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Abstract: This chapter reviews recent research adopting methods from statis-
tical physics in theoretical or empirical work in economics and �nance. The bulk
of what has recently become known as `econophysics' in broader circles draws its
motivation from observed scaling laws in �nancial markets and the abundance of
data available from the economy's �nancial sphere. The �rst part of this review
presents the robust power laws encountered in �nancial economics and discusses
potential explanations for scaling in �nance derived from models of stochastic
interactions of traders. Sec. 3 provides an overview over other applications of sta-
tistical physics methodology in �nance and attempts to evaluate the impact they
have had so far on �nancial economies. With the following section, the review
turns to recent work on the emergence of wealth and income heterogeneity and the
recent inception of new strands of research on this topic both within econophysics
and the neoclassical economics tradition. The third part reviews the new stylized
facts that have been identi�ed in cross-sectional data of �rm characteristics and
agent-based approaches to industrial organization and macroeconomic dynamics
that have been motivated by these �ndings. We conclude with an assessment of
the major methodological contributions of this new strand of research.
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1 Introduction

�The economy� easily comes to one's mind when looking for examples of a
�complex system with a large ensemble of interacting units�. The layman
usually feels that terms like �out-of-equilibrium dynamics�, �critical states�
and �self-organization� might have a natural appeal as categories describing
interactions in single markets and the economy as a whole. When dealing
with the economy's most opalescent part, the �nancial sphere with its bub-
bles and crashes, �life at the edge of chaos� and �self-organized criticality�
equally easily enter the headlines of the popular press. However, this prox-
imity of the keywords of complexity theory to our everyday perception of
the economy is in contrast to the relatively slow and reluctant adaptation
of the ideas and tools of complexity theory in economics. While there has
been a steady increase of interest in this topic from various subsets of the
community of academic economists, it seems that the physicists' wave of re-
cent research on �nancial markets and other economic areas has acted as an
obstetrician for the wider interest in complexity theory among economists.
Physicists have entered the scene around 1995 with the ingenious invention
of the provocative brand name of econophysics for their endeavors in this
area. Both the empirical methodology and the principles of theoretical mod-
elling of this group were in stark contrast to the mainstream approach in
economics so that broad groups of academic economists were initially quite
unappreciative of this new current. While the sheer ignorance of main-
stream economics by practically all econophysists already stirred the blood
of many mainstream economists, the fact that they seemed to have easy
access to the popular science press and as representatives of a `hard science'
were often taken more serious by the public than traditional economists,
contributed to increased blood pressure among its opponents1. On the
other end of the spectrum, the adaptation of statistical physics methods
has been welcomed by economists critical of some aspects of the standard
paradigm. Econophysics, in fact, had a close proximity to attempts at al-

1The author of this review once received a referee report including several pages of refu-
tation of the econophysics approach. Strangely enough, the paper under review was a
straight econometric piece and the referee's scolding seemed only to have been moti-
vated by the author's association with some members of the econophysics community
in other projects.
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lowing for heterogeneous interacting agents in economic models. It is in
this strongly increasing segment of academic economics where complexity
theory and econophysics have made the biggest impact.

In the following I will review the econophysics contribution to various areas
of economics/�nance and compare it with the prevailing traditional eco-
nomic approach.

2 Power Laws in Financial Markets:
Phenomenology and Explanations

2.1 Financial Power Laws: Fat Tails and Volatility
Clustering as Scaling Laws

Scaling laws or power laws (i.e., hyperbolic distributional characteristics of
some measurements) are the much sought imprint of complex system behav-
ior in nature and society. Finance luckily o�ers a number of robust scaling
laws which are well accepted among empirical researchers. The most perva-
sive �nding in this area is that of a ubiquitious power-law behavior of large
price changes which had been con�rmed for practically all types of �nancial
data and markets. In applied research, the quantity one typically investi-
gates is relative price changes or returns: rt = pt−pt−1

pt−1
(pt denoting the price

at time t). For daily data, the range of variability ofrt is between about -0.2
and +0.2 which allows replacement of rt by log-di�erences (called continu-
ously compounded returns) rt

∼= ln(pt)− ln(pt−1) which for high frequency
data would practically obey the same statistical laws. Statistical analysis
of daily returns o�ers overwhelming evidence for a hyperbolic behavior of
the tails:

Pr(| rt |> x) ∼= x−a (1)

Figure 1 illustrates this �nding with a selection of stock indices and foreign
exchange rates. As one can see the linearity in a loglog plot imposed by eq.
(1) is a good approximation for a large fraction of both the most extreme
positive and negative observations. Obviously, the power law of large re-
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turns is of outmost importance not only for researchers in complex system
theory, but also for anyone investing in �nancial assets: eq. (1) allows a
probabilistic assessment of the chances of catastrophic losses as well as the
chances for similarly large gains and, therefore, is extremely useful in such
mundane occupations like risk management of portfolios. To be more pre-
cise, our knowledge concerning the scaling law eq.(1) can be concretized as
follows:

• the overall distribution of returns looks nicely bell-shaped and sym-
metric. It has, however, more probability mass in the center and
the extreme regions (tails) than the benchmark bell-shaped Normal
distribution,

• the tails have a hardly disputable hyperbolic shape starting from
about the 20 to 10 percent quantiles at both ends,

• the left and right hand tail have a power-law decline with about the
same decay factor α (di�erences are mostly not statistically signi�-
cant),

• for di�erent assets, estimated scaling parameters hover within a rela-
tively narrow range around α = 3. Fig.1 exhibits this benchmark of a
`cubic law' of large returns together with a sample of empirical data
scattered around it.

The literature on this scaling law is enormous. It starts with Mandelbrot's
(1963) and Fama's (1963) observation of leptokurtosis in cotton futures and
their proposal of the Levy distributions as a statistical model for asset re-
turns (implying a power law tail with exponentα < 2). For thirty years, the
empirical literature in �nance has discussed evidence in favor and against
this model. A certain clari�cation has been achieved (in the view of most
scientists involved in this literature) by moving from parametric distribu-
tions to a semi-parametric analysis of the tail region. Pertinent studies (e.g.
Jansen and de Vries, 1991; Lux, 1996) have led to a rejection of the stable
distribution model demonstrating that α is typically signi�cantly above 2.
While this controversy was going to be settled in the empirical �nance lit-
erature, the emergent econophysics approach had repeated the thirty-year
development in economics within a shorter time interval. Both an early
paper by Mantegna (1991) and one of the �rst widely acknowledged econo-
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physics papers by Mantegna and Stanley (1995) have advocated the Levy
distribution, but subsequent work by the same group pointed out `the uni-
versal cubic law' of asset returns (Gopikrishnan et al., 1997).
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Figure 1: The Scaling Law of Large Returns: log-log plot of the complement
of the cumulative distribution of daily returns from a sample of representative
�nancial markets: the NYSE composite index, the MSCI index of the Australian
stock market, the price of gold and the USD against EURO exchange rate (pre
1999 the DEM was used instead of the EURO). All series cover the period 1979
to 2004 and were obtained from Datastream. Despite some variations between
these series, their tail regions are all close to a scaling law with indexα ≈ 3
(demarcated by the broken line). This universal behavior of �nancial returns is
intermediate between the exponential decline of the Normal distribution and the
more pronounced tail fatness of members of the Levy stable family. Our example
of the later family of distributions hasα = 1.7, a value characteristically obtained
when estimating the parameters of these distributions for �nancial data.
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The �nding of a power law according to eq. (1) is remarkable as it identi-
�es a truly universal property within the social universe. Note also that in
contrast to many other power laws claimed in social sciences and economics
(cf. Cio�, 2005, for an overview), the statistical basis of this law compare
favorably to those of similar universal constants in the natural sciences: �-
nancial markets provide us with huge amounts of data at all frequencies and
the power-law scaling has been con�rmed over space and time without any
apparent exception.

The power law in the vicinity of α = 3 to 4 is also remarkable since it
implies a kind of universal pre-asymptotic behavior of �nancial data at cer-
tain frequencies. In order to see this, note that according to the central
limit law, random variates with α > 2 fall into the domain of attraction
of the Normal distribution, while random variates withα < 2 would have
the Levy stable distributions as their attractors. Under aggregation, re-
turns with their leptokurtotic shape at daily horizons should, therefore,
converge to a standard Gaussian. Aggregation of returns generates returns
over longer time horizons (weakly, monthly) which, in fact, appear to be
the closer to the Normal the higher the level of aggregation (time horizon).
On the other hand, our benchmark daily returns can be conceived as ag-
gregates of intra-daily returns. Since the tail behavior should be conserved
under aggregation, the scaling laws at the daily horizon should also apply
to intra-daily returns which is nicely con�rmed by available high-frequency
data.

The power law for large returns has as its twin a similarly universal feature
which also seems to characterize all available data sets without exception:
hyperbolic decay of the auto-covariance of any measure of volatility of re-
turns. The simplest such measures are absolute or squared returns which
preserve the extent of �uctuations but disregard their direction. Taking
absolute returns as an example, this second pervasive power law can be
characterized by

Cov(|rtrt−∆t|) ∼ ∆t−γ (2)
The estimated values of γ have received less publicity than those ofα, but
reported statistics also show remarkable uniformity across time series with
γ ∼= 0.3 being a rather typical �nding. It is worthwhile pointing out that
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eq. (2) implies very strong correlation of volatility over time. Hence, ex-
pected �uctuations of market prices in the next periods would be the higher
the more volatile today's market is. Visually, one observes typical switches
between tranquil and more turbulent episodes in the data (�volatility clus-
tering�). This dependency can be exploited for prediction of the future de-
velopment of volatility which would also be important information for risk
and portfolio management. Again, the literature on this topic is huge. For
quite some time, the long-term dependency inherent in power-law decline of
eq. (2) had not been properly taken into account. Available models in �nan-
cial econometrics like the legacy of GARCH models (Engle, 1983, Bollerslev,
1986) have rather modeled the volatility process as a stochastic process with
exponential decay of the autocovariance of absolute (or squared) returns.
Long-term dependence has been demonstrated �rst by Ding, Engle and
Granger (1993) in the economics literature and, independently, by Liu et
al. (1997) and Vandewalle and Ausloos (1997) in contributions in physics
journals. The measurement of long-range dependence in the econophysics
publications is mostly based on estimation of the Hurst exponent from Man-
delbrot's R/S analysis or the re�ned detrended �uctuation analysis of Peng
et al. (1994). The �nancial engineering literature has taken long-term de-
pendence into account by moving from the original GARCH to FIGARCH
and long-memory stochastic volatility models (Breidt et al., 1998) which
allow for hyperbolically decaying autocorrelations.

