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Abstract

This study focuses on the question whether nonlinear transformation of lagged time series values and

residuals are able to systematically improve the average forecasting performance of simple Autoregres-

sive models. Furthermore it investigates the potential superior forecasting results of a nonlinear Thresh-

old model. For this reason, a large-scale comparison over almost 400 time series which span from 1996:3

up to 2008:12 (production indices, price indices, unemployment rates, exchange rates, money supply)

from 10 European countries is made. The average forecasting performance is appraised by means of

Mean Group statistics and simple t-tests. Autoregressive models are extended by transformed first lags

of residuals and time series values. Whereas additional transformation of lagged time series values are

able to reduce the ex-ante forecast uncertainty and provide a better directional accuracy, transformations

of lagged residuals also lead to smaller forecast errors. Furthermore, the nonlinear Threshold model is

able to capture certain type of economic behavior in the data and provides superior forecasting results

than a simple Autoregressive model. These findings are widely independent of considered economic

variables.
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1 Introduction

Forecasting is a major focus in empirical economics. A researcher making a time series forecast is

confronted with a quantity of possible models, estimations procedures and forecasting methods. These

questions thus arise: Which model provides an optimal approximation for a considered time series of

interest and which forecasting method is a-priori a good choice with respect to its forecasting perfor-

mance?

Linear models are widely used and supply good forecasting results. But still, one could think that

these models are not able to capture certain types of economic behavior in the data. Nonlinear models

have become more common in recent years and an increased interest in forecasting economic variables

with nonlinear models has arisen. Large-scale comparisons of the forecasting performance of linear

and nonlinear models have been appeared in the literature (for example, see Marcellino et al., 2006 and

Teräsvrita et al., 2003). There is no clear agreement whether nonlinear or linear models perform better

concerning the out-of-sample forecasting results. A Monte Carlo study by Clements and Smith (1999)

comes to the result that nonlinear models not always outperform linear models but are favorably when the

forecast origin happens to be in a certain state of the the process. Nonlinear features that are presented

in the data may not persists in the future and a good in-sample fit does not necessarily induce a good

out-of-sample forecasting performance (Diebold and Nason, 1990).

It is obvious, that nonlinear models give an important contribution to forecasting economic vari-

ables. Another field of research, forecasting transformed time series, has also a great interest in the

literature. By means of nonlinear transformations a forecaster attempts to obtain a time series with ’bet-

ter’ properties in order to get improved forecasting results. Such a transformation, like the logarithm,

may inherent informations that are improving the forecasting performance of the level of an economic

variable as well. The often employed logarithm function is beneficial for forecasting if it is leading to

a more Gaussian process. But, converting an optimal forecast of the logarithm back to forecasts for the

original variable (via the exponential function), is not always suitable (Lütkepohl and Xu, 2009). If an

optimal forecast for a transformed time series exists, it should be used (Granger and Newbold, 1976).

This study combines both forecasting issues to a new direction of research. It investigates whether

and under which circumstances a certain nonlinear transformation of lagged time series values or lagged

residuals can a-priori help to systematically improve the forecasting performance of a simple linear Au-

toregressive model. The goal is to find a certain transformed Autoregressive model that most frequently

leads to superior forecasting results. Such a transformed model may perform the best for certain types

of economic variables. Furthermore, this study examines and compares these results to the forecasting
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performance of a simple nonlinear Threshold model. Therefore, a large-scale empirical comparison of

forecasting models with various nonlinear transformations, using data on 382 monthly time series of 10

European economies is made. Instead of focusing on single variables, the average forecasting perfor-

mance over all time series and economies is considered. Using this data, models with data-dependent

lag order selection like the AIC and the BIC are used. Expanding and rolling estimation window are

applied and one-step ahead forecasts are recursively iterated forward for 23 forecasting steps. To make a

stable statement on the predictive content of transformed Autoregressive models five different loss func-

tions, Mean Group statistics (MG) and inference are evaluated. Furthermore, all models are investigated

whether their results can be carried over to different subsamples of time series.

