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Bayesian computational methods
Christian P. Robert

CREST, INSEE and CEREMADE, Dauphine, Paris

1 Introduction

If, in the mid 1980’s, one had asked the average statistician about the difficul-
ties of using Bayesian Statistics, his/her most likely answer would have been
“Well, there is this problem of selecting a prior distribution and then, even if
one agrees on the prior, the whole Bayesian inference is simply impossible to
implement in practice!” The same question asked in the 21th Century does
not produce the same reply, but rather a much less serious complaint about
the lack of generic software (besides winBUGS)! The last 15 years have indeed
seen a tremendous change in the way Bayesian Statistics are perceived, both
by mathematical statisticians and by applied statisticians and the impetus
behind this change has been a prodigious leap-forward in the computational
abilities. The availability of very powerful approximation methods has cor-
relatively freed Bayesian modelling, in terms of both model scope and prior
modelling. As discussed below, a most successful illustration of this gained
freedom can be seen in Bayesian model choice, which was only emerging at
the beginning of the MCMC era, for lack of appropriate computational tools.

In this chapter, we will first present the most standard computational chal-
lenges met in Bayesian Statistics (Section 2), and then relate these problems
with computational solutions. Of course, this chapter is only a terse intro-
duction to the problems and solutions related to Bayesian computations. For
more complete references, see Robert and Casella (1999, 2004) and Liu (2001),
among others. We also restrain from providing an introduction to Bayesian
Statistics per se and for comprehensive coverage, address the reader to Robert
(2001), (again) among others.

2 Bayesian computational challenges

Bayesian Statistics being a complete inferential methodology, its scope en-
compasses the whole range of standard statistician inference (and design),
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from point estimation to testing, to model selection, and to non-parametrics.
In principle, once a prior distribution has been chosen on the proper space,
the whole inferential machinery is set and the computation of estimators is
usually automatically derived from this setup. Obviously, the practical or nu-
merical derivation of these procedures may be exceedingly difficult or even
impossible, as we will see in a few selected examples. Before, we proceed with
an incomplete typology of the categories and difficulties met by Bayesian in-
ference. First, let us point out that computational difficulties may originate
from one or several of the following items:

(i) use of a complex parameter space, as for instance in constrained parameter
sets like those resulting from imposing stationarity constraints in dynamic
models;

(ii) use of a complex sampling model with an intractable likelihood, as for
instance in missing data and graphical models;

(iii) use of a huge dataset;
(iv) use of a complex prior distribution (which may be the posterior distribu-

tion associated with an earlier sample);
(v) use of a complex inferential procedure.

2.1 Bayesian point estimation

In a formalised representation of Bayesian inference, the statistician is given
(or she selects) a triplet

• a sampling distribution, f(x|θ), usually associated with an observation (or
a sample) x;

• a prior distribution π(θ), defined on the parameter space Θ;
• a loss function L(θ, d) that compares the decisions (or estimations) d for

the true value θ of the parameter.

Using (f, π,L) and an observation x, the Bayesian inference is always given
as the solution to the minimisation programme

min
d

∫
Θ

L(θ, d) f(x|θ)π(θ) dθ ,

equivalent to the minimisation programme

min
d

∫
Θ

L(θ, d)π(θ|x) dθ .

The corresponding procedure is thus associated, for every x, to the solution
of the above programme (see, e.g. Robert, 2001, Chap. 2).

There are therefore two levels of computational difficulties with this resolu-
tion: first the above integral must be computed. Second, it must be minimised
in d. For the most standard losses, like the squared error loss,
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L(θ, d) = |θ − d|2 ,

the solution to the minimisation problem is universally1 known. For instance,
for the squared error loss, it is the posterior mean,∫

Θ

θ π(θ|x) dθ =
∫

Θ

θ f(x|θ)π(θ) dθ
/∫

Θ

f(x|θ)π(θ) dθ ,

which still requires the computation of both integrals and thus whose com-
plexity depends on the complexity of both f(x|θ) and π(θ).

Example 1. For a normal distribution N (θ, 1), the use of a so-called conjugate
prior (see, e.g., Robert, 2001, Chap. 3)

θ ∼ N (µ, ε) ,

leads to a closed form expression for the mean, since∫
Θ

θ f(x|θ)π(θ) dθ
/∫

Θ

f(x|θ)π(θ) dθ =∫
R

θ exp
1
2
{
−θ2(1 + ε−2) + 2θ(x+ ε−2µ)

}
dθ/∫

R

exp
1
2
{
−θ2(1 + ε−2) + 2θ(x+ ε−2µ)

}
dθ =

x+ ε−2µ

1 + ε−2
.

On the other hand, if we use instead a more involved prior distribution like a
poly-t distribution (Bauwens and Richard, 1985),

π(θ) =
k∏

i=1

[
αi + (θ − βi)2

]−νi
α, ν > 0

the above integrals cannot be computed in closed form anymore. This is not a
toy example in that the problem may occur after a sequence of t observations, or
with a sequence of normal observations whose variance is unknown.

The above example is one-dimensional, but, obviously, bigger challenges
await the Bayesian statistician when she wants to tackle high-dimensional
problems.

Example 2. In a generalised linear model, a conditional distribution of y ∈ R

given x ∈ R
p is defined via a density from an exponential family

y|x ∼ exp {y · θ(x) − ψ(θ(x))}

whose natural parameter θ(x) depends on the conditioning variable x,

θ(x) = g(βTx) , β ∈ R
p
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that is, linearly modulo the transform g. Obviously, in practical applications like
Econometrics, p can be quite large. Inference on β (which is the true parameter of
the model) proceeds through the posterior distribution (where x = (x1, . . . , xT )
and y = (y1, . . . , yT ))

π(β|x,y) ∝
T∏

t=1

exp {yt · θ(xt) − ψ(θ(xt))} π(β)

= exp

{
T∑

t=1

yt · θ(xt) −
T∑

t=1

ψ(θ(xt))

}
π(β) ,

which rarely is available in closed form. In addition, in some cases ψ may be
costly simply to compute and in others T may be large or even very large. Take
for instance the case of the dataset processed by Abowd et al. (1999), which
covers twenty years of employment histories for over a million workers, with x
including indicator variables for over one hundred thousand companies.

A related, although conceptually different, inferential issue concentrates
upon prediction, that is, the approximation of a distribution related with the
parameter of interest, say g(y|θ), based on the observation of x ∼ f(x|θ). The
predictive distribution is then defined as

π(y|x) =
∫

Θ

g(y|θ)π(θ|x)dθ .

A first difference with the standard point estimation perspective is obviously
that the parameter θ vanishes through the integration. A second and more
profound difference is that this parameter is not necessarily well-defined any-
more. As will become clearer in a following Section, this is a paramount feature
in setups where the model is not well-defined and where the statistician hes-
itates between several (or even an infinity of) models. It is also a case where
the standard notion of identifiability is irrelevant, which paradoxically is a
”plus” from the computational point of view, as seen below in, e.g., Example
14.

Example 3. Recall that an AR(p) model is given as the auto-regressive repre-
sentation of a time series,

xt =
p∑

i=1

θixt−i + σεt .

It is often the case that the order p of the AR model is not fixed a priori, but
has to be determined from the data itself. Several models are then competing
for the “best” fit of the data, but if the prediction of the next value xt+1 is the
most important part of the inference, the order p chosen for the best fit is not
really relevant. Therefore, all models can be considered in parallel and aggregated
through the predictive distribution
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π(xt+1|xt, . . . , x1) ∝
∫
f(xt+1|xt, . . . , xt−p+1)π(θ, p|xt, . . . , x1)dp dθ ,

which thus amounts to integrating over the parameters of all models, simultane-
ously:

∞∑
p=0

∫
f(xt+1|xt, . . . , xt−p+1)π(θ|p, xt, . . . , x1) dθ π(p|xt, . . . , x1) .

Note the multiple layers of complexity in this case:

(i) if the prior distribution on p has an infinite support, the integral simultaneously
considers an infinity of models, with parameters of unbounded dimensions;

(ii) the parameter θ varies from model AR(p) to model AR(p + 1), so must be
evaluated differently from one model to another. In particular, if the station-
arity constraint usually imposed in these models is taken into account, the
constraint on (θ1, . . . , θp) varies2 between modelAR(p) and modelAR(p+1);

(iii) prediction is usually used sequentially: every tick/second/hour/day, the next
value is predicted based on the past values xt, . . . , x1). Therefore when t
moves to t + 1, the entire posterior distribution π(θ, p|xt, . . . , x1) must be
re-evaluated again, possibly with a very tight time constraint as for instance
in financial or radar applications.

We will discuss this important problem in deeper details after the testing
section, as part of the model selection problematic.

2.2 Testing hypotheses

A domain where both the philosophy and the implementation of Bayesian
inference are at complete odds with the classical approach is the area of testing
of hypotheses. At a primary level, this is obvious when opposing the Bayesian
evaluation of an hypothesis H0 : θ ∈ Θ0

Prπ(θ ∈ Θ0|x)

with a Neyman–Pearson p-value

sup
θ∈Θ0

Prθ(T (X) ≥ T (x))

where T is an appropriate statistic, with observed value T (x). The first quan-
tity involves an integral over the parameter space, while the second provides
an evaluation over the observational space. At a secondary level, the two an-
swers may also strongly disagree even when the number of observations goes
to infinity, although there exist cases and priors for which they agree to the
order O(n−1) or even O(n−3/2). (See Robert, 2001, Section 3.5.5 and Chapter
5, for more details.)
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From a computational point of view, most Bayesian evaluations involve
marginal distributions ∫

Θi

f(x|θi)πi(θi) dθi (1)

where Θi and πi denote the parameter space and the corresponding prior,
respectively, under hypothesis Hi (i = 0, 1). For instance, the Bayes factor
is defined as the ratio of the posterior probabilities of the null and the alter-
native hypotheses over the ratio of the prior probabilities of the null and the
alternative hypotheses, i.e.,

Bπ
01(x) =

P (θ ∈ Θ0 | x)
P (θ ∈ Θ1 | x)

/
π(θ ∈ Θ0)
π(θ ∈ Θ1)

.

