non-extensive case, on the other hand, persistent fluctuations be-
tween opinions and along with them the empirical characteristics of returns, are preserved
for any system size.
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both parameters are constant across agents.7 The function DY(i, j) is an in-
dicator function serving to count the number of i’s neighbors that are in
state Y,

DY(i, j) =

{
1 if j is a Y-neighbor of i,
0 otherwise.

(6)

Analogously, the transition rates in the opposite direction are given by

ρi(Y → X) = a + λ ∑
j 6=i

DX(i, j) . (7)

Defining nY(i, j) = ∑j 6=i DY(i, j) and nX(i, j) = ∑j 6=i DX(i, j), and using
shorthands π−

i = ρi(X → Y) and π+ = ρi(Y → X), equations (7) and (5)
can be compactly written as

π+
i = a + λnX(i, j), (8)

π−
i = a + λnY(i, j). (9)

The dependence on j indicates that the rates π±
i still depend on the partic-

ular configuration of the neighbors.

2.3 Mean-Field Approximation

The dependence on the neighbors in (8) and (9) is difficult to handle ana-
lytically in the present form. We can employ a mean-field approximation
in order to simplify the problem from a many-agent system to one with a
sum of agents who are independently acting in an “external field” created
by the other agents (see, e.g., Chap. 5 in Aoki, 1998). In other words, we as-
sume that individual agents are influenced by the average opinion of their
neighbors. The instantaneous probability for agent i to switch from X to Y
is given by (9). As the neighbors’ attitudes fluctuate, π−

i fluctuates around
its mean 〈

π−
i

〉
= a + λ 〈nY(i)〉 , (10)

where the dependence on j gets lost if we assume that inhomogeneities
among the different configurations of neighbors are solely due to the fluc-
tuations. Next, we replace the number of Y-neighbors around each agent i

7We will relax this assumption in Section 5 when we allow for individual heterogeneity
in the behavioral parameters a and λ.
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with the average number of neighbors that agents are linked to, say, D.
Then the quantity 〈nY(i)〉 can be expressed as

〈nY(i)〉 = D PY, (11)

where PY is the ‘unconditional’ probability that an i-neighbor is in state Y,
which we approximate via the relative frequency (N − n)/N of agents in
state Y, thus obtaining

〈
π−

i

〉
= a + λD

N − n
N

. (12)

The quantity
〈
π−

i

〉
is now independent of the particular configuration of

neighbors, and it is equal for every agent i in state X. Symmetrically, the
expression for agents currently in state Y is

〈
π+

i

〉
= a + λD

n
N

. (13)

Hence the mean field approximation reduces the many-agent system to
a collection of independent agents who are “acting in the field” created by
the other agents. Since we are interested in the probability of observing a
single switch on the system-wide level (and not in switches of a particular
agent i), we have to sum (13) over all agents in state Y in order to find the
aggregate probability that one agent is switching from state Y to state X. We
further assume that the time unit over which we look at the process is small
enough to constrain the switch to a single agent. Summing (13), which is
permissible since the agents are now independent, we obtain

π+ = (N − n)
(

a +
λD
N

n
)

, (14)

for a switch from Y to X, and

π− = n
(

a +
λD
N

(N − n)
)

, (15)

for the reverse switch, where (14) and (15) are generalized transition rates
of Kirman’s ant model. Recalling the extensive transition rates (1) and (2),
and the non-extensive rates (3) and (4), we see that β = λD = bN.

Obviously, the particular network topology connecting the agents will
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have an influence on the average connectivity D, i.e. the average number of
neighbors in a given network structure. Non-extensive transition rates are
only feasible if D increases on the same order of magnitude as the system
size N. Kirman’s original interpretation of random pairwise meetings cor-
responds to the special case where D is always equal to unity, which leads
to extensive transition rates, and therefore suffers from the problem of N-
dependence. A central issue of the generic herding model thus revolves
around the question which network structures would lead to extensive or
non-extensive transition rates. In light of the microscopic foundations of
the herding model, we are particularly interested in the average connec-
tivity of various network structures, and in comparing the accuracy of the
mean-field approximation with microscopic implementations of the prob-
abilistic herding model in these networks. In order to do so, we shall first
clarify the concept of a statistical equilibrium outcome that is associated
with the generic transition rates (14) and (15).