Besides the two above universal features, the literature has also pointed
out additional power-law features of �nancial data. From the wealth of
statistical analyses it seems that long-range dependence of trading volume
is as universal as long-term dependency in volatility (Lobato and Velasco,
2000). Although exponents do not appear to be entirely identical, it is likely
that the generating mechanism for both should be related (since trading
volume is the ultimate source of price changes and volatility).
Additional power-laws have been found for high-frequency data from the
U.S. stock market (Gopikrishnan et al., 2001):

(i) the unconditional distribution of volume in this data is found to follow
a scaling law with exponent∼ 1.5 and,

(ii) the number of trades per time unit has been claimed to follow a power-
law with index ∼ 3.4.
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2.2 Possible Explanations of Financial Power Laws

Gabaix et al. (2003) have o�ered a theoretical framework in which the
above �ndings are combined with the additional observation of a Zipf's law
for the size distribution of mutual funds (i.e., power-law with index∼ 1)
and a square root relationship between transaction volume (V ) and price
changes (∆p): ∆p ∼ V 0.5. In this theory, the power law of price changes
is derived from a simple scaling arithmetic: combining the scaling of the
portfolios of big investors (mutual funds) with the square root price impact
function and the distribution of trading volume in U.S. data, one obtains
a cubic power-law for returns. Although their model adds some behavioral
considerations for portfolio changes of funds, in the end the unexplained
Zipf's law is at the origin of all other power-laws. Both the empirical ev-
idence for some of the new power-laws and the power-law arithmetic itself
are subject to a controversial discussion in recent econophysics literature
(e.g. Farmer and Lillo, 2004). In particular, it seems questionable wether
the power law with exponent 1.5 is universal (it has not been con�rmed in
other data, cf. Farmer and Lillo, 2004; Eisler and Kertész, 2005) and wether
the above linkage of power laws from the size distribution of investors to
volume and returns is admissible for processes with long-term dependence
à la eq. (2).

It is worthwhile to emphasize that the power-laws in the �nancial area
would, in this theory, be due to other power-laws characterizing the size
distribution of investors. The later would probably have to be explained by
a more complete theory of the economy along with the distribution of �rm
sizes and other macroeconomic characteristics. This somewhat subordinate
role of the �nancial market in Gabaix et al. (2003) is certainly at odds
with perceptions of �criticality� and �phase transitions� displayed in this
market. The derivative explanation is also in contrast to what economists
call the �disconnect paradox�, i.e. the observation that share markets and
foreign exchange markets seem to develop a life of their own and at times
appear entirely disconnected from their underlying economic fundamentals.
Aoki and Yoshikawa (2006, chap.10) point out that the power law behav-
ior of �nancial returns is not shared by macroeconomic data which rather
are characterized by exponentially distributed increments. They argue that
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the wedge between the real economy and �nancial markets stems from the
higher level of activity of the later. They demonstrate that when model-
ing the dynamics of economic quantities as truncated Levy �ights, di�erent
limiting distributions can emerge depending on the frequency of elementary
events. Beyond a certain threshold, the limiting distribution switches from
exponential to power law. The conjecture, then, is that this dependency on
the number of contributing random events is responsible for the di�erence
between exponential increments of macroeconomic data and power-law tails
in �nancial markets. Economically, the excess of relevant micro events in
the �nancial sphere would be due to the decoupling from the real sector and
the autonomous speculative activity in share and foreign exchange markets.
Most models proposed in the behaviorally orientated econophysics litera-
ture attempt to model this speculative interaction via simple models that
are designed along certain prototypical behavioral types found in �nancial
markets. Behavioral models of speculative markets have been among the
�rst publications inspired by statistical physics. The earliest example is
Takayasu et al. (1992) who in a continuous double auction, let agents' bid
and ask prices change according to given rules and study the statistical
properties of the resulting price process. A similar approach has been pur-
sued by Sato and Takayasu (1998) and Bak, Paczuski and Shubik (1997).
Independently, Levy, Levy and Solomon (1994, 1995, 2000) have developed
a multi-agent model inspired by statistical physics which, at �rst view, looks
more conventional than the previousones: agents possess a well-de�ned util-
ity function which they attempt to maximize by choosing an appropriate
portfolio of stocks and bonds. They adopt a particular expectation forma-
tion scheme (expected future returns are assumed to be identical to the
mean value of past returns over a certain time horizon), and impose short-
selling and credit constraint as well as idiosyncratic stochastic shocks to in-
dividuals' demand for shares. Under these conditions, the market switches
between periodic booms and crashes whose frequency depends on agents'
time horizons. Although this model and its extensions produce spectacular
price paths, their statistical properties are not really in line with the em-
pirical �ndings outlined above, nor are those of the other early models (cf.
Zschischang and Lux, 2001). Somewhat ironeously, these early econophysics
papers on �nancial market dynamics have been in fact similarly ignorant of
the stylized facts (i.e. the scaling of eqs. 1 and 2) like most of the traditional
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�nance literature.
The second wave of models was more directly in�uenced by the empirical
literature and had the declared aim of providing candidate explanations for
the observed scaling laws. Mostly, they performed simulations of `arti�cial'
�nancial markets with agents obeying a set of plausible behavioral rules
and demonstrated that pseudo-empirical analysis of the generated time se-
ries yields results close to empirical �ndings. To our knowledge, the model
by Lux and Marchesi (1999, 2000) has been the �rst which generated both
the (approximate) cubic law of large returns and temporal dependence of
volatility (with realistic estimated decay parameter) as emergent properties
of their market model. This model had its roots in earlier attempts at intro-
ducing heterogeneity into stochastic models of speculative markets. It had
drawn some of its inspiration from Kirman's (1993) model of information
transmission among ants which in Kirman (1991) had already been used
as a model of interpersonal in�uences in a foreign exchange market. While
Kirman's model had been based on pair-wise interaction, Lux and Marchesi
had a mean-�eld approach in which an agent's opinion was in�uenced by the
average opinion of all other traders. Using statistical physics methodology,
it could be shown that a simple version of this model was capable of gener-
ating bubbles with over- and undervaluation of an asset as a re�ection of the
emergence of a majority opinion among the pool of traders. Similarly, peri-
odic oscillations and crashes could be explained by the breakdown of such
majorities and the change of �market sentiment� (Lux, 1995). A detailed
analysis of second moments can be found in Lux (1997) where the explana-
tory power of stochastic multi-agent models for time-variation of volatility
has been pointed out (Ramsey, 1996, also emphasizes the applicability of
statistical physics methods for deriving macroscopic laws for second mo-
ments from microscopic behavioral assumptions). The group dynamics of
these early interaction models have been enriched in the simulation studies
by Lux and Marchesi (1999, 2000) and Chen, Lux and Marchesi (2001) by
allowing agents to switch between a chartist and fundamentalist strategy
in response to di�erences in pro�tability of both strategies. Interpersonal
in�uences enter via chartists' attempts to trace out information from both
ongoing price changes as well as the observed `mood' of other traders. As-
suming that the market is continuously hit by news on fundamental factors,
one could investigate in how far price changes would mimic incoming in-
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formation (the traditional view of the e�cient market paradigm), or would
be disconnected from fundamentals. The answer to this question turned
out to have two di�erent aspects: on the one hand, the speculative mar-
ket on average kept close track of the development of the fundamentals.
All new information was incorporated into prices relatively quickly as oth-
erwise fundamentalist traders would have accepted high bets on reversals
towards the fundamental value. On the other hand, however, upon closer
inspection, the output (price changes) di�ered quite signi�cantly from the
input (fundamental information) in that price changes were always char-
acterized by the scaling laws of eqs.(1) and eq.(2) even if the fundamental
news were modeled as a white noise process without these features. Hence;
the market was never entirely decoupled from the real sphere (the informa-
tion), but in processing this information it developed the ubiquitous scaling
laws as emergent properties of the macroscopic market statistics from the
distributed activity of its independent subunits.
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Figure 2: A snapshot of the evolution of prices and the composition of the
pool of traders in the microscopic market model proposed by Lux and Marchesi
(1999). The upper panel exhibits returns (relative price changes between unit
time intervals), the lower panel shows the simultaneous changes of the fraction of
chartists within the population. Note that the remaining part of the population
follows a fundamentalist strategy. As can be seen a higher fraction of chartists
leads to an increase in the volatility of price changes.
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This result could also be explained to some extent via an analysis of approx-
imate di�erential equations for the mean value dynamics of state variables
derived from the mean-�eld approach (Lux, 1998; Lux and Marchesi, 2000).
In particular, one �nds that, in a steady state, the composition of the popu-
lation is indeterminate. The reason is that in a stationary environment, the
price has to equal its fundamental value and no price changes are expected
by agents. In such a situation, neither chartists nor fundamentalists would
have an advantage over the other group as neither mispricing of the asset
nor any discernible price trend exists. In the vicinity of such a steady state,
movements between groups would, then, only be governed by stochastic
factors which would lead to a random walk in strategy space. However, in
this model (and in many related models), the composition of the population
determines stability or instability of the steady state. Quite plausible (and
in line with a large body of literature in behavioral �nance), a dominance
of chartists with their reinforcement of price changes will be destabilizing.
Via bifurcation analysis one can identify a threshold value for the number
of chartists at which the system becomes unstable. The random population
dynamics will lead to excursions into the unstable region from time to time
which leads to an onset of severe �uctuations. The ensuing deviations of
prices from the fundamental value, however, causes pro�t di�erentials in
favor of the fundamentalist traders so that their number increases and the
market moves back to the stable subset of the strategy space. As can be
seen from Fig.(2), the joint dynamics of the population composition and the
market price has a close resemblance to empirical records. With the above
mechanism of intermittent switching between stability and (temporal) in-
stability the model not only has interesting emergent properties, but it also
can be characterized by another key term of complexity theory: criticality.
Via its stochastic component, the system approaches a critical state where
it temporally looses stability and the ensuing out-of-equilibrium dynamics
give rise to stabilizing forces. One might note that �self-organizing criti-
cality� would not be an appropriate characterization as the model does not
have any systematic tendency towards the critical state. The trigger here
is a purely stochastic dynamics without any preferred direction.