This quantity is instrumental in the computation of the posterior probability

P (θ ∈ Θ0 | x) =
1

1 +Bπ
10(x)

under equal prior probabilities for both Θ0 and Θ1. It is also the central tool
in practical (as opposed to decisional) Bayesian testing (Jeffreys, 1961) as the
Bayesian equivalent of the likelihood ratio.

The first ratio in Bπ
01(x) is then the ratio of integrals of the form (1) and

it is rather common to face difficulties in the computation of both integrals.3

Example 4 (Continuation of Example 2). In the case of the generalised
linear model, a standard testing situation is to decide whether or not a factor,
x1 say, is influential on the dependent variable y. This is often translated as
testing whether or not the corresponding component of β, β1, is equal to 0,
i.e. Θ0 = {β;β1 = 0}. If we denote by β−1 the other components of β, the Bayes
factor for this hypothesis will be∫

Rp

exp

{
T∑

t=1

yt · g(βTxt) −
T∑

t=1

ψ(g(βTxt))

}
π(β) dβ

/
∫

Rp−1
exp

{
T∑

t=1

yt · g(βT
−1(xt)−1) −

T∑
t=1

ψ(βT
−1(xt)−1)

}
π−1(β−1) dβ−1 ,

when π−1 is the prior constructed for the null hypothesis and when the prior
weights of H0 and of the alternative are both equal to 1/2. Obviously, besides
the normal conjugate case, both integrals cannot be computed in a closed form.

In a related manner, confidence regions are also mostly intractable, being
defined through the solution to an implicit equation. Indeed, the Bayesian
confidence region for a parameter θ is defined as the highest posterior region,

{θ;π(θ|x) ≥ k(x)} (2)
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where k(x) is determined by the coverage constraint

Prπ(π(θ|x) ≥ k(x)|x) = α ,

α being the confidence level. While the normalising constant is not necessary
to construct a confidence region, the resolution of the implicit equation (2) is
rarely straightforward!

Example 5. Consider a binomial observation x ∼ B(n, θ) with a conjugate prior
distribution, θ ∼ Be(γ1, γ2). In this case, the posterior distribution is available in
closed form,

θ|x ∼ Be(γ1 + x, γ2 + n− x) .

However, the determination of the θ’s such that

θγ1+x−1(1 − θ)γ2+n−x−1 ≥ k(x)

with
Prπ

(
θγ1+x−1(1 − θ)γ2+n−x−1 ≥ k(x)|x

)
= α

is not possible analytically. It actually implies two levels of numerical difficulties:

1. find the solution(s) to θγ1+x−1(1 − θ)γ2+n−x−1 = k,
2. find the k corresponding to the right coverage,

and each value of k examined in step 2. requires a new resolution of step 1.

The setting is usually much more complex when θ is a multidimensional
parameter, because the interest is usually in getting marginal confidence sets.
Example 2 is an illustration of this setting: deriving a confidence region on
one component, β1 say, first involves computing the marginal posterior distri-
bution of this component. As in Example 4, the integral∫

Rp−1
exp

{
T∑

t=1

yt · g(βTxt) −
T∑

t=1

ψ(βTxt)

}
π−1(β−1) dβ−1 ,

which is proportional to π(β1|x), is most often intractable.

2.3 Model choice

We distinguish model choice from testing, not only because it leads to further
computational difficulties, but also because it encompasses a larger scope of
inferential goals than mere testing. Note first that model choice has been the
subject of considerable effort in the past years, and has seen many advances,
including the coverage of problems of higher complexity and the introduction
of new concepts. We stress that such advances mostly owe to the introduction
of new computational methods.

As discussed in further details in Robert (2001, Chapter 7), the inferential
action related with model choice does take place on a wider scale: it covers
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and compares models, rather than parameters, which makes the sampling dis-
tribution f(x) “more unknown” than simply depending on an undetermined
parameter. In some respect, it is thus closer to estimation than to regular
testing. In any case, it requires a more precise evaluation of the consequences
of choosing the “wrong” model or, equivalently of deciding which model is the
most appropriate to the data at hand. It is thus both broader and less defini-
tive as deciding whether H0 : θ1 = 0 is true. At last, the larger inferential
scope mentioned in the first point means that we are leaving for a while the
well-charted domain of solid parametric models.

From a computational point of view, model choice involves more complex
structures that, almost systematically, require advanced tools, like simulation
methods which can handle collections of parameter spaces (also called spaces
of varying dimensions), specially designed for model comparison.

Example 6. A mixture of distributions is the representation of a distribution
(density) as the weighted sum of standard distributions (densities). For instance,
a mixture of Poisson distributions, denoted as

k∑
i=1

piP(λi)

has the following density:

Pr(X = k) =
k∑

i=1

pi
λk

i

k!
e−λi .

This representation of distributions is multi-faceted and can be used in popula-
tions with known heterogeneities (in which case a component of the mixture cor-
responds to an homogeneous part of the population) as well as a non-parametric
modelling of unknown populations. This means that, in some cases, k is known
and, in others, it is both unknown and part of the inferential problem.

First, consider the setting where several (parametric) models are in com-
petition,

Mi : x ∼ fi(x|θi), θi ∈ Θi, i ∈ I ,

the index set I being possibly infinite. From a Bayesian point of view, a prior
distribution must be constructed for each model Mi as if it were the only
and true model under consideration since, in most perspectives except model
averaging, one of these models will be selected and used as the only and true
model. The parameter space associated with the above set of models can be
written as

Θ =
⋃
i∈I

{i} ×Θi , (3)

the model indicator µ ∈ I being now part of the parameters. So, if the statisti-
cian allocates probabilities pi to the indicator values, that is, to the models Mi
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(i ∈ I), and if she then defines priors πi(θi) on the parameter subspaces Θi,
things fold over by virtue of Bayes’s theorem, as usual, since she can compute

p(Mi|x) = P (µ = i|x) =
pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

.

While a common solution based on this prior modeling is simply to take the
(marginal) MAP estimator of µ, that is, to determine the model with the
largest p(Mi|x), or even to use directly the average∑

j

pj

∫
Θj

fj(y|θj)πj(θj |x)dθj =
∑

j

p(Mj |x)mj(y)

as a predictive density in y in model averaging, a deeper-decision theoretic
evaluation is often necessary.

Example 7 (Continuation of Example 3). In the setting of the AR(p)
models, when the order p of the dependence is unknown, model averaging as
presented in Example 3 is not always a relevant solution when the statistician
wants to estimate this order p for different purposes. Estimation is then a more
appropriate perspective than testing, even though care must be taken because of
the discrete nature of p. (For instance, the posterior expectation of p is not an
appropriate estimator!)

Example 8. Spiegelhalter et al. (2002) have developed a Bayesian approach to
model choice that appears like an alternative to both Akaike’s and Schwartz In-
formation Criterion, called DIC (for Deviance Information Criterion). For a model
with density f(x|θ) and a prior distribution π(θ), the deviance is defined as
D(θ) = −2 log(f(x|θ)) but this is not a good discriminating measure between
models because of its bias toward higher dimensional models. The penalized de-
viance of Spiegelhalter et al. (2002) is

DIC = E[D(θ)|x] + {E[D(θ)|x] −D(E[θ|x])} ,

with the “best” model associated with the smallest DIC. Obviously, the compu-
tation of the posterior expectation E[D(θ)|x] = −2E[log(f(x|θ))|x] is complex
outside exponential families.

As stressed earlier in this Section, the computation of predictive densities,
marginals, Bayes factors, and other quantities related to the model choice
procedures is generally very involved, with specificities that call for tailor-
made solutions:

– The computation of integrals is increased by a factor corresponding to the
number of models under consideration.
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– Some parameter spaces are infinite-dimensional, as in non-parametric set-
tings and that may cause measure-theoretic complications.

– The computation of posterior or predictive quantities involves integration
over different parameter spaces and thus increases the computational bur-
den, since there is no time savings from one subspace to the next.

– In some settings, the size of the collection of models is very large or even
infinite and some models cannot be explored. For instance, in Example
4, the collection of all submodels is of size 2p and some pruning method
must be found in variable selection to avoid exploring the whole tree of all
submodels.

3 Monte Carlo Methods

The natural approach to these computational problems is to use computer sim-
ulation and Monte Carlo techniques, rather than numerical methods, simply
because there is much more to gain from exploiting the probabilistic proper-
ties of the integrands rather than their analytical properties. In addition, the
dimension of most problems considered in current Bayesian Statistics is such
that very involved numerical methods should be used to provide a satisfactory
approximation in such integration or optimisation problems. Indeed, down-
the-shelf numerical methods cannot handle integrals in dimensions larger than
4 and more advanced numerical integration methods require analytical studies
on the distribution of interest.