2.4 Equilibrium Distribution

At any time, the state of the system refers to the concentration of agents in
one of the two states. We define the state of the system through the con-
centration z = n/N of agents that are in state X. For large N, the con-
centration can be treated as a continuous variable. Notice that none of the
possible states of z ∈ [0, 1] is an equilibrium in itself, nor are there multiple
equilibria in the usual economic meaning of the term. The notion of equilib-
rium rather refers to a statistical distribution that describes the proportion
of time the system spends in each state. Utilizing the Fokker-Planck equa-
tion, we show in the appendix that for large N the equilibrium distribution
of z is a beta distribution,

pe(z) =
1

B(ε, ε)
zε−1(1− z)ε−1, (16)

where B(ε, ε) = Γ(ε)2/Γ(2ε) is Euler’s beta function, and the shape pa-
rameter of the distribution is given by ε = a/b = aN/λD. Since ε is a
ratio of quantities that depend (i) on the time scale at which the process
operates (1/a and 1/λ), and (ii) on the spatial characteristics of the under-
lying network (D and N), the parameter of the equilibrium distribution is
a well-defined dimensionless quantity. If ε < 1 the distribution is bimodal,
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with probability mass having maxima at z = 0 and z = 1. Conversely,
if ε > 1 the distribution is unimodal, and in the “knife-edge” scenario
ε = 1 the distribution becomes uniform. The mean value of z, E[z] = 1/2,
is independent of ε, but the system exhibits very different characteristics
depending on the modality of the distribution. In the bimodal case, the
system spends least of the time around the mean, mostly exhibiting very
pronounced herding in either of the extreme states.

Concerning the issue of N-dependence, the variance of z, Var[z] =
E[z2]− E[z]2 = 1/4(2ε + 1), turns out to be a convenient summary measure
of the model properties with respect to an enlargement of system size. If the
variance of z remains constant when the system is enlarged, the power law
scaling of returns will be preserved in a simple Walrasian market clearing
scenario, while a decrease of the variance under an enlargement of the sys-
tem leads to counter-factual Gaussian properties of returns (see Alfarano
et al., 2006). The variance of z scales hyperbolically with N, so the inverse
of the variance scales linearly with N,

Var[z]−1 = 4
(

2a
λ

N
D

+ 1
)

. (17)

After introducing various network structures in the next section, we
first want to check whether the mean-field approach provides a good ap-
proximation to the predicted equilibrium distribution on the various net-
works. Then, by simulating a microscopic version of the mesoscopic tran-
sition rates (3) and (4) on different networks of increasing size, we would
like to know which (if any) of the networks can overcome the problem of
N-dependence. If the variance of z is invariant under increases in system
size for some network, then this network would be able to provide the
connectivity that is necessary in order to redeem the generic model from
its N-dependence. Finally, we are going to relax the assumption that all
agents act in identical fashion. The model would appear quite robust if
we could allow for different ways of processing new information and for
different herding intensities by varying the behavioral parameters a and λ

across agents, and yet recovered equilibrium distributions that are in line
with the analytical predictions of the mean-field approximation.
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3 Prototypical Network Structures

We start our investigation by briefly reviewing the formal definition of a
network. A network G = {V, E} is defined by a set of nodes V = {1, . . . , N},
and a set of links E.8 In our case, the nodes represent agents, while a link
between two agents i, j ∈ V represents direct interaction or communica-
tion such that {i, j} ∈ E. We can denote links between agents by a binary
variable a(i, j) ∀ i, j ∈ V such that a(i, j) = 1 if {i, j} ∈ E, and a(i, j) = 0
otherwise. Then the network can be summarized by an adjacency matrix
AN×N ; since we restrict our attention to undirected (or bi-directional) net-
works, the adjacency matrix will be symmetric, i.e. a(i, j) = a(j, i). The
neighborhood of i is the set Φi = {j ∈ V : a(i, j) = 1}. A path that con-
nects two agents r, s ∈ V is defined by a set of pairs {(r, ri), . . . , (rj, s) :
a(r, ri) = . . . = a(rj, s) = 1}; the geodesic path between two agents is the
shortest path connecting them, and the diameter of G is the number of links
of the longest geodesic path between any two nodes. Finally, each node in
the network has a degree that corresponds to the number of links that are
connected to the node. Let pk denote the fraction of nodes that have degree
k ∈ K = {0, . . . , N}, corresponding to the probability that a node chosen
uniformly at random has degree k; then the set P = {pk, k ∈ K} denotes the
degree distribution of the network.

Since the equilibrium distribution of the probabilistic herding model
depends on the average connectivity D, knowledge of the degree distri-
bution enables us to compute the average connectivity of a given network,
and to make theoretical predictions about the capability of various network
structures to reproduce the stylized facts under an enlargement of system
size.9

8This terminology is typically used by computer scientists, while mathematicians speak
of graphs that are defined by a set of vertices connected through edges.

9Over the past decade, economists have started to investigate the interactions between
network topologies and game-theoretic notions of stability and efficiency using the tools and
jargon of graph theory. From our point of view, which mainly focuses on the statistical
properties of network structures, it is noteworthy that the term degree distribution does not
appear once in a recent survey of the economic literature on network formation (see Jack-
son, 2004), and it seems that the profession is only very recently becoming aware of the
interdisciplinary research by statistical physicists and computer scientists that emphasizes
the statistical features of empirically observed networks.
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Figure 1: Three different network structures with N = 50 nodes (from left
to right): a circle with neighborhood two; a small-world network built on
the circle by randomly adding five shortcuts; and a random network with
linking probability p = 0.15.

