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Abstract A novel simulation based approach to unit root testing is proposed in

this paper. The test is constructed from the distinct orders in probability of the

OLS parameter estimates obtained from a spurious and an unbalanced regression,

respectively. While the parameter estimate from a regression of two integrated and

uncorrelated time series is of order Op(1), the estimate is of order Op(T
−1) if the

dependent variable is stationary. The test statistic is constructed as an inter quan-

tile range from the empirical distribution obtained from regressing the standardized

data sufficiently often on controlled random walks. GLS detrending (Elliott et al.,

1996) and spectral density variance estimators (Perron and Ng, 1998) are applied to

account for deterministic terms and residual autocorrelation in the data. A Monte

Carlo study confirms that the proposed test has favorable empirical size properties

and is powerful in local-to-unity neighborhoods. Testing for PPP for a sample of G6

economies, the proposed test yields results in favor of PPP for half of the sample

economies while benchmark tests obtain at most one rejection of the random walk

null hypothesis.

JEL Classification: C22, C12

Keywords: Unit root tests, simulation based test, simulation study, GLS detrending.

Corresponding author: F. Siedenburg, Institute for Statistics and Econometrics, Christian-Albrechts-
University of Kiel, Olshausenstr. 40-60, D–24118 Kiel, Germany.
Email: fsiedenb@economics.uni-kiel.de. Phone: +49-431-8802225.



1 Introduction

Since the work of Granger and Newbold (1974) it is known that spurious correlations

may arise if a least squares regression is fitted to uncorrelated time series which are

integrated (at least) of order one (I(1)). To avoid this, separating between station-

ary and integrated series by means of unit root tests is a central aspect of time

series econometrics. Dickey and Fuller (1979) (DF henceforth) show that for I(1)

processes, the t-ratio from a first order autoregression converges to a nonstandard

limiting distribution which can be expressed as a functional of a Brownian motion.

Accordingly, the DF unit root test is conducted by comparing this t-ratio with simu-

lated critical values drawn from the limiting distribution. Since then, the literature

on unit root testing has been rapidly expanding. Major issues involve coping with

residual autocorrelation (Said and Dickey, 1984, Phillips and Perron, 1988) and im-

proving the power features of the tests (e.g. Elliott et al., 1996). An alternative

approach to unit root testing has been proposed by Stock (1999)1. Instead of directly

testing the value of the autoregressive parameter, the so-called class of M type tests

exploits the fact that the sum of squares of an integrated process is of higher order in

probability than the sum of squares of a stationary process. Perron and Ng (1996)

and Ng and Perron (2001) suggest modified variants of the M tests which perform

well in terms of small type one errors under general forms of residual autocorrela-

tion while retaining good power properties. Fully Nonparametric approaches to unit

root testing which are robust against violations of standard assumptions have been

proposed e.g. by Breitung and Gouriéroux (1997) and Aparico et al. (2006).

In this paper we present a novel approach to unit root testing. We start by

noting that the parameter from a spurious regression converges to a nondegenerated

limiting distribution (Phillips, 1986). In contrast, the parameter of an unbalanced

regression of an I(0) variable on an I(1) regressor can be shown to converge towards

zero at the rate Op(T
−1). We show that a consistent unit root test can be based on

this distinction. In particular, regressing the appropriately scaled data sufficiently

1The paper dates back to 1990.
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often on a random walk controlled by the analyst yields a sample of random variables

from the limiting distribution derived by Phillips (1986). Viable test statistics can

then be constructed from ranges of that random variable, which have a nondegen-

erated distribution under H0 but degenerate to a one point distribution under H1.

We conduct a simulation study to assess the empirical properties of the proposed

procedure. To preview the results, it turns out that the simulation based testing

approach on average offers most precise size estimates compared with ADF- and M -

type tests. In large samples, the proposed test achieves higher local power than the

standard ADF test but is outperformed by the ADFGLS and the M test. However,

there are finite sample scenarios with residual autocorrelation where the proposed

test yields the highest power estimates among those tests that are characterized by

correct empirical rejection frequencies under H0. As an empirical illustration we test

for long run PPP in a sample of G6 economies. Two variants of the proposed test

yield up to three rejections of the unit root null hypothesis whereas the benchmark

tests obtain at most one rejection.

The remainder of the paper proceeds as follows: the testing idea is presented in

Section 2. The Monte Carlo simulations are documented in Section 3. Section 4

contains the empirical application. Finally, Section 5 concludes and discusses further

potential applications of the proposed test procedure.

2 The simulation based range unit root test

Consider the issue of testing for a unit root (ρ = 1) in the time series {yt}, generated

by

yt = dt + ut, ut = ρut−1 + υt, t = 1, ..., T, (1)

where dt = z′tψ and zt is a vector of deterministic components and ψ is a parameter

vector. In (1), the error term υt =
∑∞

j=0 δjet−j with
∑∞

j=0 j|δj| < ∞ allows for

general forms of serial correlation and {et} is white noise with variance σ2
e .

Stock (1999) proposed the so-called class of M -type unit root and cointegration

tests, which are basically derived from the observation, that the sum of squares of
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time series of order I(1) and I(0) converge at different rates, namely Op(T
2), and

Op(T ), respectively. Hence, suitable standardizations can be applied to consistently

discriminate between I(1) and I(0) processes. For instance, Stock (1999) suggests

the statistic

MZα =
(
y2

T − Ts2
)
(

2T−1

T∑
t=1

y2
t

)−1

, (2)

where s2 is a consistent estimate of the long run variance

σ2 = limT→∞T−1E

(
T∑

t=1

υ2
t

)
.

2.1 The testing principle

Our proposed simulation based approach is similar to the M -type statistics, in that

we try to discriminate between integrated and stationary processes by means of their

stochastic order rather than based on an autoregressive parameter estimate as e.g.

in the widely used DF test. However, unlike the M -type tests of Stock (1999), the

proposed test is based on the stochastic order of the slope parameter from a spurious

regression. Since the work of Granger and Newbold (1974) and Phillips (1986) it is

well known that the OLS estimator β̂ from the regression

yt = βxt + εt, (3)

is not consistent for the true parameter β = 0 if yt and xt are two uncorrelated

random walks. To make statements about the limiting distribution of β̂, we make

the following assumptions

Assumption 1 (A1) Let xt = xt−1 + εt and yt generated as in (1) with dt = 0 and

υt = et. The innovations εt and et are independent white noise, i.e. εt ∼ iid (0, σ2
ε ),

et ∼ iid (0, σ2
e) and Cov[εt, et] = 0.

Assumption 2 (A2) Initial values are given by y0 = x0 = 0.

