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Abstract: Wemake three contributions to using the variance ratio statistic at large horizons.

Allowing for general heteroscedasticity in the data, we obtain the asymptotic distribution of the

statistic when the horizon k is increasing with the sample size n but at a slower rate so that

k/n → 0. The test is shown to be consistent against a variety of relevant mean reverting

alternatives when k/n → 0. This is in contrast to the case when k/n → δ > 0, where the

statistic has been recently shown to be inconsistent against such alternatives. Secondly, we

provide and justify a simple power transformation of the statistic which yields almost perfectly

normally distributed statistics in finite samples, solving the well known right skewness problem.

Thirdly, we provide a more powerful way of pooling information from different horizons to test

for mean reverting alternatives. Monte Carlo simulations illustrate the theoretical improvements

provided.
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1 Introduction

The variance ratio (V R) statistic is one of the popular tests that has been employed in the

literature to test the random walk hypothesis for financial and economic data. The statistic is

obtained as the sample variance of k-period differences, xt−xt−k, of the time series xt, divided by

k times the sample variance of the first difference, xt−xt−1, for some integer k. The V R statistic

has been found by several authors (see, for example, Faust (1992)) to be particularly powerful

when testing against mean reverting alternatives to the random walk model, particularly when

k is large. However, the practical use of the statistic has been impeded by the fact that the

asymptotic theory provides a poor approximation to the small sample distribution of the V R

statistic. More specifically, rather than being normally distributed as the theory states, the

statistics are severely biased and right skewed for large k, (see Lo and MacKinlay, 1989) which

makes application of the statistic problematic. To circumvent this problem, Richardson and

Stock (1989) derived the asymptotic distribution of the V R statistic under the random walk

null, assuming that both k and n increase to infinity but in such a way that k/n converges to a

positive constant δ which is strictly less than 1. They showed that the V R statistic, without any

normalization, converges to a functional of Brownian motion. Through Monte Carlo simulations,

they demonstrated that this new distribution provides a far more robust approximation to

the small sample distribution of the V R statistic. However, Deo and Richardson (2003) have

recently shown that the V R statistic is inconsistent against an important class of mean reverting

alternatives under this framework. Thus, though the V R statistic would have vastly improved

size properties under the null hypothesis of a random walk if k were chosen to be a fraction of

the sample size n, it would fail to detect such alternatives with probability approaching 1 as the

sample size increased. Currently there is no proposal in the literature which provides a way of
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using the V R statistic without compromising either its finite sample size properties or its large

sample power properties.

With this backdrop, we provide several contributions to the literature. First, it is intuitively

appealing to maintain the assumption that the multiperiod horizon k is large, not least because

longer horizons have a better chance of capturing mean reversion in the series. Thus, under

general conditions which allow for conditional heteroscedasticity in the innovations, we study

the limiting behaviour of the V R statistic for large k but now under the restriction that k/n→ 0.

Specifically, we show that when k →∞, n→∞ but k/n→ 0, then under the null of a random

walk, the V R statistic is asymptotically normal with a mean of 1. The requirement that k is

large is important since, as stated above, previous authors have shown that large values of k

are to be preferred when testing for mean reversion. Furthermore, we prove that under this

alternative distribution theory, the test is consistent, in that the probability of it detecting a

wide variety of mean reversion alternatives approaches one as the sample size n increases.

Unfortunately, this new distribution does not solve the well documented skewness problem

of the V R statistic’s sampling distribution. The second contribution of this paper is to propose

a method which is shown to improve the asymptotic normal approximation to the distribution of

the statistic by an order of magnitude in finite samples, via a simple power transformation of the

V R statistic. Monte Carlo simulations confirm the theoretical assertion of the vast improvement

of the normal approximation afforded by the power transformation. Our Monte Carlo simulations

also show that this improvement in the normal approximation leads to significant gains in power

against mean reverting alternatives.

The third contribution of this paper is to implement a new joint test which uses V R statistics

computed at different differencing periods to test the random walk null hypothesis. The joint test
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statistic which has been studied so far in the literature is the Wald type chi-square test statistic

which jointly tests whether a sequence of population variance ratios at several differencing

periods all equal 1. However, this test is blind to the inherent one sided nature of a mean

reverting alternative hypothesis, since under such an alternative all the population variance ratios

should be less than 1. See Lo and MacKinlay(1989). In this paper, we adapt a test procedure

proposed by Follmann (1996) for testing against one sided alternatives for the mean vector of

a multivariate normal distribution. Our Monte Carlo simulations show that this adapted test

in combination with the power transformation results in significant power gains over the usual

chi-square test when testing for mean reverting alternatives, while retaining the appropriate size.

The paper is organized as follows. In section 2, we define the V R statistic and provide its

asymptotic distribution under conditional heteroscedasticity for large k such that k−1+k/n→ 0.

We also demonstrate in that section that in this framework the V R statistic is consistent against

a wide range of alternatives. In section 3, we provide an alternative equivalent representation of

the V R statistic which motivates the power transformation that provides a better approximation

to the normal distribution. A new joint test which combines information from several differencing

periods and is useful against one sided alternatives is also introduced. Section 4 presents Monte

Carlo results for the various statistics that we have proposed under two different null hypotheses

and three alternative hypotheses. All technical proofs are relegated to the Appendix.

2 Asymptotic Theory for the Variance Ratio Statistic

Given n+1 observations x0, x1, ..., xn of a time series, the variance ratio statistic with a positive

integer k(< n) as differencing period is defined as

V R (k) = σ̂2
b (k) /σ̂

2
a,
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where

σ̂2
b (k) =

n

k(n− k + 1)(n− k)

n∑

t=k

(xt − xt−k − kµ̂)2 ,

σ̂2
a =

1

n− 1

n∑

t=1

(xt − xt−1 − µ̂)2

and

µ̂ = n−1
n∑

t=1

(xt − xt−1) .

In the usual fixed k asymptotic treatment, under the null hypothesis that the {xt} follow a

random walk with possible drift, given by

xt = µ+ xt−1 + εt (1)

where µ is a real number and {εt} is a sequence of zero mean independent random variables, it

is possible to show (see, for example, Lo and Mackinlay (1988)) that

√
n (V R (k)− 1)

D→ N
(
0, σ2

k

)
,

where σ2
k is some simple function of k. This result extends to the case where the {εt} are a

martingale difference series with conditional heteroscedasticity (see, for example, Campbell, Lo

and MacKinlay 1997), though the variance σ2
k has to be adjusted to account for the conditional

heteroscedasticity. However, the asymptotic behaviour of the variance ratio statistic for large

values of k, such that k−1 + k/n → 0, is not known when the innovations εt are conditionally

heteroscedastic. In this section, we provide precisely this asymptotic distribution, in obtaining

which the following assumptions on the series of innovations {εt} are made:

(A1) {εt} is ergodic and E (εt|Ft−1) = 0 for all t, where Ft is a sigma field, εt is Ft measurable

and Ft−1 ⊂ Ft for all t.

(A2) E
(
ε2t
)
= σ2 <∞.
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(A3) For any integer q, 2 ≤ q ≤ 8, and for q non-negative integers si, E
(
Πq
i=1ε

si

ti

)
= 0 when

at least one si is exactly one and
∑q

i=1 si ≤ 8.

(A4) For any integer r, 2 ≤ r ≤ 4, and for r non-negative integers si, E
(
Πr
i=1ε

si

ti
|Ft
)
= 0

when at least one si is exactly one and
∑r

i=1 si ≤ 4, for all t < ti, i = 1, 2, 3, 4.

(A5) lim
n→∞

V ar
[

E
(

ε2t+nε
2
t+n+j |Ft

)]

= 0 uniformly in j for every j > 0.