3.1 Regular Network Structures

In a regular structure, all agents are connected to a constant number k̄ of
neighbors. The simplest case would be a circle that connects agents to their
two nearest neighbors,10 illustrated in the left panel of Figure 3.1. Regu-
lar structures have a degenerate degree distribution since all nodes have
degree k̄.

3.2 Random Networks

For our purposes, a random network11 will be constructed with the follow-
ing algorithm: first we set the number of nodes equal to N, forming an
adjacency matrix AN×N with all entries zero. Since nodes cannot link to
themselves, and because we consider undirected graphs, we only consider
the N(N − 1)/2 elements off the main diagonal of A. Then we connect
each of these among themselves with constant linking probability p ∈ (0, 1];
if i and j are linked, a(i, j) = 1 and a(j, i) = 1. An example of a random
network is shown in the right panel of Figure 3.1. The resulting degree

10The circle is also called a one-dimensional lattice with periodic boundary conditions,
and the number of neighbors is generally not restricted to the nearest ones, yet it is constant
for each node.

11The review article by Newman (2003) provides the historical background and a com-
prehensive summary of the many mathematical details of graph structures that we utilize
here.
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distribution is binomial with parameters N and p, and in the limit of large
N it becomes Poissonian. Notice that the average degree, i.e. the average
connectivity, will be Np.

3.3 Small-World Networks

Watts and Strogatz (1998) first proposed a model of small-world networks
that is based on the idea that geographical proximity plays an important
role in the formation of social networks. A well-known feature of observed
social networks is that they show a high degree of clustering, yet a relatively
small diameter.12 There are various ways of constructing small-world net-
works, but the basic mechanism is always centered around the idea that
one starts from a regular structure and then, with some probability p, one
“rewires” nodes that are chosen randomly (for details, see e.g. Sec.VI of
Newman, 2003). The rewiring probability p has to be chosen such that
there is a low density of “shortcuts” in order to observe a high degree of
clustering and a small diameter. If p is close to unity, the resulting net-
work will closely resemble a random network. In our case, we simply add
a small number of randomly placed shortcuts to the circle,13 illustrated in
the central panel of Figure 3.1. Such a procedure implies that the degree
distribution no longer degenerates to k̄, but it will obviously be sharply
peaked around k̄.

3.4 Scale-Free Networks

Scale-free networks, i.e. networks with a power-law degree distribution,
have been found in many social contexts, e.g. the citation network among
scientific papers (Price, 1965; Redner, 1998), the World Wide Web and the
Internet (see, e.g., Albert et al., 1999; Faloutsos et al., 1999), telephone call
and e-mail graphs (Aiello et al., 2002; Ebel et al., 2002), or in the network of
human sexual contacts (Liljeros et al., 2001).

12There are various clustering measures, which we are not going to detail here; intuitively
speaking, a high degree of clustering (or transitivity) describes a situation in which many of
i’s neighbors are connected among themselves. Put differently, if A is connected to B, and
B is connected to C, there is an increased probability that A and C are connected as well.
The small diameter property has been popularized through J. Guare’s play that coined the
now classic phrase of humankind’s “six degrees of separation.”

13While enlarging the system, we keep the number of shortcuts S constant relative to the
number of nodes, s = S/N. We arbitrarily chose s = 0.1.
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Figure 2: A “scale-free” graph with N = 50 nodes, constructed according
to the preferential attachment algorithm of Barabási and Albert. Notice the
presence of so-called hubs that is characteristic of scale-free networks.

A popular mechanism for the generation of scale-free networks is the
preferential attachment of Barabási and Albert (1999), where one starts with
m0 initial nodes and then keeps adding new nodes with degree m ≤ m0;
each of the m links is in turn connected to the existing nodes with a proba-
bility that is proportional to the degree of the already existing nodes, which
is the reason why the mechanism is sometimes referred to as “the rich get-
ting richer.” We can approximate the average connectivity in the scale-
free network using a well-known result of Barabási and Albert (1999), who
show that the characteristic exponent γ of the (cumulative)14 power-law de-
gree distribution obeys γ = 2, irrespective of the choice of m and m0 in the
generating mechanism. Let p(x) denote the power-law density of the de-
gree distribution; then we have p(x) = c x−γ−1 and the normalizing con-
stant on the support [m0, N] is given by c = γ mγ / (1 − (m/N)γ). Since
γ = 2, the average degree will be

∫ N
m c x−2dx = 2m (1 − (m/N))/(1 −

(m/N)2), which for large N yields an average connectivity of 2m.15

14Notice that a cumulative power-law distribution with exponent γ = 2 implies a power-
law density with exponent γ + 1 = 3.

15Alternatively, one could also compute the average connectivity by realizing that the
mechanism produces a total of 2(m0 − 1) + 2(N−m0)m) links. The first term represents the
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3.5 Whither N-Dependence?