Under the unit root null hypothesis ρ = 1 and (A1)-(A2), it follows from the results

in Phillips (1986) that the limiting distribution of β̂ = (
∑T

t=1 x2
t )
−1

∑T
t=1 xtyt is given
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by

β̂
d→ σe/συ

[∫ 1

0

Wx(a)2da

]−1 ∫ 1

0

Wx(a)Wy(a)da, (4)

which implies that β̂ ∼ Op(1). If {yt} is a weakly stationary process under the

alternative hypothesis, H1 : ρ < 1, β̂
p→ 0 at the rate of T and, hence, β̂ ∼ Op(T

−1).

The testing idea is to exploit the distinct orders in probability under H0 and H1,

respectively. In the unit root case, the non-degenerated limiting distribution implies

some finite range for a sample of R realizations of {β̂r}R
r=1, while in the stationary

case, the range of the degenerated distribution of {β̂r}R
r=1 becomes arbitrarily small

for T →∞. Hence, a test statistic could be constructed as the range of the sequence

of regression coefficients {β̂r}R
r=1, obtained from regressing the data sufficiently often,

say R times, on simulated random walks that are controlled by the econometrician,

i.e.

yt = βx
(r)
t + ε

(r)
t , t = 1, ..., T, , r = 1, ..., R,

with x
(r)
t as defined in A1. Denote this test statistic as JR,MaxMin,

JR,MaxMin = |β̂max
R − β̂min

R |, (5)

and β̂max
R and β̂min

R are obtained as β̂max
R = max{β̂r}R

r=1, β̂min
R = min{β̂R}R

r=1.

However, this statistic asymptotically depends on the choice of R since JR,MaxMin

is based only on the two extremal points of the distribution of {β̂r}. Increasing the

sample size of {β̂r} increases the likelihood of observing larger values of JR,MaxMin.

Alternative statistics which are independent of R can be obtained by using some inter

quantile range of β̂R. Test statistics are then constructed as Jα = |β̂(1−α/2) − β̂α/2|,
where β̂α refers to the α% quantile of the empirical distribution of {β̂r}. Figure

1 displays the limiting distribution of JR,MaxMin and J0.1 for different values of

R, where the distribution functions are based on 100000 replications. The time

dimension is chosen reasonably large with T = 1000 in order to ensure convergence

of the estimated regression coefficients to the asymptotic distribution given in (4).

However, unreported results show that a very similar picture emerges even for a

time dimension as small as T = 50.
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Figure 1: Empirical PDFs conditional on R, T = 1000
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Notes: Empirical pdfs are approximated by a Gaussian kernel density estimator with

bandwidth chosen according to Silverman’s rule of thumb.

The left hand side graph of Figure 1 confirms that the limiting distribution

of JR,MaxMin depends on R. The variance of the distribution increases with R

and the mode of the distribution shifts to the right as R increases. On the other

hand, as shown in the ride hand side graph, the limiting distribution of J0.1 displays

convergence to a unique distribution even for relatively small values of R.

Under assumption (A1), the limiting distribution of Jα depends on three param-

eters: the innovation standard deviations of xt and yt, σε and σe, and the chosen

quantile α. As σε and α are controlled by the econometrician, σe is the only nui-

sance parameter. Since σe can be estimated consistently from the data, the observed

process can be standardized such that simulated critical values for a test based on

Jα generated with σe = 1 remain valid.
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2.2 Initial conditions and deterministic terms

The limiting distribution of β̂ as given in (4) and, hence, the limiting distribution

of Jα, crucially depends on assumptions (A1) and (A2). Thus, we have to account

for the more realistic cases of yt being a random walk with drift and initial values

y0 6= 0. An easy solution to account for non-zero initial values is to subtract the first

observation from the data. Moreover, OLS or GLS detrending schemes can be used

to eliminate non-zero mean or drift terms. The OLS detrended series is obtained as

ŷt = yt − z′tψ̂, (6)

where ψ̂ is the OLS estimate from the regression

yt = z′tψ + et, et ∼ iid (0, 1), (7)

and zt is collects the deterministic terms, i.e. zt = 1 in the intercept only case or

zt = (1, t)′ in the trend case, respectively. Elliott et al. (1996) demonstrate that

conducting DF type unit root tests on GLS detrended data leads to significant power

gains compared with the standard DF test. Similarly, Ng and Perron (2001) show

that GLS detrending improves the power of M -type unit root tests. GLS detrending

proceeds by constructing quasi-differences of the data, i.e.

yᾱ
t = yt − ᾱyt−1, yᾱ

0 = y0, and t = 1, ..., T,

with ᾱ = 1 + c̄/T , where c̄ denotes the local-to-unity parameter. The detrended

vector of deterministic components zᾱ
t is constructed in analogy, i.e.

zᾱ
t = zt − ᾱzt−1, zᾱ

0 = z0, and t = 1, ..., T.

The local-to-unity parameter c̄ is chosen according to Elliott et al. (1996), such that

c̄ = −7 if zt = 1 and c̄ = −13.5 if zt = (1, t)′, respectively. The detrending parameter

estimate ψ̃ is then the OLS estimator from the regression

yᾱ
t = zᾱ′

t ψ + et, et ∼ iid (0, 1), (8)

and the GLS detrended series is

ỹt = yt − z′tψ̃, t = 1, ..., T. (9)
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2.3 Consistent estimation of the long run variance

As outlined in Section 2.1, a consistent estimate of the innovation variance σ2
e is

required to implement the proposed unit root test. Moreover, to account for (poten-

tial) serial dependence in the innovations et, it appears preferable to consider serial

correlation robust estimators, as, for example, kernel based estimators (Newey and

West, 1987). However, Perron and Ng (1996) show that the use of kernel based es-

timators as in Phillips and Perron (1988) often leads to poor empirical size features

of the tests. Instead, they advocate to use an autoregressive spectral density esti-

mator at frequency zero of υt, denoted s2
AR, in the construction of the M -statistic.

Consider the augmented DF regression

∆yt = dt + β0yt−1 +
k∑

j=1

βj∆yt−j + etk, (10)

where k denotes the (previously determined) lag order. The estimator s2
AR is then

constructed as

s2
AR = σ̂2

k/(1− β̂(1))2, (11)

with σ̂2
k = (T − k)−1

∑T
t=k+1 ê2

tk, β̂(1) =
∑k

j=1 β̂j, where β̂i and {êtk} are obtained

from regression (10). Ng and Perron (2001) demonstrate that the finite sample size

of the M -tests can be further improved by estimating s2
AR from the regression

∆ỹt = β0ỹt−1 +
k∑

j=1

βj∆ỹt−j + etk, (12)

where ỹt denotes GLS detrended data as outlined in Section 2.2. To distinguish

both estimators, we denote them as s2
AR,OLS and s2

AR,GLS if based on regression (10)

or (12), respectively.

