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Abstract
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terminants and the dynamics of current-account reversals for a panel
of developing and emerging countries. The likelihood-based inference
of these models requires high-dimensional integration for which we
use Efficient Importance Sampling (EIS). Our results suggest that
current account balance, terms of trades, foreign reserves and conces-
sional debt are important determinants of current-account reversal.
Furthermore, we find strong evidence for serial dependence in the
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1 Introduction

The determinants of current account reversals and their consequences for coun-

tries’ economic performance have received a lot of attention following the currency

crises of the 1990s. They have found renewed interest because of the huge US

current account deficit in recent years. The importance of the current account

comes from its interpretation as a restriction on countries’ expenditure capabili-

ties. Expenditure restrictions, generated by sudden stops and/or currency crises,

can generate current account reversals, worsen an economic crises or even trig-

ger one (see, e.g., Milesi-Ferretti and Razin, 1996, 1998, 2000, and Obstfeld and

Rogoff, 2004). Typical issues addressed in the recent literature are: The extent

to which current account reversals affect economic growth (Milesi-Ferretti and

Razin, 2000, and Edwards, 2004a,b); The sustainability of large current account

deficits for significant periods of time (Milesi-Ferretti and Razin, 2000); and pos-

sible causes for current account reversals (Milesi-Ferretti and Razin, 1998, and

Edwards, 2004a,b). Our paper proposes to analyze the latter issue in the context

of dynamic panel probit models, paying special attention to the potential serial

dependence inherent to the occurrence of current account reversals.

Milesi-Ferretti and Razin (1998) and Edwards (2004a,b) use panel probit mod-

els with time and country specific dummies in order to investigate the determi-

nants of current account reversals. While Milesi-Ferretti and Razin analyze a

panel of low- and middle-income countries, Edwards also includes industrialized

countries. These studies focus on tests of theoretical predictions relative to the

causes of current account reversals, which are mainly motivated by the need to

ensure that a country remains solvent. They paid less attention to potential inter-

temporal linkages among current account reversals and the duration of reversal

processes.

However, there are several reasons to expect serial persistence in current ac-

count reversals. For example, a full current account adjustment from a non-

sustainable towards a sustainable level might take several periods since responses

of international trade flows are characterized by a fairly high degree of inertia

(see, e.g., Junz and Rhomberg, 1973). Furthermore, past current account re-

versals might change the constraints and conditions relevant to the occurrence

of another reversal in the future, as argued, e.g., by Falcetti and Tudela (2006)

within the context of a panel analysis of currency crisis. Both scenarios would lead
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to state dependence (lagged dependent variable), whereby a country’s propensity

to experience a reversal depends on wether or not it experienced a reversal in the

past (see, e.g., Heckman 1981). Following Falcetti and Tudela (2006), additional

potential sources of serial dependence are unobserved time-invariant heterogene-

ity (random country specific effects) reflecting differences in institutional, political

or economic factors across countries, as well as unobserved transitory differences

(serially correlated country-specific errors) which might be the result of omitted

serially correlated macroeconomic factors or serially correlated country-specific

shocks1.

However, unobserved and serially correlated transitory effects might be also

common to all countries (serially correlated time-specific effects). As such they

might reflect global shocks like oil and other commodity price shocks or, as we

shall argue below, contagion effects. In particular, following the financial turbu-

lences of the 1990s, it is recognized that spillover effects are important, especially

for emerging economies. Common causes of contagion include transmission of lo-

cal shocks such as currency crises through trade links, competitive devaluations,

and financial links (see, e.g., Dornbusch et al., 2000).

In the present paper, we analyze the determinants and dynamics of current

account reversals for a panel of developing and emerging countries considering

alternative sources of persistence. Our starting point consists of a panel probit

model with state dependence and random country specific effects (Section 4.1).

Next, we analyze the robustness of this model against the introduction of corre-

lated idiosyncratic error components (Section 4.2) or serially correlated common

time effects (Section 4.3). We pay special attention to the predictive perfor-

mance of these alternative specifications relative to the timing and the duration

of reversal episodes.

Likelihood evaluation of panel probit models with unobserved heterogeneity

and dynamic error components is complicated by the fact that the computation

of the choice probabilities requires high-dimensional interdependent integrations.

The dimension of such integrals is typically given by the number of time periods

(T ), or if one allows for interaction between country specific and time random ef-

1The notion that serial dependence could be due to unobserved permanent differences as
well as transitory differences was already addressed by Keane (1993) within a model of labor
supply. Keane was one of the first to estimate a panel probit model including both sources of
serial dependence.
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fects by T +N , where N is the number of countries. Efficient likelihood estimation

of such models generally relies upon Monte-Carlo (MC) integration techniques

(see, e.g., Geweke and Keane, 2001 and the references therein). Here we use the

Efficient Importance Sampling (EIS) MC methodology developed by Richard and

Zhang (2007), which represents a powerful and generic high dimensional simula-

tion technique. It relies on simple auxiliary Least-Squares regressions designed

to maximize the numerical accuracy of the likelihood integral approximations.

As illustrated in Liesenfeld and Richard (2008a,b), EIS is particularly well suited

to handle unobserved heterogeneity and serially correlated errors in panel mod-

els for binary and multinomial variables. In particular, as shown in Liesenfeld

and Richard (2008b), EIS substantially improves the numerical efficiency of the

GHK procedure of Geweke (1991), Hajivassiliou (1990), and Keane (1994), which

represents the most popular MC procedure used for the evaluation of choice prob-

abilities under dynamic panel probit models – see, e.g., Hyslop (1999), Greene

(2004), and Falcetti and Tudela (2006).

In conclusion of our introduction, we note that there are a number of other

studies which empirically analyze discrete events (macroeconomic and/or finan-

cial crises) using non-linear panel models. See, e.g., Calvo et al. (2004) on sud-

den stops or Eichengreen et al. (1995) and Frankel and Rose (1996) on currency

crises. The study most closely related to our paper with respect to the empirical

methodology is that of Falcetti and Tudela (2006), who analyze the determinants

of currency crises using a dynamic panel probit model accounting for different

sources of intertemporal linkages. However, contrary to our study, they do not

consider specifications capturing possible spillover effects of crises and their esti-

mation strategy is based on the standard GHK procedure.

The remainder of this paper is organized as follows. In the next section we

discuss possible determinants of current account reversals and reasons to expect

serial persistence in reversals. In Section 3 we describe the data set and introduce

the technical definition of current account reversal used in our analysis. Section 4

presents the dynamic panel probit models used to analyze current account rever-

sals. ML-estimation results are discussed in Section 5. Predictive performances

are compared in Section 6 and conclusions are drawn in Section 7. Details of

the EIS implementation for the models under consideration are regrouped in an

Appendix.
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2 Determinants and Dynamics of Current Ac-

count Reversals

2.1 Determinants

Milesi-Feretti and Razin (1998) argue that the most obvious reason for a country

to experience a current account reversal is the need to ensure solvency, which

they relate to the stabilization of the ratio of external liabilities to GDP. Let tb∗

denote the trade balance needed to ensure the stabilization of this ratio and tb

the trade balance before the reversal. Then, abstracting from equity and foreign

direct investment flows and stocks, the reversal needed to ensure solvency can be

according to Milesi-Feretti and Razin (1998) written as

REV = tb∗ − tb = (rint∗ − app∗ − gr∗) · d− tb (1)

= [(rint∗ − rint)− app∗ − gr∗] · d− (s− i),

where rint is the real interest rate on external debt, gr is the growth rate of the

economy, app is the rate of real appreciation, d is the ratio of external debt to

GDP, and s and i are the shares of domestic savings and investment to GDP.

The variables indexed by a star denote the post-reversal level and those without

a star the pre-reversal level.