Now that we have determined the average connectivity in the various net-
work structures, we are finally in a position to make theoretical predic-
tions about the ability of these networks to overcome the problem of N-
dependence. According to the mean-field approximation for the variance
of z in (17), the variance will only be independent of system size if the
neighborhood D increases on the same order of magnitude as system size.
But the only network that provides such connectivity is the random graph
because its average connectivity is proportional to N. Actually, any net-
work structure that keeps the relative communication range D/N constant
under an enlargement of system size would overcome the problem of N-
dependence, but among the prototypical structures that we consider it is
only the random network that accomplishes this feat within its generating
mechanism, i.e. when keeping the parameters of the respective generating
mechanism fixed under an enlargement of system size. Hence we would
expect that the regular, small-world, and scale-free networks cannot over-
come the problem of N-dependence.16 That, however, would imply that
network characteristics other than the mean degree—like the diameter, the
average path length, various clustering measures, or any other network
features one could think of—have no influence on the model’s ability to
replicate the stylized facts independently of system size.

4 Model Implementation on Networks

Once we want to implement the stochastic herding model on various net-
work structures, the immediate question becomes how to formulate micro-
scopic transition probabilities for individual agents in the network that are
consistent with the mesoscopic transition rates (14) and (15). In particular,
we have to fix a time scale, to ensure that the transition probabilities are
between zero and unity, and we have to choose values for the idiosyncratic
parameter a and the herding intensity λ.

contribution of links from the starting m0 nodes, while the factor of two shows up because
we consider bi-directional networks, also showing that average connectivity is on the order
of 2m for large N.

16The theoretical prediction that a scale-free graph is not capable of overcoming the prob-
lem of N-dependence is not entirely trivial, because some nodes (the “hubs”) have a con-
nectivity that is on the same order of magnitude as system size.
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The mean-field transition rates (14) and (15) describe the mesoscopic
evolution of the system in the sense that during a time interval of length ∆t
we observe at most one switch between the two states, including the pos-
sibility of observing no switch on an aggregate level. This implies that all
agents act on the same time scale, excluding behavioral heterogeneity in in-
vestment horizons among individual agents by assumption. Moving from
mesoscopic transition rates per unit time ∆t to microscopic transition prob-
abilities therefore necessitates a choice of ∆t that preserves this assumption.

At the individual level, contrary to the mesoscopic description of the
system, an agent can either stay in its current state, or switch to the other
state. An obvious way to implement individual transition probabilities,
analogously to the transition rates (8) and (9), would be to posit the transi-
tion probability pi = (a + λn(i, j))∆t for switching states on the individual
level, where n(i, j) counts the number of i’s neighbors that are in the oppo-
site state. Since we need to ensure that ∀i 0 ≤ pi ≤ 1, and that all agents
act on the same time scale, this implies that ∆t ≤ 1/(a + λnmax(i, j)), where
nmax(i, j) designates the number of neighbors of the node(s) with the high-
est degree in the network. Since an agent can be connected at most to all
other agents, we simply implemented the following transition probability
for switching states on the individual level

pi =
a + λn(i, j)

a + λN
, (18)

and correspondingly the probability to remain in the current state is 0 ≤
1− pi ≤ 1. We keep track of the microscopic configuration of the system
by assigning a numerical value of unity if an agent is in state X, and a
value of zero if it is in state Y. By convention, z will measure the concentra-
tion of agents in state X. For a given system size and network structure, we
sequentially update the state of each agent according to the transition prob-
abilities (18). One “sweep” of the system then corresponds to one round of
sequential updating of all agents in the system, thus requiring N steps per
sweep.

A straightforward way to assess the accuracy of the mean-field approx-
imation for the various network structures is to compare the simulated em-
pirical density of z with the theoretically predicted density given in (16).
First, we constructed regular networks with D = 10 neighbors per node,
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Figure 3: The empirical densities of the intensive variable z = n/N, which
measures the concentration of agents in one of the two possible states, are in
agreement with the mean-field prediction of a symmetric beta distribution
B(z; ε, ε), irrespective of the underlying network structure. We parameter-
ized the simulations in such a way that the values of ε (from top to bottom)
are 0.5, 1, and 2, respectively.
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which we also use as a starting point for constructing small-world net-
works. In the generating mechanism for scale-free networks, we chose
2m = 10 = D for consistency. The random networks were constructed
with a linking probability of p = 0.1. Then we simulated the model with
these network parameterizations, and set the behavioral parameters a, λ

in the microscopic transition rates in a way that should respectively yield
bimodal, uniform, and unimodal Beta densities if the mean-field approxi-
mation provides a good description of the generic herding model.17 Casual
inspection of Figure 3, where we plotted the empirical density after 100,000
sweeps for each of the network structures and the three parameterizations
of ε = aN/λD, indeed confirms that the mean-field approximation per-
forms very well for the different network structures.