Lux and Marchesi argue that irrespective of the details of the model, in-
determinateness of the population composition might be a rather general
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phenomenon in a broad range of related models (because of the absence of
pro�tability of any trading strategy in any steady state). Together with
dependency of stability on the population composition, the intermittent
dynamics outlined above should, therefore, prevail in a broad class of mi-
croscopic interaction models. Support for this argument is o�ered by Lux
and Schornstein (2005) who investigate a multi-agent model with a very
di�erent structure. Adopting the seminal Kareken and Wallace (1983) ap-
proach to exchange rate determination, they consider a foreign exchange
market embedded into a general equilibrium model with two countries and
overlapping generations of agents. In this setting, agents have to decide
simultaneously on their consumption and savings together with the com-
position of their portfolio (domestic vs. foreign assets). Following Arifovic
(1996), agents are assumed to be endowed with arti�cial intelligence (ge-
netic algorithms) which leads to an evolutionary learning dynamics in which
agents try to improve their consumption and investment choices over time.
This setting also features a crucial indeterminacy of strategies: in a steady
state, the exchange rate remains constant so that holdings of domestic and
foreign assets would have the same return (assuming that returns are only
due to price changes). Hence, the portfolio composition would be irrele-
vant as long as exchange rates do not change (in steady state) and any
con�guration of the GA for the portfolio part would have the same pay-o�.
However, out-of-equilibrium, di�erent portfolio weights might well lead to
di�erent performance as an agent might pro�t or loose from exchange rate
movements depending on the fraction of foreign or domestic assets in her
portfolio. The resulting dynamics again shares the scaling laws of empirical
data. Similarly, Giardina et al. (2003) allow for more general strategies
than Lux and Marchesi (1999) but also found a random walk in strategy
space to be at the heart of emergent realistic properties.

A related branch of models with critical behavior has been launched by
Cont and Bouchaud (2000). Their set-up also focuses on interaction of
agents. However, they adapt the framework of percolation models in which
agents are situated on a lattice with periodic boundary conditions. In per-
colation models, each site of a lattice might initially be occupied (with a
certain probability p) or empty (with probability 1−p). Clusters are groups
of occupied neighboring sites (various de�nitions of neighborhood could be
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applied). In Cont and Bouchaud, occupied sites are traders, and trading
decisions (buying or selling a �xed number of assets or remaining inactive)
are synchronized within clusters. Whether a cluster buys or sells or does not
trade at all, is determined by random draws. Given the trading decisions of
all agents, the market price is simply driven by the di�erence between overall
demand and supply. Being modelled closely along the lines of applications of
percolation models in statistical physics, it follows immediately that returns
(price changes) will inherit the scaling laws established for the cluster size
distribution. Therefore, if the probability for connection of lattice sites, say
q, is close to the so-called percolation threshold qc (the critical value above
which an in�nite cluster will appear), the distribution will follow a power
law. As detailed in Cont and Bouchaud, the power-law index for returns
at the percolation threshold will be 1.5, some way apart from the �cubic
law�. As has been shown in subsequent literature, �nite-size e�ects and
variations of parameters could generate alternative power laws, but a cubic
law would emerge only under particular model designs (Stau�er and Penna,
1998). Autocorrelation of volatility is entirely absent in these models, but
could be introduced by sluggish changes of cluster con�gurations over time
(Stau�er et al., 1999). If clusters dissolve or amalgamate after transactions,
more realistic features could be obtained (Equiluz and Zimmerman, 2000)
As another interesting addition, Focardi et al. (2002) consider latent con-
nections which only become active in times of crises. Alternative lattice
types have been explored by Iori (2002) who considers an Ising type model
with interactions between nearest neighbors. This approach appears to gen-
erate more robust outcomes and seems not to su�er from the percolation
models' essential need to �ne tune the parameter values at criticality for
obtaining power laws. Another recent alternative is a cellular automaton
model of percolation proposed by Bartolozzi and Thomas (2004). In this
model each cell is occupied by one trader who might buy, sell or remain in-
active at any time step. Traders in�uence their neighbors, become inactive
or are activated spontaneously with certain probabilities. It is shown that
time series from this model have realistic properties if the probability for
natural in�uence among traders is su�ciently high. If traders are subjected
to strong interpersonal in�uences, relatively large clusters of homogenous
trading activity will emerge and these clusters of agents will lead to clusters
of volatility.
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As long as no self-organizing principles are o�ered for the movements of
the system towards the percolation threshold, the extreme sensitivity of
percolation models with respect to parameter choices is certainly unsatisfac-
tory. Though sweeping these systems back and forth through a critical state
might be an interesting addition (explored by Stau�er and Sornette,1999),
behavioral underpinnings for such dynamics are hard to imagine.

3 Other Applications in Financial Economics

The contributions of physicists to �nancial economics are voluminous. A
great part of it is of a more applied nature and does not necessarily have any
close relationship to the methodological view expressed in the manifesto of
the Boston group of pioneers in this �eld:

�Statistical physicists have determined that physical systems which consist
of a large number of interacting particles obey laws that are independent of
the microscopic details. This progress was mainly due to the development
of scaling theory. Since economic systems also consist of a large number
of interacting units, it is plausible that scaling theory can be applied to eco-
nomics� (Stanley et al., 1996).

However rather than investigating the underlying forces responsible for the
universal scaling laws of �nancial markets, a relatively large part of the
econophysics literature mainly adopts physics tools of analysis to more prac-
tical issues in �nance. This line of research is the academic counterpart to
the work of �quants� in the �nancial industry who mostly have a physics
background and are occupied in large numbers for developing quantitative
tools for forecasting, trading and risk management. The material published
in the journal Quantitative Finance (launched in 2000) provides ample ex-
amples for this type of applied work. Similarly, some of the monographs and
textbooks from the econophysics camp have a strong focus on applied quan-
titative work in �nancial engineering. A good example is the well-known
monograph by Bouchaud and Potters (2000) whose list of contents covers
an introduction to probability and the statistics of �nancial prices, portfolio
optimization and pricing of futures and options. While the volume provides
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a very useful and skilled introduction to these subjects, it only has cur-
sory references to a view of the market as a complex system of interacting
subunits. Much of this literature, in fact, �ts well into the mainstream of
applied and empirical research in �nance although often one �nds a scold-
ing of the carefully maintained straw man image of traditional �nance. In
particular, ignoring decades of work in dozens of �nance journals, it is often
claimed that �economists believe that the probability distribution of stock
returns is a Gaussian�, a claim that can easily be refuted by a random
consultation of any of the learned journals of this �eld. In fact, while the
(erroneous) juxtaposition of scaling (physics!) via Normality (economics!)
might be interpreted as an exaggeration for marketing purposes, some of
the early econophysics papers even gave the impression that what they at-
tempted was a �rst quantitative analysis of �nancial time series ever. If this
was, then, performed on a level of rigor way below established standards in
economics (a revealing example is the analysis of supposed day-of-the-week
e�ects in high-frequency returns in Zhang, 1999) 2 it clearly undermined
the standing of econophysicists in the economics community.

However, among the (sometimes reinventive and sometimes original) con-
tributions of physicists to empirical �nance, portfolio theory and derivative
pricing, a few strands of research stand out which certainly deserve a more
detailed treatment. These include the intricate study of the microstructure
of order book systems, new approaches to determining correlations among
assets, the proposal of a new type of model for volatility dynamics (so-called
multifractal models), and the much promoted attempts at forecasting �nan-
cial downturns.

3.1 The Dynamics of Order Books

The impact of the institutional details of market organization is the sub-
ject of market microstructure theory (O'Hara, 1995). According to whether
traders from the demand and supply side are getting into direct contact
with each other or whether trades are carried out by middleman (called

2The reader might compare this paper with the more or less simultaneous paper by
Sullivan, White and Golomb (2001) which is quite representative of the state-of-the-
art in this area in empirical �nance.
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market makers or specialists) one distinguishes between order-driven and
quote-driven markets. The later system is characteristic of the traditional
organization of the U.S. equity markets in which trading has been orga-
nized by designated market makers whose task it was and still is to ensure
continuous market liquidity. This system is called quote-driven since the de-
cisive information for traders is the quoted bid and ask prices at which the
market makers would accept incoming orders. In most European markets,
these active market makers did not exist and trading was rather organized
in a continuous double auction in which all orders of individual traders are
stored in the order book. In this system, traders could either post limit or-
ders which would have to be carried out when a pre-speci�ed limiting price
is reached over time and are stored in the book until execution, or market
orders which are carried out immediately. The order book, thus, covers a
whole range of limit-orders on both the demand and supply sides with a
pertinent set of desired transaction volumes and pertinent prices. This in-
formation can be viewed as a complete characterization of the demand and
supply schedules with the current transaction price and volume being deter-
mined at the intersection of both curves. Most exchanges provide detailed
data records with all available information on the development of the book,
i.e. time-stamped limit and market orders with their volumes, limit bid and
ask prices and cancellation or execution times. The recent literature con-
tains a wealth of studies of order book dynamics, both empirical analyses
of the abundant data sets of various exchanges as well as numerical and
theoretical studies of agents' behavior in such an institutional framework.

Empirical research has come up with some insights on the distributional
properties of key statistics of the book. The distribution of incoming new
limit orders had been found to obey a power-law in the distance from the
current best price in various studies. There is, however, disagreement on
the coe�cient of this scaling relationship: while Farmer and Zovko (2002)
report numbers around 1.5 for a sample of �fty stocks traded at the London
Stock Exchange, Bouchaud et al. (2002) rather �nd a common exponent
of ∼ 0.6 for three frequently traded stocks of Paris Bourse. The average
volume in the queue of the order book was found to follow a Gamma dis-
tribution with roughly identical parameters for both the bid and ask side.
This hump-shaped distribution with a maximum at a certain distance from
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the current price can be explained by the fact that past �uctuations might
have thinned out limit orders in the immediate vicinity of the mid-price
while those somewhat further away had a higher survival probability.

A recurrent topic in empirical studies of both quote-driven and order-driven
systems had been the shape of the price impact function: as has been re-
ported above, Gopikrishan et al. found a square-root dependency on volume
in NYSE data: ∆p ∼ V 0.5. Conditioning on volume imbalance (Ω), i.e. the
di�erence between demand and supply, Plerou et al. (2003) found an inter-
esting bifurcation: while the conditional density ofΩ on its �rst absolute
moment (Σ) was uni-modal for smallΣ it developed into a bi-modal distribu-
tion for larger volume imbalances. They interpret this �nding as indication
of two di�erent phases of the market dynamics: an equilibrium phase with
minor �uctuations around the current price and an out-of-equilibrium phase
in which a predominance of demand or supply leads to a change of the mid
price in one or the other direction. However, Matia and Yamazaki (2005)
show that this feature appears quite naturally in simulation experiments if
the distribution of volume follows a power law simply because large posi-
tive and negative realisations ofΩ give rise to a bimodal distribution. This
feature can, therefore, explained almost mechanically and need not be due
to the alleged presence of critical phenomena. Matia and Yamazaki also
critisize the sloppy use of the concept of a phase transition in Plerou et al.'s
Nature paper: While phase transitions in physics have an independent vari-
able as the control parameter, here it is a moment of the order parameter
itself.

