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On oscillations of the geometric Brownian motion
with time delayed drift*

Alexander A. Gushchin Uwe Kiichler

Steklov Mathematical Institute Institut fiir Mathematik /Stochastik
Gubkina 8 Humboldt-Universitat zu Berlin

117966 Moscow GSP-1, Russia Unter den Linden 6

D-10099 Berlin, Germany

Abstract

The geometric Brownian motion is the solution of a linear stochastic dif-
ferential equation in the Ito-sense. If one adds to the drift term a possible
nonlinear time delayed term and starts with a nonnegative initial process then
the process generated in this way, may hit zero and may oscillate around zero
infinitely often depending on properties of both drift terms and the diffusion
constant.

Key words. geometric Brownian motion, stochastic delay, differential equations,
oscillations.
AMS-Classifications. 60H10, 34K50, 93E03 .

1 Introduction

Assume W = (W (t),t > 0) is a real valued standard Wiener process and Uj is a
real random variable both defined on some probability space (2,4, P). Let Uy be
independent of W. Denote by a and o two real numbers with ¢ > 0.

The geometric Brownian motion U = (U(t),t > 0) with drift coefficient a and
diffusion coefficient o is defined to be the solution of the stochastic differential
equation

* Support of Deutsche Forschungsgemeinschaft SFB 373, Humboldt-Universitit zu Berlin and of
DFG-RFBR Project 98-01-04108 is gratefully acknowledged.



dU(t) = aU (t)dt + cU(t)dW (t) (1)

with U(0) = Uy as initial condition. The solution is given by

U(t) = Uy,expleW (t) + (e — —)1] (2)

o2
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what can be easily affirmed by It6’s formula.

Many properties of U can be derived from this formula, we mention here only its
(obvious) positiveness if Uy is positive.

A complete other picture can appear if we add to the drift term a time delayed drift:

dX(t) ={aX )+ f(X(t—r))}dt + o X (t)dW (t) (3)
where F' is a measurable real function on R, and r is a positive constant.

To ensure the uniqueness of the solution we establish the initial condition

X(t) = XO(t)’ le [—7', 0]1 (4)
where X, is a continuous process on (€2,.4, P) being independent of W.

Principally the solution can be obtained step by step by solving the (ordinary)
stochastic differential equation:

X(t) =

X(nr)+a/X(s)ds+/f(X(s—r))ds+a/X(s)dW(s) te[nr,(n+1)r],  (5)

n > 0. By using the process U from (2) the equation (5) yields

X(t)=U(t) [);((Z:)) + / %ds , t€nr,(n+1)r], n>0. (6)

Once again use It6’s formula to show that X (.) given by (6) and the initial condition
(4) solves equation (3). The uniquenes of the solution of (3) and (4) provided by (6)
follows from a Gronwall-type argument, compare for example Mao(1997), Chapter
D.

From (6) it is clear that X (¢) remains positive for every ¢ > 0 as long as the initial
condition X;(.) is nonnegative but not identical zero and f is positive on (0, 00).
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For other functions f this property does not keep in force.

In this note we will show that under the condition (A) on a,c and f formulated
below for any positive  and any nonnegative and not identical zero initial condition
Xo(s),s € [—r,0], the solution X(.) of (3) P-a.s. oscillates around zero infinitely
often if the time ¢ increases unboundedly. Moreover, the set of zeros of P-almost
every trajectory X (.) turns out to be a countable infinite set, say {ox, k > 1}, with
Oky1 — 0 > 1,k > 1, see the Theorem and the Corollary in Section 2.

Condition (A): We say Condition (A) is satisfied, if at least one of the following two
conditions hold.

(A1) a < "2—2, f is nonincreasing on R and there exist reals §,b with § > 0,b < 0
such that

z7 f(z) < b (7)
for all z # 0 satisfying |z| < 4,

(A2) a € R, f is nonincreasing on R and there exists a negative number b such that
(7) holds for all x # 0.

Note that (7) is equivalent to f(z) < bx < 0 for z > 0 and to f(z) > bz > 0 for
z < 0.

Example: If ¢ < 0 then both f(z) = ¢ sgn (z) and f(z) = ¢ tan h(z) satisfy (A1)
but not (A2).

Our proof is a probabilistic one. For f(z) = bz the result was recently shown by
Appleby, Buckwar [1] who used functional theoretic arguments.

2 Results

We use the notations and assumptions of Chapter 1.

Let U = (U(t),t > 0) be the geometric Brownian motion defined by

WD) = aX (it +oU OV (), 120 } (8)



If we define U(t) = 1,Y(t) = Xo(t) for —r < t < 0, then the process
Y = (Y(t), t> —r) satisfies

4y (t) = FY(t _(;gtl)](t —7)) gt >0, } o)
V() = Xo(t), t € [~r,0]

It is clear that the equation (10) has a unique solution (for every w) and can be
solved step by step on the intervals [nr, (n + 1)r],n = 0,1,2,.... This solution is a
continuously differentiable on (0, co) function.

Conversely, if Y = (Y(¢),t > —r) is a solution of (10), then the process
X(t) == Y(@)U(t),t > —r (where U(t) = 1 for t < 0) is a solution of (3) due
to Ito’s formula.

Theorem Assume that (X (t),t > —r) is a solution of (3), (4) with the nonnegative
initial condition Xo(t) > 0,t € [—7,0] as well as a,0, f satisfy Condition (A). Put
7 :=inf{t > 0| X (t) = 0}. Then P(1 < 00) = 1.

Proof. Observe that 7 = inf{t > 0 : Y (¢) = 0}, where Y/(.) denotes the solution of
(10).