A central issue of our investigation concerns the mean-field prediction
that regular, small-world, and scale-free networks are not capable of over-
coming the problem of N-dependence. In order to check the validity of
the mean-field prediction, we start with N = 50 agents and keep enlarging
the respective network with a step-size of ∆N = 500 for each of the four
network structures. Without loss of generality, we now parameterize the
model with a = 0.5 and λ = 1 in the transitions (18). We compute the
variance of z after 300,000 sweeps for each system size, and report the re-
sults in Figure 4. Given our parameterization of the average connectivity
D = 2m = 10 for the regular, small-world, and scale-free structures, the
mean-field approach predicts that Var[z] = 1/(0.4N + 4). While the pre-
dictions of the mean-field approximation perform reasonably well for all
network structures, we detect a slight deviation for the regular and small-
world structures when plotting the inverse variance of z, shown in the inset
of Figure 4. The inverse variance scales linearly none the less, and ordi-
nary least-squares regressions yield a slope of 0.512 (standard error 0.031)
for the regular network, and a slope of 0.507 (standard error 0.046) for the
small-world network. The estimated slope for the variance of the scale-free
network is 0.402 (standard error 0.022), consistent with the predicted slope.
An OLS fitting of the random network data returns a slope that is not sig-
nificantly different from zero, and the intercept is 46.81 (standard deviation
9.07), in line with the theoretical prediction of zero slope and an intercept

17Notice that there is nothing peculiar about the parameterizations we chose; we tried
several other parameterizations that returned the same distributional characteristics.
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Figure 4: Simulation of the probabilistic herding model on various network
structures shows that the variance of z is in line with the theoretical predic-
tions of the mean-field approximation. The inset shows the inverse vari-
ance of z, which reveals a slight deviation from the mean-field approxi-
mation for regular and small-world networks, where we observe a steeper
slope than the predicted one. Only the random network provides a vari-
ance of z that is constant, and is therefore able to preserve the stylized facts
of financial returns in the herding model for any system size.

of 44 for the inverse variance of z.18

On the one hand, our simulations confirm that the mean-field approach
provides a useful description of the probabilistic herding model, which is
encouraging. On the other hand, however, the simulations also confirm
that for constant behavioral parameters a and λ, the relative communica-
tion range D/N is really all that matters, and consequently the random
network would appear to be the only structure capable of overcoming the
problem of N-dependence in the herding model.

18For convenient plotting, we multiplied the variance of z by one over three, and the
inverse variance by a factor of three in Figure 4.
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5 Individual Heterogeneity

In the microscopic derivation of the transition rates (14) and (15), we as-
sumed that agents exhibit the same sensitivity to news arrivals and an iden-
tical herding propensity. Intuitively, the mean-field approach would seem
to allow for individual heterogeneity in the behavioral parameters, simply
by replacing a, λ with ai, λi in the microscopic transition rates (8) and (9)
and, following the logic of the mean-field approach, with their respective
mean values 〈a〉 , 〈λ〉 in (14) and (15). Correspondingly, the model imple-
mentation with heterogeneous agents leads to the transition probabilities

pi =
ai + λin(i, j)

amax + λmax N
, (19)

which we simulated with 100,000 sweeps on random networks of size N =
1000. First, we varied ai and λi by drawing randomly from Gaussian dis-
tributions with positive means. The resulting equilibrium distributions of
z exhibited the same features as the ones shown in Figure 3. Second, in
order to check if the mean-field would allow for more heterogeneity than
in the case of a (sharply) peaked distribution, we chose a, λ from uniform
distributions with respective supports [a, ā] and [λ, λ̄], where we detected
deviations from the predicted equilibrium distributions. Drawing a from
a uniform with a = 0 while keeping λ fixed, on the other hand, produced
distributions that were in agreement with the mean-field prediction. Then
we checked whether the presence of agents that are not herding, i.e. λi = 0
for some i, is responsible for the observed deviations by drawing λi uni-
formly at random with strictly positive λ. The simulations confirmed that
the mean-field approximation again predicts the equilibrium distribution
of the heterogeneous agent system as long as all agents have a strictly positive
herding propensity.

The above findings suggest that the herding model is fundamentally
influenced by the presence of agents that are not herding. On a purely
topological level, this corresponds to a situation where certain links in the
network become unidirectional, as illustrated in Figure 5. The fact that al-
ready a small fraction of independently acting agents leads to a large re-
duction in the variance of z is rather surprising, and casts doubts on the
robustness of the model against this peculiar scenario. Basically, there are
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Figure 5: Change of network topology in the presence of agents that are not
herding. The left panel is a stylized representation of the bidirectional na-
ture of interaction in the regular herding model, where each agents consid-
ers the state of its neighbors. The right panel illustrates that the presence of
agents that are not prone to herding (λi = 0), designated by I in the graph,
leads to an unidirectional flow of information. Because the independently
acting agent does not care about the states of its neighbors any longer, the
information transmission among herding agents becomes more difficult, or
even impossible.

two possibilities why the simulated variance of z could differ substantially
from the mean-field prediction. It could either be due to the presence of
independently acting agents itself, or it could be due to changes in net-
work topology. In order to disentangle and quantify both effects on the
variance of z, we start by considering a benchmark case in which N agents
with a strictly positive herding propensity are connected through a random
network, and M agents are acting independently at random outside of the
network. If the reduction in the variance of z is the same for the benchmark
case and the case where independently acting agents are still part of the
network, we would conclude that the variance reduction is simply due to
the presence of independent agents.