(A6) lim
n→∞

E
(
ε2t ε

2
t−n

)
= σ4.

Conditions (A1) - (A6) allow the innovations εt to be a martingale difference sequence

with conditional heteroscedasticity. As a matter of fact, lemmas 1 and 2 below show that the

stochastic volatility model (see Shephard 1996) and the GARCH model (Bollerslev 1986), which

are two of the most popular models in the literature for conditional heteroscedastic martingale

differences, satisfy conditions (A1) - (A6). Conditions (A3) - (A4) state that the series {εt} shows

product moment behaviour similar to that of an independent white noise process. Conditions

(A5) - (A6) state that εt and εt−n are roughly independent for large lags n.

The following two lemmas assert that two major models of conditionally heteroscedastic

martingale differences, viz. the stochastic volatility model and the generalized autoregressive

conditionally heteroscedastic (GARCH) model, satisfy the assumptions (A1)-(A6). The proofs

of the lemmas are in the Technical Appendix at the end.

Lemma 1 Let the series {εt} be generated by the stochastic volatility model

εt = vt exp (ht) , (2)

where {vt} is an independent
(
0, σ2

v

)
stationary series, {ht} is a stationary zero mean Gaussian

series and {vt} and {ht} are independent. Assume that E
(
v8
t

)
< ∞. Then {εt} satisfies the
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assumptions (A1)-(A6).

See Shephard (1996) for a discussion of the model (2) and its applications.

Our next lemma asserts that under some conditions the GARCH(1,1) family of models

also satisfies Condition A. We have restricted attention to the GARCH(1,1) case for simplicity

of exposition. We conjecture that conditions (A1) - (A6) will continue to hold for a general

GARCH(p, q) model, the proof following along similar lines by referring to the work of Bougerol

and Picard (1992).

Lemma 2 Let the series {εt} be a GARCH(1,1) process given by

εt = σtvt, (3)

where σ2
t = ω+ βσ2

t−1 +αε2t−1 and {vt} is a sequence of independent standard normal variables.

Let ω > 0, β ≥ 0 and α > 0. Furthermore, let α and β be such that E
{
loge

(
β + αv2

t

)}
< 0 and

E
{(
β + αv2

t

)4
}

< 1. Then {εt} satisfies the assumptions (A1)-(A6).

The condition E
{
loge

(
β + αv2

t

)}
< 0 in Lemma 2 is satisfied by any pair (α, β) in the set

S = {(α, β) : α+ β < 1} (See Nelson, 1990) while the condition E
{(
β + αv2

t

)4
}

< 1 will be

satisfied by a non-empty subset of S (see Bollerslev, 1986).

We now state our result on the limiting distribution of the V R statistic in the following

theorem.

Theorem 3 Let the series {xt} satisfy equation (1) and assume that conditions (A1)-(A6) hold.

For a fixed positive integer s, let k1 < k2 < ... < ks < n be positive integers such that k1 → ∞,
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ksn
−1 → 0 and kik

−1
j → aij for 1 ≤ i ≤ j ≤ s. Let Dn be an s× s diagonal matrix with diagonal

elements dii =
√

n/ki for i = 1, 2, ..., s. Then

Vn
D≈ N(1, D−1

n ΣD
−1
n ),

where Vn = (V R (k1) , V R (k2) , ..., V R (ks))
′ , 1 is a s × 1 vector of ones and Σ =(σij) is an

s× s matrix such that σij = σ44a
1/2
ij (3− aij) /6.

Note that the limiting distribution of the V R statistic is free of nuisance parameters and is

identical to that obtained when the εt are assumed to be independent. See Theorem 9.4.1 of

Anderson (1994). Furthermore, the V R statistics computed at different differencing periods ki,

are asymptotically independent when kik
−1
j → 0 for i < j. Both of these results are in contrast

to those obtained when the differencing periods are fixed and not allowed to increase to infinity

with the sample size. See Lo and MacKinlay (1989). It is interesting to note that the limiting

distribution of the V R statistic is free of nuisance parameters depending on higher moments

which might arise due to conditional heteroscedasticity. This is quite different from the behaviour

of other tests of the random walk hypothesis in the presence of conditional heteroscedasticity.

See Deo (2000).

We have established the asymptotic distribution of the V R statistic under the null hypothesis

of a random walk with conditional heteroscedasticity when k →∞, n→∞ and k/n→ 0. The

next theorem states that under this framework, the V R statistic also provides a consistent test

against a large class of mean reverting alternatives.

Theorem 4 Let {et} and {ut} be two series of zero mean independent processes with finite

fourth moments and which are independent of each other. Define the processes {yt} and {zt} by

yt =
∑∞

j=0 ajut−j and zt =
∑∞

j=0 bjet−j , where |aj | ≤ Cλj and |bj | ≤ Cλj for some constant C
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and 0 < λ < 1. Let rt = µ+ rt−1 + zt and xt = rt + yt. If k →∞, n→∞ and k/n→ 0, then

V R (k)
P→
σ2
z + 2

∑∞
j=1 γz (j)

σ2
z + 2σ2

y − 2γy (1)
.,

where σ2
z and σ2

y are the variances of zt and yt respectively, while γz (j) and γy (j) are the

respective autocovariances at lag j.

Theorem 4 shows that the power properties of the V R statistic under the k/n→ 0 framework

are markedly different from those when k/n→ δ > 0, in which case Deo and Richardson (2003)

have shown the V R statistic to be inconsistent against the alternatives considered in Theorem

4.

Though the V R statistic has an asymptotic normal distribution when k/n→ 0, it is obvious

that in finite samples the normal distribution may not provide a good approximation since the

statistic is a quadratic form and hence must be right skewed. A common method which has a

long history in Statistics to reduce skewness and induce normality in such random variables is

to consider power transformations. The obvious question, naturally, is which power one should

use and we address this question for the V R statistic in the next section

3 Power Transformations of the Variance Ratio Statistic

In attempting to address the skewness of the finite sample distribution of the V R statistic, it

helps to express the V R statistic in an alternative form, which lends more insight into how the

normal distribution approximation can be improved. Inspection of the proof of Theorem 3 in

the Appendix shows that

V R (k) = σ̂−2
∑

|j|≤k

(1− |j| /k) γ̂j + op

(√

k/n
)

, (4)
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where γ̂j = γ̂−j = n−1
∑n

t=j+1 εtεt−j for j ≥ 0 and

σ̂2 = (n− 1)−1
n∑

t=1

(εt − ε̄)2 = (n− 1)−1
n∑

t=1

(xt − xt−1 − µ̂)2 .

Now, using the fact that

γ̂j =

∫ 2π

0
I (λ) exp (−ijλ) dλ,

where I (λ) = (2πn)−1 |∑n
t=1 εt exp (−itλ)|

2 is the periodogram, we get from (4),

V R (k) = σ̂−2

∫ 2π

0
Wk (λ) I (λ) dλ+ op

(√

k/n
)

, (5)

where

Wk (λ) =
∑

|j|≤k

(1− |j| /k) exp (−ijλ) = k−1

{
sin (kλ/2)

sin (λ/2)

}2

.