We have 7(w) = 0 if and only if X(0,w) = 0. If 7(w) > 0 then X,(0,w) > 0 and
the function Y (¢,w) is nonincreasing and strictly positive on [0, 7(w)[ due to (10).

In particular, on the set {7 = oo} we have X (¢) > 0 for all ¢ > 0 and, by assuming
Condition A(i),

limsup X (¢) < Xo(0)limsup U(¢t) =0  as. (11)

t—o0 t—o0

Let 79 = 0 and define recursively

x , ifr,=xorr <7+,
Tl =\ inf{t > 1, +7: X(t) = <iI<1f . X(s)}, otherwise.
TnSSSTpTT

It is clear that 71,79, ..., 7, ... are stopping times, 7,41 > 7, + r on the set {7, <

oo},n = 0,1,2,.... Moreover 7,11 < oo a.s. on the set {7, < co,7 > 7, + 1} ;
n = 0,1,2,.... Indeed, on this set <iI<1f .\ X(s) > 0, and the finiteness of 7,1
Tn SSSTpTT

follows from (7). Therefore,

{7’ = OO} = Fjl{Tn < OO} a.s. (12)

Let n,m be integers with 1 < m < n and choose any ¢ from (0,6). It follows
from the definition of 7,, that 7, > 7. On the set {7, < oo} we have 7 > 7,, and
0 < X(7,) < X(s) for all s € [, —r, 7). Therefore on {7,, < o0, X(73,) < €} due to
(8) as well as assumption A(1)we get X (7,) < X (7,,) and
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Y(tn+7) = Y(m)+ f(X(E?; T))ds <
<Y(r) + / (UX(Y))) []U(g)) ds < Y (7)(1+bUy)
with U, = / RES— exp{o(W () — W(s))} ds.

Tn

Consequently, we obtain on {7, < 0o, X (7,) < €}
Y(r, +7) <0if U, > |b|7 .

In other words

P(1h <00, X () < 6,7 < Tp+71) > Py <00, X (1) < &,Up > [b]™1)

Due to the strong Markov property of W, the events {7, < oo, X(7,) < ¢} and
{U, > |b|™'} are independent. We obtain

P(Tai1 <00, X(Ti) <€) = P(1h <00, 7> Ty + 7, X (1) <€) =
= P(7, < 00, X (1) <€) — P(1, < 00, X (1) < &,7 < 7Tp +7)
< P(1p, < 00, X (1) < €)(1 —p)

with
p= P(/Texp ((0; —a)s — UW(s))ds > |b|_1> > 0.

Hence
lim P(7, < 00, X(7,) < e) = 0 and therefore P(7 = 00, X (7,) < €) = 0 for every

n—00

m > 1.
Consequently, because of lim_ X (1) = 0 on {7 = 00}, we obtain P(7 = c0) = 0.

Now suppose that Condition A(2) holds.
Then instead of (11) we get

lim sup e"* X (t) < X(0) limsup V() =0

t—o0 t—00

with V(t) = exp[oW (t)% 1]. Now we define X (t) = e~*X(t),t > 0 and (7,,n > 0)
related to X (.) as above (1,,,n > 0) related to X (.).

Then, analogously, it holds
{r =0} = ({70 < 0}
n=1
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We obtain on the set {7, < oo} the inequalities 0 < X (7,) < X(s), s € [T — 7, 7]
and therefore by assumption A(ii)

Y(fo+1)=Y(F) + ~ f(XI)](is)_ r)) ds <

~ farX(%ﬂ) e asV(Tn)
V() +be T / T

X)) TV ()

=Y (7,) + be U(7) / V(s) ds
Y (R)(1 -+ be )
with
Vom [ e (oW ()~ W(s) - % (s—7)ds

Tn

Now the proof can be finished for this case as under Condition A(1) above.

Remarks: (i) Note that we have used (7) for positive x only.
(ii) If a > % and (7) does not hold for every z > 0 then the Theorem fails. Indeed,
if f(x) =bsgn (z) (b <0 fixed, x > 0) then P(T < c0) < 1.

Now assume that Xo(¢) > 0, ¢t € (—r,0], and Xo(¢t) > 0,¢t € (—r',0], for some
r" € (0,r] and Xo(t) = 0 on [—r,—r'] if ¥ < r. Then 7 > 0, and Y’(¢) < 0 on
[7,7 + r[ by (6). Hence Y (t) and X(¢) are strictly negative on |7,7 4+ r[. Now let
X(t) = =X (1 +r +t).Then X satisfies the equation

dX (1) = {aX (t) + h(X(t — 7)) }dt + o X (H)dW (t)

with the initial condition Xo(t) = —X (7 +r +t),—r < t < 0, the Wiener pro-
cess W(t) = W(r +r +t) — W(r + r) which is independent of X, as well as
h(z) = —f(—z),z € R.

If f satisfies Assumption (A) then A does it also and thus by the Theorem proved
above X hits zero with probability one, etc.

Thus we have proved the

Corollary: Let the assumptions of the Theorem be valid and Xy(t) > 0 on (—r', 0]
for some r' € (0,7] as well as Xo(t) =0 on [—r,—r'] if ' < r. . Then the stopping
times o,,n > 1, defined by

Opt1 =inf{t >0, : X(t) =0}, n>0
with oy = 0, are P-a.s. finite. Moreover, it holds

(t>0|X(t) =0} = {op,n>1}
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Ont1 = op+7r, n >1, as well as X(t) > 0 on (0o, 00,11) and X(t) < 0 on
(Oon+1,Oont2),n > 0.
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