Let q = M/K denote the fraction of independently acting agents in the
system, where K = M + N stands for the total size of the system, and let
n + m = k denote the respective occupation numbers of agents in state X.
Then the system-wide concentration of agents in the state is given by

z =
k
K

=
N
K

n
N

+
M
K

m
M

= (1− q)zH + qzI . (20)

Since the actions of the N agents in the core and the M agents in the periphery
are independent of each other, the variance of z can simply be decomposed
as,

Var[z] = (1− q)2Var[zH ] + q2Var[zI ] , (21)
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Figure 6: Simulation results in the presence of independently acting agents.
In comparison to the core-periphery case, the variance reduction is much
larger when independently acting agents are part of the network. The vari-
ance reduction is already very pronounced for a small fraction of indepen-
dent agents on the network, illustrated in more detail in the inset.

where Var[zH ] has already been established in (17) and Var[zI ] is the vari-
ance of the noisy periphery,19 yielding

Var[z] = (1− q)2
(

8a
λp

+ 4
)−1

+
q

4K
. (22)

Numerical simulations, averaged over 100,000 sweeps for each q, confirm
that (22) is a valid description of the benchmark case, shown in Figure 6.
In the second case, the presence of independent agents on the network in-
fluences the transition rates of agents that have a strictly positive herding
propensity. Although an individual agent is not aware of whether its neigh-
bors are herding or acting independently, we can employ exactly the same

19Since the M agents in the periphery are independent, and with equal probability in
state 0 or 1, we have E[m] = E[∑M

i=1 si] = M/2, and Var[m] = E[m2]− E[m]2 = ME[m2]−
M(M− 1)E[m]2 − M2/4 = M/4. Therefore Var[zI ] = Var[m]/M2 = 1/4M.
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mean-field reasoning as in Section 2.3, such that (13) now transforms to

〈
π+

i

〉
= a + b

(
DI

m
M

+ DH
n
N

)
, (23)

where DI = qpK and DH = (1− q)pK are the respective average numbers
of neighbors that are herding or acting independently.20 We know from
the Ehrenfest model that the concentration of independently acting agents
will fluctuate around one half; summing over the agents that are prone to
herding therefore leaves us with the modified transition rates

π+ = (N − n) [A + λp n] , (24)

π− = n [A + λp (N − n)] , (25)

showing that the impact of independently acting agents in the network can
be absorbed into the idiosyncratic parameter of the transition rates,

A = a +
λqpK

2
,

where the factor of 1/2 comes from the Ehrenfest model. Since the func-
tional form of the modified transition rates (24) and (25) remains the same
as in (14) and (15), the equilibrium distribution of zH still corresponds
to (16), while the parameter of the distribution now obeys

ε =
a

λp
+

qK
2

, (26)

and correspondingly the variance of zH is

Var[zH ] =
(

8a
λp

+ 4 + 4qK
)−1

. (27)

Unfortunately, the variance of z = (1− q)zH + qzI can no longer be calcu-
lated according to (21) because zH is now correlated with zI , so Var[z] =
(1− q)2Var[zH ] + q2Var[zI ] + 2(1− q)q(E[zHzI ]− E[zH ]E[zI ]), and it is not
obvious how to determine E[zHzI ] analytically. In a rough first approxi-
mation for small q, we could neglect the positive correlation between zH

and zI , i.e. Var[z | q � 1] ≈ Var[zH ], and the inset of Figure 6 shows that

20From the conceptual point of view of the mean-field approximation, we could equally
well replace a and λ with 〈a〉 and〈λ〉, which we refrain from for notational simplicity.
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the pronounced variance reduction is reasonably well captured by (27), at
least qualitatively, for small fractions of independently acting agents on the
network.21

Therefore, the major difference between the two cases concerns the scale
in the reduction of the system-wide variance. If K is large, the presence of
only a few independently acting agents on the network is already sufficient
to considerably decrease the extent of variations in the aggregate state of
the system.22 Conversely, from our point of view, it is a non-trivial feature
of the benchmark case that the variance of z will be dominated by a rela-
tively small fraction of agents that are herding. Letting c = 4 + 8a/λp, we
see from (22) that the variance of z will be dominated by the contribution
of agents prone to herding if N >

√
qKc/2 =

√
Mc/2. So suppose that q

is close to unity and that K is on the order of 106 agents. Then N on the
order of 103 already ensures that the major contribution to the variance of
the system comes from the core of agents that are herding.23 Hence it ob-
viously makes a big difference for the aggregate properties of the herding
model whether independently acting agents are part of the network or not.