As shown in part (i) of Lemma 7 in the Technical Appendix below, the integral in (5) can be

approximated by a discrete sum over the Fourier frequencies λj = 2πj/n with error op

(√

k/n
)

and hence we get

V R (k) =
4π

nσ̂2

[(n−1)/2]
∑

j=1

Wk (λj) I (λj) + op

(√

k/n
)

. (6)

The behaviour of V R (k) is thus dictated by the behaviour of the periodogram values I (λj) at

the Fourier frequencies. If the εt series is Gaussian, then it is well known (Brockwell and Davis,

1996) that the variables 2πI (λj) /σ
2 are exactly independent identically distributed standard

exponential random variables for all sample sizes. This behaviour of the variables 2πI (λj) /σ
2

can be shown to continue to hold asymptotically if the εt are a martingale difference sequence

with finite fourth moment, by applying the Central Limit Theorem for martingale differences

to n−1/2
∑n

t=1 εt exp (−iλjt). These observations in conjunction with (6) and the fact that

σ̂2/σ2 = 1+Op

(
n−1/2

)
imply that, in general, we may think of the V R statistic as being of the

form

V R(k) =
2

n

[(n−1)/2]
∑

j=1

Wk (λj)Vj + op

(√

k/n
)

, (7)
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Figure 1: Wk (λ) for n = 128 and k = 8 and 16.

where the Vj are independent standard exponential random variables. As we next show, this

approximate expression for the V R statistic as a weighted linear combination of independent

standard exponential random variables helps us both to understand why the normal distribution

provides a bad approximation for large k as well as to obtain an appropriate power transforma-

tion which improves the normal approximation.

It is known (see, for example, page 509 of Anderson 1994) thatWk (λ) has a peak at the origin

and then damps down to zero for values of λ further from the origin. Furthermore, the larger k

is, the more quickly Wk (λ) damps down to zero, which can be seen in Figure 1, where we plot

Wk (λ) for n = 128 and k = 8 and 16. Thus, for large values of k, we see from (7) that V R (k)

will essentially be a sum of too few independent standard exponential random variables for the

central limit theorem to properly take effect, resulting in right skewed distributions. However,

Chen and Deo (2003) have recently shown that power transformations may be gainfully applied

to random variables which have approximate linear representations of the form in (7), yielding

much better normal approximations. Using their results (See equation 9 of Chen and Deo, 2003),
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Figure 2: QQ plots of V R (k) and V Rβ (k) on 20,000 replications with n = 128, k = 16 and εt ∼ N(0, 1).

it follows that if one sets

β = 1− 2

3

(
∑[(n−1)/2]

j=1 Wk (λj)
)(
∑[(n−1)/2]

j=1 W 3
k (λj)

)

(
∑[(n−1)/2]

j=1 W 2
k (λj)

)2 , (8)

then the Gaussian distribution provides a better approximation to the distribution of V Rβ (k)

than to that of V R (k). A dramatic visual display of this improvement is shown in Figure 2 The

plot on the left is a QQ plot of 20000 replications of the V R (k) statistic, based on a sample

size of n = 128 and k =16, where the εt are i.i.d. standard normal. The extreme curvature

is indicative of the right skewness of the distribution of V R (k) . The plot on the right is a

QQ plot of V Rβ (k) , where β was computed using (8). The plot now shows a straight line as

would be expected for observations from a normal distribution. The power transformation thus

provides a very simple method of getting almost near perfect normality for the finite sample

distribution of the V R statistic. A standard Taylor series argument applied to the result of

Theorem 3 yields the asymptotic distribution of V Rβ (k) which can then be used for inference.

However, we feel that since the power transformation is motivated by the representation (6), it

might be preferable to re-define the V R statistic as well as its power transformation directly in

terms of the leading term of that expression, thus avoiding any effects of the remainder term on

its finite sample distribution. Towards that end, we now define the V R statistic based on the
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periodogram, for differencing period k, as

V Rp (k) =
1

(1− k/n)

4π

nσ̂2

[(n−1)/2]
∑

j=1

Wk (λj) I4X (λj) , (9)

where I4X (λj) = (2πn)−1 |∑n
t=1 (xt − xt−1 − µ̂) exp (−iλjt)|2 . Since the periodogram is shift

invariant at non-zero Fourier frequencies, we have I4X (λj) = I (λj) and hence the V Rp (k)

statistic as defined in (9) based on the observed data xt − xt−1 − µ̂ is identical to the first term

in (6), which is based on the unobserved εt. It should be noted that this expression for the V R

statistic, apart from the normalisation of (1− k/n)−1 which is just a finite sample correction

ensuring a unit mean, is precisely the normalised discrete periodogram average estimate of

the spectral density of a stationary process at the origin and has a long tradition in time

series analysis. See Brockwell and Davis, 1991. From (6) it follows that V Rp (k) will have the

same asymptotic distribution as that of V R (k) given in Theorem (3) and hence, by the usual

Taylor series argument, the asymptotic distribution of V Rβ
p (k) may be obtained. It is however

preferable to have an expression for the variance of V Rp (k), and thus for that of V Rβ
p (k) ,

which is accurate in finite samples and accounts for the finite sample effects of conditional

heteroscedasticity. Towards this end, we first define the quantities Cn,k = n (n− k)−1 and

τ̂j = σ̂−4 (n− j − 4)−1
n∑

t=j+1

(xt − xt−1 − µ̂)2 (xt−j − xt−j−1 − µ̂)2 ,

where τ̂j is an estimator of σ−4E
(

ε2t ε
2
t−j

)

. In part (ii) of Lemma 7, we show that the finite

sample variance covariance matrix of Vp = (V Rp (k1) , V Rp (k2) , ..., V Rp (ks))
′ with remainder

terms of order o
(
k2
s/n

2
)
is consistently estimated by

Σ̂ = L′
[
Â b̂

b̂′ d̂

]

L, (10)
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where L =(lk1
, ..., lks

) ,

l′ki
=



2Cn,ki
(1− 1/ki) , ..., 2Cn,ki

(1− (ki − 1) /ki) ,

ks−ki terms
︷ ︸︸ ︷

0, ..., 0, − (kiCn,ki
− n/ (n− 1))



 ,

(11)

Â =diag

(
n− j

n2
τ̂j +

j

n2

)

j = 1, ..., ks,

b̂ is a ks× 1 vector such that its jth element is given by
(
2 (n− j)n−3τ̂j + 2jn−3

)
and d̂=2n−2.

We are now in a position to state the following Theorem.

Theorem 5 Let the series {xt} satisfy equation (1) and assume that conditions (A1)-(A6) hold.

For a fixed positive integer s, let k1 < k2 < ... < ks < n be positive integers such that k1 → ∞,

ksn
−1 → 0 and kik

−1
j → aij for 1 ≤ i ≤ j ≤ s. For each ki, let βi be given by (8) and define

Vp,β =
(

V Rβ1

p (k1) , V R
β2

p (k2) , ..., V R
βs

p (ks)
)′
. Then

Vp,β
D≈ N(µβ , Σβ),

where the (i, j)th element of Σβ is

βiβj σ̂i,j

and the ith element of µβ is

1 + 0.5βi (βi − 1) σ̂i,i,

where σ̂i,j is the (i, j)th entry of Σ̂ given in (10).