This simple framework points to several determinants for the occurrence of

large reductions in the current-account imbalance. The size of the reversal needed

to ensure solvency grows with the initial trade imbalance. Given the initial trade

imbalance, the size of the required reversal is increasing in the level of external

liabilities as well as in the rate of interest on external debt, while it is decreasing

in the growth rate. Note also that an increase in the world interest rate lowers

the interest rate differential, increasing the required reversal size. In fact, any

change in rint∗ and gr∗ will affect a country’s intertemporal budget constraint

and its current-account imbalance.

Further potential determinants for current account reversals are obtained from

models developed to analyze the ability of a country to sustain a large current

account deficit for significant periods of time – see, e.g., Milesi-Feretti and Razin

(1996). They indicate that the sustainability of an external imbalance and, there-

fore, the probability of its reduction depend on factors such as a country’s degree
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of openness, its international reserves, its terms of trade and fiscal environment.

While the solvency condition characterized by Equation (1) helps identifying

potential causes for the occurrence of current account reversals, it is static and,

therefore, not helpful to discuss the dynamics of reversals. However, as discussed

further below, there are several reasons to expect serial dependence in the occur-

rence of large reductions of current account deficits. Within a panel probit model

for the analysis of the determinants of reversals they imply state dependence

and/or serially correlated error terms.

2.2 State dependence

Assuming that the domestic economy grows at a rate below the real interest rate

(adjusted by the rate of real appreciation), the solvency condition (1) requires a

trade surplus. This surplus is often obtained by currency devaluations. However,

while changes in exchange rate can be abrupt, subsequent changes in trade can

be much slower. See, e.g., Junz and Rhomberg (1973) who analyze the response

of international trade flows to changes in the exchange rate, and conclude that

the effects of price changes on trade flows usually stretch out over more than

three years. In particular, they argue that agents react with lags and identify

the following sources for delayed responses: a recognition lag, which is the time

it takes for economic agents to become aware of changes in the competitive envi-

ronment; a decision lag, which lasts from the moment in which the new situation

has been recognized to the one in which an action is undertaken (producers need

to be convinced that the new opportunities are long lasting and profitable enough

to compensate for adjustment costs); and finally, mostly technical lags in pro-

duction, delivery and substitution of materials and equipments in response to

relative price changes.

In line with these arguments, Himarios (1989) finds that nominal devaluations

result in significant real devaluations that last for at least three years, and that

real devaluations induce significant trade flows that are distributed over a two-

to three-year period. Therefore, the full current account adjustment implied by

Equation (1) might take longer than one year, leading to a state dependence for

yearly data such as those used below. In order to account for the possibility

that a reversal process stretches over more than a year after it is triggered, we

include the lagged dependent variable among the regressors of our panel-probit
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specifications.

2.3 Serially correlated error terms

Further potential sources of serial dependence in the occurrence of large reduc-

tions in the current account imbalance are differences in the propensity to ex-

perience large reductions across countries. Such heterogeneity might be due to

time-invariant differences in institutional, political or economic factors which can

not be controlled for. In order to take these differences into account, we use a

random effect approach with a country-specific time-invariant error component,

which induces a cross-period correlation of the overall error terms. An alterna-

tive approach to capture time-invariant differences would be to use a model with

fixed effect based upon country-specific dummy variables, such as the one used in

the studies of Milesi-Ferretti and Razin (1998) and Edwards (2004a,b). However,

such a model requires the estimation of a large number of parameters, leading

to a significant loss of degrees freedom. Furthermore, the ML-estimator does not

exist as soon as the dependent variable does not vary (as shown in Table 1, our

data set includes countries that never experienced a reversal).

Unobserved differences in the propensity to experience large reductions in

the current account deficit could also be serially correlated, rather than time-

invariant. As such they might reflect serially correlated shocks associated with

regional conflicts, uncertainty about government transition and political changes,

as well as regional commodity price shocks affecting the probability of experienc-

ing current account reversals. In order to take those effects into account, we

assume an AR(1) specification for the country specific transitory error compo-

nent.

Finally, unobserved and serially correlated transitory effects might also be

common to all countries reflecting either contagion effects or global shocks such

as oil or commodity price shocks. The former have received a lot of attention

following the currency crises of the 1990s which rapidly spread across emerging

countries (see, e.g., Edwards and Rigobon, 2002). A crisis in one country may

lead investors to withdraw their investments from other markets without taking

into account differences in economic fundamentals. In addition, a crisis in one

economy can also affect the fundamentals of other countries through trade links

and currency devaluations. Trading partners of a country in which a financial
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crisis has induced a sharp currency depreciation could experience a deterioration

of the trade balance and current account resulting from a decline in exports and

an increase in imports (see Corsetti et al., 1999). In the words of the former

Managing Director of the IMF: “from the viewpoint of the international system,

the devaluations in Asia will lead to large current account surpluses in those

countries, damaging the competitive position of other countries and requiring

them to run current account deficit.” Fisher (1998).

Currency devaluations of countries that experience a crisis can often be seen

as a beggar-thy-neighbor policy in the sense that they incite output growth and

employment domestically at the expense of output growth, employment and cur-

rent account deficit abroad (Corsetti et al., 1999). Competitive devaluations also

happen in response to this process, as other economies may in turn try to avoid

competitiveness loss through devaluations of their own currency. This appears

to have happened during the East Asian crises in 1997 (Dornbusch et al., 2000).

If data are collected at short enough time intervals (monthly or quarterly

observations), such spill-over effects would become manifest in the dependence

of a country’s propensity to experience a reversal from lagged reversals by other

countries. However, with yearly data the time intervals are presumably not fine

enough to observe such short-run spill-over effects of one country on another and

contagion would more likely translate into a common time effect. Hence, we use

an AR(1) time-random effect which is common to all countries in order to account

for contagion effects together with global shocks.

3 The Data

Our data set consists of an unbalanced panel for 60 low and middle income

countries from Africa, Asia, and Latin America and the Caribbean. The complete

list of countries is given on Table 1. The time span of the data set ranges from

1975 to 2004, although the unavailability of some explanatory variables often

restrict the analysis to shorter time intervals. The minimum number of periods

for a country is 9, the maximum is 18 and the average is 16.5 for a total of 963

yearly observations. The initial values of the binary dependent variable indicating

the occurrence of a current account crisis are known for the initial time period

t = 0 for all countries. The sources of the data are the World Bank’s World
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Development Indicators (2005) and the Global Development Finance (2004).

Current account reversals are defined as in Milesi-Ferretti and Razin (1998).

According to this definition a current account reversal has to meet three require-

ments. The first is an average reduction of the current account deficit of at least

3 percentage points of GDP over a period of 3 years relative to the 3-year average

before the event. The second requirement is that the maximum deficit after the

reversal must be no larger than the minimum deficit in the 3 years preceding the

reversal. The last requirement is that the average current account deficit over the

3-year period starting with the event must be less than 10% of GDP. According

to this definition we find current account reversals for 100 individual periods in

44 countries (10% of the total number of observations). Defining the duration of

a reversal episode as the number of consecutive periods with a reversal we observe

66 episodes with an average duration of 1.52 years and a maximal duration of 4

years (see Figure 3 below for a plot of the relative frequencies of the durations).

As discussed in Section 2.1, the selection of the explanatory variables follows

mainly the study of Milesi-Ferretti and Razin (1998). We include lagged macroe-

conomic, external, debt and foreign variables. The macroeconomic variables are

the annual growth rate of GDP (AVGGROW), the share of investment to GDP

proxied by the ratio of gross capital formation to GDP (AVGINV), government

expenditure (GOV) and interest payments relative to GDP (INTPAY). The ex-

ternal variables are the current account balance as a fraction of GDP (AVGCA),

a terms of trade index set equal to 100 for the year 2000 (AVGTT), the share of

exports and imports of goods and services to GDP as a measure of trade open-

ness (OPEN), the rate of official transfers to GDP (OT) and the share of foreign

exchange reserves to imports (RES). The debt variable we include is the share

of consessional debt to total debt (CONCDEB). Foreign variables such as the

US real interest rate (USINT) and the real growth rates of the OECD countries

(GROWOECD) are also included to reflect the influence of the world economy.