2.3.1 Lag length selection

It is long recognized that underfitting of k in (10) leads to severe size distortions of

most unit root tests. Ng and Perron (2001) point out that even the comparatively

liberal Akaike Information Criterion (AIC) tends to select too small a lag order if
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there is a negative moving average (MA) root in the innovation process. Therefore,

they propose the modified AIC (MAIC). It is given as

MAIC(k) = ln(σ̂2
k) +

2(τT (k) + k)

T − kmax

, (13)

where ln(σ̂2
k) is the natural logarithm of σ̂2

k and τT (k) = (σ̂2
k)
−1β̂2

0

∑T
t=kmax+1 y2

t−1

and σ̂2
k = (T − kmax)

−1
∑T

t=kmax+1 ê2
tk. The chosen lag length is then obtained as

kMAIC = arg mink(MAIC) with admissible values of k ∈ [0, b12(T/100)1/4c], where

bqc denotes the integer part of q. While Ng and Perron (2001) suggest to apply

the MAIC to GLS detrended data, Perron and Qu (2007) recommend to base the

information criterion on OLS detrended data (or an ordinary ADF regression), while

still employing GLS detrending for the construction of s2
AR and the test statistics.

They argue that this hybrid procedure improves the small sample properties of the

considered tests.

2.4 Critical values

Critical values for all considered detrending schemes of the simulation based unit

root test are documented in Table 1. Since neither OLS- nor GLS detrending ensures

accordance with (A2), we also generate critical values for tests based on detrended

data from which the first observation has been subtracted so that ŷ1 = 0 and ỹ1 = 0,

respectively.

Critical values are generated using 100000 Monte Carlo replications and setting

σe = σε = 1, α = 10% and R = 50. Values in parentheses denote critical values

obtained for detrended data from which the first observation has been subtracted.

3 Finite sample properties

We analyze the finite sample properties of the Jα test by means of a Monte Carlo

study. We simulate data according to model (1) for t = −49, ...,−1, 0, 1, ..., T

and discard the pre-sample values. Besides the benchmark scenario with υt ∼
iidN(0, 1), we also consider serially dependent innovation processes formalized by
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Table 1: Critical values, J0.1

Intercept Trend
T 1% 5% 10% 1% 5% 10%

OLS-detrending, s2
AR,OLS

25 0.28 (0.44) 0.40 (0.69) 0.49 (0.87) 0.19 (0.29) 0.25 (0.42) 0.30 (0.53)
50 0.24 (0.40) 0.36 (0.63) 0.44 (0.82) 0.15 (0.24) 0.21 (0.37) 0.25 (0.48)
100 0.22 (0.37) 0.34 (0.61) 0.42 (0.79) 0.13 (0.23) 0.19 (0.35) 0.23 (0.46)
250 0.22 (0.37) 0.32 (0.60) 0.41 (0.79) 0.13 (0.22) 0.18 (0.35) 0.23 (0.45)
500 0.21 (0.36) 0.33 (0.59) 0.41 (0.77) 0.13 (0.22) 0.18 (0.34) 0.22 (0.44)
1000 0.21 (0.36) 0.32 (0.59) 0.41 (0.77) 0.12 (0.21) 0.18 (0.34) 0.22 (0.44)
10000 0.21 (0.36) 0.32 (0.60) 0.41 (0.78) 0.12 (0.21) 0.18 (0.34) 0.22 (0.44)

GLS-detrending, s2
AR,GLS

25 0.34 (0.44) 0.50 (0.68) 0.60 (0.87) 0.21 (0.28) 0.28 (0.41) 0.33 (0.50)
50 0.33 (0.40) 0.50 (0.63) 0.63 (0.81) 0.19 (0.23) 0.26 (0.34) 0.31 (0.43)
100 0.34 (0.37) 0.53 (0.61) 0.67 (0.79) 0.18 (0.21) 0.26 (0.31) 0.32 (0.39)
250 0.35 (0.37) 0.56 (0.60) 0.73 (0.79) 0.18 (0.20) 0.27 (0.29) 0.33 (0.36)
500 0.35 (0.36) 0.57 (0.59) 0.74 (0.77) 0.19 (0.19) 0.28 (0.29) 0.34 (0.35)
1000 0.36 (0.36) 0.58 (0.59) 0.75 (0.77) 0.18 (0.19) 0.27 (0.28) 0.34 (0.35)
10000 0.36 (0.36) 0.60 (0.60) 0.78 (0.78) 0.19 (0.19) 0.28 (0.28) 0.34 (0.34)

Notes: Data is generated according to assumptions (A1)-(A2) with et, εt ∼
iidN(0, 1). Results based on 100000 replications and R = 50. The variance esti-
mator s2

AR (eq. 11) is constructed with k = 0. Values in parentheses denote critical
values obtained for data with ŷ1 = 0 and ỹ1 = 0, respectively.

means of moving average and autoregressive innovation structures

MA(1) : υt = Θet−1 + et, et ∼ iidN(0, 1), (14)

and

AR(1) : υt = Θυt−1 + et, et ∼ iidN(0, 1), (15)

respectively. Both cases are simulated for parameter values Θ ∈ {−0.8,−0.5, 0.5, 0.8}
to capture a wide range of correlation patterns. The random walk {xt} needed for

the construction of Jα is generated according to (A1)-(A2), as before. As already

mentioned, due to the different detrending schemes we have four variants of the Jα

test at hand. We denote them as Jα,1-Jα,4, referring to the statistics based on OLS

detrended data, OLS detrended data with ŷ1 = 0, GLS detrended data and GLS

detrended data with ỹ1 = 0, respectively. To assess the relative performance of the

proposed simulation based unit root test, we additionally include three commonly

used unit root tests in our simulation, namely the standard ADF-test, the ADF-

GLS test of Elliott et al. (1996) and the M̄GLS test proposed by Ng and Perron
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(2001). The lag length is selected for all tests according to Perron and Qu (2007) by

the MAIC based on OLS-detrended data. Empirical size is evaluated under the null

hypothesis of ρ = 1 and the nominal significance level is 5%, however, results remain

qualitatively unchanged if other significance levels are chosen. We base empirical

size estimates on simulated critical values for all tests since exact critical values are

not tabulated in the literature for some of the tests. Exact critical values are gen-

erated from 100000 replications of model (1) under the null hypothesis with white

noise error terms. Size adjusted rejection frequencies are calculated under the local

alternative H1 : ρ = 1 − c̄/T , where c̄ = 7 and c̄ = 13.5 in the intercept and trend

case, respectively. Table 2 and 3 list rejection frequencies under the null hypothesis

while size adjusted local power results are documented in Tables 4 and 5.