It is trivially seen that both V Rp
P→ 1 and V Rβ

p
P→ 1 under conditions (A1)-(A6). Our next

Theorem shows that both V Rp as well as V Rβ
p also retain the consistency of the V R statistic

with regard to detecting the alternative hypotheses assumed in Theorem 4.
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Theorem 6 Let the assumptions of Theorem 4 hold. Then

V Rp (k)
P→
σ2
z + 2

∑∞
j=1 γz (j)

σ2
z + 2σ2

y − 2γy (1)
,

and

V Rβ
p (k)

P→
(

σ2
z + 2

∑∞
j=1 γz (j)

σ2
z + 2σ2

y − 2γy (1)

)β

,

where σ2
z and σ2

y are the variances of zt and yt respectively, while γz (j) and γy (j) are the

respective autocovariances at lag j

We have, so far, obtained the joint distribution of the V Rp statistic computed at various

differencing periods. These V R statistics can be combined into one single statistic by computing

the quadratic form

Qn = (Vp −E (Vp))
′Var (Vp)

−1 (Vp −E (Vp)) , (12)

where Vp = (V Rp (k1) , ..., V Rp (ks))
′ . Due to the asymptotic normality of Vp, this quadratic

form will have an asymptotic chi-squared distribution with s degrees of freedom under the null

hypothesis of a random walk. The test statistic Qn can then be used to test whether the

sequence of population variance ratios all equal one for i = 1, 2, ..., s. Since the quadratic form

Qn is always positive, rejection of the null hypothesis of a random walk occurs only in the

upper tail of the distribution of Qn. However, under the important alternative of mean reverting

processes of the kind imposed in finance applications, the population variance ratios, given by

V RP (k) ≡ V ar
(
∑k

i=1 εi

)

/ (kV ar (ε1)) are generally expected to be less than 1 for large k. For

example, it can be easily shown that for the alternative models which are the sum of permanent

and transitory components (See Poterba and Summers, 1988, and Fama and French, 1988),

V RP (k) is less than 1 for all values of k. Hence, under such mean reverting processes, the

alternative hypothesis actually has the one sided form Ha : V RP (k) < 1 for i = 1, ..., s. In such
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circumstances, ignoring the one sided nature of the alternative can lead to a loss of power of

the test. However, Follmann (1996) has proposed a test for the null hypothesis that the mean

vector of a multivariate normal random variable is zero, which has good power for alternatives

where all the elements of the mean vector are negative. Thus, Follman’s procedure would be

directly applicable in the setting where the alternative of interest is a mean reverting process.

We now adapt Follman’s procedure to test for mean reverting alternatives using V Rp statistics

as follows. In testing the null hypothesis of a random walk

H0 : V RP (k1) = ... = V RP (ks) = 1 i = 1, 2, ..., s

versus the one sided alternative

Ha : V RP (k1) < 1, ..., V RP (ks) < 1 i = 1, 2, ..., s

at the α level of significance, reject the null hypothesis if

s∑

i=1

[V Rp (ki)− 1] < 0 and Qn > χ2
s,2α, (13)

where χ2
s,2α is the upper 2α critical value of a chi-square distribution with s degrees of freedom.

From the asymptotic normality of V Rp and Theorem 2.1 of Follmann (1996), it follows that the

procedure given above has an asymptotic level of significance equal to α. An analogous procedure

can be developed using the power transformation as follows: Reject the null hypothesis if

s∑

i=1

[

V Rβi

p (ki)− 1
]

< 0 and QPn > χ2
s,2α, (14)

where

QPn = (Vp,β − µβ )
′Σ−1

β (Vp,β − µβ) , (15)

and µβ , Σβ are as in Theorem 5. The test procedure based on the power transformation would

be expected to have better size and power properties compared to the one based on the original
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V Rp statistics since the quadratic form QPn should be expected to have a distribution closer to

the expected chi-square distribution. In the next Section, we report the results from a Monte

Carlo study, which evaluates the effectiveness of the new proposals we have made.

4 Simulation Results

We carried out Monte Carlo simulations to evaluate the finite sample performance of tests based

on our modified variance ratio statistic. The size properties under the null hypothesis were

evaluated using the following two models: (i) xt = xt−1 + εt, where εt ∼ i.i.d N (0, 1) (ii)

xt = xt−1 + εt, where εt = σtvt, vt ∼ i.i.d. N (0, 1) and σ2
t = 0.0001 + 0.8575σ2

t−1 + 0.1171ε2t−1.

The parameter values for the GARCH(1,1) model in (ii) were chosen to reflect values obtained

when fitting such models to real data. The sample sizes we considered were n = 128 and 512.

For n = 128, we used k1 = 8 and k2 = 16, whereas for n = 512 we used k1 = 16 and k2 = 32.

Table 1 reports the Monte Carlo sizes of the test statistics under the Gaussian white noise case

whereas Table 2 is for the GARCH(1,1) model. The sizes are reported for the statistics V Rp and

V Rβ
p for each combination of sample size and k, where β was computed for each case using (8).

For each nominal level of significance, the sizes are reported for both the left and right tail to

demonstrate the skewness and the effect of the power transformation on it. We also report the

sizes of the quadratic tests (12), denoted in the table by Qn, based upon both the untransformed

and transformed V R statistics. Sizes for the modified intersection tests given in (13) and (14),

denoted in the table by IQn, are also shown.

It is immediately apparent from Table 1 that while the distribution of V Rp is very right

skewed, as is well known, the power transformation is able to correct it and provide near perfect

normality with sizes in each tail that are very close to nominal. Furthermore, it is also seen that
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the quadratic and the modified intersection tests based on the transformed V R statistics have

much better size properties than those using their untransformed counterparts.

To evaluate the power properties of our tests, we generated data from the mean reverting

process given by xt = rt+yt, where rt = rt−1+wt, yt = 0.96yt−1+ut and ut ∼ i.i.d. N (0, 1) and

also independent of {wt} . The errors wt were assumed to be i.i.d. N
(
0, σ2

w

)
where σ2

w = 0.5, 1

and 2. This model with the same parameter configuration was considered in Lo and MacKinlay

(1989), while Richardson and Smith (1991) used the same model but with slightly different

parameter values. Tables 3-5 report the Monte Carlo power values for this alternative model

for the three different values of σ2
w. As the value of σ2

w increases, the permanent component

dominates the process and the power of all tests decreases, as is to be expected. However,

similar behaviour of the tests is seen across all the three tables. It is clear that the individual

tests based on the transformed V R statistics provide power which is significantly superior to

that of the untransformed ones, in some cases increasing the power by as much as 10%. The

quadratic test based on the transformed statistics also provides significant power gain over that

based on the untransformed statistics. Furthermore, it is seen that the modified intersection

test, which is specially geared to take into account the uni-directional nature of mean reverting

alternatives, is able to provide a significant advantage over the quadratic test, when based on

the transformed V R statistics. The overall conclusion from the Monte Carlo study is that the

transformation of the V R statistic proposed in the paper is able to solve the problem of skewness,

providing good size properties as well as significant power gains. The modified intersection test

is also able to incorporate information from various differencing periods and yet maintain good

power.

Appendix
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Proof of Lemma 1:

Since {ht} is a Gaussian stationary series with zero mean, it can be expressed as ht =

∑∞
j=0 αjut−j , where

∑
α2
j <∞ and {ut} is a sequence of independent standard normal variables.

Furthermore, {ut} and {vt} will also be independent. Let Ft = σ (ut, ut−1,ut−2, ..., vt, vt−1,vt−2,...) .

By Lemma 3.5.8 and Theorem 3.5.8 of Stout (1974), {εt} is an ergodic sequence. Furthermore,

Lemma 1 in Deo (2000) shows that εt satisfies (A1) - (A3). Since {vt} is an independent zero

mean sequence, (A4) is trivially true. Also,

E
(
ε2t+nε

2
t+n+j |Ft

)
=

E2
(
v2
t

)
exp






2
∞∑

p=0

(αp+n + αp+n+j)ut−p






exp



2

j−1
∑

s=0

α2
s + 2

n−1∑

p=0

(αp + αp+j)
2



 .

Since
∑
α2
j <∞, to prove (A5) it suffices to show that

lim
n→∞

V ar



exp






2
∞∑

p=0

(αp+n + αp+n+j)ut−p









 = 0 (16)

uniformly in j. But

V ar



exp






2
∞∑

p=0

(αp+n + αp+n+j)ut−p











= exp






8
∞∑

p=0

(αp+n + αp+n+j)
2






− exp






4
∞∑

p=0

(αp+n + αp+n+j)
2







= exp






4
∞∑

p=0

(αp+n + αp+n+j)
2









exp






4
∞∑

p=0

(αp+n + αp+n+j)
2






− 1



 .