As in Milesi-Ferretti and Razin (1998), the current account, growth, investment

and terms of trade variables are 3-years averages, in order to ensure consistency

with the way reversals are measured.
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4 Empirical Specifications

Our baseline specification consists of a dynamic panel probit model of the form

y∗it = x′itπ + κyit−1 + eit, yit = I(y∗it > 0), i = 1, ..., N, t = 1, ..., T, (2)

where I(y∗it > 0) is an indicator function that transforms the latent continuous

variable y∗it for country i in year t into the binary variable yit, indicating the oc-

currence of a current account reversal (yit = 1). The error term eit is assumed to

be normally distributed with zero mean and a fixed variance. Since Equation (2)

is only identified up to a positive multiplicative constant, a normalization condi-

tion will be required for each model variant (see Section 4.4 below). The vector

xit contains the observed macroeconomic, external, debt and foreign variables

which might affect the incidence of a reversal. The lagged dependent variable

on the right hand side captures possible state dependence. It implies that the

covariates in xit have not only a contemporaneous but also a persistent effect on

the probability of a reversal.

The most restrictive version of the panel probit assumes that the error eit

is independent across time and countries and imposes the restriction κ = 0.

This produces the standard pooled probit estimator which ignores possible serial

dependence and unobserved heterogeneity which cannot be attributed to the

variables in xit.

4.1 Random country-specific effects

In order to account for unobserved time invariant heterogeneity across countries

we consider the random effect model proposed by Butler and Moffitt (1982). It

assumes the following specification for the error term in Equation (2):

eit = τi + εit, εit ∼ i.i.d.N(0, 1), τi ∼ i.i.d.N(0, σ2
τ ). (3)

The country-specific term τi captures potential permanent latent differences in

the propensity to experience a reversal. It is assumed that τi and εit are inde-

pendent from the variables included in xit. If, however, xit did contain variables

reflecting countries’ general susceptibility to current account crises, then τi would

be correlated with xit. We also assume that the observed initial states yi0 are
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non-random constants. This assumption eliminates an ’initial condition problem’

due to correlation between τi and yi0 (see, e.g., Wooldridge, 2005). Since, how-

ever, ignoring correlation between τi and xit and yi0 would lead to inconsistent

estimates, we shall test below for such correlation.

Finally, note that the time-invariant heterogeneity component τi implies a con-

stant cross-period correlation of the error term eit which is given by corr(eit, eis)

= σ2
τ/(σ

2
τ + 1) for t 6= s (see, e.g., Greene, 2003).

The Butler-Moffitt model (2) and (3) can be estimated by ML. Let y =

{{yit}T
t=1}N

i=1, x = {{xit}T
t=1}N

i=1 and θ denote the parameter vector to be es-

timated. The likelihood function is given by L(θ; y, x) =
∏N

i=1 Ii(θ), where Ii

represents the likelihood contribution of country i. The latter has the form

Ii(θ) =

∫

R1

T∏
t=1

[
Φyit

it (1− Φit)
(1−yit)

]
fτ (τi)dτi, (4)

where Φit = Φ(x′itπ + κyit−1 + τi), Φ denotes the cdf of the standardized normal

distribution and fτ the pdf of τi. In the application below, the one dimensional

integrals in τi are evaluated using a Gauss-Hermite quadrature rule (see, e.g.,

Butler and Moffitt, 1982).

Once the parameters have been estimated, the Gauss-Hermite procedure can

also be used to compute estimates of the random country-specific effects τi or

of functions thereof. Those estimates are instrumental for computing predicted

probabilities and average partial effects as well as for validating the orthogonality

conditions imposed on τi. Let g(τi) denote a function of τi. Its conditional

expectation given the complete sample information (y, x) obtains as

E[g(τi)|y, x; θ] =

∫
R1 g(τi)h(y

i
, τi|xi; θ)dτi∫

R1 h(y
i
, τi|xi; θ)dτi

, (5)

where h denotes the joint conditional pdf of y
i

= {yit}T
t=1 and τi given xi =

{xit}T
t=1, as defined by the integrand of the likelihood (4). For the evaluation of

the numerator and denominator by Gauss-Hermite, the parameters θ are set to

their ML-estimates.

Estimates τ̂i of the random effects obtain by setting g(τi) = τi in Equation

(5). An auxiliary regression of those estimates against the time average of the ex-
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planatory variables and the initial conditions provides a direct test of the validity

of the orthogonality condition between τi and (xi, yi0).

Next, in order to obtain predicted probabilities and average marginal effects

we consider the conditional response probability

p(yit = 1|xit, yit−1, τi) = Φ(x′itπ + κyit−1 + τi), (6)

and its partial derivative w.r.t. the kth (continuous) variable in xit

∂xitk
p(yit = 1|xit, yit−1, τi) = πkφ(x′itπ + κyit−1 + τi), (7)

where φ denotes the standardized Normal density and πk the regression coefficient

of the covariate xitk. Both expressions represent functions of τi, which can be

averaged across the conditional distribution of τi given the sample information

(y, x), according to Equation (5). The average marginal effect of the kth covariate

then obtains as the sample mean across i and t of the averaged partial derivatives

(7). Analogously, we compute the average partial effect of the binary lagged

dependent variable as the sample mean of the differences in the probabilities

p(yit = 1|xit, yit−1 = 1, τi) and p(yit = 1|xit, yit−1 = 0, τi) averaged across the

conditional distribution of τi given (y, x).

4.2 Serially correlated country-specific errors

We generalize the random effect specification introduced in Section 4.1 by as-

suming that εit in Equation (3) follows an idiosyncratic AR(1) process, capturing

persistent country-specific shocks and omitted macroeconomic or political factors.

Accordingly, Equation (3) is generalized into

eit = τi + εit, εit = ρεit−1 + ηit, ηit ∼ i.i.d.N(0, 1), (8)

where τi and ηit are mutually independent. As before, they are also assumed to

be independent from the variables included in xit and yi0. In order to ensure

stationarity we assume that |ρ| < 1.

The computation of the likelihood contribution Ii(θ) for model (3) and (8) now

requires the evaluation of (T + 1)-dimensional integrals. Let λ′it = (εit, εit−1, τi),

λ′i1 = (εi1, τi), and λ′i = (τi, εi1, ..., εiT ). Under the assumption that εi0 = 0, the
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likelihood contribution of a country is given by

Ii(θ) =

∫

RT+1

[
T∏

t=1

ϕt(λit)

]
fτ (τi)dλi, (9)

with

ϕt(λit) =

{
I(εit ∈ Dit)φ(εit − ρεit−1), if t > 1

I(εi1 ∈ Di1)φ(εi1), if t = 1,
(10)

Dit =

{
[−(µit + τi) , ∞), if yit = 1

(−∞ , −(µit + τi)], if yit = 0,
(11)

where µit = x′itπ + κyit−1.

In order to evaluate the (truncated) Gaussian integral Ii(θ) MC-integration

techniques can be used. The most popular MC approach for such integrals is

the GHK procedure of Geweke (1991), Hajivassiliou (1990), and Keane (1994),

belonging to the class of Importance Sampling techniques. However, as shown by

Lee (1997) and Geweke et al. (1997), GHK likelihood evaluation based upon com-

monly used simulation sample sizes can produce severely biased ML estimates,

especially, when serial correlation in the errors is strong and/or T is large. Hence,

we use instead the EIS procedure developed by Richard and Zhang (2007). As

shown in Liesenfeld and Richard (2008b), EIS covers the GHK procedure as a

special case and significantly improves the numerical accuracy of GHK. A descrip-

tion of the particular EIS implementation used for the likelihood (9) is provided

in the Appendix2.