The empirical work on order book dynamics is often accompanied by theo-
retical work or simulation studies trying to explain the observed regularities.
Some of the earliest models in the econophysics literature already contained
simple order book structures with limit orders being posted according to
some simple stochastic rule. In Bak et al. (1997), bid and ask prices of
individual agents change randomly over time with equal probabilities for
upward and downward movements. If bid and ask prices cross each other,
a trade between two agents will be induced. The two agents' bids and
asks are subsequently cancelled. The agents are then reinjected into the
market with randomly chosen new limit orders between the current market
price and the maximum ask or minimum bid, respectively. Like in many
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early models, this stochastic design of the market amounts to a process that
has been studied before (it is isomorphic to a reaction-di�usion process in
chemistry). For this process, the time variation of the price can be shown
to follow a scaling law with Hurst exponent 1/4. Since this is clearly an
unrealistic behavior, the authors expand their model by allowing for volatil-
ity feedback (the observed price change in�uencing the size of adjustment
of bid and ask prices). In this case H = 0.65 is estimated for simulated
time series which would rather speak of long-term dependence in the price
dynamics. Although it is plausible that the volatility feedback could lead to
this outcome, this is also di�erent from the well-known martingale behavior
of �nancial markets with H = 0.5 (Bak et al. quote some earlier economet-
ric results which indeed found H ≈ 0.6, but these are viewed as being due
to biases of their estimation procedure nowadays).
A number of other papers have followed this avenue of analyzing simple
stochastic interaction processes without too many behavioral assumptions:
Tang and Tian (1999) provided analytical foundations for the numerical
�ndings of Bak et al. Maslov (1999) seemed to have been the �rst to attempt
to explain fat tails and volatility clustering from a very simple stochastic
market model. His model is built around two essential parameters: in every
instant, a new trader appears in the market who with probabilityq places a
limit order and with the complementary probability1− q trades at the cur-
rent market price. New limit orders are chosen from a uniform distribution
with a support on [0, ∆m] above or below the price of the last transaction.
Slanina (2001) provides theoretical support for a power-law decline of price
changes in this model. The mechanics of volatility clustering in this set-up
might be explained as follows: if prices change only very little, more and
more new limit orders in the vicinity of the current mid price built up which
leads to persistence of low levels of volatility. Similarly, if price movements
have been more pronounced in the past, the stochastic mechanism for new
limit orders generates a more dispersed distribution of entries in the book
which also leads to persistence of a high-volatility regime. Very similar
models have been proposed by Smithet al. (2002) and Daniels et al. (2003)
whose main message is that a concave price impact can emerge from such
simple models without any behavioral assumptions.

What is the insight from this body of empirical research and theoretical
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models? First, the analysis of the huge data sets available from most stock
markets might allow to identify additional stylized facts. So far, however,
evidence for robust features, applying to more than one market, appears
sparse. It rather seems that some microstructural features do vary between
markets such as, e.g., the distribution of limit orders within the book. Sec-
ond, the hope of simple interaction models is to explain stylized facts via the
organization of the trading process. In a sense, this line of research is sim-
ilar to earlier work in economics on markets with zero-intelligence traders
(Gode and Sunder, 1993) and, in fact, physicists have often adopted this
label for their pertinent research. However, the zero-intelligence literature
in economics had a clear interest in the allocative e�ciency of markets in
the presence of agents without any understanding of the market mecha-
nism. Such a criterion is absent in the above models: while one gets certain
distributions of market statistics under certain assumptions on arrival prob-
abilities of traders and the distribution of their limit orders, it is not clear
how to compare di�erent market designs. A clear benchmark both for the
evaluation of the explanatory power of competing models as well as for nor-
mative conclusions to be drawn from their outcomes are entirely absent.
As for the positive aspect, most models have some explanatory power with
respect to certain stylized facts. However, what would be a minimum set
of statistical properties and how robust they would have to be with respect
to slight variations of the distributional assumptions has not been speci-
�ed in this literature. Any normative evaluation, for example with respect
to excessive volatility caused by certain market mechanisms, is impossible
simply because prices are not constraint at all by factors outside the pric-
ing process. Recent papers by Chiarella and Iori (2002, 2003) have made
some progress in this perspective by considering di�erent trading strate-
gies (chartist, fundamentalist) in an order-book setting. They note that
incorporation of these behavioral components is necessary in their model
for generating realistic time series.

3.2 Analysis of Correlation Matrices

The study of cross-correlations between assets has attracted a lot of interest
among physicists. This body of research has a strong resemblance to port-
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folio theory in classical �nance. Consider the portfolio choice problem of an
investor in an economy with an arbitrary numberN of risky assets. One
way to formulate this problem is to minimize the variance of the portfolio
for a given required expected return r̄. Solving this quadratic programming
problem for all r̄ leads to the well-known e�cient frontier which depicts the
trade-o� the investor faces between the expected portfolio return and its
riskyness (i.e., the variance). A central but problematic ingredient in this
exercise (the so-called Markowitz problem, Markowitz, 1952) is theN ×N

covariance matrix. Besides its sheer size (when including all assets of a
developed economy or, as one should do in principle, all assets available
around the world's �nancial markets), stability and accuracy of historical
estimates of cross-asset correlations to be used in the Markowitz problem
are problematic in applied work. Furthermore, the formulation of the prob-
lem assumes either quadratic utility functions (so that investors only care
about the �rst and second moments) or Normally distributed returns (so
that the �rst and second moments are su�cient statistics for the entire shape
of the distribution). Of course, both variants are easily criticized: returns
are decisively non-Normal at least at daily frequency and developments like
value-at-risk are a clear indication of more complex objective functions than
mean-variance optimization.
The econophysics literature has contributed to the literature at various ends:
�rst, some papers took stock of theoretical results from random matrix the-
ory. Random matrix theory allows to establish bounds for the eigenvalues
of a correlation matrix under the assumption that the matrix has random
entries. As has been shown only a few eigenvalues `survive' above the noise
bands (Laloux et al., 1999). In a comprehensive study of the U.S. stock
market, Plerou et al. (2000) found that the deviating non-random eigen-
values were stable in time and that the largest eigenvalue corresponded to
a common in�uence on all stocks (in line with the market portfolio of the
Capital Asset Pricing Model). Various studies have proposed methods for
identi�cation of the non-random elements of the correlation matrix (Laloux
et al., 1999; Noh, 2000; Gallucio et al., 1998). As can easily be imag-
ined that e�cient frontiers from the original correlation matrix might di�er
strongly from those generated from a correlation matrix which has been
cleaned by eliminating the eigenvalues within the noise band. Quite plau-
sible, the incorporation of arguably unreliable correlations may lead to an
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illusory high e�cient frontier. According to the underlying argument, stan-
dard covariance matrix estimates might then vastly overstate the chances
of diversi�cation so that better performance could be expected from us-
ing cleaned-up matrices. An interesting recent contribution uses random
matrix theory for complexity reduction in large multivariate GARCH mod-
els (Rosenow, 2006). As demonstrated in this paper, determination of the
small number of signi�cant components allows to easily estimate multivari-
ate models with hundreds of stocks and to forecast portfolio volatility on
the base of these estimates.

A closely related branch of empirical studies attempts to extract informa-
tion on hierarchical components in the correlation structure of an ensemble
of stocks. This line of research was pioneered by Mantegna (1999) who used
an algorithm known as minimum spanning tree to visualize the correlation
structures between stocks in a connected tree. Alternative methods for clus-
ter identi�cation have been proposed by Kullmannet al. (2002) and Onnela
et al. (2003). A visualization is provided in Fig. 3 adopted from Onnela
et al. From an economics point of view these approaches are germaine to
so-called factor models that incorporate common risk factors (e.g. sector-
speci�c or country-speci�c ones) into asset pricing models (Chen, Roll and
Ross, 1986). The clustering algorithms could, in principle, provide valuable
inputs for the implementation of such factor models. Unfortunately, the
major weakness of available research in this area is that it has con�ned it-
self to illustrating the application of a particular methodology. However, it
had hardly ever tried a rigorous comparison of re�ned methods of portfolio
optimization or asset pricing based on random matrix theory or cluster-
ing algorithms (a remarkable exception is the mentioned contribution by
Rosenow, 2006). There seems to be some cultural di�erence between the
camps of economists/statisticians and physicists that makes the former in-
sist on rigorous statistical tests while the later inexplicably shy away from
such evaluations of their proposed theories and methods.
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Figure 3: The hierarchical structure of the major U.S. stocks as indicated
by a cluster identi�cation algorithm. This taxonomy of a sample of 116 stocks
has been obtained by constructing a so called minimum spanning tree for the
mean correlation coe�cients of stock returns over a certain time window (1996
to 1999 in the present case.) Reprinted with permission from J.-P. Onnela et al.,
Physical Review E 68, 2003, 056110.
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3.3 Forecasting Volatility: The Multifractal Model

There is, however, one area of application of statistical physics methods,
in which researchers have rather successfully connected themselves to the
mainstream of research in empirical �nance: the small literature on multi-
fractal models of asset returns. The introduction of so-calledmultifractal
models (MF) as a new class of stochastic processes for asset returns was
mainly motivated by the �ndings of theirmulti-scaling properties. Multi-
scaling (often also denoted as multifractality itself) refers to processes or
data which are characterized by di�erent scaling laws for di�erent moments.
Generalizing eq. (2), these de�ning features can be captured by dependency
of the temporal scaling parameter on the pertinent moment, i.e.