If we consider both of the above cases in terms of a core (of agents
that are prone to herding) and a periphery (of agents that are acting in-
dependently), the topological interpretation of the case where independent
agents are part of the network corresponds to unidirectional links from the
periphery to the core. But what about the opposite case, where unidirec-
tional links emanate from the core to the periphery, i.e. when the agents in
the periphery are not acting independently at all (aj = 0 for all j = 1, . . . , M
agents in the periphery), but instead are herding with certainty on the state
of an agent that they are linked to in the core? The simplest case would be
to imagine that each agent in the core is linked to a constant number F of

21The observed deviations should be due to the positive correlation between zH and zI .
We removed fluctuations in the states of independent agents by fixing half of them in one
of the two states and half in the other, thereby preserving the mean value of the case with
fluctuations, yet removing the correlation in zH and zI . Our simulations confirmed that the
results correspond exactly to the naive prediction in this case.

22We parameterized our simulations with a = 0.5, λ = 1, p = 0.3 and K = 1000 agents,
and observe a reduction of the variance of z by a factor of two for q=1% and by a factor of
seven for q=5%.

23Sticking with this numerical example, let us further suppose that p ≈ 0.1; then the
one thousand agents in the core would need to be connected on average to one hundred
neighbors (which is not an entirely unrealistic scenario in some professional contexts) in
order to dominate the variance of a system that is composed of a million agents.
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followers such that F N = M, with a total of M + N agents in the system.
Then the concentration of agents in state X is

z =
Fn + n
M + N

=
n(F + 1)
N(F + 1)

= zH, (28)

which amounts to a mere relabelling of variables. Nevertheless, such a sim-
ple hierarchical structure that consists of opinion leaders on the one hand,
who perpetually process new information but are prone to herding among
themselves, and a possibly huge number of followers on the other, is capa-
ble of overcoming the problem of N-dependence for any parameterization
of and any network structure in the core. This opens up new venues for
future research in the direction of hierarchical network structures, for in-
stance by considering more general cases in which opinion leaders are not
connected to a constant number of followers, but instead to an essentially
random number drawn from arbitrary distributions. Another potentially
interesting extension in this line of research would be to consider several
hierarchical “layers” instead of just two, allowing for different degrees of
behavioral heterogeneity in each layer.

Although the assumption that each opinion leader has the same num-
ber of followers is overly simplistic, the idea of a hierarchical structure in
opinion formation might actually not be too far off the mark in light of some
recent empirical evidence on herd behavior among fund managers: Hong
et al. (2005) document that money managers who work in close geograph-
ical proximity are prone to what they term “word-of-mouth” effects. In
our simplistic scenario, the money managers would correspond to agents
in the core, while individuals who invest in the various funds would rep-
resent followers in the periphery.

6 Conclusions

The probabilistic herding model that underlies our investigation incorpo-
rates individual heterogeneity as well as a tendency for social interaction,
but it is not immune to an enlargement of system size, which we labeled
as the N-dependence effect. Our derivation of microscopic foundations
for the herding model reflects favorably on the mean-field approach as a
formal way of economic modelling in the presence of individual hetero-
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geneity, and it illustrates the crucial impact that structural heterogeneity
has on the distributional outcome of the model. Yet we have shown that
the random network, which is hardly a realistic way of organizing eco-
nomic relationships, is the only prototypical network structure capable of
overcoming the problem of N-dependence if we restrict the description of
network characteristics to homogeneous links and nodes.

The structurally more heterogeneous and rather diametrically opposed
cases that we encountered, where some agents are not herding at all, or
where a vast majority of simpletons follows their respective opinion lead-
ers, suggest that structural heterogeneity matters a great deal for the macro-
scopic properties of the probabilistic herding model. While we have demon-
strated that the presence of very few independently acting agents in the
network is sufficient to destroy correlations in the model, we have also
hinted at the possibility that a hierarchical structure could overcome the
problem of N-dependence irrespective of the network topology that con-
nects the core of opinion leaders. It does not appear entirely unreasonable
to us at this point that hierarchical principles of organization in complex
market economies, such as the pervasive presence of institutional relation-
ships and constraints, might play an important role in explaining how the
problem of N-dependence could be overcome in a socially relevant and
economically plausible network structure.

Finally, from a complex systems perspective, the probabilistic herding
model warrants some interest beyond the context of financial markets. Ac-
cording to the central limit theorem, the sum of independent (or weakly de-
pendent) random variables with finite means and variances will converge
to a Gaussian distribution. Yet a plethora of social and economic phenom-
ena are not distributed normally but instead show other distributional reg-
ularities that are robust in space and time. The power-law distribution of fi-
nancial returns, which originally motivated the generic herding model that
we have studied in the present paper, is just one economic example that
comes to mind.24 Since it is reasonable to exclude infinite means or vari-
ances in most descriptions of the constituent units of an economic system,
we believe that correlations among these units could explain the observed

24Other economic phenomena that do not exhibit Gaussian characteristics include the
distribution of firm and city sizes, the distribution of personal income and wealth, and the
distribution of firm growth rates and growth rates in national income, which have been
established in the economic literature at different points during the past century.
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deviations from normality, and it is not a far stretch of the imagination to
consider agent interaction as the source of correlations in a social context.
But the probabilistic herding model illustrates very clearly that interaction
by itself is not sufficient to overcome the problem of N-dependence, i.e.
the Gaussian distributional properties stemming from the central limit the-
orem. If we consider our results from this more general perspective, the
question becomes whether structural factors in a network of agents could
be capable of providing enough interaction to break away from the distri-
butional implications of the central limit theorem.
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Appendix