As in Section 4.1, we compute probability predictions and average marginal

effects from the corresponding response probability

p(yit = 1|xit, yit−1, τi, εit−1) = Φ(x′itπ + κyit−1 + τi + ρεit−1), (12)

2Liesenfeld and Richard (2008b) consider the EIS likelihood evaluation for multiperiod multi-
nomial probit models with serially correlated errors but without unobserved random effects (τ).
If we rewrote the likelihood in Equation (9) in terms of a T -dimensional integral in the composite
errors (e1, . . . , eT )′ (which follow according to Equation (8) a multivariate Gaussian distribu-
tion), we could directly apply the EIS implementation of Liesenfeld and Richard (2008b) to
the present binomial model. However, such an implementation would not directly deliver MC
estimates of the conditional expectation of the random effect τ , which we use to test the or-
thogonality conditions. Hence, we implement EIS for the (T + 1)-dimensional integral (9) in
(ε1, ..., εT , τ). See the Appendix for details.
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together with its partial derivatives w.r.t. the covariates, all of which are func-

tions of the latent variables τi and εit−1. The EIS procedure for the likelihood

evaluation delivers as a by-product accurate MC-approximations of the condi-

tional expectation of these functions given the sample information, which obtain

as

E[g(τi, εit−1)|y, x; θ] =

∫
RT+1 g(τi, εit−1) h(y

i
, λi|xi; θ)dλi∫

RT+1 h(y
i
, λi|xi; θ)dλi

. (13)

Here h(y
i
, λi|xi; θ) denotes the joint conditional distribution of y

i
and λi given xi

as given by the integrand of the likelihood (9).

4.3 Serially correlated time-specific effects

Since the panel models introduced above ignore correlation across countries, they

do not account for potential spill-over effects and global shocks common to all

countries. In order to address this issue we consider next the following factor

specification for the error eit in the probit regression (2):

eit = τi + ξt + εit, εit ∼ i.i.d.N(0, 1), τi ∼ i.i.d.N(0, σ2
τ ), (14)

with

ξt = δξt−1 + νt, νt ∼ i.i.d.N(0, σ2
ξ ), (15)

where τi, εit and νt are mutually independent and independent from xit and yi0.

It is assumed that |δ| < 1. The common dynamic factor ξt represents unob-

served time-specific effects which induce correlation across countries, resulting

from spillover effects and common shocks. This is the same factor specification

as that used in Liesenfeld and Richard (2008a) for a microeconometric applica-

tion. It is similar to the linear panel factor model discussed, e.g., by Baltagi

(2005) and primarily used for the analysis of macroeconomic data.

The likelihood function for the random effect panel model consisting of Equa-

tions (2), (14), and (15) is given by

L(θ; y, x) =

∫

RT+N

[
N∏

i=1

T∏
t=1

[Φ(zit)]
yit [1− Φ(zit)]

(1−yit)

]
p(τ , ξ)dτ , dξ, (16)
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where ξ = {ξt}T
t=1, τ = {τi}N

i=1, zit = x′itπ + κyit−1 + τi + ξt, and p(τ , ξ) denotes

the joint density of τ and ξ.

Note that the presence of a time effect ξt common to all countries prevents

us from factorizing the likelihood function into a product of integrals for each

individual country as above. However, we can still use the EIS technique for the

evaluation of the likelihood function (16). See Richard and Zhang (2007) and

Liesenfeld and Richard (2008a) for a detailed description of the EIS implemen-

tation for this likelihood function3.

Estimates for functions of the unobserved random effects are obtained as

above. In particular, the conditional expectation of such functions given the

sample information has the form

E[g(τi, ξt)|y, x; θ] =

∫
RN+T g(τi, ξt) h(y, τ , ξ|x; θ)dξdτ∫

RN+T h(y, τ , ξ|x; θ)dξdτ
, (17)

where h denotes the joint conditional pdf of y, ξ and τ given x, as given by the

integrand of the likelihood function (16). As before, we can construct probability

predictions and average marginal effects from the conditional response probability

p(yit = 1|xit, yit−1, τi, ξt) = Φ(x′itπ + κyit−1 + τi + ξt), (18)

and its partial derivatives w.r.t. the covariates.

4.4 A note on normalization

In Equations (3), (8), (14), (15) we followed the standard practice of normalizing

the probit equation (2) by setting the variance of the residual innovations εit

equal to 1. It follows that the variances of the composite error term eit differ

across models, implying corresponding differences in the implicit normalization

3In contrast to the panel probit model (2), (14), and (15) assumed here, Richard and Zhang
(2007) and Liesenfeld and Richard (2008a) consider a similar panel logit specification where the
error component εit in Equation (14) follows a logistic distribution. However, this difference
requires only a minor adjustment in the EIS implementation, whereby logistic cdfs are replaced
by probit cdfs.
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rule. The variances of eit under the different specifications are given by

Equation (3) : σ2
e = 1 + σ2

τ

Equation (8) : σ2
e =

1

1− ρ2
+ σ2

τ

Equations (14)+(15) : σ2
e = 1 + σ2

τ +
σ2

ξ

1− δ2
.

Predicted probabilities and estimated average marginal effects are invariant

with respect to the normalization rule. The estimated coefficients are not as

they are proportional to σe. We produce estimates of σe in order to facilitate

comparisons between estimated coefficients across models.

5 Empirical Results

5.1 Model 1: Pooled probit

Table 2 provides the ML estimates for the pooled probit model given by Equation

(2) (model 1) together with the corresponding estimated partial effects of the

explanatory variables on the probability of a current account reversal. The results

for the static model (κ = 0) are reported in the left columns and those of the

dynamic specification (κ 6= 0) in the right columns.

The parameter estimates for the covariates in xit are all in line with the re-

sults in the empirical literature on current account crises (see Milesi-Ferretti and

Razin, 1998, and Edwards 2004a,b) and confirm the theoretical solvency and

sustainability considerations. Sharp reductions of the current-account deficit are

more likely in countries with a high current account deficits (AVGCA) and with

higher government expenditures (GOV). The significant effect of the current ac-

count deficit level is consistent with a need for sharp corrections in the trade

balance to ensure that the country remains solvent. Interpreting current account

as a constraint on expenditures, the positive impact of government expenditure

on the reversal probability can be attributed to fact that an increase of gov-

ernment expenditures leads to a deterioration of the current account. However,

the inclusion of the lagged dependent variable reduces this effect and renders it

non significant. This suggests that government expenditures might capture some

form of omitted serial dependence under the static specification. The marginal
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effect of foreign reserve (RES) is negative and significant which suggests that low

levels of reserves make it more difficult to sustain a large trade imbalance and

may also reduce foreign investors’ willingness to lend (Milesi-Ferretti and Razin,

1998). Also, reversals seem to be less common in countries with a high share

of concessional debt (CONCDEB). This would be consistent with the fact that

concessional debts tend to be higher in countries which have difficulties reducing

external imbalances. Finally, countries with a lower degree of openness (OPEN),

weaker terms of trade (AVGTT) and higher GDP growth (AVGGROW) seem

to face higher probabilities of reversals, especially when growth rate in OECD

countries (GROWOECD) and/or US interest rate (USINT) are higher – though

none of these five coefficients are statistically significant.

Note that the size of the estimated marginal effects for the significant eco-

nomic covariates on the probability of reversals are typically fairly small, ranging

from 0.004 to 0.026. Nevertheless, they are far from being negligible when ap-

plied to the low unconditional probability of experiencing a reversal which is

approximately 0.1.

The inclusion of the lagged current account reversal variable substantially

improves the fit of the model as indicated by the significant increase of the max-

imized log-likelihood value. The estimated coefficient κ measuring the impact of

the lagged dependent state variable is positive and significant at the 1% signif-

icance level with a large estimated partial effect of 0.21. This suggests that a

current account reversal significantly increases the probability of a further rever-

sal the following year. This would be consistent with the hypothesis that reversal

processes stretch over more than a year due to slow adjustments in international

trade flows (see, Junz and Rhomberg, 1973, and Himaraios, 1989).