3.1 Preamble: Monte Carlo importance sampling

Given the statistical nature of the problem, the approximation of an integral
like

I =
∫

Θ

h(θ)f(x|θ)π(θ) dθ,

should indeed take advantage of the special nature of I, namely, the fact
that π is a probability density4 or, instead, that f(x|θ)π(θ) is proportional to
a density. As detailed in Chapter ?? this volume, or in Robert and Casella
(2004, Chapter 3), the Monte Carlo method was introduced by Metropolis and
Ulam (1949) and Von Neumann (1951) for this purpose. For instance, if it is
possible to generate (via a computer) random variables θ1, . . . , θm from π(θ),
the average

1
m

m∑
i=1

h(θi)f(x|θi)

converges (almost surely) to I when m goes to +∞, according to the Law
of Large Numbers. Obviously, if an i.i.d. sample of θi’s from the posterior
distribution π(θ|x) can be produced, the average
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1
m

m∑
i=1

h(θi) (4)

converges to

E
π [h(θ)|x] =

∫
Θ
h(θ)f(x|θ)π(θ) dθ∫
Θ
f(x|θ)π(θ) dθ

and it usually is more interesting to use this approximation, rather than

m∑
i=1

h(θi)f(x|θi)
/ m∑

i=1

f(x|θi)

when the θi’s are generated from π(θ), especially when π(θ) is flat compared
with π(θ|x).

In addition, if the posterior variance var(h(θ)|x) is finite, the Central Limit
Theorem applies to the empirical average (4), which is then asymptotically
normal with variance var(h(θ)|x)/m. Confidence regions can then be built
from this normal approximation and, most importantly, the magnitude of
the error remains of order 1/

√
m, whatever the dimension of the problem,

in opposition with numerical methods.5 (See also Robert and Casella, 2004,
Chapter 4, for more details on the convergence assessment based on the CLT.)

The Monte Carlo method actually applies in a much wider generality than
the above simulation from π. For instance, because I can be represented in
an infinity of ways as an expectation, there is no need to simulate from the
distributions π(·|x) or π to get a good approximation of I. Indeed, if g is a
probability density with supp(g) including the support of |h(θ)|f(x|θ)π(θ),
the integral I can also be represented as an expectation against g, namely∫

h(θ)f(x|θ)π(θ)
g(θ)

g(θ) dθ.

This representation leads to the Monte Carlo method with importance function
g: generate θ1, . . . , θm according to g and approximate I through

1
m

m∑
i=1

h(θi)ωi(θi),

with the weights ω(θi) = f(x|θi)π(θi)/g(θi). Again, by the Law of Large
Numbers, this approximation almost surely converges to I. And this estimator
is unbiased. In addition, an approximation to E

π [h(θ)|x] is given by∑m
i=1 h(θi)ω(θi)∑m

i=1 ω(θi)
. (5)

since the numerator and denominator converge to∫
Θ

h(θ)f(x|θ)π(θ) dθ and
∫

Θ

f(x|θ)π(θ) dθ,
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respectively, if supp(g) includes supp(f(x|·)π). Notice that the ratio (5) does
not depend on the normalizing constants in either h(θ), f(x|θ) or π(θ). The
approximation (5) can therefore be used in settings when some of these nor-
malizing constants are unknown. Notice also that the same sample of θi’s can
be used for the approximation of both the numerator and denominator inte-
grals: even though using an estimator in the denominator creates a bias, (5)
does converge to E

π[h(θ)|x].
While this convergence is guaranteed for all densities g with wide enough

support, the choice of the importance function is crucial. First, simulation
from g must be easily implemented. Moreover, the function g(θ) must be close
enough to the function h(θ)π(θ|x), in order to reduce the variability of (5) as
much as possible; otherwise, most of the weights ω(θi) will be quite small
and a few will be overly influential. In fact, if E

h[h2(θ)ω2(θ)] is not finite,
the variance of the estimator (5) is infinite (see Robert and Casella, 2004,
Chapter 3). Obviously, the dependence on g of the importance function h
can be avoided by proposing generic choices such as the posterior distribution
π(θ|x).

3.2 First illustrations

In either point estimation or simple testing situations, the computational
problem is often expressed as a ratio of integrals. Let us start with a toy
example to set up the way Monte Carlo methods proceed and highlight the
difficulties of applying a generic approach to the problem.

Example 9. Consider a t-distribution T (ν, θ, 1) sample (x1, . . . , xn) with ν
known. Assume in addition a flat prior π(θ) = 1 as in a non-informative en-
vironment. While the posterior distribution on θ can be easily plotted, up to a
normalising constant (Figure 1), because we are in dimension 1, direct simulation
and computation from this posterior is impossible.

−3 −2 −1 0 1 2 3

0e
+0

0
2e

−0
9

4e
−0

9
6e

−0
9

8e
−0

9
1e

−0
8

θ

π(θ
)

Fig. 1. Posterior density of θ in the setting of Example 9 for n = 10, with a
simulated sample from T (3, 0, 1).
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If the inferential problem is to decide about the value of θ, the posterior
expectation is

E
π[θ|x1, . . . , xn] =

∫
θ

n∏
i=1

[
ν + (xi − θ)2

]−(ν+1)/2
dθ

/∫ n∏
i=1

[
ν + (xi − θ)2

]−(ν+1)/2
dθ .

This ratio of integrals is not directly computable. Since (ν+(xi − θ)2)−(ν+1)/2 is
proportional to a t-distribution T (ν, xi, 1) density, a solution to the approximation
of the integrals is to use one of the i’s to “be” the density in both integrals.
For instance, if we generate θ1, . . . , θm from the T (ν, x1, 1) distribution, the
equivalent of (5) is

δπ
m =

m∑
j=1

θj

n∏
i=2

[
ν + (xi − θj)2

]−(ν+1)/2
(6)

/ m∑
j=1

n∏
i=2

[
ν + (xi − θj)2

]−(ν+1)/2

since the first term in the product has been “used” for the simulation and the
normalisation constants have vanished in the ratio. Figure 2 is an illustration of
the speed of convergence of this estimator to the true posterior expectation: it
provides the evolution of δπ

m as a function of m both on average and on range
(provided by repeated simulations of δπ

m). As can be seen from the graph, the
average is almost constant from the start, as it should, because of unbiasedness,
while the range decreases very slowly, as it should, because of extreme value
theory. The graph provides in addition the 90% empirical confidence interval built
on these simulations.6 Both the range and the empirical confidence intervals are
decreasing in 1/

√
n, as expected from the theory. (This is further established by

regressing both the log-ranges and the log-lengths of the confidence intervals on
log(n), with slope equal to −0.5 in both cases, as shown by Figure 3.)

Now, there is a clear arbitrariness in the choice of x1 in the sample (x1, . . . ,
xn) for the proposal T (ν, x1, 1). While any of the xi’s has the same theoretical
validity to “represent” the integral and the integrating density, the choice of xi’s
closer to the posterior mode (the true value of θ is 0) induces less variability in the
estimates, as shown by a further simulation experiment through Figure 4. It is fairly
clear from this comparison that the choice of extremal values like x(1) = −3.21
and even more x(10) = 1.72 is detrimental to the quality of the approximation,
compared with the median x(5) = −0.86. The range of the estimators is much
wider for both extremes, but the influence of this choice is also visible for the
average which does not converge so quickly.7

This example thus shows that Monte Carlo methods, while widely avail-
able, may easily face inefficiency problems when the simulated values are not



14

0 200 400 600 800 1000

−1
.3

−1
.2

−1
.1

−1
.0

−0
.9

−0
.8

−0
.7

Iterations

Fig. 2. Evolution of a sequence of 500 estimators (6) over 1, 000 iterations: range
(in gray), .05 and .95 quantiles, and average, obtained on the same sample as in
Figure 1 when simulating from the t distribution with location x1.
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Fig. 3. Regression of the log-ranges (left) and the log-lengths of the confidence
intervals (right) on log(n), for the output in Figure 2.
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Fig. 4. Repetition of the experiment described in Figure 2 for three different choices
of xi: min xi, x(5) and max xi (from left to right).
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sufficiently attuned to the distribution of interest. It also shows that, fun-
damentally, there is no difference between importance sampling and regular
Monte Carlo, in that the integral I can naturally be represented in many
ways.

Although we do not wish to spend too much space on this issue, let us
note that the choice of the importance function gets paramount when the
support of the function of interest is not the whole space. For instance, a tail
probability, associated with h(θ) = Iθ≥θ0 say, should be estimated with an
importance function whose support is [θ0,∞). (See Robert and Casella, 2004,
Chapter 3, for details.)

Example 10 (Continuation of Example 9). If, instead, we wish to consider
the probability that θ ≥ 0, using the t-distribution T (ν, xi, 1) is not a good idea
because negative values of θ are somehow simulated “for nothing”. A better
proposal (in terms of variance) is to use the “folded” t-distribution T (ν, xi, 1),
with density proportional to

ψi(θ) =
[
ν + (xi − θ)2

]−(ν+1)/2
+
[
ν + (xi + θ)2

]−(ν+1)/2
,

on R+, which can be simulated by taking the absolute value of a T (ν, xi, 1) rv.
All simulated values are then positive and the estimator of the probability is

ρπ
m =

m∑
j=1

∏
i�=k

[
ν + (xi − |θj |)2

]−(ν+1)/2
/ψk(|θj |) (7)

/ m∑
j=1

∏
i�=k

[
ν + (xi − θj)2

]−(ν+1)/2

where the θj ’s are iid T (ν, xk, 1). Note that this is a very special occurrence
where the same sample can be used in both the numerator and the denominator.
In fact, in most cases, two different samples have to be used, if only because the
support of the importance distribution for the numerator is not the whole space,
unless, of course, all normalising constants are known. Figure 5 reproduces earlier
Figures for this problem, when using x(5) as the parameter of the t distribution.

The above example is one-dimensional (in the parameter) and the prob-
lems exhibited there can be found severalfold in multidimensional settings.
Indeed, while Monte Carlo methods do not suffer from the “curse of dimen-
sion” in the sense that the error of the corresponding estimators is always
decreasing in 1/

√
n, notwithstanding the dimension, it gets increasingly dif-

ficult to come up with satisfactory importance sampling distributions as the
dimension gets higher and higher. As we will see in Section 5, the intuition
built on MCMC methods has to be exploited to derive satisfactory importance
functions.