3.1 Rejection frequencies in the unit root case

Rejection frequencies obtained for the intercept case with white noise innovations

illustrate that the new proposed test achieves a high degree of size control. None

(Jα,1), one (Jα,2, Jα,4) or two (Jα,3) significant deviations from the nominal signifi-

cance level can be observed while in contrast, both variants of the ADF test as well

as the M̄GLS test are characterized by much more significantly distorted empirical

size estimates. In all of these cases, empirical rejection frequencies are below the

nominal level and as low as 1.4% for T = 25 (ADF). These downward biases are

presumably induced by spuriously included lags in the test regressions or in the con-

struction of the spectral density variance estimator. Size distortions are generally

more pronounced for small sample sizes which is in line with Cheung and Lai (1995)

who demonstrate that the critical values of the ADF statistic exhibit a nonlinear

dependence on k which vanishes for increasing T . If the simulations are based on

the correct lag length (i.e. k = 0, unreported) empirical rejection frequencies vary

insignificantly around the nominal level for all tests. A similar picture emerges if the

tests are constructed to allow for trending data. While all variants of the simula-

tion based test yield only two significant size distortions, the ordinary ADF statistic

leads to rejection frequencies significantly smaller than 5% for all sample sizes T .

10



Finally, the ADFGLS and the M̄GLS statistics obtain underrejections of H0 in four

out of six scenarios.

If the random walk innovations are generated by an MA structure with negative

coefficient, rejection frequencies are much less precise for all statistics than under

independent innovations. Especially for (large) negative MA coefficients (Θ = −0.8)

and T < 100, rejection frequencies between 23% and 39% can be observed under H0.

This indicates that the automatic, sample size dependent choice of kmax might be

too restrictive in small samples with strong negative MA error processes. For larger

T , rejection frequencies of most tests successively tend to approach the nominal

level from above. A notable exception can be observed for the M̄GLS statistic.

While it yields excess rejection probabilities for T ∈ [25, 50] the test tends to be

rather conservative in large samples with rejection frequencies ranging between 2.1%

(T = 250) and 3.6% (T=1000). This finding is in line with results reported in Ng

and Perron (2001). The simulation based quantile range tests do not offer significant

improvements nor drastic deteriorations compared with the existing procedures in

the cases of negative MA correlations. Generally, all versions of the Jα statistic

tend to overreject H0 under negative MA errors. The magnitude of the upward

size distortions depends positively on the strength of the negative MA root and

inversely on T . Ceteris paribus, size distortions are more pronounced if the tests are

constructed to allow for trending data.

Positive MA dynamics tend to induce rejection frequencies of less than the nomi-

nal level for both variants of the ADF statistic. On the other hand, the Jα statistics

and the M̄GLS statistic perform relatively well with some minor undersizing ob-

served only for small time dimensions. All statistics appear to be less sensitive to

the magnitude of the (positive) MA coefficient compared to the case of a negative

parameter. Similarly, differences between the intercept and trend cases are less

pronounced compared with the scenario of negative MA innovations.

If the random walk innovations follow an AR(1) process (Table 3), the Jα statis-

tics outperform the benchmark tests in many cases. In the intercept only case with

negative AR coefficients, all benchmark tests underreject H0, mostly by a significant
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margin. For instance consider a time dimension of T = 100. The M̄GLS statistic

obtains rejection frequencies of 0.9% (Θ = −0.8) and 3.5% (Θ = −0.5). Similar

rejection frequencies are documented for both variants of the ADF statistic. In con-

trast, all variants of the Jα statistic yield rejection frequencies close to the nominal

level for T = 100 and at most some moderate oversizing for T = 25. Among the

Jα statistics, both variants computed from data with initial conditions ŷ1 = 0 and

ỹ1 = 0 yield smallest size distortions. If the tests are implemented to account for a

linear time trend, the general picture changes in so far, as the observed overrejections

of the Jα statistics for T = 25 are somewhat more pronounced and the benchmark

statistics also display overrejctions of H0 for Θ = −0.5 and T = 25. Yet, overall, the

Jα statistics yield most accurat size features for negative residual autocorrelation,

formalized by an AR structure.

If the random walk innovations follow an AR(1) process with positive coefficient,

both variants of the ADF statistic yield significantly too small rejection frequencies

for most combinations of T and Θ. In many cases rejection frequencies are around

or below 3.5% for reasonably large time dimensions such as T ∈ [100, 250]. On the

other hand, the M̄GLS statistic tends to overreject H0 for positive AR processes

and small time dimensions. If Θ = 0.5 empirical sizes of up to 8.2% (trend case)

are observed for T = 50. If Θ = 0.8, size distortions are even more pronounced.

In the intercept case, empirical rejection frequencies between 7.1% (T = 100) and

27.8% (T = 25) are documented while in the trend case, these are between 11.6%

(T = 100) and 35.2% (T = 25). As in the case of negative AR correlation, the

Jα statistics remain most robust in terms of empirical rejection frequencies close to

the nominal level. Significant size distortions are mostly restricted to small time

dimensions and less pronounced than those obtained by the benchmark statistics.

For moderate positive autocorrelation (Θ = 0.5) and T = 25, the Jα statistics obtain

rejection frequencies between 3.2% and 4.1% (intercept case) and between 2.0% and

2.6% (trend case), respectively. If Θ = 0.8, the Jα statistics yield upward biased size

estimates for T = 25, however, this bias is much smaller and vanishes faster than

the bias observed for the M̄GLS statistic.
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To conclude this section, the conducted Monte Carlo study confirms that the

simulation based Jα unit root tests are very competitive in terms their implied

rejection frequencies under the unit root null hypothesis. The only exception is

a scenario of (strong) negative MA processes, however, in this case none of the

considered benchmark statistics yields fully satisfactory results either. Across all

considered scenarios it turns out that subtracting the first observation from the

data leads to more precise size estimates of the Jα tests, while the chosen detrending

scheme has at most marginal impact on rejection frequencies under H0.

3.2 Size adjusted local power

Size adjusted local power estimates for iid and MA innovations are documented in

Table 4. Entries in italic indicate that these power estimates are based on substantial

size adjustment, as the corresponding rejection frequencies under H0 are not cov-

ered by the 95% confidence interval around the nominal level. Hence, these power

estimates should be interpreted cautiously, since rejection frequencies are unreliable

under H0.

In the intercept only case, the results document that the proposed Jα tests

yield (size adjusted) power estimates of roughly 30% for the largest time dimension

T = 1000. The most notable distinction among the Jα tests can also be observed

for T = 1000, where Jα,1 (i.e. the statistic based on OLS detrending without initial

observation adjustment) yields up to 5 percentage points lower power estimates

than all other variants. Among the latter, there are no marked power differentials,

though.