In order to analyze the dynamic effects of a covariate xitk implied by the

model with lagged dependent variable we use the sample average of the l-step

ahead marginal effect, i.e.,

1

N(T − `)

N∑
i=1

T−∑̀
t=1

∂xitk
p(yit+` = 1|xit+`, ..., xit, yit−1), ` = 1, 2, ... . (19)

The probability p(yit+` = 1|xit+`, ..., xit, yit−1) is obtained by considering the event

tree associated with all possible yit-trajectories starting in period t and ending in

period t+ ` with yit+` = 1. Analogously, the dynamic effects of the state variable
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is measured by

1

N(T − `)

N∑
i=1

T−∑̀
t=1

[
p(yit+` = 1|xit+`, ..., xit+1, yit = 1) (20)

−p(yit+` = 1|xit+`, ..., xit+1, yit = 0)
]
, ` = 1, 2, ... .

The upper left panel of Figure 1 plots the dynamic marginal effects for the sig-

nificant covariates (AVGCA, RES, CONCDEB) and the lagged state variable for

` = 1, ..., 4, respectively. It reveals substantial long-run effects of the state vari-

able, whereby the occurrence of a current account reversal increases a country’s

propensity to experience further large reductions in the current account in subse-

quent years. This effect appears to stretch over a two-to-three-year period. This

would be in line with the result of Himarios (1989) showing that changes in trade

flows triggered by currency devaluations often used to correct the trade balance

are distributed over a time span of a about two or three years. However, note

that this long-run state dependence does not translate into significant long-run

effects of the covariates AVGCA, RES, and CONCDEB which is consistent with

the fact that their contemporaneous effects reported in Table 2 are already fairly

small.

5.2 Model 2: Random country-specific effects

Table 3 reports the estimates of the dynamic Butler-Moffitt model with random

country specific effects as specified by Equations (2) and (3) (model 2). The

ML-estimates are obtained using a 20-points Gauss-Hermite quadrature. The

estimate of the coefficient στ indicates that only 3% of the total variation in the

latent error is due to unobserved country-specific heterogeneity and this effect

is not statistically significant. Nevertheless, the maximized log-likelihood of the

random effect model is significantly larger than that of the dynamic pooled probit

model with a likelihood-ratio (LR) test statistic of 5.57. Since the parameter value

under the Null hypothesis στ = 0 lies at the boundary of the admissible parameter

space, the distribution of the LR-statistic under the Null is a (0.5χ2
(0) + 0.5χ2

(1))-

distribution, where χ2
(0) represents a degenerate distribution with all its mass at

origin (see, e.g., Harvey, 1989). Whence, the critical value for a significance level

of 1% is the 0.98-quantile of a χ2
(1)-distribution which equals 5.41. All in all, the

17



evidence in favor of the random effect specification for time-invariant differences

of institutional, political, and economic factors across countries is borderline.

Actually, the marginal effects as well as the predicted dynamic effects (see, upper

right panel of Figure 1) obtained under the random country-specific effect model

are very similar to those for the dynamic pooled model.

In order to check the assumption that τi is independent of xit and yi0 we ran

the following auxiliary regression:

τ̂i = ψ0 + x̄′i·ψ1 + yi0ψ2 + ζi, i = 1, ..., n, (21)

where the vector x̄i· contains the mean values of the xit-variables over time (except

for the US interest rate and the OECD growth rate). The value of the F -statistic

for the null ψ1 = 0 is 1.94 with critical values of 2.71 and 2.03 for the 1% and 5%

significance levels. The absolute value of the t-statistic for the null ψ2 = 0 is 2.01

with critical values of 2.68 and 2.01 for the 1% and 5% levels. Whence, evidence

that τi might be correlated with x̄i· and yi0 is inconclusive.

5.3 Model 3: AR(1) country-specific errors

We now turn to the ML-EIS estimates of the dynamic random effect model with

AR(1) idiosyncratic errors (model 3) as specified by Equations (2) and (8). It

ought to capture possible serially correlated shocks associated with regional politi-

cal changes or conflicts and persistent local macroeconomic events like commodity

price shocks. The ML-EIS estimation results based on a simulation sample size

of S = 100 are given in the left columns of Table 4 4.

The results indicate that the inclusion of a country-specific AR(1) error com-

ponent has significant effects on the dynamic structure of the model but only a

slight impact on the marginal effects of the xit-variables, which remain typically

very close to those of the pure random country-specific effect model in Table 3.

An exception is the effect of the terms of trade (AVGTT) which becomes signifi-

4We also estimated the parameters of model 3 using the standard GHK procedure based on
S = 100. The comparison of those estimates (not provided here) with the ML-EIS estimates
provided in Table 4 reveal that the parameter estimates for the explanatory variables are
generally similar for both procedures. However, the estimates of the parameters governing the
the dynamics (κ, στ , ρ) are noticeably different. This is fully in line with results of the MC-study
of Lee (1997), indicating that the ML-GHK estimates of those parameters are often severely
biased.
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cant at the 10% level. Also, while the parameter στ governing the time-invariant

heterogeneity remains statistically insignificant, the estimated coefficient κ asso-

ciated with the lagged dependent variable and its partial effect are now much

smaller. This leads to a substantial attenuation of the long-run effect of the

lagged state variable (see lower left panel of Figure 1). The estimate of the per-

sistence parameter of the AR(1) error component ρ equals 0.35 and is statistically

significant at the 10% level. However, the corresponding LR-statistic equals 2.40

and is not significant. Hence, despite its impact on the dynamic structure of the

model, the inclusion of an AR(1) error component does not significantly improve

the overall fit.

Since a lagged dependent variable and a country-specific AR(1) error com-

ponent can generate similar looking patterns of persistence in the dependent

variable, these results suggest that the AR(1) error captures some of the serial

dependence which is captured by the lagged dependent variable under the pooled

probit and the pure random country-specific effect model. However, the small

likelihood improvement obtained by the inclusion of an AR(1) error together with

the fairly large standard errors of the estimates for κ and ρ suggest that the model

has difficulties separating these two sources of serial dependence. In order to ver-

ify this conjecture, we re-estimated the model with the AR(1) country-specific

error component without state-dependence. The ML-EIS results are provided

in the right columns of Table 4 and confirm our conjecture. In fact, the esti-

mated AR coefficient ρ increases to 0.59 and is now highly significant according

to both the t- and LR-test statistics, while the maximized likelihood value are not

significantly different from those obtained for the models including either state-

dependence only (Table 3) or both state-dependence and an AR error component

(left columns of Table 4).

All in all, our results indicate that the data are ambiguous on the question

of whether the observed persistence in current account reversals is due to state

dependence associated with the hypothesis of slow adjustments in international

trade flows or due to serially correlated country-specific shocks related to local

political or macroeconomic events.
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5.4 Model 4: AR(1) time-specific effects

We now turn to the estimation results of the dynamic panel model given by

Equations (2), (14), and (15), allowing for unobserved random time-specific ef-

fects designed to capture potential spill-over effects and/or global shocks common

to all countries (model 4). The ML-EIS estimation results obtained using a sim-

ulation sample size of S = 100 are summarized in Table 5.