Since
∑∞

p=0 (αp+n + αp+n+j)
2 converges to 0 uniformly in j, (16) is established. The proof of

(A6) follows along similar lines.

Proof of Lemma 2:
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Lemma 2 in Deo (2000) proves (A1) - (A3). An argument similar to the one provided on

page 309 in the proof of Lemma 2 of Deo (2000) also establishes (A4). We now turn to proving

(A5). Iterating the expression for εt, we have

ε2t+n = v2
t+nω + v2

t+nω
n−2∑

k=1

Πk
i=1

(
αv2

t+n−i + β
)
+ v2

t+nσ
2
t+1Π

n−1
i=1

(
αv2

t+n−i + β
)

(17)

≡ T11 + T12 + T13

and

ε2t+n+j

= v2
t+n+jω + v2

t+n+jω

n+j−2
∑

k=1

Πk
i=1

(
αv2

t+n+j−i + β
)
+ v2

t+n+jσ
2
t+1Π

n−1
i=1

(
αv2

t+n+j−i + β
)

≡ T21 + T22 + T23.

Thus,

E
(
ε2t+nε

2
t+n+j |Ft

)
=

3∑

p,q=1

E (T1pT2q|Ft) . (18)

Consider the term T12T23. Then we can easily see that we can express T12T23 as the product

T12T23 = AB, where

A = ωσ2
t+1v

2
t+n+jv

2
t+n

(
αv2

t+n + β
)
Πj−1
i=1

(
αv2

t+n+i + β
)

and

B = Πn−1
i=1

(
αv2

t+n−i + β
)
n−2∑

k=1

Πk
i=1

(
αv2

t+n−i + β
)
.

Letting θ1 = E
(
αv2

t + β
)
and θ2 = E

(
αv2

t + β
)2

and noting that Ev4
t+n = 3, we get

E (T12T23|Ft) ≤ ωσ2
t+1 (3α+ β) θj−1

1

n−2∑

k=1

θk2θ
n−1−k
1 .

Since γ = max (θ1, θ2) < 1, it follows that for all j ≥ 1 there exists some finite constant C such

that

E (T12T23|Ft) ≤ Cσ2
t+1 (n− 2) γn−1
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and hence

V ar (E (T12T23|Ft)) ≤ E (E (T12T23|Ft))2 ≤ C2E
(
σ4
t+1

)
n2γ2(n−1)

uniformly in j. Thus,

lim
n→∞

V ar (E (T12T23|Ft)) = 0

uniformly in j. Similar arguments yield

lim
n→∞

V ar (E (T1pT2q|Ft)) = 0 1 ≤ p, q ≤ 3 (19)

uniformly in j. Thus, (A5) follows from (18), (19) and the Cauchy Schwarz inequality. To prove

(A6), we first note that using (17),

E
(
ε2t |Ft−n

)
= ω

(
1− θn1
1− θ1

)

+ θn1σ
2
t−n.

Thus, E
(
ε2t ε

2
t−n

)
= E

(
ε2t−nE

(
ε2t |Ft−n

))
= ω

(
1−θn

1

1−θ1

)

σ2 + θn1E
(
σ4
t−n

)
and so

lim
n→∞

E
(
ε2t ε

2
t−n

)
= ω

(
1− θn1
1− θ1

)

σ2 = σ4.

Proof of Theorem 3:

By simple but tedious algebraic manipulation, it can be shown that

[V R (ki)− 1] =
2n2

σ̂2 (n− ki + 1) (n− ki)

ki−1∑

j=1

(

1− j

ki

)

γ̂j −
n (Ai +Bi)

σ̂2ki (n− ki + 1) (n− ki)

+ op

(√

ki
n

)

where

γ̂j = n−1
n∑

t=j+1

εtεt−j ,

Ai = −2
ki−2∑

v=0

ki−1−v∑

p=1

ki−v−1∑

s=p+1

εsεs−p − 2

ki−2∑

v=0

ki−1−v∑

p=1

n∑

s=n−v+1

εsεs−p

= Ai1 +Ai2
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and

Bi =

ki−1∑

v=0

ki−v−1∑

q=1

ε2q +

ki−1∑

v=0

n∑

q=n−v+1

ε2q .

Since E (Bi) = O
(
k2
i

)
trivially, it follows that [ki (n− ki + 1) (n− ki)]

−1 nBi = op

([
n−1ki

] 1

2

)

.

By condition (A1), we have E (Ai) = 0. Furthermore, by using condition (A3), it can be easily

seen that E
(
A2
i1

)
= E

(
A2
i2

)
= O

(
k4
i

)
. By the Cauchy Schwarz inequality, it follows that

V ar (Ai) = O
(
k4
i

)
and hence [ki (n− ki + 1) (n− ki)]

−1 nAi = op

([
n−1ki

] 1

2

)

. Since σ̂2 P→ σ2,

we have

√
n

ki
[V R (ki)− 1] =

n2

σ̂2 (n− ki + 1) (n− ki)

√
n

ki
2

ki−1∑

j=1

(

1− j

ki

)

γ̂j + op (1) . (20)

Now consider
√
n

ki
2

ki−1∑

j=1

(

1− j

ki

)

γ̂j =
2√
nki

ki−1∑

j=1

(

1− j

ki

) n−j
∑

q=1

εqεq+j

=
2√
nki

n−ki∑

q=1

ki∑

j=1

(

1− j

ki

)

εqεq+j +
2√
nki

n∑

q=n−ki+1

n−q
∑

j=1

(

1− j

ki

)

εqεq+j

= Ri1 +Ri2.

By conditions (A1) and (A3) respectively, it follows that E (Ri2) = 0 and E
(
R2
i2

)
= o (1) and

hence
√
n

ki
2

ki−1∑

j=1

(

1− j

ki

)

γ̂j = Ri1 + op (1) . (21)

Now define N = [
√
nks] andM =

[
N−1n

]
. Then, M →∞, N →∞, n−1N → 0 and N−1ki → 0

for i = 1, 2, ..., s. Also, define

Wi, q =
1√
ki

ki∑

j=1

(

1− j

ki

)

εqεq+j q = 1, 2, ..., n− ki,

Zi, p =
1√
N

{
Wi, (p−1)N+1 + ...+Wi, pN−ki

}
p = 1, 2, ...,M.

and

Vi, l =Wi, lN−ki+1 + ...+Wi, lN l = 1, 2, ...,M − 1.

22



Then we can decompose Ri1 as

Ri1 =
2√
M

M∑

p=1

Zi, p +
2√
n

M−1∑

l=1

Vi, l (22)

≡ Ui1 + Ui2.

By condition (A3), it follows that E (Wi, aWi, b) = 0 for a < b and hence E (Vi, aVi, b) = 0 for

a < b . Thus,

E
(
U2
i2

)
=

4

n

M−1∑

l=1

E
(
V 2
i, l

)
=

4

n

M−1∑

l=1

kiE
(
W 2

i, 1

)

= O

(
ki (M − 1)

n

)

= o (1) i = 1, 2, ..., s. (23)

From equations (21), (22) and (23) it follows that

√
n

ki
2

ki−1∑

j=1

(

1− j

ki

)

γ̂j = Ui1 + op (1)

and hence, from equation (20),

√
n

ki
[V R (ki)− 1] =

n2

σ̂2 (n− ki + 1) (n− ki)
Ui1 + op (1) .