E
[|rq

t r
q
t−∆t|

] ∼ ∆t−γ(q). (3)

The phenomenology of eq. 3 has been described in quite a number of early
econophysics papers. A group of authors at the London School of Eco-
nomics, Vassilicos, Demos and Tata (1993) deserves credit for the �rst
empirical paper demonstrating multi-scaling properties of �nancial data.
Other early work of a similar spirit includes Ausloos and Vandewalle (1998)
and Ghasghaie et al. (1996). The later contribution estimates a particular
model of turbulent processes from the physics literature and has stirred a
discussion about similarities and di�erences between the dynamics of tur-
bulent �uids and asset price changes (cf. Vassilicos, 1995; Mantegna and
Stanley, 1996).
Note that eq. (3) implies that di�erent powers of absolute returns (which
all could be interpreted as measures of volatility) have di�erent degrees
of long-term dependency. In the economics literature, Ding, Engle and
Granger (1993) had already pointed out that di�erent powers have di�er-
ent dependence structures (measured by their ensemble of autocorrelations)
and that the highest degree of autocorrelation is obtained for powers around
1. However, standard econometric models do not capture this feature of
the data. Baseline models like GARCH and so-called stochastic volatility
models rather have exponentially declining autocorrelations. While these
models have been modi�ed so as to allow for hyperbolic decline of the ACF
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according to eq.(2)3, no models have existed in the econometrics toolbox
prior to the proposal of the MF model that generically could give rise to
multi-scaling à la eq. (3). However, since data from turbulent �ows also
exhibit multi-scaling, the literature on turbulence in statistical physics had
already developed models with these characteristics. These are known as
multifractal cascade models and are generated via operations on probability
measures. To model the break-o� of smaller eddies from bigger ones one
starts with a uniform probability measure over the unit interval[0, 1]. In the
�rst step, this interval is split up into two subintervals (smaller eddies) which
receive fractions p1 and p2 = 1− p1 of their `mother intervals'. In principle,
this procedure is repeated ad in�nitum, cf. Fig. 4. What it generates is a
heterogeneous structure in which the �nal outcome aftern steps of emer-
gence of ever smaller eddies can take any of the valuespm

1 pn−m
2 , 0 ≤ m < n.

This process is highly autocorrelated since neighboring values have on aver-
age several joint components. In the limit ofn →∞, `strict' multifractality
according to eq. (3) can be shown to hold.
The literature on turbulent �ows has investigated quite a number of vari-
ants of the above algorithm. The above multifractal measure is called a
Binomial cascade. However, instead of taking the same probabilities, one
could also have drawn random numbers for the multipliers. An important
example of the later class is the Lognormal model in which the two prob-
abilities of the new eddies are drawn from a Lognormal distribution. Note
that in this case, the overall mass of the measure is not exactly preserved
(as in the Binomial), but is maintained only in expectation (upon appro-
priate choice of the parameters of the Lognormal distribution). While the
mean is, thus, constant in expectation over di�erent steps, other moments
might converge or diverge. Other extensions imply transition from the case
of two subintervals to a higher number (Trinomial, Quadrunomial cascades)
or using irregularly spaced subintervals.

How to apply these constructs as models of �nancial data? While the multi-
fractal measure generated in Fig. (4) does not exhibit too much similar-
ity with price charts, we know that by its very construction it shares the
multi-scaling properties of absolute moments of returns. Since multi-scaling

3The most prominent example is Fractionally Integrated GARCH, cf. Baillie et al.
(1996).
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applies to the extent of �uctuations (volatility), one would, therefore, in-
terprete the non-observable process governing volatility as the analogue of
the multifractal measure. The realizations over small subintervals would,
then, correspond to local volatility. A broadly equivalent approach is to use
the multifractal measure as a transformation of chronological time. Assum-
ing that the volatility process is homogeneous in transformed time, then,
means that via the multifractal transformation, time is compressed and re-
tarded so that the extent of �uctuations within chronological time steps
of the same length becomes heterogeneous. This idea was formulated by
Mandelbrot, Calvet and Fisher (1997) in three seminal Cowles Foundation
working papers which for the �rst time went beyond a mere phenomeno-
logical demonstration of multi-scaling in �nancial data. They assumed that
log price changes follow a compound stochastic process in which the distri-
bution function of a multifractal measureΘ serves as the directing process
(transforming chronological time into business time) and the subordinate
process is fractional Brownian motionBH .

r(t) = BH [Θ(t)] (4)

In contrast to GARCH and stochastic volatility models, this model is scale-
free so that one and the same speci�cation can be applied to data of various
sampling frequencies. Mandelbrot, Calvet and Fisher (1997) show how the
stochastic properties of the compound process re�ect those of the directing
multifractal measure. They also introduce a so-called scaling estimator for
the parameters of the process and apply it to both daily and intra-daily data
of the U.S. $-DEM foreign exchange market. A more systematic analysis of
the underlying estimation procedure and additional empirical applications
can be found in Calvet and Fisher (2002).
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Figure 4: The construction of a multifractal cascade and its use as a time trans-
formation. The �rst panel illustrates the segmentation of the unit interval into
two segments of equal length receiving fractions p1 = 0.65 and p2 = 0.35 of the
overall mass. The second panel shows the second stage of the Binomial cascade,
while the third panel shows the result after 12 iterations of this process with a
total of 212 = 4096 segments. Using these segments as time transformations in
the sense of eq.(4) with H = 0.5 generates returns with heterogenous volatility
(lower panel).
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Unfortunately, the process as speci�ed in eq.(4) has serious drawbacks that
limit its attractiveness in applied work: due to its combinatorial origin, it is
bounded to a prespeci�ed interval (which in economic applications might be
a certain length of time) and it su�ers from non-stationarity. Application of
many standard tools of statistical inference would, therefore, be question-
able and the combinatorial rather than causal nature limits its applicability
as a tool for forecasting future volatility.

These restrictions do not apply to a time series model by Calvet and Fisher
(2001) which preserves the spirit of a hierarchically structured volatility
process but has a much more `harmless' format. TheirMarkov-Switching
Multifractal process (MSM) can be interpreted as a special case of both
Markov-Switching and stochastic volatility models. Returns over a unit
time interval are modeled as:

rt = σt · ut (5)

with innovations ut drawn from a standard Normal distributionN(0, 1) and
instantaneous volatility σt being determined by the product of k volatility
components or multipliers,M (1)

1 ,M
(2)
t , . . . ,M

(K)
t and a constant scale factor

σ:

σ2
t = σ2

k∏
i=0

M
(i)
t (6)

Each volatility component is renewed at timet with probability γi depending
on its rank within the hierarchy of multipliers. Calvet and Fisher propose
the following �exible form for these transition probabilities:

γi = 1− (1− γ1)
(bk−1) (7)

with parameters γ1 ∈ [0, 1] and b ∈ (1,∞). This speci�cation is derived
by Calvet and Fisher (2001) as a discrete approximation to a continuous-
time multifractal process with Poisson arrival probabilities and geometric
progression of frequencies. They show that when the grid step size of the
discretized version goes to zero, the above discrete model converges to the
continuous-time process.

Estimation of the parameters of the model involvesγ1 and b as well as those
parameters characterizing the distribution of multipliers. If a discrete distri-
bution is chosen for the multipliers (e.g., a Binomial distribution with states
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p1 and 1−p1 like in our combinatorial example above), the discretized mul-
tifractal process is a well-behaved Markov switching process with2k states.
This framework allows estimation of its parameters via maximum likelihood.
ML estimation of this process comes along with identi�cation of the condi-
tional probabilities of the current states of the volatility components which
can be exploited for computation of one-step and multi-step forecasts of the
volatility process using Bayes's rule. The Markov-switching multifractal
model, thus, easily lends itself to practical applications. Calvet and Fisher
(2004) demonstrate that the model allows for improvements over various
GARCH-type volatility processes in a competition for the best forecasts of
exchange rate volatility in various currency markets. A certain drawback of
the ML approach is that it becomes computationally unfeasible for a num-
ber of volatility components beyond 10. Its applicability is also limited to
MSM speci�cations with a �nite state space so that it can not be applied to
processes where multipliers are drawn from a continuous distribution (e.g.,
the Lognormal). Recent additions to extant literature introduce alternative
estimation techniques that allow to deal with these cases: Calvet, Fisher
and Thompson (2006) consider a simulated maximum likelihood approach
based on a particle �lter algorithm which allows to estimate both models
with continuous state space and a new bi-variate MSM (which would be
computationally too demanding for exact ML). Lux (2006) proposes a Gen-
eralized Method of Moments technique based on a particular selection of
analytical moments together with best linear forecasts along the lines of
the Levinson-Durbin algorithm. Both papers also demonstrate the domi-
nance of the multifractal model over standard speci�cations in some typical
�nancial applications.

The relatively small literature that has emerged on multifractal processes
over the last decade could be seen as one of the most signi�cant contribu-
tions of physics-inspired tools to economics and �nance. In contrast to some
other empirical tools, researchers in this area have subscribed to the level
of rigor of empirical work in economics and have attempted to show in how
far their proposed innovations provide an advantage over standard tools
in crucial applications. Somewhat ironically, this literature is both better
known and has had more of an impact in economics than in the econo-
physics community itself. Financial applications of a di�erent formalization
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of multifractal process can be found in Bacry et al. (2007)

Available literature on MF models is altogether empirical in orientation and
is not very informative on the origin of multifractality 4. However, the em-
pirical success of the multifractal model suggests that their basic structural
set-up, a multiplicative hierarchical combination of volatility components,
might be closer to the real thing than earlier additive models of volatil-
ity. Some speculation on the source of this multi-layer structure can be
found, for example, in Dacorogna et al. (2001) who argue that di�erent
types of market participants with di�erent time horizons are at the heart
of the data-generating mechanism. To substantiate such claims would of-
fer a formidable challenge to agent-based models. While there are few
papers which demonstrate multi-scaling of arti�cial data from particular
models (e.g. Castiglione and Stau�er, 2001, for a particular version of the
Cont/Bouchaud model), it seems clear that most behavioral models avail-
able so far do not really have the multi-frequency structure of the stochastic
MF models.