Compared with the standard ADF test, the Jα tests display moderate power

advantages varying between 3-5% for T ∈ [25, 500] and more sizable advantages of

up to 10 percentage points for T = 1000. The ADFGLS test and the M̄GLS tests

achieve the highest (size adjusted) local power. On average both tests offer a positive

power differential compared with the Jα tests of around 5 to 6 percentage points

in the large sample case (T = 1000). Serially correlated innovations reduce local

power estimates of all tests for small time dimensions. However, it is noteworthy
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that the Jα tests appear to be less affected by this adverse effect compared with the

M̄GLS statistic. Consider, for instance, the MA case with Θ = 0.8 and T = 50. In

this scenario, the Jα statistics yield about 50% higher rejection frequencies than the

M̄GLS statistic.

If tests are implemented to account for trending data, the ADFGLS and M̄GLS

statistics remain most powerful in large samples. However, the power differential

compared with the standard ADF test is less pronounced as in the intercept case,

resembling a result of Elliott et al. (1996). In contrast to the intercept case, Jα,2 is

now the least powerful variant among the Jα tests with up to 7 percentage points

lower rejection frequencies. As before, residual serial correlation reduces local power

estimates in small samples.

Table 5 lists local power estimates for data generated with AR(1) innovations.

The most notable differences compared with the case of MA innovations can be

observed for small sample (T ∈ [25, 50]) scenarios with positive AR coefficients

where size adjusted rejection frequencies are substantially depressed. In particular,

for Θ = 0.8 and T = 25, local power estimates vary around 1% for the Jα statistics,

between 2.8% and 4.3% for the ADF statistics and are as low as 0.5% for the M̄GLS

statistic. For large time dimensions, the main conclusions drawn from the results in

Table 4 persist.

To summarize local power estimates, it turns out that for large sample sizes the

ADFGLS and M̄GLS statistics are the most powerful among the considered tests.

Moreover, if statistics are computet to account for a linear time trend, GLS de-

trending appears to be preferable to OLS detrending in the construction of the Jα

statistics.

4 Empirical illustration: PPP of G6 economies

4.1 Theoretical background

The purchasing power parity (PPP) hypothesis is an important building block of

many international macroeconomic models. Strong form PPP postulates that one
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basket of goods has the same price across different countries when expressed in a

common currency. The real exchange rate of country i at time t is defined as

Qit =
EitPit

P ∗
t

, (16)

where Eit denotes the nominal exchange rate and Pit and P ∗
t are the domestic and

foreign (numeraire) price levels, respectively. Under strong form PPP, one would

expect that Qit = 1 in all periods t. However, there are many practical reasons

why strong form PPP is too hard an assumption (see e.g. Wagner, 2008 and the

references therein). Hence, empirical analyses of PPP usually test for prevalence of

weak form long run PPP which can characterized as real exchange rates, fluctuating

around a stationary mean. We follow the literature in formalizing the model in log

terms and using the United States as numeraire country. Then, the real exchange

rate of country i is given as

qit = eit + pit − p∗us,t, (17)

with lower case letters denoting logs of the variables defined in 2. There is a vast

literature on the empirical validity of PPP (see Taylor and Taylor, 2004 for a survey).

Most studies based on univariate unit root tests conclude that PPP does not hold.

Since it has been argued that the inability of rejecting the unit root null hypothesis

might be due to low power of univariate unit root tests, panel techniques have

been employed which generally yield results more in favor of long run PPP. More

recently however, it has repeatedly been pointed out that these results obtained by

first generation panel unit root tests might have been induced by neglected cross

sectional dependence and that evidence based on appropriate second generation

panel unit root tests yield less support for long run PPP to hold (e.g. Wagner,

2008).

We acknowledge that a thorough investigation of PPP should make use of (sec-

ond generation) panel unit root tests. However, we use this small scale empirical

illustration to highlight differences of the analyzed test procedures in an empirical

context.
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4.2 Data

We obtain annual data on price levels and exchange rates from the Penn World

Tables (PWT), Mark 6.2. Data spans from 1950-2004 and the base year is 2000.

However, for those economies adopting the Euro in 1999, we restrict the sample to

the observations prior to the introduction of the Euro. In the case of Germany, price

level data availability only starts in 1970. Figure 2 displays the log real exchange

rates of the G6 economies.

Figure 2: Real exchange rates of G6 economies
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Notes: Figures display the logs of bilateral real exchange rates versus the US-$.

4.3 Results

Construction of the test statistics proceeds in analogy to the Monte Carlo study

and the same simulated critical values are used for the test decisions. Table 6 lists

the empirical results which document some notable differences between the various

tests. Based on the standard ADF test, according to our simulation study the least

powerful among the considered tests, we cannot reject the unit root null hypothesis

for any of the G6 economies at the 5% significance level. If we base inference on
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either of the Jα,1, ADFGLS or M̄GLS statistics, we obtain evidence in favor of long

run PPP at least for the United Kingdom. Based on Jα,3, rejection of H0 is also

found for France. Finally, according to the initial observation adjusted statistics

Jα,2 and Jα,4, long run PPP additionally holds for Italy, and hence, for half of the

economies under consideration.

The mixed evidence on PPP among the G6 economies obtained by the alternative

unit root tests points out that the proposed simulation based testing principle can

add additional insights in empirical applications of unit root tests.

5 Conclusions

In this paper, we introduce a new approach to unit root testing. The underlying mo-

tivation for the new test is that the regression coefficient from a spurious regression

(i.e. a regression of two uncorrelated random walks) has a nondegenerated limiting

distribution. In contrast, if the dependent variable is stationary, the regression co-

efficient converges to zero in probability. To construct a feasible test statistic, we

propose to run a sequence of regressions of the data on simulated random walks with

Gaussian innovations. Test statistics can then be obtained as some inter quantile

ranges of the resulting empirical distribution. If appropriately scaled, these statis-

tics have an invariant limiting distribution under the null hypothesis, while they

converge to zero at the rate T−1 under the alternative hypothesis. We implement

variants of these statistics based on the range between the 5 and 95 percentile of

the simulated distribution. To account for higher order serial correlation, we apply

the autoregressive spectral density variance estimator proposed by Perron and Ng

(1998) in conjunction with the modified Akaike information criterion (MAIC) (Ng

and Perron, 2001) to obtain a nuisance parameter free test statistic.