The estimated marginal effects for all explanatory xit-variables and the esti-

mated variance parameter στ of the time-invariant heterogeneity are very similar

to those obtained under the models discussed above. Here again, we find no

conclusive evidence for correlation between τi and (x̄i·, yi0). The results show a

large and highly significant state-dependence effect similar to that found under

the pure random country-specific effect model in Table 3. The variance param-

eter of the time factor σξ and its autoregressive parameter δ are both highly

significant, indicating that there are significant common dynamic time-specific

effects in addition to state dependence. Hence, in contrast to the specification

with state dependence and an AR country-specific error component, the model

seems to be able to separate the two sources of persistence. Also, the estimated

autocorrelation parameter of -0.89 implies a strong mean reversion in the com-

mon time-specific factor. This mean-reverting tendency in the common factor

affects the common probability of experiencing a current account reversal across

all countries and is, therefore, fully consistent with a global accounting restriction

requiring that deficits and surpluses across all national current accounts need to

be balanced. In particular, one would expect that a temporary simultaneous

increase in the propensities to experience a large reduction in current account

deficits is immediately reverted in order to guarantee a global balance in deficits

and surpluses, rather than a persistent and long-lasting increase in individual

propensities.

Although the time-specific factor capturing global shocks and/or contagion

effects is significant, it appears to be quantitatively fairly small. In fact, the

fraction of error variance due to the time-specific effect in only 3.5%. Therefore,

it is not surprising that the overall fit of the model and its predicted dynamic

effects (see, the lower right panel of Figure 1) do not change significantly relative

to the pure random country-specific effect model in Table 3 which leaves out the

time-specific effect.
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Finally, we note that the quantitatively low impact of the common time-

specific factor might be due to the implicit restriction that the loading w.r.t. that

factor is the same across all countries. Hence, a natural extension of the model

would be to allow for factor loadings, which differ across countries (whether

randomly or deterministically). However, due to a substantial increase in the

number of parameters or the dimension of the integration problem associated

with the likelihood evaluation the statistical inference of such an extension is

non-trivial without further restrictions and is left to future research.

6 Predictive Performance

Models 2 to 4 are essentially observationally equivalent with log-likelihood values

ranging from -253.1 to -255.2. However, log-likelihood comparisons provide an

incomplete picture of the overall quality of a binary model. Hence, we compare

next models 2 to 4 on two predictive benchmarks: the proportion of correctly pre-

dicted binary outcomes and predicted duration distribution of reversal episodes.

Assessing the predictive performance of an estimated binary model requires

selecting a threshold c whereby success (current account reversal) is predicted

iff the predicted probability is larger than c, i.e., rit = p̂(yit|xit, yit−1) > c. The

corresponding classification error probabilities are given by

α(c) = 1− p(rit > c|yit = 1) and β(c) = p(rit > c|yit = 0), (22)

which can be approximated by the corresponding relative frequencies of misclas-

sification. Since the sample portion Π of success is only of the order of 0.1, it does

not make sense to select a threshold c which minimizes the unconditional proba-

bility of misclassification p(c) = Πα(c)+(1−Π)β(c). Following Winkelmann and

Boes (2006), we first computed for each model the threshold c∗ which minimizes

the sum of classification error probabilities α(c) + β(c). We also computed their

Receiver Operating Characteristic (ROC) curves, defined as the curves plotting

1− α(c) against β(c), as well as the areas under these ROC curves. These areas

have a minimum of 0.5 (complete randomness) and a maximum of 1 (errorless

classification). The ROC curves are displayed in Figure 2 and associated results

for the optimal threshold c∗, classification error probabilities for c∗ and ROC

areas are reported in Table 6.
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Note that c∗ ranges from 0.08 to 0.11, which are close to the sample proportion

Π of 0.10. Model 3 with AR(1) country-specific errors without state-dependence

has the best predictive performance with α(c∗) + β(c∗) = 0.27 and a ROC area

of 0.91 (the corresponding figures for the other models range from 0.36 to 0.43

and 0.85 to 0.88, respectively). Also its ROC curve dominates those of the other

models. Based on the optimal threshold it correctly predicts 91% of the observed

reversals and 82% of the non-reversals.

We also used each estimated model to simulate 20,000 fictitious panel data

sets of the binary outcome conditional on the observed xit variables in order to

obtain accurate MC approximations of the predictive distributions of the duration

of reversal episodes to be compared with the frequency distribution observed for

the data (see Figure 3, and Table 6 for predicted average durations). It appears

that models 2 and 4 have a better performance than model 3 with a better

fit to the empirical distribution and predicted average durations closer to the

observed average of 1.52. However, the differences across the models seem to be

not large enough to overturn the ROC ranking. Thus, if the likelihood criterion,

which by itself is fairly uninformative about the source of serial dependence,

is supplemented by measures of predictive performance, the model with AR(1)

country-specific shocks and without state-dependence appears to be the preferred

specification.

7 Conclusion

This paper uses different non-linear panel data specifications in order to inves-

tigate the causes and dynamics of current account reversals in low- and middle-

income countries. In particular, we analyze four sources of serial persistence:

(i) a country-specific random effect reflecting time-invariant differences in in-

stitutional, political or economic factors; (ii) serially correlated transitory error

component capturing persistent country-specific shocks; (iii) dynamic common

time-specific factor effects, designed to account for potential spill-over effects and

global shocks to all countries; and (iv) a state dependence component to control

for the effect of previous events of current account reversal and to capture slow

adjustments in international trade flows.

The likelihood evaluation of the panel models with country-specific random
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heterogeneity and serially correlated error components requires high-dimensional

integration for which we use a generic Monte-Carlo integration technique known

as Efficient Importance Sampling (EIS).

Our empirical results indicate that the static pooled probit model is strongly

dominated by the alternative models with serial dependence. However, state-

dependence and transitory country-specific errors are essentially observationally

equivalent. Only if we include random time-specific effects into the model with

state-dependence, we find that both sources of serial dependence are significant,

even though the time-specific effect is small with limited effect on the overall fit

of the model. On the other hand, our assessment of the ability to predict current

account reversals provides strong support for the model with transitory country-

specific errors and without state-dependence, which appears to present the best

compromise between log-likelihood fit and predictive performance. Also, we do

not find conclusive evidence for the existence of random country-specific effects.

Overall, our results relative to the determinants of current account reversals

are in line with the those in the empirical literature on current account crises

and confirm the empirical relevance of theoretical solvency and sustainability

considerations w.r.t. a country’s trade balance. In particular, countries with high

current account imbalances, low foreign reserves, a small fraction of concessional

debt, and unfavorable terms of trades are more likely to experience a current

account reversal. These results are fairly robust against the dynamic specification

of the model.
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Appendix: EIS for random effects and serially

correlated errors

This appendix details the implementation of the EIS procedure for the panel

probit model (2) and (8) to obtain MC estimates for the likelihood contribution

Ii(θ) given by equation (9) (for a detailed description of the EIS principle, see

Richard and Zhang, 2007). In order to simplify the following presentation it

proves convenient to omit the country index i and to relabel τ as λ0. Then the

likelihood integral in Equation (9) can be rewritten as

I(θ) =

∫

RT+1

T∏
t=0

ϕt(λt)dλ, (A-1)

where ϕ0(λ0) = fτ (τ). Next, we partition λ′t into (εt, η
′
t−1

) with η′
t−1

= (εt−1, λ0)

for t > 1, η0 = λ0 and η−1 = ∅. EIS is based upon a sequence of auxiliary

importance sampling densities of the form

mt(εt|ηt−1
; at) =

kt(λt; at)

χt(ηt−1
; at)

, with χt(ηt−1
; at) =

∫

R1

kt(λt; at)dεt, (A-2)

for t = 0, ...., T , where {kt(λt; at); at ∈ At} denotes a (pre-selected) class of aux-

iliary parametric density kernels with analytical integrating factor in εt given

(η
t−1

, at) denoted by χt(ηt−1
; at).