Since σ̂2 P→ σ2 and [(n− ki + 1) (n− ki)]
−1 n2 → 1, the Theorem will be proved if we show that

the vector (U11, U21, ..., Us1)
′ converges in distribution to a multivariate normal distribution with

mean zero and variance covariance matrix σ4Σ. To do this, it is sufficient to show that for any

set of s real numbers ci,

s∑

i=1

ciUi1 = 2M− 1

2

M∑

p=1

s∑

i=1

ciZi, p
D→ N



0, σ4
∑

i,j

cicjσij



 , (24)

which we now proceed to demonstrate.

Let Gp, n = σ {εpN , εpN−1, εpN−2, ...} be the sigma algebra generated by {εpN , εpN−1, εpN−2, ...} .

Then, for any set of s real numbers ci, the sequence {
∑s

i=1 ciZi, p} forms a martingale difference
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with respect to Gp, n. To show (24), we first need to establish that





M∑

p=1

E

(
s∑

i=1

ciZi, p

)2




−1
M∑

p=1

E





(
s∑

i=1

ciZi, p

)2

|Gp−1, n




P→ 1. (25)

Now, by condition (A3)

E





[
s∑

i=1

ciZi, p

]2


 =
s∑

i=1

c2iE
(
Z2
i, p

)
+ 2

∑

i<u

cicuE (Zi, pZu, p)

=
s∑

i=1

c2i
N − ki
N

E
(
W 2

i, 1

)
+ 2

∑

i<u

cicu
N − ki
N

E (Wi, 1Wu, 1) .

By conditions (A3) and (A6),

E
(
W 2

i, 1

)
= k−1

i

ki∑

j=1

(

1− j

ki

)2

E
(
ε21ε

2
1+j

)
→ 4−1σ4σii

and

E (Wi, 1Wu, 1) = (kuki)
− 1

2

ki∑

j=1

(

1− j

ki

)(

1− j

ku

)

E
(
ε21ε

2
1+j

)
→ 4−1σ4σiu

for i < u. Hence, we have

lim
M→∞

1

M

M∑

p=1

E





[
s∑

i=1

ciZi, p

]2


 = 4−1σ4
∑

i,j

cicjσij . (26)

We now show that

M−1
M∑

p=1

E





(
s∑

i=1

ciZi, p

)2

|Gp−1, n




P→ 4−1σ4

∑

i,j

cicjσij , (27)

which along with (26) will prove (25). We have

E





(
s∑

i=1

ciZi, p

)2

|Gp−1, n



 =
s∑

i=1

c2iE
(
Z2
i, p|Gp−1, n

)

+ 2
∑

i<u

cicuE (Zi, pZu, p|Gp−1, n) .

Letting f(x) = (1− x) , Yi,u,p = E (Zi, pZu, p|Gp−1, n) and using condition (A4), we get for i ≤ u,

Yi,u,p = N−1 (kiku)
− 1

2

N−ku∑

a=1

ki∑

b=1

f

(
b

ki

)

f

(
b

ku

)

E
(
ε2pN−N+aε

2
pN−N+a+b|Gp−1, n

)
.
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By condition (A6), there exists C <∞ such that

E
∣
∣E
(
ε2pN−N+aε

2
pN−N+a+b|Gp−1, n

)
− E

(
ε2t ε

2
t+b

)∣
∣ < C (28)

for all p, a and b. Furthermore, given any δ > 0, by condition (A5) and Jensen’s inequality there

exists an integer N0 such that

sup
b>0

E
∣
∣E
(
ε2pN−N+aε

2
pN−N+a+b|Gp−1, n

)
− E

(
ε2t ε

2
t+b

)∣
∣ < δ (29)

for all a > N0. Hence, letting Hp,a,b = E
(

ε2pN−N+aε
2
pN−N+a+b|Gp−1, n

)

− E
(
ε2t ε

2
t+b

)
, we have

for any ε > 0

P







∣
∣
∣
∣
∣
∣

M−1
M∑

p=1

E
(
Z2
i, p|Gp−1, n

)
−M−1

M∑

p=1

N−1k−1
i

N−ki∑

a=1

ki∑

b=1

f2

(
b

ki

)

E
(
ε2t ε

2
t+b

)

∣
∣
∣
∣
∣
∣

> ε







≤ P






N−1k−1

i

N−ki∑

a=1

ki∑

b=1

f2

(
b

ki

)

M−1
M∑

p=1

|Hp,a,b| > ε







≤ P






N−1k−1

i

N0∑

a=1

ki∑

b=1

f2

(
b

ki

)

M−1
M∑

p=1

|Hp,a,b| > 2−1ε







+ P






N−1k−1

i

N−ki∑

a=N0+1

ki∑

b=1

f2

(
b

ki

)

M−1
M∑

p=1

|Hp,a,b| > 2−1ε







≤ 2ε−1N−1k−1
i

N0∑

a=1

ki∑

b=1

f2

(
b

ki

)

M−1
M∑

p=1

E |Hp,a,b|

+ 2ε−1N−1k−1
i

N−ki∑

a=N0+1

ki∑

b=1

f2

(
b

ki

)

M−1
M∑

p=1

E |Hp,a,b|

≤ 2ε−1N−1N0k
−1
i

ki∑

b=1

f2

(
b

ki

)

C + 2ε−1N−1 (N − ki) k
−1
i

ki∑

b=1

f2

(
b

ki

)

δ, (30)

where the last inequality follows from equations (28) and (29). Since δ can be chosen to be

arbitrarily small and N large enough that N−1N0 → 0, it follows from equation (30) that

M−1
M∑

p=1

E
(
Z2
i, p|Gp−1, n

)
−M−1

M∑

p=1

N−1k−1
i

N−ki∑

a=1

ki∑

b=1

f2

(
b

ki

)

E
(
ε2t ε

2
t+b

) P→ 0.
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Since, by condition (A6) we also have

M−1
M∑

p=1

N−1k−1
i

N−ki∑

a=1

ki∑

b=1

f2

(
b

ki

)

E
(
ε2t ε

2
t+b

)
→ σ44−1σii,

we obtain

M−1
M∑

p=1

E
(
Z2
i, p|Gp−1, n

) P→ σ44−1σii.

A similar argument as above in conjunction with the fact that k−1
u ki → aiu for i < u yields

M−1
M∑

p=1

E (Zi, pZu, p|Gp−1, n)
P→ σ44−1σiu.

Thus, (27) is established giving equation (25).

By using condition (A3), one can employ the same argument given on page 539 of Anderson

(1994) to show that E
(

Z4
i, p

)

is uniformly bounded in n for i = 1, 2, ..., s. This implies that

E (
∑s

i=1 ciZi, p)
4 is also uniformly bounded in n from whence we get

M−1
M∑

p=1

E





(
s∑

i=1

ciZi, p

)2

I

(

|
s∑

i=1

ciZi, p| > ε
√
M

)

→ 0 (31)

for every ε > 0. By Chebyshev’s inequality, equation (31) implies that

M−1
M∑

p=1

E





(
s∑

i=1

ciZi, p

)2

I

(

|
s∑

i=1

ciZi, p| > ε
√
M

)

|Gp−1, n




P→ 0. (32)

Hence, equation (24) follows from equations (25) and (32) and Theorem 5.3.4 of Fuller (1996).