3.4 Problematic Prophecies: Predicting Crashes and
Recoveries

While the success of MF volatility models has only received scant attention
beyond the con�nes of �nancial econometrics, attempts at forecasting the
time of stock market crashes from precursors became a notorious and highly
problematic brand of econophysics activity. This strand of activity started
with a number of papers o�ering ex-post formalizations of the dynamics
prior to some major market crashes, e.g. the crash of August 1997 (Van-
dewalle and Ausloos, 1998; Sornette et al., 1996; Sornette and Johansen,
1999b, 1997). Adapting a formalization similar to that of precursor activity
of earthquakes in geophysics, it was postulated that stock prices follow a
log-periodic pattern prior to crashes which could be modelled by a dynamic
equation of the type:

pt = A + B

(
tc − t

tc

)−m [
1 + C cos(ω ln

tc − t

tc
) + Φ

]
(8)

4However, Calvet, Fisher and Thomson (2006) relate low-frequency volatility compo-
nents to certain macroeconomic risk factors.
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for t < tc. This equation generates �uctuations of accelerating frequency
around an increasing trend component of the asset price. Such a devel-
opment culminates in the singularity at the critical time tc. Since the
log-periodic oscillation breaks down at tc this is interpreted as the esti-
mate of the occurrence of the subsequent crash. Note thatA,B,C,m, ω, tc,
and Φ are all free parameters in estimating the model without imposing
a known crash time tc. A voluminous literature has applied this model
(and slightly di�erent versions) to various �nancial data discovering - as
it had been claimed - dozens of historical cases to which the log-periodic
apparatus could be applied. This business had subsequently been extended
to `anti-bubbles', mirror-imaged log-periodic downward movements which
should give rise to a recovery at criticality. Evidence for this scenario has
�rst been claimed for the Nikkei in 1999 (Johansen and Sornette, 1999a)
and had also been extended to various other markets shortly thereafter (Jo-
hansen and Sornette, 2001b). Somewhat unfortunately, the details of the
estimation algorithm for the many parameters of the highly nonlinear log-
periodic equation have not been spelled out exactly in all this literature and
an attempt at replicating some of the published estimates reported that the
available information was not su�cient to arrive at anything close to the au-
thors' original results (Feigenbaum, 2001). Eventually, the work in this area
culminated via an accelerating number of publications and log-periodically
increasing publicity in its own critical rupture point: Sornette and Zhou
(2002) published a prediction that the U.S. stock market would follow a
downward log-periodic pattern for the years to come culminating in a sharp
fall in the �rst half of 2004. Similar predictions were subsequently issued for
other important markets (Zhou and Sornette, 2003). However, not much of
these predictions did materialize. As can be seen in Fig. (5) for the case of
the German DAX, the predicted log periodic evolution was quite di�erent
from the actual market development. While the in-sample �t (up to early
2003) seems quite good, the predicted and actual changes appear virtually
uncorrelated.
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Figure 5: Log-periodic predictions: the �gure compares the predictions by
Zhou and Sornette (2003) and the subsequent development of the index.
Reprinted with permission from Voit, J., Statistical Mechanics of Financial
Markets, 3rd. ed., Springer 2005.
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The bubble of log-periodicity would certainly constitute an interesting
episode for a deeper analysis of sociological mechanisms in scienti�c re-
search. Within a few years, publications in learned journals (all authored
by a very small group of scientists) on this topic reached almost three-digit
numbers and the prospect of predicting markets created enormous excite-
ment both in the popular press as well as among scientists. At the same
time, almost no one had apparently ever successfully replicated these re-
sults. While physicists have often been sympathetic to this approach (due
to its foundation in related work in geophysics) economists coming across
the log-periodic hypothesis have always been conspicuous of the amount of
`eye-balling' statistics involved. After all, inspecting a time window with a
crash event, one is very likely to see an upward movement prior to the crash
(otherwise the event would not qualify itself as a crash). Furthermore, it
is well-known that the human eye has a tendency of `detecting' spurious
periodicity even in entirely random data, so that inspection of data prior
to a crash might easily give rise to the impression of apparent oscillations
with an upward trend. Because of this restriction to an endogenously se-
lected subperiod of the data, a true test of log-periodicity would be highly
demanding. On the other hand, one might have the feeling that the idea
of a built-up of intensifying pressure and exuberance which can only be
sustained for some time and eventually leads to a crash has some appeal.
Unfortunately, the literature has not produced behavioral models in which
such log-periodic patterns occurred.

The decline in the interest in log-periodic models was due to the poor perfor-
mance of their predictions. There had, in fact, been strong emphasis within
the econophysics community on producingpoint predictions of future events
that would con�rm the superiority of the underlying models.5 While this
5In relation to Zhou and Sornette's prediction of a steep decline of the U.S. stock
market in 2003/04 Stau�er (2001), among others, had emphasized the importance of
such "non-trivial statements ... published ... before the event is over" as a kind of
lackmus test for the signi�cance of econophysics research. While Zhou's and Sornette's
predictions are quite remarkably rejected by the data, it is worthwhile to note that
quite a variety of actual developments could have been claimed as supporting evidence.
The upshot of the log periodic prediction was, in fact, summarized more in the style
of an investors newsletter than a rigorous scienti�c statement: �in the next two years,
we predict an overall contribution of the bearish phase, punctuated by local rallies..."
and so on, cf. Sornette and Zhou (2002, p. 468). Luckily, the lack of success of
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aim is perhaps understandable from the importance of such predictions in
the natural sciences, it might be misleading when dealing with economic
data. The reason is that it neglects both the stochastic nature of economic
systems (due to exogenous noise as well as the endogenous stochasticity
of the large number of interacting subunits) as well as their self-referential
nature. Rather than testing theories in a dichotomic way in the sense of a
clear yes/no evaluation, the approach in economics is to evaluate forecasts
statistically via their average success over a largerout-of-sample test period
or a number of di�erent cases. Unfortunately, the log-periodic theory like
many other tools introduced in the econophysics literature has hardly ever
been rigorously scrutinized in this manner.6

4 The Distribution of Wealth and Income

Although the predominant subjects of the econophysics literature have been
various strands of research on �nancial markets, some other currents exist.
Maybe the area with the highest number of publications next to �nance
is work on microscopic models of the emergence of inequal distributions of
wealth and pertinent empirical work.

The frequency distribution of wealth among the members of a society has
been the subject of intense empirical research since the days of Vilfredo
Pareto (1897) who �rst reported power-law behavior with an index of about
1.5 for income and wealth of households in various countries. Empirical work
initiated by physicists has con�rmed these time-honored �ndings (Levy and
Solomon, 1997; Fujiwara et al., 2003; Castaldi and Milakovic, 2005). While
Pareto as well as most subsequent researchers have emphasized the power
law character of the largest incomes and fortunes, the recent literature has
also highlighted the fact that a crossover occurs from exponential behavior
for the bulk of observations and Pareto behavior for the outmost tail. A

stock market predictions also casts doubts on the validity of subsequent far-fetched
doomsday scenarios derived from a log-periodic study of non-�nancial socio-economic
data (Johanson and Sornette, 2001a).

6Chang and Feigenbaum (2006) make an e�ort on rigorous statistical tests of the log-
periodic model. Their results are hardly supportive.
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careful study of U.S. income data locates the cross-over at about the 97
to 99 percent quantiles (Silva and Yakovenko, 2005) as illustrated in Fig.6
taken from this source. It seems interesting to note that this scenario is sim-
ilar to the behavior of �nancial returns which also exhibit an asymptotic
power-law behavior in the tails and a relatively well-behaved bell shape in
the center of the distribution. The di�erence between the laws governing
the majority of the small and medium-sized incomes and fortunes and the
larger ones might also point to di�erent generating mechanisms underlying
these two segments of the distribution.
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Figure 6: The distribution of gross income in the U.S. compiled from tax
revenues over the period 1983-2001. The decomposition shows a pronounced
crossover from the bulk of observations to a Pareto tail for the highest incomes.
The numbers on the left-hand side give the average income per year. Reproduced
with permission from Yakovenko, V. and C. Silva, Two-class structure of income
distribution in the U.S.A.: Exponential bulk and power-law tail, in: Chatterjee,
A., S. Yarlagadda and B. Chakraborti, eds.,Econophysics of Wealth Distribution.
Springer 2005.
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In economics, the emergence of inequality had been a hot topic up to the
�fties and sixties. Several authors have proposed Markov processes that
under certain conditions would lead to emergence of a Pareto distribution.
The best known contribution to this literature is certainly Champernowne
(1953): his model assumes that an individual's income develops according
to a Markov chain with transition probabilities between a set of income
classes (de�ned over certain intervals). As a basic assumption, transitions
were only allowed to either lower income classes or the next higher class,
and the mean change for all agents was assumed to be a reduction of income
(which is interpreted as a stability condition). Champernowne showed that
the equilibrium distribution of this stochastic process is the Pareto distri-
bution in its original form. Variations on this topic can be found in Whittle
and Wold (1957), Mandelbrot (1961) and Steindl (1965), among others.
Over the sixties and seventies, the literature on this topic gradually died
out due to the rise of the representative agent approach as the leading prin-
ciple of economic modeling. From the point of view of this emergent new
paradigm, the behavioral foundations of these earlier stochastic processes
seemed too nebulous to warrant further research in this direction. Un-
fortunately, a representative agent framework - quite obviously - does not
o�er any viable alternative for investigation of distributions among agents.
As a consequence, the whole subject of inequality in income and wealth
has received only scant attention in the whole body of economics literature
for some decades and lectures in the `Theory of Income Distribution and
Wealth' eventually disappeared from the curricula of economics programs.7

The econophysics community recovered this topic in 2000 when three
very similar models of `wealth condensation' (Bouchaud and Mézard) and
the `statistical mechanics of money' (Dragulescu and Yakovenko, 2000;
Chakraborti and Chakrabarti, 2000) appeared. While these attempts at
microscopic simulations of wealth formation among interacting agents re-
ceived an enthusiastic welcome in the popular science press (Buchanan,
2002; Hayes, 2002), they were actually not the �rst to explore this seem-
ingly unknown territory. The credit for a much earlier analysis of essentially

7Another explanation of the decline of interest in distributional issues is that this was
not a politically opportune topic in Western countries during the cold war era with
its juxtaposition of communist and market-oriented systems.
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the same type of structures has to be given to sociologist John Angle. In
a series of papers starting in 1986 (Angle, 1986, 1993, 1996, among many
others), he explored a multi-agent setting which draws inspiration from two
quite distinct sources: particle physics and human anthropology. Particle
physics motivates the modelling of agents' interactions as collisions from
which one of both opponents emerges with an increase of his wealth at the
expense of the other. Human anthropology provides a set of stylized facts
that Angle attempts to explain with this `inequality process'. In particular,
he quotes evidence from archeological excavations that inequality among the
members of a society �rst emerges with the introduction of agriculture and
the prevalence of food abundance. Once human societies proceed beyond
the hunter and gatherer level and production of some `surplus' becomes pos-
sible, the inequality of a `ranked society' or `chiefdom' appears. Since this
ranked society persists through all levels of economic development, a very
general and simple mechanism is required to explain its emergence. The
`inequality process' proposes a mechanism for this strati�cation of wealth
from the following ingredients (Angle, 1986): within a �nite population,
agents are randomly matched in pairs. A random toss, then, decides which
of both agents comes out as the winner of this encounter. In the baseline
model, both agents have the same probabilities 0.5 of winning but other
speci�cations have also been analyzed in subsequent papers. If the winner
is assumed to take away a �xed portion of the other agent's wealth, sayω,
the simplest version of the process leads to a stochastic evolution of wealth
of two individuals i and j bumping into each other according to:

wi,t = wi,t−1 + Dtωwj,t−1 − (1−Dt)ωwi,t−1

wj,t = wj,t−1 + (1−Dt)ωwi,t−1 −Dtωwj,t−1 (9)

Time t is measured in encounters and Dt ∈ {0, 1} is a binary stochastic
index which takes the value 1 (0) if i(j) is drawn as the `winner'. Angle
(1986) shows via microscopic simulations that this process leads to a limiting
distribution that can be reasonably well �tted by a Gamma distribution.
Later papers provide a theoretical analysis of the process, various extensions
as well as empirical applications (see Angle, 2006, for a summary).