Example 11 (Continuation of Example 2). A particular case of generalised
linear model is the probit model,
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Fig. 5. Evolution of a sequence of 100 estimators (7) over 1, 000 iterations (same
legend as Figure 2).

Prθ(Y = 1|x) = 1 − Prθ(Y = 0|x) = Φ(xTθ) θ ∈ R
p ,

where Φ denotes the normal N (0, 1) cdf. Under a flat prior π(θ) = 1, for a sample
(x1, y1), . . . , (xn, yn), the corresponding posterior distribution is proportional to

n∏
i=1

Φ(xT
i θ)

yiΦ(−xT
i θ)

1−yi . (8)

Direct simulation from this distribution is obviously impossible since the very
computation of Φ(z) is a difficulty in itself. If we pick an importance function for
this problem, the adequation with the posterior distribution will need to be better
and better as the dimension p increases. Otherwise, the repartition of the weights
will get increasingly asymmetric: very few weights will be different from 0.

Figure 6 illustrates this degeneracy of the importance sampling approach
as the dimension increases. We simulate parameters β’s and datasets (xi, yi)
(i = 1, . . . , 245) for dimensions p ranging from 1 to 10, then represented the
histograms of the largest weight for p = 1, 2, 5, 10. The xi’s were simulated
from a Np(0, Ip) distribution, while the importance sampling distribution was a
Np(0, Ip/p) distribution.

3.3 Approximations of the Bayes factor

As explained in Sections 2.2 and 2.3, the first computational difficulty as-
sociated with Bayesian testing is the derivation of the Bayes factor, of the
form

Bπ
12 =

∫
Θ1

f1(x|θ1)π1(θ1)dθ1∫
Θ2

f2(x|θ2)π2(θ2)dθ2
=
m1(x)
m2(x)

,

where, for simplicity’s sake, we have adopted the model choice perspective
(that is, θ1 and θ2 may live in completely different spaces).
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Fig. 6. Comparison of the distribution of the largest importance weight based upon
150 replications of an importance sampling experiment with 245 observations and
dimensions p = 1, 2, 5, 10.

Specific Monte Carlo methods for the estimation of ratios of normalizing
constants, or, equivalently, of Bayes factors, have been developed in the past
five years. See Chen et al. (2000, Chapter 5) for a complete exposition. In
particular, the importance sampling technique is rather well-adapted to the
computation of those Bayes factors: Given a importance distribution, with
density proportional to g, and a sample θ(1), . . . , θ(T ) simulated from g, the
marginal density for model Mi, mi(x), is approximated by

m̂i(x) =
T∑

t=1

fi(x|θ(t))
πi(θ(t))
g(θ(t))

/ T∑
t=1

πi(θ(t))
g(θ(t))

,

where the denominator takes care of the (possibly) missing normalizing con-
stants. (Notice that, if g is a density, the expectation of π(θ(t))/g(θ(t)) is 1
and the denominator should be replaced by T to decrease the variance of the
estimator of mi(x).)

A compelling incentive, among others, for using importance sampling in
the setting of model choice is that the sample (θ(1), . . . , θ(T )) can be recycled
for all models Mi sharing the same parameters (in the sense that the models
Mi are parameterized in the same way, e.g. by their first moments).

Example 12 (Continuation of Example 4). In the case the β’s are simu-
lated from a product instrumental distribution
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g(β) =
p∏

i=1

gi(βi) ,

the sample of β’s produced for the general model of Example 2, M1 say, can
also be used for the restricted model, M2, where β1 = 0, simply by deleting the
first component and keeping the following components, with the corresponding
importance density being

g−1(β) =
p∏

i=2

gi(βi) .

Once the β’s have been simulated, the Bayes factor Bπ
12 can be approximated by

m̂1(x)/m̂2(x).

However, the variance of m̂(x) may be infinite, depending on the choice of
g. A possible choice is g(θ) = π(θ), with wider tails than π(θ|x), but this is
often inefficient if the data is informative because the prior and the posterior
distributions will be quite different and most of the simulated values θ(t) fall
outside the modal region of the likelihood. For the choice g(θ) = f(x|θ)π(θ),

m̂(x) = 1
/

1
T

T∑
t=1

1
f(x|θ(t)) , (9)

is the harmonic mean of the likelihoods, but the corresponding variance is
infinite when the likelihood has thinner tails than the prior (which is often
the case).

Explicitly oriented towards the computation of ratios of normalising con-
stants, bridge sampling was introduced in Meng and Wong (1996): if both
models M1 and M2 cover the same parameter space Θ, if π1(θ|x) = c1π̃1(θ|x)
and π2(θ|x) = c2π̃2(θ|x), where c1 and c2 are unknown normalising constants,
then the equality

c2
c1

=
E

π2 [π̃1(θ|x)h(θ)]
Eπ1 [π̃2(θ|x)h(θ)]

holds for any bridge function h(θ) such that both expectations are finite. The
bridge sampling estimator is then

BS
12 =

1
n1

n1∑
i=1

π̃2(θ1i|x)h(θ1i)

1
n2

n2∑
i=1

π̃1(θ2i|x)h(θ2i)

,

where the θji’s are simulated from πj(θ|x) (j = 1, 2, i = 1, . . . , nj).
For instance, if

h(θ) = 1/ [π̃1(θ|x)π̃2(θ1i|x)] ,
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then BS
12 is a ratio of harmonic means, generalizing (9). Meng and Wong

(1996) have derived an (asymptotically) optimal bridge function

h∗(θ) =
n1 + n2

n1π1(θ|x) + n2π2(θ|x)
.

This choice is not of direct use, since the normalizing constants of π1(θ|x)
and π2(θ|x) are unknown (otherwise, we should not need to resort to such
techniques!). Nonetheless, it shows that a good bridge function should cover
the support of both posteriors, with equal weights if n1 = n2.

Example 13 (Continuation of Example 2). For generalized linear models,
the mean (conditionally on the covariates) satisfies

E[y|θ] = ∇ψ(θ) = Ψ(xtβ) ,

where Ψ is the link function. The choice of the link function Ψ usually is quite
open. For instance, when the y’s take values in {0, 1}, three common choices of
Ψ are (McCullagh and Nelder, 1989)

Ψ1(t) = exp(t)/(1+exp(t)), Ψ2(t) = Φ(t), and Ψ3(t) = 1−exp(− exp(t)) ,

corresponding to the logit, probit and log–log link functions (where Φ denotes
the c.d.f. of the N (0, 1) distribution). If the prior distribution π on the β’s is
a normal Np(ξ, τ2Ip), and if the bridge function is h(β) = 1/π(β), the bridge
sampling estimate is then (1 ≤ i < j ≤ 3)

BS
ij =

1
n

n∑
t=1

fj(βit|x)

1
n

n∑
t=1

fi(βjt|x)
,

where the βit are generated from πi(βi|x) ∝ fi(βi|x)π(βi), that is, from the true
posteriors for each link function.

As can be seen from the previous developments, such methods require a
rather careful tuning to be of any use. Therefore, they are rather difficult to
employ outside settings where pairs of models are opposed. In other words,
they cannot be directly used in general model choice settings where the param-
eter space (and in particular the parameter dimension) varies across models,
like, for instance, Example 7. To address the computational issues correspond-
ing to these cases requires more advanced techniques introduced in the next
Section.
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4 Markov Chain Monte Carlo Methods

As described precisely in Chapter ?? and in Robert and Casella (2004),
MCMC methods try to overcome the limitation of regular Monte Carlo meth-
ods by mean of a Markov chain with stationary distribution the posterior dis-
tribution. There exist rather generic ways of producing such chains, including
Metropolis–Hastings and Gibbs algorithms. Besides the fact that stationarity
of the target distribution is enough to justify a simulation method by Markov
chain generation, the idea at the core of MCMC algorithms is that local ex-
ploration, when properly weighted, can lead to a valid representation of the
distribution of interest, as for instance, the Metropolis–Hastings algorithm.

4.1 Metropolis–Hastings as universal simulator

The Metropolis–Hastings, presented in Robert and Casella (2004) and Chap-
ter ??, offers a straightforward solution to the problem of simulating from the
posterior distribution π(θ|x) ∝ f(x|θ)π(θ): starting from an arbitrary point
θ0, the corresponding Markov chain explores the surface of this posterior dis-
tribution by a random walk proposal q(θ|θ′) that progressively visits the whole
range of the possible values of θ.

—Metropolis–Hastings Algorithm—

At iteration t

1 Generate ξ ∼ q(ξ|θ(t)), ut ∼ U([0, 1])
2 Take

θ(t+1) =

ξt if ut ≤
π(ξt|x)
π(θ(t)|x)

q(θ(t)|ξt)
q(ξt|θ(t))

θ(t) otherwise

Example 14 (Continuation of Example 11). In the case p = 1, the probit
model defined in Example 11 can also be over-parameterised as

P (Yi = 1|xi) = 1 − P (Yi = 0|xi) = Φ(xiβ/σ) ,

since it only depends on β/σ. The Bayesian processing of non-identified models
poses no serious difficulty as long as the posterior distribution is well defined. This
is the case for a proper prior like

π(β, σ2) ∝ σ−4 exp{−1/σ2} exp{−β2/50)

that corresponds to a normal distribution on β and a gamma distribution on
σ−2. While the posterior distribution on (β, σ) is not a standard distribution, it
is available up to a normalising constant. Therefore, it can be directly processed
via an MCMC algorithm. In this case, we chose a Gibbs sampler that simulates β
and σ2 alternatively, from
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π(β|x,y, σ) ∝
∏
yi=1

Φ(xiβ/σ)
∏

yi=0

Φ(−xiβ/σ) × π(β)

and
π(σ2|x,y, β) ∝

∏
yi=1

Φ(xiβ/σ)
∏
yi=0

Φ(−xiβ/σ) × π(σ2)

respectively. Since both of these conditional distributions are also non-standard,
we replace the direct simulation by a one-dimensional Metropolis–Hastings step,
using normal N (β(t), 1) and log-normal LN (log σ(t), .04) random walk propos-
als, respectively. For a simulated dataset of 1, 000 points, the contour plot of the
log-posterior distribution is given in Figure 7, along with the last 1, 000 points of
a corresponding MCMC sample after 100, 000 iterations. This graph shows a very
satisfactory repartition of the simulated parameters over the likelihood surface,
with higher concentrations near the largest posterior regions. For another simu-
lation, Figure 8 details the first 500 steps, when started at (β, σ2) = (0.1, 4.0).
Although each step contains both a β and a σ proposal, some moves are either
horizontal or vertical: this corresponds to cases when either the β or the σ pro-
posals have been rejected. Note also the fairly rapid convergence to a modal zone
of the posterior distribution in this case.