By means of a Monte Carlo study we assess the finite sample properties of the

new test. It turns out that it has favorable size properties for most of the consid-

ered data generating processes, especially for relatively small time dimensions. In

contrast to standard ADF tests, removal of deterministic terms by means of GLS
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detrending does not substantially improve finite sample power features of the test

in the intercept case but appears to be preferable in the trend case. In terms of size

adjusted local power, it turns out that the proposed test is more powerful than the

standard ADF test in the intercept only case, while it is slightly less powerful than

the ADF-GLS test of Elliott et al. (1996) and the M̄GLS test of Ng and Perron (2001)

in large samples. However there are some scenarios of small samples with residual

autocorrelation in which the proposed test yields highest power among those tests

which achieve reasonable rejection frequencies under H0. In an empirical illustration

on PPP among G6 economies, we show that the proposed test tends to support long

run PPP for more economies than the benchmark tests.

A number of interesting issues are open for future research. First and foremost,

the analytical derivation of the of the proposed test’s limiting distribution deserves

further consideration. Furthermore, it is not clear if the analyzed statistics are

the most efficient implementation of the proposed testing principle. One could, for

instance, consider alternative regression designs, use different inter quantile ranges to

construct test statistics or apply other variance estimators or pre-whitening schemes

to cope with residual serial correlation. Moreover, it should be straightforward

to apply the proposed testing idea to the fields of stationarity and cointegration

testing as well as to expand it to the panel case. Especially the latter appears

promising, considering the relatively good performance of the proposed test in small

samples. Another important issue for further research is to analyze in how far the

new approach copes with violations of standard assumptions, such as outliers, breaks

in the intercept or trend function as well as nonstationary volatility.
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Table 2: Empirical size

Intercept Trend
T Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G

υt ∼ iidN(0, 1)
25 4.8 4.7 4.1 4.1 1.4 2.2 3.5 4.4 4.6 4.6 4.5 3.2 3.4 3.9
50 4.6 4.1 3.8 3.8 2.4 2.2 2.7 4.1 3.8 3.9 4.0 2.5 2.5 3.1
100 4.7 4.4 4.6 4.5 3.1 3.5 3.8 4.5 4.4 4.6 4.8 3.1 3.5 3.8
250 5.2 4.7 4.7 5.1 4.4 4.3 4.2 4.3 4.3 4.0 4.3 3.4 3.8 4.0
500 5.6 4.9 5.0 5.2 4.8 4.6 4.8 5.0 4.7 5.2 5.1 4.3 4.5 4.8
1000 5.0 4.4 4.4 4.6 4.7 4.2 4.3 5.0 4.9 4.8 5.2 4.0 5.1 5.1

MA case: Θ = −0.8
25 39.2 23.4 36.3 23.0 28.8 32.9 32.3 44.7 22.8 44.4 23.8 48.6 51.3 48.2
50 30.0 20.7 23.9 19.4 16.9 18.9 16.5 47.8 24.8 43.9 28.6 34.4 36.8 35.5
100 20.9 13.7 12.7 11.8 8.6 9.4 5.7 34.0 17.2 24.2 20.1 16.3 17.2 13.4
250 12.7 9.4 8.4 8.4 4.8 6.9 2.1 17.7 9.7 10.7 10.3 6.4 6.9 2.1
500 10.6 7.8 7.5 7.5 5.8 6.9 2.7 12.5 7.8 8.8 8.8 6.0 6.4 1.2
1000 7.4 5.9 5.9 6.0 5.7 6.3 3.6 8.9 7.5 7.3 7.8 5.9 7.0 1.5

MA case: Θ = −0.5
25 15.5 10.9 14.1 10.3 10.7 13.4 14.5 19.8 12.6 19.4 12.9 21.3 24.4 25.1
50 10.9 8.2 8.3 7.6 6.0 6.5 6.8 15.0 9.8 14.2 10.4 9.5 10.6 12.1
100 9.1 6.7 6.6 6.3 3.5 4.8 4.5 11.0 8.2 10.1 8.8 5.0 6.1 6.4
250 7.0 6.0 5.9 5.9 4.2 5.1 4.9 7.4 5.7 6.0 6.1 4.1 4.9 4.5
500 7.0 6.0 5.8 5.5 4.7 5.3 5.3 7.0 5.8 6.5 6.2 4.9 5.5 5.5
1000 5.6 5.1 4.8 5.0 4.8 4.9 4.8 6.1 5.8 5.8 6.2 4.6 5.7 5.7

MA case: Θ = 0.5
25 3.2 3.6 3.1 3.3 1.0 0.5 5.0 2.1 2.4 1.7 2.0 0.6 0.2 3.3
50 4.2 4.3 3.6 4.1 1.5 1.1 4.1 2.4 3.0 2.5 3.0 0.4 0.2 3.5
100 5.3 4.9 4.9 4.9 2.4 2.7 4.6 4.6 4.7 4.7 4.7 1.4 1.7 5.1
250 5.1 5.0 4.9 5.0 3.3 3.5 4.6 4.4 4.7 4.2 4.3 2.3 2.3 4.0
500 6.0 5.3 5.4 5.2 3.9 4.5 4.9 5.4 5.1 5.6 5.2 3.5 3.5 4.8
1000 5.0 4.8 4.4 4.8 4.4 4.2 4.5 5.4 5.1 5.1 5.5 3.9 4.5 5.3

MA case: Θ = 0.8
25 4.1 4.6 4.2 4.4 0.9 0.4 8.4 2.0 2.4 2.0 2.2 0.5 0.1 5.7
50 5.0 4.8 4.4 4.7 1.1 1.0 5.6 3.5 4.3 3.9 3.8 0.4 0.3 7.4
100 6.0 5.5 5.1 5.3 1.5 1.9 5.2 5.0 5.5 4.6 4.8 1.0 0.9 6.5
250 5.9 5.8 5.4 5.5 2.2 3.2 5.5 5.8 5.3 4.9 5.0 1.5 1.7 5.5
500 6.3 5.9 5.5 5.3 3.6 4.2 5.4 6.3 5.7 6.1 6.0 2.6 3.3 6.1
1000 5.1 5.1 4.5 4.9 3.7 4.1 4.8 6.0 5.8 5.7 5.8 3.6 4.2 6.5

Notes: Statistics Jα,1-Jα,4 refer to the new simulation based tests as defined above, while ADFG

denotes the ADF-GLS test of Elliott et al. (1996) and M̄G the M -type test of Ng and Perron
(2001) based on GLS detrending. To facilitate interpretation of the Tables, bold entries indicate
rejection frequencies which are not covered by the 95% confidence interval [4.4%, 5.6%] around
the nominal 5% level constructed as α± 1.96