Proof of Theorem 4:

We first note that by the weak law of large numbers, σ̂2
a

P→ V ar (zt)+V ar (yt − yt−1) . Now,

letting Vn,k ≡ n
(
σ̂2
ak (n− k + 1) (n− k)

)−1
, we get

V R (k) = Vn,k

n∑

t=k

(xt − xt−k − kµ̂)2

= Vn,k

n∑

t=k











t∑

j=t−k+1

zj − kz̄






+

n∑

t=k

(

yt − yt−k −
k

n
{yn − y0}

)




2

. (33)
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It is trivial to show that

n∑

t=k

(

yt − yt−k −
k

n
{yn − y0}

)2

= op (nk) . (34)

Now

n∑

t=k







t∑

j=t−k+1

zj − kz̄







2

=

n∑

t=k







t∑

j=t−k+1

zj







2

+ (n− k) k2z̄2 − 2kz̄

n∑

t=k

t∑

j=t−k+1

zj

=
n∑

t=k







t∑

j=t−k+1

zj







2

+ (n− k) k2Op

(
n−1

)

− 2kz̄





k∑

j=0

jzj +

n−k∑

j=k

kzj +

n∑

j=n−k

(n− j) zj





=
n∑

t=k







t∑

j=t−k+1

zj







2

+Op

(
k2
)
+Op

(
k2
)
. (35)

From (35), we get

Vn,k

n∑

t=k







t∑

j=t−k+1

zj − kz̄







2

= Vn,k

n∑

t=k







t∑

j=t−k+1

zj







2

+ op (1) . (36)

Letting γ̂j = γ̂−j = n−1
∑n

t=j+1 ztzt−j , some tedious algebra yields

n∑

t=k







t∑

j=t−k+1

zj







2

= nk

k−1∑

j=−(k−1)

(1− |j| /k) γ̂j −A−B, (37)

where

A = −2
k−2∑

v=0

k−1−v∑

p=1

k−v−1∑

s=p+1

zszs−p − 2
k−2∑

v=0

k−1−v∑

p=1

n∑

s=n−v+1

zszs−p

= A1 +A2

and

B =
k−1∑

v=0

k−v−1∑

q=1

z2
q +

k−1∑

v=0

n∑

q=n−v+1

z2
q .
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Now

E
(
A2

1

)
= 4

k−1∑

p=1

k−1−p
∑

v=1

k−1∑

s=1

k−1−s∑

j=1

(k − v − p) (k − j − s)E (zvzv+pzjzj+s) .

From equation (6.2.5) of page 315 of Fuller (1996), we have |E (zvzv+pzjzj+s)| = O
(
λ|v|+|p|+|j|+|s|

)

and hence

E
(
A2

1

)
= O

(
k4
)
.

A similar argument shows that E
(
A2

2

)
= O

(
k4
)
and hence, by the Cauchy Schwarz and Cheby-

shev inequalities, we get

A = Op

(
k2
)
. (38)

Since E (B) = O
(
k2
)
trivially, it follows from (38), (37) and (36) that

Vn,k

n∑

t=k







t∑

j=t−k+1

zj − kz̄







2

= Vn,knk
k−1∑

j=−(k−1)

(1− |j| /k) γ̂j + op (1) .

From Theorem 9.3.3 and Theorem 9.4.1 of Anderson (1994), it follows that

k−1∑

j=−(k−1)

(1− |j| /k) γ̂j P→
∑

|j|<∞

γz (j)

and hence

Vn,k

n∑

t=k







t∑

j=t−k+1

zj − kz̄







2

P→ (V ar (zt) + V ar (yt − yt−1))
−1
∑

|j|<∞

γz (j) . (39)

From (33), (34), (39) and the Cauchy-Schwarz inequality, we get

V R (k)
P→ (V ar (zt) + V ar (yt − yt−1))

−1
∑

|j|<∞

γz (j) .

Lemma 7 (i)
∫ 2π
0 Wk (λ) I (λ) dλ = 4π

n

∑[(n−1)/2]
j=1 Wk (λj) I (λj) + op

(√

k/n
)

.

(ii) The finite sample variance covariance matrix of Vp = (V Rp (k1) , V Rp (k2) , ..., V Rp (ks))
′

with remainder terms of order o
(
k2
s/n

2
)
is estimated consistently by the matrix Σ̂ in (10).
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Proof of (i): Using the fact that I (λ) = (2π)−1∑

|s|<n γ̂s exp (−isλ) and that

n−1∑

j=0

exp (−i (s− p)λj) = n if s− p = 0, ± n

= 0 otherwise,

we get

2π

n

n−1∑

j=1

Wk (λj) I (λj) =
2π

n

n−1∑

j=0

Wk (λj) I (λj)−
2πk

n
I (0)

=
2π

n

n−1∑

j=0

∑

|p|<k

(1− |p| /k) exp (ipλj) (2π)−1
∑

|s|<n

γ̂s exp (−isλj)−
2πk

n
I (0)

=
1

n

∑

|p|<k

∑

|s|<n

(1− |p| /k) γ̂s
n−1∑

j=0

exp (−i (s− p)λj)−
2πk

n
I (0)

=
∑

|p|<k

(1− |p| /k) γ̂p + 2
k∑

p=1

(1− p/k) γ̂n−p −
2πk

n
I (0) (40)

=

∫ 2π

0
Wk (λ) I (λ) dλ+ 2

k∑

p=1

(1− p/k) γ̂n−p −
2πk

n
I (0)

where the last step follows from the identity γ̂j =
∫ 2π
0 I (λ) exp (−ijλ) dλ. We now note that

since I (λ) = (2πn)−1 |∑n
t=1 εt exp (iλt)|

2 , it follows that (2πk/n) I (0) = kε̄2 = Op

(
kn−1

)
=

Op

(√

k/n
)

. Furthermore, V ar (γ̂n−p) = O
(
pn−2

)
while Cov (γ̂n−p, γ̂n−s) = 0 which implies

that 2
∑k

p=1 (1− p/k) γ̂n−p = Op

(√

k/n
)

. Part (i) of the lemma now follows by noting that

(2π/n)
n−1∑

j=1

Wk (λj) I (λj) = (4π/n)

[(n−1)/2]
∑

j=1

Wk (λj) I (λj) +
2π

nk
I
(
λn/2

)
δ{n even, k odd},

where δ is the indicator function due to the periodicity of the sine and cosine functions on [0, 2π] .

Proof of (ii): Using a Taylor series expansion and the equation (40) in the proof of part (i)
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above, we get

V Rp (k) = 1 + Cn,k (4π/n)

[(n−1)/2]
∑

j=1

Wk (λj) I (λj)− σ̂2 +Op

(

k1/2/n
)

= 1 + 2Cn,k

k−1∑

j=1

(1− j/k) (γ̂j + γ̂n−j)− (kCn,k − n/ (n− 1)) ε̄2 +O (k/n) γ̂0 +Op

(

k1/2/n
)

.

Now define the random vector U =
(
γ̂1 + γ̂n−1, γ̂2 + γ̂n−2, ..., γ̂s + γ̂n−s, ε̄

2
)
. Since V ar (γ̂0) =

O
(
n−1

)
, it is seen that

V ar (V Rp (k)) = l′kV ar (U) lk + o
(
k2/n2

)
, (41)

where lk is as defined in (11). Letting τj = σ−4E
(

ε2t ε
2
t−j

)

, tedious but elementary calculation

shows that

V ar (U) =

[
A0 b0

b′0 d0

]

, (42)

where A0=diag
(
n−j
n2 τj +

j
n2 τn−j

)

for j = 1, ..., ks, b0 is a ks×1 vector such that its jth element

is given by
(
2 (n− j)n−3τj + 2jn−3τn−j

)
and d0=n

−3τ0+6n−4
∑n−1

u=1 (n− u) τu−n−2. Using the

fact that by Assumption (A6) τj → 1 as j → ∞, it is easily seen that 6n−2
∑n−1

u=1 (n− u) τu =

3 + o(1) and these facts in conjunction with substituting (42) in (41), we get

V ar (V Rp (k)) = l′k

[
A b
b′ d

]

lk + o(k2/n2),

where A =diag
(
n−j
n2 τj +

j
n2

)

for j = 1, ..., ks, b is a ks × 1 vector such that its jth element is

given by
(
2 (n− j)n−3τj + 2jn−3

)
and d=2n−2. The estimated variance covariance matrix is

now obtained by replacing τj in the entries of A and b by τ̂j and standard arguments from

smoothing theory establish consistency of the resulting estimated covariance matrix.