Let {λ̃(j)
= {λ̃(j)

t }T
t=0}S

j=1 be S independent trajectories drawn from the auxil-

iary sampler m(λ|a) =
∏T

t=0 mt(εt|ηt−1
; at). The corresponding Importance Sam-

pling MC estimate of I(θ) obtains as:

ĪS(θ) = χ0(a0)
1

S

S∑
j=1




T∏
t=0

ϕt(λ̃
(j)

t )χt+1(η̃
(j)

t
; at+1)

kt(λ̃
(j)

t ; at)


 . (A-3)

An Efficient Importance Sampler is one which minimizes the MC sampling vari-

ances of the ratios ϕtχt+1/kt w.r.t. the auxiliary parameters {at}T
t=0 under such

draws. An approximate solution to this minimization problem, say {ât}T
t=0, ob-

tains by a sequence of T + 1 back recursive regressions. In particular, in each
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period t = T, ..., 0 one needs to regress

ln[ϕt(λ̃
(j)

t )χt+1(η̃
(j)

t
; ât+1)] on: intercept, ln kt(λ̃

(j)

t , at), (A-4)

where {λ̃(j)}S
j=1 are drawn from an initial sampler m(λ|a0). As an initial sam-

pler we use the GHK sampling densities and the EIS sequence is iterated until

obtainment of a fixed point in {ât}T
t=0.

The kernel kt(λt; at) in Equation (A-2) is selected to be a parametric extension

of the period-t integrand ϕt in Equation (A-1). The latter includes a (truncated)

Gaussian kernel in λt. Hence, kt is specified as

kt(λt; at) = ϕt(λt) · ζt(λt; at), (A-5)

where ζt is itself a gaussian kernel in λt. It follows that ϕt cancels out in the EIS

regression (A-4). For the truncated Gaussian kernel kt given in Equation (A-5)

we use the following parametrization:

kt(λt; at) =
I(εt ∈ D∗

t )√
2π

exp{−1

2
(λ′tPtλt + 2λ′tqt)}, (A-6)

where D∗
t = (−∞ , γt + δtλ0], with γt = (2yt − 1)µt and δt = (2yt − 1). The

EIS parameter at consists of the six lower diagonal elements of Pt and the three

elements in qt. In what follows we make use of the Cholesky decomposition of Pt

into

Pt = Lt∆tL
′
t, (A-7)

where Lt = {lij,t} is a lower triangular matrix with ones on the diagonal and ∆t

is diagonal matrix with diagonal elements di,t ≥ 0. Let

l1,t = (l21,t, l31,t)
′, l2,t = (1, l32,t)

′. (A-8)

The key step in our EIS implementation consists of finding the analytical expres-

sion of the integrating factor χt(ηt−1
; at) associated with the density kernel (A-6).

It is the object of the following lemma.
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Lemma 1. The integral of kt(λt; at) w.r.t. εt is of the form

χt(ηt−1
; at) = k2,t(λ0; at)[Φ(αt + β′tηt−1

) · k1,t(ηt−1
; at)], (A-9)

together with

k1,t(ηt−1
; ·) = exp{−1

2
(d2,tη

′
t−1

l2,tl
′
2,tηt−1

+ 2η′
t−1

l2,tm2,t)}, (A-10)

k2,t(λ0; ·) = exp{−1

2
(d3,tλ

2
0 + 2m3,tλ0)} · rt, (A-11)

where

αt =
√

d1,t(γt +
m1,t

d1,t

), βt =
√

d1,t(l1,t + δtι), (A-12)

rt =
1√
d1,t

exp
{1

2

m2
1,t

d1,t

}
, mt = {mi,t} = L−1

t qt, ι′ = (0, 1). (A-13)

Proof. The proof is straightforward under the Cholesky factorization introduced

in (A-7), deleting the index t for the ease of notation. First we introduce the

transformation z = L′λ, whereby z1 = ε + l′1η−1
, z2 = l′2η−1

, and z3 = λ0.

Whence,

χ(η−1
; ·) = exp

{
− 1

2

3∑
i=2

(diz
2
i + 2mizi)

}

× 1√
2π

∫

D∗∗t

exp{−1

2
(d1z

2
1 + 2m1z1)}dz1,

where D∗∗
t = (−∞ , γt +(l1,t +δtι)

′η−1
]. Next, we complete the quadratic form in

z1 under the integral sign and introduce the transformation v =
√

d1[z1+(m1/d1)].

The result immediately follows.2

Next, we provide the full details of the recursive EIS implementation.

· Period t = T : With χT+1 ≡ 1, the only component of kT is ϕT itself.

Whence,

PT = eρe
′
ρ and qT = 0, with e′ρ = (1,−ρ, 0). (A-14)

· Period t (T > t > 1): Given Equation (A-9) in lemma 1, the product ϕt ·χt+1

comprises the following factors: ϕt as defined in Equation (10), k1,t+1 as given by
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Equation (A-10) and Φ(αt+1 +β′t+1ηt
), where (αt+1, βt+1) are defined in Equation

(A-12). The first two factors are already gaussian kernels. Furthermore, the term

Φ(·) depends on λt only through the linear combination β′t+1ηt
. Whence, ζt in

Equation (A-5) is defined as

ζt(λt; at) = k1,t+1(ηt
, ·) exp

{
− 1

2

[
a1,t(β

′
t+1ηt

)2 + 2a2,t(β
′
t+1ηt

)
]}

, (A-15)

with at = (a1,t, a2,t). It follows that k1,t+1 also cancels out in the auxiliary EIS

regressions (A-4) which simplifies into OLS of ln Φ(αt+1 + β′t+1ηt
) on β′t+1ηt

and

(β′t+1ηt
)2 together with a constant. From these EIS regressions one obtains esti-

mated EIS values for (a1,t, a2,t). Note that η
t
can be written as

η
t
= Aλt, with A =

(
1 0 0

0 0 1

)
. (A-16)

It follows that the parameters of the EIS kernel kt in Equation (A-6) are given

by

Pt = eρe
′
ρ + d2,t+1A

′l2,t+1l
′
2,t+1A + a1,tA

′βt+1β
′
t+1A (A-17)

qt = A′l2,t+1m2,t+1 + a2,tA
′βt+1. (A-18)

Its integrating factor χt(ηt
; at) follows by application of lemma 1.

· Period t = 1: The same principle as above applies to period 1, but requires

adjustments in order to account for the initial condition. Specifically, we have

λ1 = η
1

= (ε1, λ0)
′, λ0 = η0 (= τ). This amounts to replacing A by I2 in

Equations (A-16) to (A-18). Whence, the kernel k1(λ1, a1) needs only be bivariate

with

P1 = e1e
′
1 + d2,2l2,2l

′
2,2 + â1,1β2β

′
2 (A-19)

q1 = l2,2m2,2 + â2,1β2, (A-20)

with e′1 = (1, 0). Essentially, P1 and q1 have lost their middle row and/or column.

To avoid changing notation in lemma 1, the Cholesky decomposition of P1 is
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parameterized as

L1 =

(
1 0

l31,1 1

)
, D1 =

(
d1,1 0

0 d3,1

)
, l1,1 = l31,1, (A-21)

while d2,2 and l2,2 are now zero. Under these adjustments in notation, lemma 1

still applies with k2(η0; ·) ≡ 1 and β1 reduced to the scalar

β1 =
√

d1,1(l1,1 + δ1). (A-22)

· Period t = 0 (untruncated integral w.r.t. λ0 ≡ τ): Accounting for the back

transfer of {k2,t(λ0; ·)}T
t=1, all of which are gaussian kernels, the λ0-kernel is given

by

k0(λ0; ·) = fτ (λ0) ·
T∏

t=1

k2,t(λ0; ·) · exp{−1

2

(
â1,0λ

2
0 + 2â2,0λ0

)}, (A-23)

where (â1,0, â2,0) are the coefficients of the EIS approximation of ln Φ(α1 +β1λ0).