The derivation of the Fokker-Planck equation associated with the transi-
tion rates (14) and (15) follows the exposition in Alfarano et al. (2006), who
consider the intensive variable η = 2n/N − 1. We focus on the concentra-
tion of agents in state X, i.e. z = n/N, that we have used throughout the
text; since both, η and z are intensive variables, the results will be qualita-
tively the same. Assuming that N is large enough, the intensive variable
z can be treated as a continuous quantity. Given the mesoscopic transition
rates (3) and (4), the mean-field approximation in (14) and (15) implies that
b = λD/N, which we will use for notational convenience. The relation
between the transition rates for n and z is

π±
n = N2π±

z ,

where the transition rates (3) and (4) are now functions of z,25

π+
z = π(z → z + 1/N) = (1− z)

( a
N

+ b z
)

, (A1)

π−
z = π(z → z− 1/N) = z

( a
N

+ b(1− z)
)

. (A2)

The transition probabilities associated with (3) and (4), or (A1) and (A2),
are ω± = π±∆t; they define a Markovian stochastic process that belongs
to the class of so-called non-linear “one-step” processes. The probabilities
P(n, t) to have n agents in state X at time t obey the Master equation, which
gives the probability flux between states

∂

∂t
P(n, t) = ∑

m
[πn,mP(m, t)− πm,nP(n, t)] , (A3)

25Since we are merely relabeling events, the probabilities are invariant under a transfor-
mation from n to z, i.e. P(n) = P(z).
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with πn,m = ωn,m
∆t designating the transition rates from states m to states n.

In the limit ∆t → 0, multiple jumps occur with probability zero, so that one
only has to consider jumps to neighboring states, i.e. m = n± 1. Replacing
n by the intensive variable z, and switching from discrete probabilities to
the probability density defined as the limit p(z, t) = lim∆z→0 P(z, t)/∆z, we
can derive a Fokker-Planck equation for the time change of the probability
density p(z, t). Adopting the notation of Van Kampen (1997), we intro-
duce the “step operators” E and E−1 that act on an arbitrary function f (n),
respectively increasing or decreasing its integer argument n by one unit,
i.e. E[ f (n)] = f (n + 1) and E−1[ f (n)] = f (n − 1). With the aid of these
operators, the Master equation for the one-step process can be compactly
rewritten in terms of the variable z,

∂

∂t
p(z) = N2

[
(E− 1)[π−

z p(z)] + (E−1 − 1)[π+
z p(z)]

]
, (A4)

where we omitted the obvious time dependence of p(z). Since the step
operator acts on continuous functions in the limiting case, we can use the
Taylor expansion

E[ f (z)] = f (z + ∆z) = f (z) + ∆z
d
dz

f (z) +
1
2

∆z2 d2

dz2 f (z) + o(∆z2), (A5)

where ∆z = 1/N. Thus the step operator can be approximated by

E = 1 + ∆z
∂

∂z
+

1
2

∆z2 ∂2

∂z2 + o(∆z2). (A6)

The expansion for the operator E−1 is obtained from the previous formula
by replacing ∆z with −∆z. Using the expansion (A6) for E and E−1 up to
the second order, we end up with

∂

∂t
p(z) = N2

(
−∆z

∂

∂z
[(π+

z − π−
z )p(z)] +

1
2

∆z2 ∂2

∂z2 [(π+
z + π−

z )p(z)]
)

.

The factor N2 cancels out, and we obtain the Fokker-Planck equation

∂

∂t
p(z) = − ∂

∂z
A(z)p(z) +

1
2

∂2

∂z2 D(z)p(z), (A7)
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where the drift is

A(z) = N (π+
z − π−

z ) = a− 2az = 2a
(

1
2
− z

)
, (A8)

and the diffusion is

D(z) = π+
z + π−

z = 2(1− z)bz +
a
N

. (A9)

To determine the equilibrium distribution pe(z) that obeys ∂
∂t p(z) = 0, we

employ the well-known formula (see, e.g., Van Kampen, 1997)

pe(z) =
k

D(z)
exp

(∫ z 2A(z′)
D(z′)

dz′
)

. (A10)

Letting ε = a/b, and neglecting the “granular” term a/N in the diffusion
under the assumption that N is sufficiently large, the solution of the inte-
gral is ε ln(z − z2), and therefore the equilibrium distribution is pe(z) =
k[(z(1 − z))ε−1]. The constant follows from the normalization of the den-
sity,

1
k

=
∫ 1

0
zε−1(1− z)ε−1dz = B(ε, ε),

where B(ε, ε) is Euler’s beta function. Hence we see that the equilibrium
distribution is given by equation (16) in the main text.
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