The econophysics papers of 2000 proposed models that are almost undistin-
guishable from Angles's. Dragulescu and Yakovenko begin their investiga-
tion with a model in which a constant `money' amount is changing hands

39



rather than a fraction of one agent's wealth. They show that this process
leads to a Boltzmann-Gibbs distribution P (w) ∼ e−w/T (with T `e�ective
temperature' or average wealth). Note that this variant of the inequality
process is equivalent to a simple textbook model for the exchange of energy
of atoms. Besides some generalizations allowing for a random amount of
money changing hands and for non-negative wealth (no debt), another ver-
sion of their model considers the exchange of a fraction of wealth of the loos-
ing agent, i.e. Angle's inequality process depicted in eqs. (8). Chakraborti
and Chakrabarti (2000) have a slightly di�erent set-up allowing agents to
swap a random fraction ε of their total wealth, wi,t + wj,t. A more gen-
eral variant of the wealth exchange process can be found in Bouchaud and
Mézard (2000), whose evolution of wealth covers simultaneous interactions
between all members of the population. Cast into a continuous-time setting,
agent i's wealth, then, develops according to:

dwi

dt
= ηi(t)wi +

∑

j( 6=i)

Jijwj −
∑

j(6=i)

Jjiwi (10)

with: ηi a stochastic term and the matrix Jij capturing all factors of re-
distribution due to interactions within the population. Solving the result-
ing Fokker-Planck equation, for the case of identical exchange parameters
Jij = J/N , the authors show that the equilibrium distribution of this model
obeys a power law with the exponent depending on the parameters of the
model (J and the distributional parameters of ηi). In the rich literature
following Dragulescu and Yakovenko and Chakraborti and Chakrabarti one
of the main goals was to replace the baseline models with their exponential
tail behavior by re�ned ones with power law tails. Power laws have been
found when introducing `savings' in the sense of a fraction of wealth that is
exempted from the exchange process (Chatterjee, Chakraborti and Manna,
2003) or asymmetry in interactions (Sinha, 2005).

What is the contribution of this literature? As pointed out by Lux (2005)
and Anglin (2005), economists (even those subscribing to the usefulness of
agent-based models) might feel bewildered by the sheer simplicity of this
approach. Taken at face value, it would certainly be hard to accept the
processes surveyed above as models of the emergence of inequality in mar-
ket economies. A �rst objection would be that the processes, in fact, do
model what has been called `theft and fraud' economies (Hayes, 2002). The
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principles of voluntary exchange to the mutual bene�t of both parties are
entirely at odds with the model's main building blocks. Human agents with
a minimum degree of risk aversion would certainly prefer not to partici-
pate at all in this economy. The models also dispense with all facets of
collaborative activity (i.e. production) to create wealth and merely focus
on redistribution of a constant, given amount of wealth (although there is
a point to Angle's implicit view that the universality of inequality for all
advanced societies may allow to abstract from wealth creation). What is
more and what perhaps is at the base of economists' dissatisfaction with
this approach is that wealth is a derived concept rather than a primitive
quantity. Tracking the development of the distribution of wealth, then, re-
quires to look at the more basic concepts of quantities of goods traded and
the change of evaluation of these goods via changes of market prices.

Luckily, a few related papers have been looking at slightly more complicated
models in which `wealth' is not simply used as a primitive concept, but
agents' wealth is derived from the valuation of their possessions. Silver et
al. (2002) consider an economy with two goods and an ensemble of agents
endowed with Cobb-Douglas preferences:

Ui,t = x
fi,j

i,t y
1−fi,t

i,t (11)

Eq. (11) formalizes the utility function of agent i at time t whose message
is that the agent derives pleasure from consuming (possessing) goods x

and y and their overall contribution to the agent's well-being depends on
the parameter fi,t. This parameter is drawn independently, for each agent
in each period, from a distribution function with support in the interval
[0.1]. This stochasticity leads to changing preferences for both goods which
induce agents to exchange goods in an aggregate market. Summing up
demand and supply over all agents one can easily determine the relative price
between x and y in equilibrium at time t as well as the quantities exchanged
between agents. Changes of quantities and prices over time lead to the
emergence of inequality. Starting from a situation of equal possessions of all
agents, the wealth strati�cation is simply due to the favorable or unfavorable
development of agents' preferences vis-à-vis the majority of their trading
partners (for example, if one agent develops a strong preference for one
good in one particular period, he is likely to pay a relatively high price
in terms of the other good and might undergo a loss in aggregate wealth
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if his preferences shift back to more `normal' levels in the next period).
Note that exchange is entirely voluntary in this economy and allows all
agents to achieve their maximum utility possible in any period with given
resources and preferences. Silver et al. show both via simulations and
theoretical arguments that this process converges to a limiting distribution
which is close to the Gamma distribution. A somewhat similar result is
already reported in passing in Dragulescu and Yakovenko (2000, p. 725)
who besides their simple wealth exchange models reviewed above had also
studied a more involved economic model with a production sector.

It, therefore, seems that a certain tendency prevails both in simple physics-
sociological models and in more complicated economic models of wealth
formation to arrive at an exponential distribution for large fortunes. The
analogy to the Boltzmann-Gibbs theory for the distribution of kinetic en-
ergy might be at the heart of this (almost) universal outcome of various
simple models. All the relevant papers consider conservative systems (in
the sense of a given amount of `wealth' or otherwise given resources) gov-
erned by random realocations. The limiting distribution in such a setting,
then, re�ects the maximization of entropy through the random exchange
mechanisms. The important insight from this literature is that the bulk of
the distribution can, in fact, be explained simply by the in�uence of random
forces. While the primitive models à la eqs. (9) and (10) are the purest
possible formalization of this randomization, the economically more re�ned
version of Silver et al. demonstrates that their results survive in a setting
with more detailed structure of trading motives and exchange medicated
via markets.

This leaves the remaining Pareto tail to be explained by other mechanisms.
Although some power-laws have been found in extended models, these seem
to depend on the parameters of the model and do not necessarily yield
the apparently universal empirical exponents. In the view of the above
arguments, it might also seem questionable whether one could �nd an ex-
planation of Pareto laws in conservative systems. Economists would rather
expect capital accumulation and factors like inheritance to play a role in the
formation of big fortunes. Extending standard representative agent models
of the business cycle to a multi-agent setting, a few attempts have been
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made recently to explore the evolution of wealth among agents. A good
example of this literature is Krusell and Smith (1998) who study a stan-
dard growth model with intertemporally optimizing agents. Agents have to
decide about consumption and wealth accumulation and are made heteroge-
neous via shocks in their labor market participation (i.e. they stochastically
move in and out of unemployment) and via shocks to their time preferences
(i.e. preferences of consumption vis-à-vis savings). The major contributions
of this paper are: the development of a methodology to derive rational (i.e.
consistent) expectations in a multi-agent setting and the calibration of their
model with respect to selected quantiles of the U.S. Lorenz curve.

Alternative models with a somewhat di�erent structure are to be found
in Hugget (1996) and Castaneda et al. (2003). All these models, however,
restrict themselves to matching selected moments of the wealth dispersion
in the U.S. It is, therefore, not clear so far, whether their structures are
consistent with a power law tail or not. While the unduely neglected topic
of the emergence of inequality in modern societies has been approached
from various sides, none of these new developments has come out with an
explanation for the Pareto tails so far. It seems, therefore, to be a worth-
while undertaking to bridge the gap between the extremely simple wealth
exchange processes proposed in the econophysics literature and the much
more involved emergent new literature on wealth formation in economics.
An appropriate middle way might provide useful insights into the potential
sources of power-law tails.

5 Macroeconomics and Industrial
Organization

Much of the work done by physicists on non-�nancial data is of an ex-
ploratory data-analytical nature. Most of it focuses on the detection of
power laws that might have gone unrecognized by economists. Besides
high-frequency �nancial data, another source of relatively large data sets
is cross-sectional records of �rms' characteristics such as sales, number of
employees etc. One such data set, the Standard and Poor's COMPUSTAT

43



sample of U.S. �rms has been analyzed by the Boston group around G.
Stanley in a sequence of empirical papers. Their �ndings include:

(i) the size distribution of U.S. �rms follows a Log-normal (Stanley et al.
1995),

(ii) a linear relationship prevails between the log of the standard deviation
σ of growth rates of �rms and the log of �rm size,s (measured by sales
or number of employees, cf. Stanley et al., 1996). The relationship is,
thus,

ln σ ≈ α− β ln s (12)

with estimates of β around 0.15. This �nding has been shown by
Canning et al. (1998) to extend to the volatility of GDP growth
rates conditioned on current GDP. Due to this surprising coincidence,
the relationship has been hypothesized to be a universal feature of
complex organizations.

(iii) The conditional density of annual growth rates of �rms p(rt | st−1)

with s the log of an appropriate size variable (sales, employees) andr

its growth rate, rt = st − st−1, has an exponential form

p(rt | st−1) =
1√

2σ(st−1)
exp

(
−
√

2 | rt − r(st−1) |
σ(st−1)

)
(13)

cf. Stanley et al. (1996), Amaral et al. (1997).

Log-normality of the �rm size distribution (�nding (i)), is, of course, well-
known as Gibrat's law of proportional e�ect (Gibrat 1931): if �rms' growth
process is driven by a simple stochastic process with independent, Normally
distributed growth rates, the Log-normal distribution governs the dispersion
of �rm sizes within the economy. The Log-normal hypothesis has earlier
been supported by Quandt (1966). However, other studies suggest that
the Log-normal tails decrease too fast and that there is excess mass in the
extreme part of the distribution that would rather speak in favor of a Pareto
law. Pareto coe�cients between 1.0 and 1.5 have already been estimated
for the size distribution of �rms in various countries by Steindl (1965).
Okuayama et al. (1999) also report Pareto coe�cients around 1 (between
0.7 and 1.4) for various data sets. Probably the most comprehensive data
set has been used by Axtell (2001) who reports a Pareto exponent close to
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1 (hovering between 0.995 and 1.059 depending on the estimation method)
for the total ensemble of �rms operating in 1997 as recorded by the U.S.
Census Bureau8.