√
α(1− α)/5000, α = 0.05. Rejection frequencies

under the null hypothesis are calculated for data generated according to model (1) with dt = 0
and ρ = 1. MA and AR error processes are generated by (14) and (15), respectively. 5000
replications are generated throughout and test statistics Jα,1-Jα,4 are based on R = 50. For
all statistics, the lag length is chosen according to the MAIC applied to OLS demeaned or
detrended data.
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Table 3: Empirical size, continued
Intercept Trend

T Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G

AR case:Θ = −0.8
25 7.4 5.5 5.8 5.4 1.9 2.7 1.7 8.8 6.2 8.3 6.1 3.0 3.2 1.7
50 5.1 4.2 4.1 4.3 2.1 2.2 0.5 6.2 4.8 5.2 4.5 1.9 2.0 0.3
100 5.3 4.6 4.7 4.5 2.2 3.4 0.9 5.7 4.9 5.4 5.1 2.5 2.6 0.3
250 5.2 4.6 4.4 4.8 3.6 3.8 2.3 4.6 4.5 4.2 4.6 2.9 3.6 1.2
500 5.7 4.7 4.9 5.1 4.4 4.3 3.8 5.2 4.8 5.2 5.0 4.1 4.3 2.6
1000 5.0 4.5 4.5 4.7 4.1 4.3 3.9 5.2 4.8 5.0 5.2 3.7 5.0 3.7

AR case: Θ = −0.5
25 8.4 6.3 7.2 5.6 4.1 4.8 5.6 10.2 7.2 10.1 7.3 7.9 8.7 8.5
50 5.3 4.6 4.6 4.6 2.5 2.1 2.1 6.6 4.8 6.1 5.1 2.4 2.8 2.9
100 5.3 4.5 4.8 4.5 2.3 3.5 3.1 6.0 5.4 5.9 5.4 2.7 3.0 2.5
250 5.4 4.8 4.8 5.0 3.8 3.9 3.8 4.7 4.4 4.4 4.5 3.0 3.7 3.2
500 5.7 5.3 5.1 5.1 4.6 4.4 4.4 5.3 4.7 5.3 5.4 4.2 4.5 4.3
1000 4.9 4.6 4.4 4.5 4.3 4.2 4.2 5.2 5.0 5.1 5.3 3.8 5.0 4.8

AR case: Θ = 0.5
25 3.2 4.1 3.5 3.8 1.2 0.4 8.8 2.1 2.6 2.0 2.2 0.5 0.0 8.9
50 3.7 4.5 4.0 4.3 2.3 1.8 5.8 2.4 3.5 2.9 2.7 0.7 0.6 8.2
100 4.8 4.8 5.0 4.9 2.9 3.4 5.1 4.4 5.0 4.5 4.7 2.4 3.2 7.1
250 5.2 5.0 5.1 5.0 3.8 4.1 4.8 4.1 4.7 4.1 4.3 3.4 3.6 5.1
500 5.6 5.0 5.1 5.1 4.3 4.6 5.0 5.0 5.0 5.2 4.9 4.0 4.2 5.0
1000 4.8 4.5 4.1 4.7 4.2 4.3 4.3 5.2 5.1 5.0 5.1 4.0 5.0 5.3

AR case: Θ = 0.8
25 9.6 10.4 11.2 10.6 2.6 2.0 27.8 10.9 10.3 10.4 9.7 1.0 0.4 35.2
50 5.0 6.1 5.6 6.0 3.0 3.0 13.3 5.8 7.2 6.4 6.0 2.6 2.5 26.7
100 4.5 4.7 4.6 4.8 3.3 3.6 7.1 4.1 4.6 3.9 4.2 2.9 3.2 11.6
250 4.1 4.5 4.7 5.1 3.8 4.4 5.6 3.4 4.0 3.4 3.5 3.2 3.4 5.3
500 5.1 5.0 5.2 5.2 4.3 4.7 5.5 4.5 4.8 4.6 4.6 4.3 4.2 5.5
1000 4.5 4.5 4.3 4.6 4.1 4.2 4.5 4.8 5.2 4.8 4.9 4.1 5.0 5.6

Notes: See Table 2
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Table 4: Size adjusted local power
Intercept Trend

T Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G

υt ∼ iidN(0, 1)
25 19.0 19.5 21.8 19.1 17.3 26.4 22.5 29.5 19.1 28.7 20.4 33.1 37.3 37.7
50 23.1 23.4 25.7 22.4 17.4 30.6 27.8 28.1 22.1 32.4 24.2 30.4 40.6 39.2
100 23.5 21.0 21.4 21.2 18.6 28.3 27.0 27.9 21.1 28.2 24.1 28.6 34.2 35.0
250 21.3 22.2 23.6 20.4 17.4 27.5 27.7 29.9 21.7 29.5 28.1 28.6 37.4 36.9
500 22.9 23.2 22.7 22.2 17.9 29.2 29.0 27.5 22.5 28.2 29.1 27.6 36.8 35.6
1000 24.9 31.4 30.4 29.5 19.4 36.2 36.9 26.9 23.7 31.0 28.9 31.9 37.0 37.7

MA case: Θ = −0.8
25 15.2 11.5 15.3 12.1 19.7 18.9 10.2 17.2 11.4 17.8 11.2 27.8 28.3 4.1
50 20.6 16.2 18.1 16.5 20.4 20.4 20.2 26.5 13.7 22.5 16.8 31.0 31.7 17.0
100 21.8 17.0 18.4 17.1 18.9 18.0 18.3 30.2 17.2 24.5 20.0 27.0 26.3 26.3
250 22.2 17.0 17.0 15.9 17.2 16.7 15.2 30.0 17.3 21.1 19.7 23.8 21.9 19.1
500 22.3 20.0 19.7 19.8 17.7 22.3 19.3 28.0 17.9 22.9 23.3 24.5 25.7 20.4
1000 25.9 27.2 26.6 25.9 20.2 30.1 28.7 25.9 17.8 23.7 23.0 26.6 28.7 24.7

MA case: Θ = −0.5
25 17.9 15.8 19.0 15.7 19.7 20.9 19.8 17.9 15.8 19.0 15.7 19.7 20.9 19.8
50 20.6 19.5 22.8 19.8 15.6 21.2 20.2 20.6 19.5 22.8 19.8 15.6 21.2 20.2
100 22.1 20.2 22.2 19.9 18.2 22.7 22.6 22.1 20.2 22.2 19.9 18.2 22.7 22.6
250 20.5 20.2 20.8 19.6 17.3 24.3 23.4 20.5 20.2 20.8 19.6 17.3 24.3 23.4
500 22.5 21.5 21.9 22.4 18.2 28.1 27.3 22.5 21.5 21.9 22.4 18.2 28.1 27.3
1000 26.1 29.1 30.2 28.8 19.6 35.4 34.6 26.1 29.1 30.2 28.8 19.6 35.4 34.6