Note that k0 is the product of T +2 gaussian kernels in λ0 and is, therefore, itself

a gaussian kernel, whose mean m0 and variance v2
0 trivially obtain by addition

from Equation (A-23).
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Table 2. ML-estimates of Model 1: Pooled probit

Static Dynamic

Variable Estimate Marg. Eff. Estimate Marg. Eff.
Constant −1.993∗∗∗ −1.955∗∗∗

(0.474) (0.493)
AVGCA −0.060∗∗∗ −0.009 −0.060∗∗∗ −0.009

(0.012) (0.012)
AVGGROW 0.008 0.001 0.009 0.001

(0.021) (0.021)
AVGINV −0.002 −0.0003 0.001 0.0001

(0.010) (0.011)
AVGTT −0.108 −0.017 −0.109 −0.016

(0.066) (0.069)
GOV 0.026∗∗ 0.004 0.018 0.003

(0.012) (0.012)
OT −0.011 −0.002 −0.011 −0.002

(0.010) (0.010)
OPEN −0.058 −0.009 −0.085 −0.012

(0.087) (0.090)
USINT 0.108 0.017 0.107 0.015

(0.073) (0.075)
GROWOECD 0.084 0.013 0.042 0.006

(0.086) (0.090)
INTPAY 0.024 0.004 0.021 0.003

(0.029) (0.030)
RES −0.074∗∗ −0.011 −0.074∗∗ −0.011

(0.030) (0.030)
CONCDEB −0.165∗∗ −0.026 −0.152∗∗ −0.022

(0.068) (0.071)
κ 0.981∗∗∗ 0.209

(0.158)

Log-likelihood −276.13 −257.26

Note: The estimated model is given by Equation (2) assuming that the errors are independent
across countries and time. The asymptotic standard errors are given in parentheses and

obtained from the inverse Hessian. ∗,∗∗, and ∗∗∗ indicates statistical significance at the 10%,
5% and 1% significance level.
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Table 3. ML-estimates of Model 2: Random country-specific effects

Variable Estimate Marg. Eff.
Constant −1.880∗∗∗

(0.534)
AVGCA −0.064∗∗∗ −0.009

(0.015)
AVGGROW 0.010 0.001

(0.021)
AVGINV −0.0001 −0.00001

(0.011)
AVGTT −0.122 −0.017

(0.084)
GOV 0.018 0.003

(0.012)
OT −0.011 −0.002

(0.011)
OPEN −0.069 −0.010

(0.093)
USINT 0.083 0.012

(0.075)
GROWOECD 0.073 0.010

(0.090)
INTPAY 0.014 0.002

(0.031)
RES −0.073∗∗ −0.010

(0.035)
CONCDEB −0.159∗∗ −0.023

(0.078)
κ 0.982∗∗∗ 0.206

(0.154)
στ 0.162

(0.210)

σe 1.013

Log-likelihood −254.47

LR-statistic for H0 : στ = 0 5.57
F -statistic for exogeneity of xit 1.94
t-statistic for exogeneity of yi0 −2.01

Note: The estimated model is given by Equations (2) and (3). The asymptotic standard
errors are given in parentheses and obtained from the inverse Hessian. ∗,∗∗, and ∗∗∗ indicates

statistical significance at the 10%, 5% and 1% significance level. The 1% and 5% critical
values of the LR-statistic for H0 : στ = 0 are 5.41 and 2.71. The 1% and 5% critical values of

the F -statistic (t-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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Table 4. ML-EIS estimates of Model 3: AR(1) country-specific errors.

Dynamic Static

Variable Estimate Marg. Eff. Estimate Marg. Eff.
Constant −1.795∗∗∗ −1.512∗∗

(0.567) (0.677)
AVGCA −0.072∗∗∗ −0.010 −0.087∗∗∗ −0.012

(0.018) (0.021)
AVGGROW 0.007 0.001 0.0001 0.00001

(0.024) (0.027)
AVGINV 0.004 0.001 0.010 0.001

(0.013) (0.017)
AVGTT −0.161∗ −0.022 −0.251∗∗ −0.034

(0.093) (0.116)
GOV 0.018 0.002 0.016 0.002

(0.014) (0.018)
OT −0.010 −0.001 −0.009 −0.001

(0.012) (0.014)
OPEN −0.108 −0.015 −0.175 −0.023

(0.109) (0.136)
USINT 0.097 0.013 0.119 0.016

(0.075) (0.082)
GROWOECD 0.057 0.008 0.038 0.005

(0.087) (0.095)
INTPAY 0.029 0.004 0.045 0.006

(0.035) (0.037)
RES −0.097∗∗ −0.013 −0.143∗∗∗ −0.019

(0.046) (0.054)
CONCDEB −0.190∗∗ −0.026 −0.261∗∗∗ −0.035

(0.088) (0.099)
κ 0.520∗ 0.088

(0.297)
στ 0.142 0.194

(0.322) (0.403)
ρ 0.349∗ 0.590∗∗∗

(0.198) (0.090)
σe 1.077 1.254

Log-likelihood −253.27 −255.17

LR-statistic for H0 : ρ = 0 2.40 36.65
F -statistic for exogeneity of xit 2.16 2.54
t-statistic for exogeneity of yi0 −1.84

Note: The estimated model is given by Equations (2) and (8). The ML-EIS estimation are
based on a MC sample size of S = 100. The asymptotic standard errors are given in
parentheses and obtained from the inverse Hessian. ∗,∗∗, and ∗∗∗ indicates statistical

significance at the 10%, 5% and 1% significance level. The 1%, 5%, and 10% percent critical
values of the LR-statistic for H0 : ρ = 0 are 6.63, 3.84, and 2.71. The 1% and 5% critical

values of the F -statistic (t-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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Table 5. ML-EIS estimates of Model 4: AR(1) time-specific effects

Variable Estimate Marg. Eff.
Constant −1.967∗∗∗

(0.677)
AVGCA −0.064∗∗∗ −0.009

(0.014)
AVGGROW 0.013 0.002

(0.022)
AVGINV −0.001 −0.0001

(0.011)
AVGTT −0.122 −0.017

(0.075)
GOV 0.018 0.003

(0.012)
OT −0.010 −0.001

(0.011)
OPEN −0.065 −0.009

(0.095)
USINT 0.070 0.010

(0.071)
GROWOECD 0.113 0.016

(0.097)
INTPAY 0.011 0.002

(0.032)
RES −0.073∗∗ −0.010

(0.035)
CONCDEB −0.163∗∗ −0.023

(0.074)
κ 1.013∗∗∗ 0.210

(0.139)
στ 0.154

(0.201)
δ −0.888∗∗∗

(0.041)
σξ 0.089∗∗

(0.048)
σe 1.030

Log-likelihood −253.13

F -statistic for exogeneity of xit 2.09
t-statistic for exogeneity of yi0 −1.98

Note: The estimated model is given by Equations (2), (14), and (15). The ML-EIS estimation
are based on a MC sample size of S = 100. The asymptotic standard errors are given in

parentheses and obtained from the inverse Hessian. ∗,∗∗, and ∗∗∗ indicates statistical
significance at the 10%, 5% and 1% significance level. The 1% and 5% critical values of the

F -statistic (t-statistic) are 2.71 and 2.03 (2.68 and 2.01).
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Table 6. Classification errors and predicted average duration in years

ROC average
c∗ α(c∗) β(c∗) area duration

Model 2: Random country-specific 0.11 0.25 0.18 0.85 1.68
effects (0.12)

Model 3: AR(1) country-specific 0.12 0.09 0.18 0.91 1.77
errors (static) (0.14)

Model 3: AR(1) country-specific 0.09 0.11 0.25 0.88 1.80
errors (dynamic) (0.14)

Model 4: AR(1) time-specific 0.08 0.13 0.28 0.86 1.66
effects (0.12)

Note: Estimated standard deviation of the predicted average duration are given in
parentheses. The observed average duration is 1.52 years.
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Figure 1: Average `-step ahead marginal effects of the covariates AVGCA, RES, CON-

CDEB and the lagged binary state variable computed according to Equations (19) and

(20).
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Figure 2: Receiver Operating Characteristic curves for models 2 to 4.
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Figure 3: Observed and predicted relative frequencies for the duration of reversal

episodes for models 2 to 4. The observed average duration is 1.52 years.
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