Finding (ii) has spawned work in economics trying to elucidate the sources
of this power law. Sutton (2002) shows that one arrives at a slope coe�cient
between -0.21 and -0.25 under the assumption that the growth rates of con-
stituent businesses within a �rm are uncorrelated. The di�erence between
these numbers and the slightly �atter empirical relationship would, then,
have to be attributed to joint �rm-speci�c e�ects on all business compo-
nents.

From a broader perspective, a number of researchers have shown the emer-
gence of several empirically relevant statistical laws in arti�cial economies
with a complex interaction structure of their inhabitants. Axtell (1999)
building upon the �sugarcube economy� of Epstein und Axtell (1996) allows
agents to self-organize into productive teams. Cooptation of additional
workers to existing teams is advantageous because of increasing returns,
but also provides the danger of su�ering from free riding of some group
members who might reduce the level of e�ort invested in team production.

This later e�ect limits the growth potential of �rms since agents have less
and less incentives to supply e�ort in growing teams because of the de-
creasing sensitivity of overall output to individual contributions. In an
agent-based model in which workers have to decide adaptively on the for-
mation and break-o� of teams, the evolving economy exhibits a number
of realistic features: log growth rates of �rms (in terms of the number of
employees) follow a Laplace distribution (�nding (iii)), and the size distri-
bution of �rms is skewed to the right. Estimation of the Pareto index yields
1.28 for employees and 0.88 for the distribution of output.

Delli Gatti et al. (2003) arrive at a very similar replication of empirical
stylized facts for �rm sizes and growth rates. However, their starting point
is a framework in which the basic entities are the �rms themselves and
the heterogeneity of the ensemble of �rms with respect to market and �-

8The Zipf's law for the size distribution of �rms is reminiscent of well-known Pareto
law for the distribution of city sizes, cf. Nitsch (2005) for a review of the evidence
and Gabaix (1999) for a potential explanation.
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nancial conditions is emphasized. Focusing on the development of �rms'
balance sheets, the �nancial conditions of the banking sector and allowing
for bankruptcies, their model generates business cycle �uctuations driven by
the �nancial sphere of the economy. Simulations and statistical analyses of
the synthetic data reveals a reasonable match not only of some of the styl-
ized facts above, but also conformity with other aspects of macroeconomic
�uctuations. A third independent approach which not only reproduces IO
facts but also a Pareto wealth distribution is the model by Wright (2005).
Wright considers a computational model with both workers and �rm own-
ers. His framework covers stochastic processes for consumption, hiring and
�ring decisions of �rms and the distribution of agents on classes. Despite
the relatively simple behavioral rules for all these components, the resulting
macroeconomy seems remarkably close to the empirical data in its statistical
features.

While so far the number of papers on agent-based arti�cial economies is
extremely limited, the fact that computational models with very di�erent
building blocks have been shown to reproduce stylized facts seems encour-
aging. Clearly, these promising results still leave a long agenda of investiga-
tions in the robustness and generating mechanisms of the macroeconomic
power laws.

The agent-based approach to macroeconomic modeling has also been pur-
sued by Aoki in a long chain of publications most of which are summarized in
his recent books (Aoki 1996, 2002, Aoki and Yoshikawa, 2006). His approach
had initially been rather technically orientated advocating the use of tools
from statistical physics like mean-�eld approximations, Master equations
and clustering processes. In some of his work, he had nicely illustrated the
potential usefulness of these techniques by revisiting well-known economic
models. An example is Diamond's (1982) model of a search economy with
multiple equilibria (cf. Aoki, 2002, ch.9). With a mean-�eld approach,
the assumption of an in�nite population can be dispensed with and one ar-
rives at new results on cyclicity and equilibrium selection in this benchmark
model of the Neokeynesian macroeconomics literature.

Recent work by Aoki and Yoshikawa makes an even stronger point for re-
placing the representative agent paradigm in macroeconomics by an agent-
based approach. Most interestingly, the proposed new models have a strong
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Keynesian �avor revisiting such concepts like the liquidity trap, the role of
uncertainty in macroeconomics and the possibility of a slow-down of eco-
nomic growth due to demand saturation. With their focus on analytical
tractability, the models proposed by Aoki and Yoshikawa are more stylized
than the computational approaches reviewed above. They are not analyzed
from a power-law perspective, but rather from the perspective of other well-
known macroeconomic laws like Okun' s (a decrease of unemployment by
one percent comes along with an additional increase of GDP by 2.5 percent).
Nevertheless, the approach is very similar to that of Axtell, Delli Galli et al.
and Wright in that well-known statistical relationships on the macro level
are explained as emergent results of a multi-sectoral industrial dynamics.

One particular interesting innovation in Aoki and Yoshikawa recent work is
the application of ultrametric structures as an ingredient in a labor market
model. Ultrametric structures are tree-like, hierarchical structures pretty
similar to the hierarchical structure of the multifractal volatility model ex-
hibited in Fig.4. Such structures are applied here to measure the distance
in terms of specialization of di�erent occupations. A worker at one end
node of the tree model has a very similar specialization to that of his neigh-
bor if their branch stems from the same mother nodes at higher hierarchic
levels, but they might as well have a large �ultrametric distance� if they
originate from di�erent mother nodes (cf. Fig. 7). This hierarchy provides
an avenue for explaining the di�erences in adaptability of certain workers
to new jobs o�ered, the time needed for retraining and the likelihood to �nd
employment in a di�erent occupation. With high ultrametric di�erences,
restructuring of the labor force in the presence of structural change might
be a sluggish process. The model, therefore, provides an avenue towards
modeling of the much discussed hysteresis phenomenon in labor markets:
the long-lasting in�uence of transitory shocks to employment that is held
responsible for high levels of unemployment in European countries9.

9While the notion of hysteresis stems from physics and engineering, it has become the
standard technical term for this phenomenon in economics already some twenty years
ago, cf. Cross (1988).
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Figure 7: Example of hierarchical structure in an ultrametric space: Such a
structure could be contemplated as a formalization of the proximity of profes-
sional specializations. In a macroeconomic setting, the ultrametric structure of
industries would, then, determine the costs of relocating resources (markets)
from one sector to another. Note the formal similarity of hierarchical trees
to multifractal cascades (depicted in Fig.5) The cluster formation algorithm
underlying Fig. 3 is also based upon on ultrametric concept of distance between
companies.

6 Concluding Remarks

While there had been some crossover of ideas from the econophysics litera-
ture into economics and �nance, much of the current research still lives in
a kind of parallel society that is largely unheard of in the native popula-
tion of economics departments. Where it had become known, exaggerated
claims of the superiority of econophysics and the uselessness of traditional
economic thought (McCauley, 2006) together with a sometimes amateur-
ish use of terminology and concepts from economics have inhibited fruitful
communication. Economists also often found the empirical analyses in the
log-log style to represent substandard methodology compared to the re�ned
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methodology developed in econometrics. However, the development of, for
example, the literature on multifractal models in econometrics demonstrates
that new concepts from statistical physics can be successfully adapted for
economic applications and integrated into the econometrician's toolbox. It
is particularly remarkable that in this area progress was exactly due to the
more rigorous development of methods of statistical inference and forecast-
ing instead of simple copying of the formalism inherited from the turbulence
literature. It is worth emphasizing that applications of these models in the
economics literature go far beyond contemporaneous econophysics publi-
cations that still con�ne themselves to only demonstrating some scaling
proportion of binomial data. It could be possible that the methodological
developments in this area feed back to the original subject and we will see
applications of Markov-switching multifractal processes on turbulent �ows
in the near future. Other methods brought to the attention of economists
via the econophysics literature might undergo a similar transformation.

While the dissemination of various methodological concepts that have been
unfamiliar to economists so far, is certainly an important aspect of `econo-
physics', there might be an even more seminal in�uence in its natural em-
phasis on economies and markets as dispersed systems of interacting units.
After the disappointing insights in the (near) impossibility of deriving sta-
ble macroeconomic (or macroscopic) behavioral correspondences as the ag-
gregate of individual decisions, much of mainstream economic theory has
simply side-stepped this issue by evoking representative agents as the (one
or two) single actors in macroscopic models. However, �... there is no plausi-
ble formal justi�cation for the assumption that the aggregate of individuals,
even maximizers, acts itself like an individual maximizer.� (Kirman, 1992),
�... macro activity is essentially the result of the interactions between agents
and as such is not usefully represented by a single `optimizer' that by de�ni-
tion eliminates all trade between agents and thereby ignores the interactions
between them.� (Ramsey, 1996). Behavioral work in econophysics typically
starts out from the interactions of the elementary units of a system whose
macroscopic regulations are emergent properties of the overall dynamics
of the system. In empirical research, instead of postulating ad hoc exis-
tence of meaningful macro variables, one can let the data themselves speak
and reveal its stable properties. There might well be (but need not be)
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some scaling laws rather than a simple average of some measurement. The
prevalence of Pareto laws in income, wealth, �rm size and �nancial returns
supports the view that the scaling view of statistical physics could be fruit-
ful in economics, too. In any case, these emergent properties seem to be
much more stable (even quantitatively so) than many of the well-known hy-
pothesized relationships between macro variables in economic theory (take
money demand as a striking example, cf. Knell and Stix, 2006, for a recent
survey). Since economics deals with statistical ensembles of microscopic
con�gurations, whose exact realization cannot be determined, what can be
said about the system as a whole must be based on the statistical laws gov-
erning the entire ensemble. These ensemble averages are objects of study
in their own right and will - except for trivial cases - not correspond to
the behavioral laws of individual members of the ensemble. A satisfactory
theory will, therefore, typically require the analysis of both time-varying
population averages and their dispersion (second moment). In many cases,
even the investigation of the co-evolution of means and (co-)variances of
sensible macroscopic measurements might be too rough an approximation
and one might want to extend the analysis to higher moments like skewness
and kurtosis.10 Since statistical physics has developed a formal apparatus
for dealing with collective phenomena in non-human systems, it provides a
rich source of inspiration for the analysis of collective behavior in markets
and other areas of social interaction.

10Note that the exponent of a scaling law also gives the highest existing moment of the
underlying time series.
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