MA case: Θ = 0.5
25 14.2 13.9 15.2 13.3 10.5 22.6 4.7 24.9 18.9 26.6 18.6 25.0 37.5 16.6
50 15.8 16.6 17.8 16.2 9.3 19.8 13.7 18.3 15.5 21.3 16.7 16.0 25.6 6.7
100 20.1 18.0 18.6 18.3 15.3 24.0 21.5 22.5 17.2 21.9 20.1 17.5 23.6 20.1
250 20.5 20.7 21.1 20.6 16.4 24.9 25.1 27.2 19.9 26.4 25.8 24.1 32.4 32.3
500 22.5 21.8 21.4 22.1 16.4 27.4 28.4 25.6 20.8 26.3 27.1 24.2 34.7 34.1
1000 25.1 30.0 30.9 28.1 18.3 36.5 36.7 26.1 23.3 29.1 28.2 27.8 36.7 36.5

MA case: Θ = 0.8
25 9.5 9.6 10.3 9.3 8.5 16.6 1.1 20.4 15.6 22.3 16.4 19.7 33.2 0.7
50 13.8 15.0 15.5 14.8 9.8 20.0 10.4 15.0 12.4 14.7 13.7 11.3 19.3 2.8
100 18.3 16.1 16.9 15.7 11.8 22.1 16.4 20.4 15.6 20.2 18.3 17.2 24.5 14.0
250 19.7 19.6 19.3 19.3 14.6 22.5 20.0 25.6 18.8 24.4 23.3 20.7 28.8 25.5
500 22.0 21.5 20.9 21.4 15.3 26.3 25.7 24.6 19.4 24.7 25.5 22.3 31.1 30.0
1000 25.0 28.7 30.0 28.2 18.7 35.4 34.1 25.5 22.6 28.7 27.5 25.4 33.6 32.7

Notes: To facilitate interpretation of the Tables, italic entries indicate size adjusted power esti-
mates, corresponding to rejection frequencies under H0 which are not covered by the 95% con-
fidence interval [4.4%, 5.6%]. For further notes see Table 2.
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Table 5: Size adjusted local power, continued
Intercept Trend

T Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G

AR case: Θ = −0.8
25 17.2 14.6 18.8 14.1 17.0 19.5 11.2 23.1 12.0 21.6 12.1 27.0 26.9 10.8
50 23.0 19.0 21.8 18.6 16.4 24.3 19.6 28.8 15.8 24.9 18.3 27.2 30.1 18.1
100 23.1 19.7 19.9 20.0 17.3 23.1 21.9 28.3 17.8 23.4 20.4 26.8 29.6 25.3
250 20.9 21.4 22.2 20.0 15.9 25.9 25.6 29.7 20.4 27.6 25.8 27.1 34.3 32.3
500 23.2 23.0 22.9 22.1 17.6 29.2 29.5 27.8 21.0 27.1 26.9 26.5 34.3 32.8
1000 25.6 29.3 29.7 29.1 19.8 35.7 36.1 27.2 23.2 29.8 27.4 30.6 36.2 36.6

AR case: Θ = −0.5
25 17.5 16.9 19.3 17.3 14.8 18.5 15.2 27.0 15.8 26.3 15.8 27.3 27.2 14.6
50 23.3 22.2 24.1 21.7 16.2 27.5 24.3 28.2 21.0 28.8 22.8 25.9 31.1 23.0
100 23.6 21.6 21.6 20.7 18.4 26.0 24.8 27.4 19.3 26.2 22.3 26.9 31.9 30.4
250 21.1 21.0 21.8 20.3 15.7 27.0 26.2 29.1 21.3 28.0 26.1 26.6 34.8 34.0
500 22.8 21.9 22.3 22.4 17.3 28.5 29.2 27.6 22.6 28.6 27.3 27.5 34.1 33.9
1000 25.7 29.8 30.2 29.3 19.1 36.2 37.0 27.0 23.6 30.4 28.1 30.9 36.6 37.3

AR case: Θ = 0.5
25 8.6 7.7 8.5 7.2 5.6 11.6 1.2 16.9 13.7 17.6 14.2 17.5 31.4 0.1
50 14.0 14.4 15.4 14.6 8.1 16.6 13.2 9.7 10.0 10.2 10.6 5.3 7.5 2.2
100 20.3 17.7 18.5 17.8 14.9 24.2 23.5 20.6 15.5 20.7 18.7 16.8 22.9 20.1
250 19.7 20.6 20.7 20.1 16.4 24.9 25.4 26.9 19.6 27.2 25.1 24.9 33.4 32.6
500 22.2 22.6 21.9 22.0 17.7 28.8 28.2 26.1 20.9 26.8 28.1 27.4 35.7 35.4
1000 25.5 30.6 31.0 28.6 19.4 37.3 37.0 26.6 23.0 29.3 28.9 29.0 36.1 36.4

AR case: Θ = 0.8
25 1.4 1.2 0.8 1.2 2.8 4.3 0.5 0.2 0.2 0.2 0.3 3.3 3.1 0.1
50 9.7 9.5 9.9 10.0 9.8 15.2 6.4 5.5 4.8 5.5 5.9 5.2 7.4 1.0
100 15.3 15.2 16.3 14.9 12.3 19.9 16.0 14.8 12.6 16.2 15.1 13.3 16.2 11.0
250 18.3 19.6 20.0 17.7 14.8 22.4 21.5 23.3 17.7 22.4 23.0 20.0 29.1 25.8
500 21.0 21.1 20.3 21.2 16.5 27.9 25.9 23.1 19.2 25.3 25.4 23.2 31.9 31.4
1000 25.7 28.7 30.5 28.3 19.2 35.9 36.2 25.8 21.8 28.2 27.6 26.9 34.2 34.9

Notes: See Table 4.

Table 6: Empirical results
Country T k Jα,1 Jα,2 Jα,3 Jα,4 ADF ADFG M̄G

CAN 55 10 2.41 1.96 1.37 2.27 0.31 -0.60 -0.95
FRA 49 0 0.41 0.50 0.29 0.52 -2.28 -2.27 -8.90
GER 29 0 0.85 3.92 1.42 3.85 -2.18 -1.34 -2.19
ITA 49 0 0.41 0.46 0.67 0.45 -1.91 -1.95 -7.51
JAP 55 1 1.82 3.81 2.33 3.57 -0.83 -0.05 -0.03
UK 55 0 0.22 0.31 0.28 0.45 -2.72 −2.75 −13.09

Notes: Bold entries denote significance at the 5% level. Values below
T and k refer to the available time series dimension and the chosen
lag length, respectively. For further notes see Table 2.
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