Proof of Theorem 6: In the proof of Lemma 7, we noted that

(4π/n)

[(n−1)/2]
∑

j=1

Wk (λj) I (λj) =
∑

|p|<k

(1− |p| /k) γ̂p + 2
k∑

p=1

(1− p/k) γ̂n−p − kε̄2.
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It is trivially true that under the assumptions of Theorem 6, ε̄2 = Op

(
n−1

)
. The result for

V Rp (k) now follows by noting that
∑k

p=1 (1− p/k) γ̂n−p = op (1) , that σ̂
2 p→ (V ar (zt) + V ar (yt − yt−1))

and that by Theorem 9.3.3 and Theorem 9.4.1 of Anderson (1994),

k−1∑

j=−(k−1)

(1− |j| /k) γ̂j P→
∑

|j|<∞

γz (j) .

The result for V Rβ
p (k) follows by continuity.
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Table I. Sizes in Percentage under the Null of Random Walk with Gaussian White Noise

5% 10%
Before transformation After transformation Before transformation After transformation

n k Lower Upper Size Lower Upper Size Lower Upper Size Lower Upper Size

128 VRp 8 0.58 3.82 4.39 2.44 2.29 4.73 2.54 6.28 8.81 4.94 4.73 9.67
16 0.05 4.51 4.56 2.36 2.36 4.71 0.92 7.02 7.94 4.92 4.94 9.86

Qn 5.80 5.13 9.43 9.85
IQn 1.52 5.71 4.95 10.86

512 VRp 16 1.04 3.59 4.62 2.41 2.38 4.79 3.18 6.26 9.44 4.86 4.89 9.75
32 0.05 4.19 4.69 2.41 2.52 4.92 2.24 6.62 8.86 4.83 5.01 9.84

Qn 5.21 4.79 9.36 9.66
IQn 2.17 5.45 6.49 10.74

Data are generated from xt = µ + xt−1 + εt, εt ∼ N(0, 1)

Table II. Sizes in Percentage under the Null of Random Walk with GARCH(1,1) White Noise

5% 10%
Before transformation After transformation Before transformation After transformation

n k Lower Upper Size Lower Upper Size Lower Upper Size Lower Upper Size

128 VRp 8 0.31 4.08 4.38 1.96 2.44 4.40 1.74 6.45 8.19 4.46 4.86 9.32
16 0.02 4.64 4.66 1.96 2.56 4.51 0.55 6.90 7.45 4.50 4.95 9.45

Qn 6.21 4.64 9.52 9.21
IQn 1.34 4.86 3.86 10.09

512 VRp 16 0.63 3.86 4.49 2.03 2.45 4.48 2.36 6.10 8.45 4.45 4.87 9.32
32 0.19 4.40 4.58 1.73 2.45 4.17 1.17 6.53 7.70 4.06 5.04 9.10

Qn 5.68 4.32 9.29 8.90
IQn 1.50 4.45 4.94 9.40

Data are generated from xt = µ + xt−1 + εt, εt ∼ N(0, σ2
t ), σ2

t = .0001 + .8575σ2
t−1 + .1171ε2

t−1

Table III. Power in Percentage against the Alternative of Random Walk + AR(1)

5% 10%
Before transformation After transformation Before transformation After transformation

n k Lower Upper Power Lower Upper Power Lower Upper Power Lower Upper Power

128 VRp 8 0.98 2.12 3.10 3.67 1.03 4.70 3.78 3.86 7.64 7.17 2.86 10.02
16 0.09 1.97 2.06 3.63 0.91 4.54 1.66 3.17 4.83 7.37 2.20 9.57

Qn 3.94 5.52 6.96 10.59
IQn 2.12 7.88 6.79 14.58

512 VRp 16 5.70 0.21 5.91 10.95 0.13 11.08 13.53 4.95 14.02 18.32 0.35 18.67
32 3.45 0.09 3.54 13.47 0.05 13.52 12.83 0.21 13.03 22.69 0.12 22.81

Qn 3.24 12.10 8.28 20.18
IQn 7.13 19.24 19.97 31.91

Data are generated from xt = rt + yt, rt = rt−1 + wt, wt ∼ N(0, 0.5), yt = 0.96yt−1 + ut, ut ∼ N(0, 1)
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Table IV. Power in Percentage against the Alternative of Random Walk + AR(1)

5% 10%
Before transformation After transformation Before transformation After transformation

n k Lower Upper Power Lower Upper Power Lower Upper Power Lower Upper Power

128 VRp 8 0.89 2.62 3.51 3.21 1.45 4.65 3.34 4.70 8.04 6.43 3.51 9.94
16 0.09 2.53 2.61 3.28 1.19 4.46 1.43 4.28 5.71 6.57 2.80 9.37

Qn 4.22 5.22 7.69 10.16
IQn 2.05 7.10 6.22 13.45

512 VRp 16 3.77 0.51 4.28 7.58 0.31 7.89 9.56 1.07 10.62 13.32 0.79 14.11
32 2.12 0.30 2.41 8.63 0.13 8.76 8.09 0.57 8.65 15.44 0.41 15.85

Qn 2.75 8.55 6.93 15.05
IQn 5.12 13.79 14.48 23.45

Data are generated from xt = rt + yt, rt = rt−1 + wt, wt ∼ N(0, 1), yt = 0.96yt−1 + ut, ut ∼ N(0, 1)

Table V. Power in Percentage against the Alternative of Random Walk + AR(1)

5% 10%
Before transformation After transformation Before transformation After transformation

n k Lower Upper Power Lower Upper Power Lower Upper Power Lower Upper Power

128 VRp 8 0.81 3.20 4.01 2.92 1.82 4.73 3.04 5.43 8.47 5.91 4.05 9.95
16 0.08 3.22 3.30 2.94 1.60 4.53 1.29 5.25 6.54 6.08 3.59 9.67

Qn 4.85 5.22 8.48 10.15
IQn 1.86 6.64 5.70 12.60

512 VRp 16 2.54 1.11 3.65 5.29 0.63 5.92 6.71 2.01 8.72 9.64 1.59 11.23
32 1.20 0.83 2.02 5.68 0.47 6.15 5.42 1.67 7.09 10.21 1.09 11.30

Qn 2.97 6.29 6.45 11.76
IQn 3.69 9.90 10.96 17.62

Data are generated from xt = rt + yt, rt = rt−1 + wt, wt ∼ N(0, 2), yt = 0.96yt−1 + ut, ut ∼ N(0, 1)

Table VI. Power in Percentage against the Alternative of AR(1)

5% 10%
Before transformation After transformation Before transformation After transformation

n k Lower Upper Power Lower Upper Power Lower Upper Power Lower Upper Power

128 VRp 8 1.20 1.36 2.55 4.38 0.70 5.08 4.47 2.56 7.03 8.42 1.80 10.22
16 0.10 1.05 1.15 4.67 0.42 5.08 2.18 1.93 4.10 9.52 1.24 10.76

Qn 3.09 6.10 5.87 11.32
IQn 2.26 9.31 7.55 17.33

512 VRp 16 13.07 0.04 13.10 22.44 0.01 22.45 26.39 0.11 26.50 33.95 0.07 34.02
32 12.93 0.00 12.93 34.24 0.00 34.24 33.08 0.01 33.08 48.96 0.00 48.96

Qn 5.99 28.10 17.15 40.84
IQn 16.68 40.39 39.07 56.85

Data are generated from xt = 0.96xt−1 + ut, ut ∼ N(0, 1)
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