    σ2  

β

0 1 2 3 4 5
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−1

0
1

2
3

4

Fig. 7. Contour plot of the log-posterior distribution for a probit sample of 1, 000
observations, along with 1, 000 points of an MCMC sample (Source: Robert and
Casella, 2004).

Obviously, this is only a toy example and more realistic probit models do
not fare so well with down-the-shelf random walk Metropolis–Hastings algo-
rithms, as shown for instance in Nobile (1998) (see also Robert and Casella,
2004, Section 10.3.2).8

The difficulty inherent to random walk Metropolis–Hastings algorithms is
the scaling of the proposal distribution: it must be adapted to the shape of
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Fig. 8. First 500 steps of the Metropolis–Hastings algorithm on the probit log-
posterior surface, when started at (β, σ2) = (0.1, 4.0).

the target distribution so that, in a reasonable number of steps, the whole
support of this distribution can be visited. If the scale of the proposal is too
small, this will not happen as the algorithm stays “too local” and, if there
are several modes on the posterior, the algorithm may get trapped within one
modal region because it cannot reach other modal regions with jumps of too
small magnitude. The larger the dimension p is, the harder it is to set up the
right scale, though, because

(a) the curse of dimension implies that there are more and more empty regions
in the space, that is, regions with zero posterior probability;

(b) the knowledge and intuition about the modal regions get weaker and
weaker;

(c) the proper scaling involves a symmetric (p, p) matrix Ξ in the proposal
g((θ− θ′)TΞ(θ− θ′)). Even when the matrix Ξ is diagonal, it gets harder
to scale as the dimension increases (unless one resorts to a Gibbs like
implementation, where each direction is scaled separately).

Note also that the on-line scaling of the algorithm against the empirical ac-
ceptance rate is inherently flawed in that the attraction of a modal region
may give a false sense of convergence and lead to a choice of too small a scale,
simply because other modes will not be visited during the scaling experiment.

4.2 Gibbs sampling and latent variable models

The Gibbs sampler is a definitely attractive algorithm for Bayesian problems
because it naturally fits the hierarchical structures so often found in such
problems. “Natural” being a rather vague notion from a simulation point of
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view, it routinely happens that other algorithms fare better than the Gibbs
sampler. Nonetheless, Gibbs sampler is often worth a try (possibly with other
Metropolis–Hastings refinements at a later stage) in well-structured objects
like Bayesian hierarchical models and more general graphical models.

A very relevant illustration is made of latent variable models, where the
observational model is itself defined as a mixture model,

f(x|θ) =
∫

Z

f(x|z, θ) g(z|θ) dz.

Such models were instrumental in promoting the Gibbs sampler in the sense
that they have the potential to make Gibbs sampling sound natural very
easily. (See also Chapter ??.) For instance, Tanner and Wong (1987) wrote
a precursor article to Gelfand and Smith (1990) that designed specific two-
stage Gibbs samplers for a variety of latent variable models. And many of
the first applications of Gibbs sampling in the early 90’s were actually for
models of that kind. The usual implementation of the Gibbs sampler in this
case is to simulate the missing variables Z conditional on the parameters and
reciprocally, as follows:

—Latent Variable Gibbs Algorithm—

At iteration t

1 Generate z(t+1) ∼ g(z|θ(t))
2 Generate θ(t+1) ∼ π(θ|x, z(t+1))

While we could have used the probit case as an illustration (Example 11),
as done in Chapter ??, we choose to pick the case of mixtures (Example 6) as
a better setting.

Example 15 (Continuation of Example 6). The natural missing data
structure of a mixture of distribution is historical. In one of the first mixtures
to be ever studied by Bertillon, in 1863, a bimodal structure on the height of
conscripts in south eastern France (Doubs) can be explained by the mixing of
two populations of military conscripts, one from the plains and one from the
mountains (or hills). Therefore, in the analysis of data from distributions of the
form

k∑
i=1

pif(x|θi) ,

a common missing data representation is to associate with each observation xj

a missing multinomial variable zj ∼ Mk(1; p1, . . . , pk) such that xj |zj = i ∼
f(x|θi). In heterogeneous populations made of several homogeneous subgroups
or subpopulations, it makes sense to interpret zj as the index of the population
of origin of xj , which has been lost in the observational process.
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However, mixtures are also customarily used for density approximations, as a
limited dimension proxy to non-parametric approaches. In such cases, the com-
ponents of the mixture and even the number k of components in the mixture are
often meaningless for the problem to be analysed. But this distinction between
natural and artificial completion (by the zj ’s) is lost to the MCMC sampler, whose
goal is simply to provide a Markov chain that converges to the posterior as sta-
tionary distribution. Completion is thus, from a simulation point of view, a mean
to generate such a chain.

The most standard Gibbs sampler for mixture models (Diebolt and Robert,
1994) is thus based on the successive simulation of the zj ’s and of the θi’s,
conditional on one another and on the data:

1. Generate zj |θ, xj (j = 1, . . . , n)
2. Generate θi|x, z (i = 1, . . . , k)

Given that the density f is most often from an exponential family, the simulation
of the θi’s is generally straightforward.

As an illustration, consider the case of a normal mixture with two components,
with equal known variance and fixed weights,

pN (µ1, σ
2) + (1 − p)N (µ2, σ

2) . (10)

Assume in addition a normal N (0, 10σ2) prior on both means µ1 and µ2. It is
easy to see that µ1 and µ2 are independent, given (z,x), and the respective
conditional distributions are

N

∑
zi=j

xi/ (.1 + nj) , σ2/ (.1 + nj)

 ,

where nj denotes the number of zi’s equal to j. Even more easily, it comes that
the conditional posterior distribution of z given (µ1, µ2) is a product of binomials,
with

P (Zi = 1|xi, µ1, µ2)

=
p exp{−(xi − µ1)2/2σ2}

p exp{−(xi − µ1)2/2σ2} + (1 − p) exp{−(xi − µ2)2/2σ2} .

Figure 9 illustrates the behavior of the Gibbs sampler in that setting, with a
simulated dataset of 100 points from the .7N (0, 1)+.3N (2.7, 1) distribution. The
representation of the MCMC sample after 5, 000 iterations is quite in agreement
with the posterior surface, represented via a grid on the (µ1, µ2) space and some
contours. The sequence of consecutive steps represented on the left graph also
shows that the mixing behavior is satisfactory, since the jumps are in scale with
the modal region of the posterior.

This experiment gives a wrong sense of safety, though, because it does not
point out the fairly large dependence of the Gibbs sampler to the initial conditions,
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Fig. 9. Gibbs sample of 5, 000 points for the mixture posterior (left) and path of
the last 100 consecutive steps (right) against the posterior surface (Source: Robert
and Casella, 2004).

already signaled in Diebolt and Robert (1994) under the name of trapping states.
Indeed, the conditioning of (µ1, µ2) on z implies that the new simulations of
the means will remain very close to the previous values, especially if there are
many observations, and thus that the new allocations z will not differ much from
the previous allocations. In other words, to see a significant modification of the
allocations (and thus of the means) would require a very very large number of
iterations. Figure 10 illustrates this phenomenon for the same sample as in Figure
9, for a wider scale: there always exists a second mode in the posterior distribution,
which is much lower than the first mode located around (0, 2.7). Nonetheless, a
Gibbs sampler initialized close to the second and lower mode will not be able to
leave the vicinity of this (irrelevant) mode, even after a large number of iterations.
The reason is as given above: to jump to the other mode, a majority of zj’s would
need to change simultaneously and the probability of such a jump is too close to
0 to let the event occur.9

This example illustrates quite convincingly that, while the completion is
natural from a model point of view (since it is a part of the definition of the
model), it does not necessarily transfer its utility for the simulation of the
posterior. Actually, when the missing variable model allows for a closed form
likelihood, as is the case for mixtures, probit models (Examples 11 and 14) and
even hidden Markov models (see Cappé and Rydén, 2004), the whole range
of the MCMC technology can be used as well. The appeal of alternatives like
random walk Metropolis–Hastings schemes is that they remain in a smaller
dimension space, since they avoid the completion step(s), and that they are
not restricted in the range of their moves.10

Example 16 (Continuation of Example 15). Given that the likelihood of
a sample (x1, . . . , xn) from the mixture distribution (10) can be computed in
O(2n) time, a regular random walk Metropolis–Hastings algorithm can be used
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Fig. 10. Posterior surface and corresponding Gibbs sample for the two mean mix-
ture model, when initialized close to the second and lower mode, based on 10, 000
iterations (Source: Robert and Casella, 2004).

in this setup. Figure 11 shows how quickly this algorithm escapes the attraction
of the poor mode, as opposed to the Gibbs sampler of Figure 10: within a few
iterations of the algorithm, the chain drifts over the poor mode and converges
almost deterministically to the proper region of the posterior surface. The random

walk is based on N (µ(t)
i , 0.04) proposals, although other scales would work as well

but would require more iterations to reach the proper model regions. For instance,
a scale of 0.005 in the Normal proposal above needs close to 5, 000 iterations to
attain the main mode.

The secret of a successful MCMC implementation in such latent variable
models is to maintain the distinction between latency in models and latency in
simulation (the later being often called use of auxiliary variables). When latent
variables can be used with adequate mixing of the resulting chain and when
the likelihood cannot be computed in a closed form (as in hidden semi-Markov
models, Cappé et al., 2004), a Gibbs sampler is a still simple solution that
is often easy to simulate from. Adding well-mixing random walk Metropolis–
Hastings steps in the simulation scheme cannot hurt the overall mixing of the
chain (Robert and Casella, 2004, Chap. 13), especially when several scales can
be used at once (see Section 5). A final word is that the completion can be
led in an infinity of ways and that several of these should be tried or used in
parallel to increase the chances of success.

4.3 Reversible jump algorithms for variable dimension models

As described in Section 2.3, model choice is computationally different from
testing in that it considers at once a (much) wider range of models Mi and
parameter spaces Θi. Although early approaches could only go through a
pedestrian pairwise comparison, a more adequate perspective is to envision
the model index i as part of the parameter to be estimated, as in (3). The



27

−1 0 1 2 3

−1
0

1
2

3

µ1

µ 2

X

Fig. 11. Track of a 1, 000 iteration random walk Metropolis–Hastings sample on
the posterior surface, the starting point is indicated by a cross. (The scale of the
random walk is 0.2.)

(computational) difficulty is that we are then dealing with a possibly infinite
space that is the collection of unrelated sets: how can we then simulate from
the corresponding distribution?11

The MCMC solution proposed by Green (1995) is called reversible jump
MCMC, because it is based on a reversibility constraint on the transitions
between the sets Θi. In fact, the only real difficulty compared with previous
developments is to validate moves (or jumps) between the Θi’s, since propos-
als restricted to a given Θi follow from the usual (fixed-dimensional) theory.
Furthermore, reversibility can be processed at a local level: since the model
indicator µ is a integer-valued random variable, we can impose reversibility
for each pair (k1, k2) of possible values of µ. The idea at the core of reversible
jump MCMC is then to supplement each of the spaces Θk1 and Θk2 with
adequate artificial spaces in order to create a bijection between them. For
instance, if dim(Θk1 ) > dim(Θk2 ) and if the move from Θk1 to Θk2 can be
represented by a deterministic transformation of θ(k1)

θ(k2) = Tk1→k2(θ
(k1)) ,

Green (1995) imposes a dimension matching condition which is that the op-
posite move from Θk2 to Θk1 is concentrated on the curve{

θ(k1) : θ(k2) = Tk1→k2(θ
(k1))

}
.

In the general case, if θ(k1) is completed by a simulation u1 ∼ g1(u1) into (θ(k1),
u1) and θ(k2) by u2 ∼ g2(u2) into (θ(k2), u2) so that the mapping between
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(θ(k1), u1) and (θ(k2), u2) is a bijection,

(θ(k2), u2) = Tk1→k2(θ
(k1), u1), (11)

the probability of acceptance for the move from model Mk1 to model Mk2 is
then

min
(
π(k2, θ

(k2))
π(k1, θ(k1))

π21g2(u2)
π12g1(u1)

∣∣∣∣∂Tk1→k2(θ(k1), u1)
∂(θ(k1), u1)

∣∣∣∣ , 1) ,

involving

– the Jacobian of the transform Tk1→k2 ,,
– the probability πij of choosing a jump to Mkj while in Mki , and
– gi, the density of ui.

The acceptance probability for the reverse move is based on the inverse ratio
if the move from Mk2 to Mk1 also satisfies (11) with u2 ∼ g2(u2).12

The pseudo-code representation of Green’s algorithm is thus as follows:

—Green’s Algorithm—

At iteration t, if x(t) = (m, θ(m)),

1. Select model Mn with probability πmn

2. Generate umn ∼ ϕmn(u)
3. Set (θ(n), vnm) = Tm→n(θ(m), umn)
4. Take x(t+1) = (n, θ(n)) with probability

min
(
π(n, θ(n))
π(m, θ(m))

πnmϕnm(vnm)
πmnϕmn(umn)

∣∣∣∣∂Tm→n(θ(m), umn)
∂(θ(m), umn)

∣∣∣∣ , 1) ,

and take x(t+1) = x(t) otherwise.

As for previous methods, the implementation of this algorithm requires a
certain skillfulness in picking the right proposals and the appropriate scales.
This art of reversible jump MCMC is illustrated on the two following exam-
ples, extracted from Robert and Casella (2004, Section 14.2.3).

Example 17 (Continuation of Example 6). If we consider for model Mk

the k component normal mixture distribution,

k∑
j=1

pjkN (µjk, σ
2
jk) ,

moves between models involve changing the number of components in the mixture
and thus adding new components or removing older components or yet again
changing several components. As in Richardson and Green (1997), we can restrict
the moves when in model Mk to only models Mk+1 and Mk−1. The simplest
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solution is to use a birth-and-death process: The birth step consists in adding a
new normal component in the mixture generated from the prior and the death
step is the opposite, removing one of the k components at random. In this case,
the corresponding birth acceptance probability is

min
(
π(k+1)k

πk(k+1)

(k + 1)!
k!

πk+1(θk+1)
πk(θk) (k + 1)ϕk(k+1)(uk(k+1))

, 1
)

= min
(
π(k+1)k

πk(k+1)

�(k + 1)
�(k)

�k+1(θk+1) (1 − pk+1)k−1

�k(θk)
, 1
)
,

where �k denotes the likelihood of the k component mixture model Mk and �(k)
is the prior probability of model Mk.13

While this proposal can work well in some setting, as in Richardson and Green
(1997) when the prior is calibrated against the data, it can also be inefficient,
that is, leading to a high rejection rate, if the prior is vague, since the birth
proposals are not tuned properly. A second proposal, central to the solution of
Richardson and Green (1997), is to devise more local jumps between models,
called split and combine moves, since a new component is created by splitting an
existing component into two, under some moment preservation conditions, and
the reverse move consists in combining two existing components into one, with
symmetric constraints that ensure reversibility. (See, e.g., Robert and Casella,
2004, for details.)

Figures 12–14 illustrate the implementation of this algorithm for the so-called
Galaxy dataset used by Richardson and Green (1997) (see also Roeder, 1992),
which contains 82 observations on the speed of galaxies. On Figure 12, the MCMC
output on the number of components k is represented as a histogram on k, and
the corresponding sequence of k’s. The prior used on k is a uniform distribution
on {1, . . . , 20}: as shown by the lower plot, most values of k are explored by the
reversible jump algorithm, but the upper bound does not appear to be restrictive
since the k(t)’s hardly ever reach this upper limit. Figure 13 illustrates the fact
that conditioning the output on the most likely value of k (3 here) is possible. The
nine graphs in this Figure show the joint variation of the three types of parameters,
as well as the stability of the Markov chain over the 1, 000, 000 iterations: the
cumulated averages are quite stable, almost from the start.

The density plotted on top of the histogram in Figure 14 is another good
illustration of the inferential possibilities offered by reversible jump algorithms, as
a case of model averaging: this density is obtained as the average over iterations
t of

k(t)∑
j=1

p
(t)
jk N (µ(t)

jk , (σ
(t)
jk )2) ,

which approximates the posterior expectation E[f(y|θ)|x], where x denotes the
data x1, . . . , x82.
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Fig. 12. Histogram and raw plot of 100, 000 k’s produced by a reversible jump
MCMC algorithm for the Galaxy dataset.
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Fig. 13. Reversible jump MCMC output on the parameters of the model M3 for
the Galaxy dataset, obtained by conditioning on k = 3. The left column gives the
histogram of the weights, means, and variances; the middle column the scatterplot of
the pairs weights-means, means-variances, and variances-weights; the right column
plots the cumulated averages (over iterations) for the weights, means, and variances.
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Fig. 14. Fit of the dataset by the averaged density, E[f(y|θ)|x]

Example 18 (Continuation of Example 3). For the AR(p) model of Ex-
ample 3, the best way to include the stationarity constraints is to use the lag-
polynomial representation

p∏
i=1

(1 − λiB) Xt = εt , εt ∼ N (0, σ2) ,

of model Mp, and to constrain the inverse roots, λi, to stay within the unit circle
if complex and within [−1, 1] if real (see, e.g. Robert, 2001, Section 4.5.2). The
associated uniform priors for the real and complex roots λj is

πp(λ) =
1

	p/2
+ 1

∏
λi∈R

1
2

I|λi|<1

∏
λi �∈R

1
π

I|λi|<1 ,

where 	p/2
 + 1 is the number of different values of rp. This factor must be
included within the posterior distribution when using reversible jump since it does
not vanish in the acceptance probability of a move between models Mp and Mq.
Otherwise, this results in a modification of the prior probability of each model.

Once again, a simple choice is to use a birth-and-death scheme where the
birth moves either create a real or two conjugate complex roots. As in the birth-
and-death proposal for Example 17, the acceptance probability simplifies quite
dramatically since it is for instance

min
(
π(p+1)p

πp(p+1)

(rp + 1)!
rp!

	p/2
+ 1
	(p+ 1)/2
+ 1

�p+1(θp+1)
�p(θp)

, 1
)

in the case of a move from Mp to Mp+1. (As for the above mixture example,
the factorials are related to the possible choices of the created and the deleted
roots.)

Figure 15 presents some views of the corresponding reversible jump MCMC
algorithm. Besides the ability of the algorithm to explore a range of values of k,
it also shows that Bayesian inference using these tools is much richer, since it
can, for instance, condition on or average over the order k, mix the parameters
of different models and run various tests on these parameters. A last remark
on this graph is that both the order and the value of the parameters are well
estimated, with a characteristic trimodality on the histograms of the θi’s, even
when conditioning on k different from 3, the value used for the simulation.
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Fig. 15. Output of a reversible jump algorithm based on an AR(3) simulated
dataset of 530 points (upper left) with true parameters θi (−0.1, 0.3,−0.4) and σ = 1.
The first histogram is associated with k, the following histograms are associated with
the θi’s, for different values of k, and of σ2. The final graph is a scatterplot of the
complex roots (for iterations where there were complex roots). The one before last
graph plots the evolution over the iterations of θ1, θ2, θ3 (Source: Robert 2003).

5 More Monte Carlo Methods

While MCMC algorithms considerably expanded the range of applications of
Bayesian analysis, they are not, by any means, the end of the story! Fur-
ther developments are taking place, either at the fringe of the MCMC realm
or far away from it. We indicate below a few of the directions in Bayesian
computational Statistics, omitting many more that also are of interest...

5.1 Adaptivity for MCMC algorithms

Given the range of situations where MCMC applies, it is unrealistic to hope
for a generic MCMC sampler that would function in every possible setting.
The more generic proposals like random-walk Metropolis–Hastings algorithms
are known to fail in large dimension and disconnected supports, because they
take too long to explore the space of interest (Neal, 2003). The reason for
this impossibility theorem is that, in realistic problems, the complexity of
the distribution to simulation is the very reason why MCMC is used! So it
is difficult to ask for a prior opinion about this distribution, its support or
the parameters of the proposal distribution used in the MCMC algorithm:
intuition is close to void in most of these problems.
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However, the performances of off-the-shelve algorithms like the random-
walk Metropolis–Hastings scheme bring information about the distribution of
interest and, as such, should be incorporated in the design of better and more
powerful algorithms. The problem is that we usually miss the time to train
the algorithm on these previous performances and are looking for the Holy
Grail of automated MCMC procedures! While it is natural to think that the
information brought by the first steps of an MCMC algorithm should be used
in later steps, there is a severe catch: using the whole past of the “chain”
implies that this is not a Markov chain any longer. Therefore, usual conver-
gence theorems do not apply and the validity of the corresponding algorithms
is questionable. Further, it may be that, in practice, such algorithms do de-
generate to point masses because of a too rapid decrease in the variation of
their proposal.

Example 19 (Continuation of Example 9). For the t-distribution sample,
we could fit a normal proposal from the empirical mean and variance of the
previous values of the chain,

µt =
1
t

t∑
i=1

θ(i) and σ2
t =

1
t

t∑
i=1

(θ(i) − µt)2 .

This leads to a Metropolis–Hastings algorithm with acceptance probability

n∏
j=2

[
ν + (xj − θ(t))2

ν + (xj − ξ)2

]−(ν+1)/2
exp−(µt − θ(t))2/2σ2

t

exp−(µt − ξ)2/2σ2
t

,

where ξ is the proposed value from N (µt, σ
2
t ). The invalidity of this scheme

(because of the dependence on the whole sequence of θ(i)’s till iteration t) is
illustrated in Figure 16: when the range of the initial values is too small, the
sequence of θ(i)’s cannot converge to the target distribution and concentrates on
too small a support. But the problem is deeper, because even when the range
of the simulated values is correct, the (long-term) dependence on past values
modifies the distribution of the sequence. Figure 17 shows that, for an initial
variance of 2.5, there is a bias in the histogram, even after 25, 000 iterations and
stabilisation of the empirical mean and variance.

Even though the Markov chain is converging in distribution to the target
distribution (when using a proper, i.e. time-homogeneous updating scheme),
using past simulations to create a non-parametric approximation to the target
distribution does not work either. Figure 18 shows for instance the output of an
adaptive scheme in the setting of Example 19 when the proposal distribution
is the Gaussian kernel based on earlier simulations. A very large number of
iterations is not sufficient to reach an acceptable approximation of the target
distribution.

The overall message is thus that one should not constantly adapt the pro-
posal distribution on the past performances of the simulated chain. Either the
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Fig. 16. Output of the adaptive scheme for the t-distribution posterior with a
sample of 10 xj ∼ T� and initial variances of (top) 0.1, (middle) 0.5, and (bottom)
2.5. The left column plots the sequence of θ(i)’s while the right column compares
its histogram against the true posterior distribution (with a different scale for the
upper graph).
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Fig. 17. Comparison of the distribution of an adaptive scheme sample of 25, 000
points with initial variance of 2.5 and of the target distribution.
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Fig. 18. Sample produced by 50, 000 iterations of a nonparametric adaptive MCMC
scheme and comparison of its distribution with the target distribution.

adaptation must cease after a period of burnin (not to be taken into account
for the computations of expectations and quantities related to the target dis-
tribution), or the adaptive scheme must be theoretically assess on its own
right. This later path is not easy and only a few examples can be found (so
far) in the literature. See, e.g., Gilks et al. (1998) who use regeneration to
create block independence and preserve Markovianity on the paths rather
than on the values, Haario et al. (1999, 2001) who derive a proper adaptation
scheme in the spirit of Example 19 by using a ridge-like correction to the
empirical variance, and Andrieu and Robert (2001) who propose a more gen-
eral framework of valid adaptivity based on stochastic optimisation and the
Robbin-Monro algorithm. (The latter actually embeds the chain of interest
θ(t) in a larger chain (θ(t), ξ(t), ∂(t)) that also includes the parameter of the
proposal distribution as well as the gradient of a performance criterion.)

5.2 Population Monte Carlo

To reach acceptable adaptive algorithms, while avoiding an extended study
of their theoretical properties, a better alternative is to leave the structure of
Markov chains and to consider sequential or population Monte Carlo meth-
ods (Iba, 2000; Cappé et al., 2004) that have much more in common with
importance sampling than with MCMC. They are inspired from particle sys-
tems that were introduced to handle rapidly changing target distributions like
those found in signal processing and imaging (Gordon et al., 1993; Shephard
and Pitt, 1997; Doucet et al., 2001) but primarily handle fixed but complex
target distributions by building a sequence of increasingly better proposal dis-
tributions.14 Each iteration of the population Monte Carlo (PMC) algorithm
thus produces a sample approximately simulated from the target distribution
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but the iterative structure allows for adaptivity toward the target distribution.
Since the validation is based on importance sampling principles, dependence
on the past samples can be arbitrary and the approximation to the target is
valid (unbiased) at each iteration and does not require convergence times nor
stopping rules.

If t indexes the iteration and i the sample point, consider proposal distri-
butions qit that simulate the x(t)

i ’s and associate to each x
(t)
i an importance

weight
�
(t)
i = π(x(t)

i )
/
qit(x

(t)
i ) , i = 1, . . . , n .

Approximations of the form

It =
1
n

n∑
i=1

�
(t)
i h(x(t)

i )

are then unbiased estimators of E
π [h(X)], even when the importance distribu-

tion qit depends on the entire past of the experiment. Indeed, if ζ denotes the
vector of past random variates that contribute to qit, and g(ζ) its arbitrary
distribution, we have∫ ∫

π(x)
qit(x|ζ)

h(x)qit(x)dx g(ζ)dζ =
∫ ∫

h(x)π(x)dx g(ζ)dζ = E
π[h(X)] .

Furthermore, assuming that the variances

var
(
�
(t)
i h(x(t)

i )
)

exist for every 1 ≤ i ≤ n, we have

var (It) =
1
n2

n∑
i=1

var
(
�
(t)
i h(x(t)

i )
)
,

due to the canceling effect of the weights �(t)
i .

Since, usually, the density π is unscaled, we use instead

�
(t)
i ∝ π(x(t)

i )

qit(x
(t)
i )

, i = 1, . . . , n ,

scaled so that the �(t)
i ’s sum up to 1. In this case, the unbiasedness is lost,

although it approximately holds. In fact, the estimation of the normalizing
constant of π improves with each iteration t, since the overall average

�t =
1
tn

t∑
τ=1

n∑
i=1

π(x(τ)
i )

qiτ (x(τ)
i )

is convergent. Therefore, as t increases, �t contributes less and less to the
variability of It.
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Since the above establishes that an simulation scheme based on sample
dependent proposals is fundamentally a specific kind of importance sampling,
the following algorithm is validated by the same principles as regular impor-
tance sampling:

—Population Monte Carlo Algorithm—

For t = 1, . . . , T

1. For i = 1, . . . , n,
i) Select the generating distribution qit(·)
ii) Generate x

(t)
i ∼ qit(x)

iii) Compute �
(t)
i = π(x(t)

i )/qit(x
(t)
i )

2. Normalize the �
(t)
i ’s to sum up to 1

3. Resample n values from the x
(t)
i ’s with replacement, using the

weights �
(t)
i , to create the sample (x(t)

1 , . . . , x
(t)
n )

Step (i) is singled out because it is the central property of the PMC algo-
rithm, namely that adaptivity can be extended to the individual level and that
the qit’s can be picked based on the performances of the previous qi(t−1)’s or
even on all the previously simulated samples, if storage allows. For instance,
the qit’s can include large tails proposals as in the defensive sampling strat-
egy of Hesterberg (1998), to ensure finite variance. Similarly, Warnes’ (2001)
non-parametric Gaussian kernel approximation can be used as a proposal.15

(See also Stavropoulos and Titterington, 2001 smooth bootstrap as an earlier
example of PMC algorithm.)

The major difference between the PMC algorithm and earlier proposals
in the particle system literature is that past dependent moves as those of
Gilks and Berzuini (2001) remain within the MCMC framework, with Markov
transition kernels with stationary distribution equal to π.

Example 20 (Continuation of Example 15). We consider here the imple-
mentation of the PMC algorithm in the case of the the normal mixture (10).
As in Example 16, a PMC sampler can be efficiently implemented without the
(Gibbs) augmentation step, using normal random walk proposals based on the
previous sample of µ = (µ1, µ2)’s. Moreover, the difficulty inherent to random
walks, namely the selection of a “proper” scale, can be bypassed because of the
adaptivity of the PMC algorithm. Indeed, the proposals can be associated with
a range of variances vk (1 ≤ k ≤ K) ranging from, e.g., 103 down to 10−3. At
each step of the algorithm, the new variances can be selected proportionally to
the performances of the scales vk on the previous iterations. For instance, a scale
can be chosen proportionally to its non-degeneracy rate in the previous iteration,
that is, the percentage of points generated with the scale vk that survived after
resampling.16 The weights are then of the form
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�j ∝
f
(
x
∣∣∣(µ1)

(i)
j , (µ2)

(i)
j

)
π
(
(µ1)

(i)
j , (µ2)

(i)
j

)
ϕ
(
(µ1)

(i)
j

∣∣∣(µ1)
(i−1)
j , vk

)
ϕ
(
(µ2)

(i)
j

∣∣∣(µ2)
(i−1)
j , vk

)
,

where ϕ(q|s, v) is the density of the normal distribution with mean s and variance
v at the point q.

Compared with an MCMC algorithm in the same setting (see Examples 15
and 16), the main feature of this algorithm is its ability to deal with multiscale
proposals in an unsupervised manner. The upper row of Figure 21 produces the
frequencies of the five variances vk used in the proposals along iterations: The two
largest variances vk most often have a zero survival rate, but sometimes experience
bursts of survival. In fact, too large a variance mostly produces points that are

irrelevant for the posterior distribution, but once in a while a point θ
(t)
j gets close

to one of the modes of the posterior. When this occurs, the corresponding �j is

large and θ
(t)
j is thus heavily resampled. The upper right graph shows that the

other proposals are rather evenly sampled along iterations. The influence of the
variation in the proposals on the estimation of the means µ1 and µ2 can be seen
on the middle and lower panels of Figure 21. First, the cumulative averages quickly
stabilize over iterations, by virtue of the general importance sampling proposal.
Second, the corresponding variances take longer to stabilize but this is to be
expected, given the regular reappearance of subsamples with large variances.
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Fig. 19. Representation of the log-posterior distribution with the PMC weighted
sample after 30 iterations (the weights are proportional to the circles at each point)
(Source: Cappé et al., 2004).
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Fig. 20. Histograms of the PMC sample: sample at iteration 5 (left) before resam-
pling and (right) after resampling.

In comparison with Figures 10 and 11, Figure 19 shows that the sample pro-
duced by the PMC algorithm is quite in agreement with the modal zone of the
posterior distribution. The second mode, which is much lower, is not preserved
in the sample after the first iteration. Figure 20 also shows that the weights are
quite similar, with no overwhelming weight in the sample.

The generality in the choice of the proposal distributions qit is obviously
due to the abandonment of the MCMC framework. The difference with an
MCMC framework is not simply a theoretical advantage: as seen in Section
5.1, proposals based on the whole past of the chain do not often work. Even
algorithms validated by MCMC steps may have difficulties: in one example of
Cappé et al. (2004), a Metropolis–Hastings scheme does not work well, while
a PMC algorithm based on the same proposal produces correct answers.

6 Conclusion

This short overview of the problems and solutions considered for Bayesian
Statistics is nothing but an introduction to the game: there are much more
complex problems than those illustrated above and much more advanced tech-
niques than those presented in these pages. The reader is then encouraged to
enter the literature on the topic, maybe with other introductory surveys like
Cappé and Robert (2000) and Andrieu et al. (2004), but mostly through books
like Chen et al. (2000), Doucet et al. (2001), Liu (2001), Green et al. (2003)
and Robert and Casella (2004).
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Fig. 21. Performances of the mixture PMC algorithm for 1000 observations from
a 0.2N (0, 1) + 0.8N (2, 1) distribution, with θ = 1 λ = 0.1, vk = 5, 2, .1, .05, .01,
and a population of 1050 particles: (upper left) Number of resampled points for the
variances v1 = 5 (darker) and v2 = 2; (upper right) Number of resampled points
for the other variances, v3 = 0.1 is the darkest one; (middle left) Variance of the
simulated µ1’s along iterations; (middle right) Cumulated average of the simulated
µ1’s over iterations; (lower left) Variance of the simulated µ2’s along iterations;
(lower right) Cumulated average of the simulated µ2’s over iterations (Source: Cappé
et al., 2004).

We have not mentioned so far entries to Bayesian softwares like winBUGS,
developed by the MRC Unit in Cambridge (Gilks et al., 1994; Spiegelhal-
ter et al., 1999), Ox (Doornik et al., 2002), BATS (Pole et al., 1994), BACC
(Geweke, 1999) and the Minitab package of Albert (1996), which all cover some
aspects of Bayesian computing. Obviously, these packages require some exper-
tise from the user and are thus more difficult of use than the classical open
source or commercial softwares like R, Splus, Statgraphics, StatXact, SPSS or
SAS. In other words, they are not black boxes that could be used by laymen
with no statistical background. But this entrance fee to the use of Bayesian
softwares is inevitable, given the versatile nature of Bayesian analysis: since
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it offers much more variability than standard inferential procedures, through
the choice of prior distributions and loss functions for instance, it also requires
more input from the user! And, once these preliminary steps have been over-
come, the programming involved in a software like winBUGS is rather limited
and certainly not harder than writing a code in R or Matlab.

As stressed in this Chapter, computational issues are central to the design
and implementation of Bayesian analysis. The new era opened by the MCMC
methodology has brought much more freedom in the use of Bayesian meth-
ods, as reflected by the increase of Bayesian studies in applied Statistics. As
usually the case, a strong increase in the use of a methodology also sees a
corresponding increase in its misuse! Inconsistent data-dependent priors and
improper posteriors are sometimes appearing in studies and, more generally,
the assessment of prior modelling (or even of MCMC convergence) are rarely
conducted with sufficient care. This is somehow a price to pay for the wider
range of Bayesian studies, while the improvement of corresponding software
should bring more guidelines and warnings about these misuses of Bayesian
analysis.
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Notes

1In this chapter, the denomination universal is used in the sense of uni-
formly over all distributions.

2To impose the stationarity constraint when the order of the AR(p) model
varies, it is necessary to reparameterise this model in terms of either the partial
autocorrelations or of the roots of the associated lag polynomial. (See, e.g.,
Robert, 2001, Section 4.5.)

3In this presentation of Bayes factors, we completely bypass the method-
ological difficulty of defining π(θ ∈ Θ0) when Θ0 is of measure 0 for the
original prior π and refer the reader to Robert (2001, Section 5.2.3) for proper
coverage of this issue.

4The prior distribution can be used for importance sampling only if it is a
proper prior and not a σ-finite measure.

5The constant order of the Monte Carlo error does not imply that the com-
putational effort remains the same as the dimension increases, most obviously,
but rather that the decrease (with m) in variation has the rate 1/

√
m.

6The empirical (Monte Carlo) confidence interval is not to be confused with
the asymptotic confidence interval derived from the normal approximation. As
discussed in Robert and Casella (2004, Chapter 4), these two intervals may
differ considerably in width, with the interval derived from the CLT being
much more optimistic!

7An alternative to the simulation from one T (ν, xi, 1) distribution that
does not require an extensive study on the most appropriate xi is to use a
mixture of the T (ν, xi, 1) distributions. As seen in Section 5.2, the weights of
this mixture can even be optimised automatically.

8Even in the simple case of the probit model, MCMC algorithms do not
always converge very quickly, as shown in Robert and Casella (2004, Chapter
14).

9It is quite interesting to see that the mixture Gibbs sampler suffers from
the same pathology as the EM algorithm, although this is not surprising given
that it is based on the same completion scheme.

10This wealth of possible alternatives to the completion Gibbs sampler is a
mixed blessing in that their range, for instance the scale of the random walk
proposals, needs to be scaled properly to avoid inefficiencies.

11Early proposals to solve the varying dimension problem involved satu-
ration schemes where all the parameters for all models were updated deter-
ministically (Carlin and Chib, 1995), but they do not apply for an infinite
collection of models and they need to be precisely calibrated to achieve a
sufficient amount of moves between models.
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12For a simple proof that the acceptance probability guarantees that the
stationary distribution is π(k, θ(k)), see Robert and Casella (2004, Section
11.2.2).

13In the birth acceptance probability, the factorials k! and (k + 1)! appear
as the numbers of ways of ordering the k and k + 1 components of the mix-
tures. The ratio cancels with 1/(k+ 1), which is the probability of selecting a
particular component for the death step.

14The “sequential” denomination in the sequential Monte Carlo methods
thus refers to the algorithmic part, not to the statistical part.

15Using a Gaussian non-parametric kernel estimator amounts to (a) sam-
pling from the x(t)

i ’s with equal weights and (b) using a normal random walk
move from the selected x(t)

i , with standard deviation equal to the bandwidth
of the kernel.

16When the survival rate of a proposal distribution is null, in order to avoid
the complete removal of a given scale vk, the corresponding number rk of
proposals with that scale is set to a positive value, like 1% of the sample size.
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