The remainder of this paper is organized as follows. In Section two, three Autoregressive models

are presented. Their estimation procedure and model selection techniques are briefly discussed. Section

three gives an extensively description of the data set. The empirical application and the forecasting

comparison are documented in section four. The next section discusses the empirical results for full- and

subsample evaluations. Section six contains a conclusion.

2 Three Autoregressive models and its model selection procedures

2.1 Simple Autoregressive models

Let yt denote a stationary time series of interest. An univariate Autoregressive process of order p (AR(p))

is given by:

yt = α+ β1yt−1 + β2yt−2 + ...+ βpyt−p + et, t = 1, ..., N, (2.1)

where α denotes an intercept, p the lag order and et ∼ iid(0, σ2e) is a homoscedastic white noise process

with zero mean and variance σ2e . For a given lag order p, parameters α, β1, .., βp and σ2e are estimated by

Ordinary Least Squares. Nevertheless, lag order p is usually unknown and will be estimated by means

of two simple and commonly used information criterions (IC):

IC(p) = log(σ̂2e)︸ ︷︷ ︸
goodness
offit

+
c∗(p+ 1)

N︸ ︷︷ ︸
penalty
term

, (2.2)

where c∗= 2 for the Aikake Information Criterion (AIC) or c∗=log(N) for the Bayesian Information

Criterion (BIC), respectively. σ̂2e is the estimated residual variance for a particular lag order choice
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p ∈ (1, ..., pmax) and N is the sample size. Whereas, Monte Carlo studies (Jones, 1975 and Ohtani,

2003) show, that the AIC criterion has a tendency to overestimate lag order p and leads to complex and

over-fitted models the Bayesian information criterion considers the issue of over-fitting and includes a

stronger penalty term.

The second considered model in this study is an Autoregressive Moving Average process of orders

p and q (ARMA(p,q)). It‘s general representation is given by:

ỹt =

p∑
i=1

βiỹt−i +

q∑
j=1

δjet−j + et, t = 1, ..., N. (2.3)

Again, et ∼ iid(0, σ2e) a homoscedastic white noise process with zero mean and variance σ2e . ỹt = yt− ȳ

is a stationary, mean adjusted time series of interest. For simplification, a common technique is used and

unobservable residuals in the first estimation step are equally set to their mean zero: et = 0 for t ≤ 0

and et = yt −
∑p

i=1 βiyt−i −
∑q

j=1 δjet−j for t > 0 (for example, see Schlittgen & Streitberg, 2001).

Again, lag orders p ∈ (1, ..., pmax) and q ∈ (1, .., qmax) are unknown and selected by means of

both information criterions, simply by replacing the common penalty term c∗(p+1)
N by c∗(p+q)

N .

2.2 (Self-exciting) Threshold Autoregressive model

So far, simple linear Autoregressive models have been introduced. Although, these models tend to make a

good job in fitting and forecasting data, they are still an approximation and are not always able to present

certain features in the data. In contrast to this, nonlinear models are usually able to capture features

like asymmetry, limit cycles or amplitude-frequency dependency. A simple and quite popular nonlinear

model, the Threshold Autoregressive model (TAR), was first introduced by Tong and Lim (1980)1. This

model is based on the idea of a piecewise linearization over the state space. Depending on a so called

threshold variable relative to a threshold value, coefficients of a linear Autoregressive process and hence

the linear relationship can vary across different regimes. Accordingly, a Threshold Autoregressive model

is locally linear in the threshold space.

A special case of the Threshold model appears if the threshold variable is defined as past values of

the time series itself. The resulting model is called a (Self-Exciting) Threshold Autoregressive model

(SETAR) and is given by:

yt = αj + βj1yt−1 + βj2yt−2 + ...+ βjpjyt−pj + ejt if qj−1 ≤ yt−d < qj , (2.4)

1For an extensively discussion of this model and its statistical properties, see Tong (1990).
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with j = 1,2,...,l and −∞ = q0 < q1 < ... < ql−1 < ql = +∞ as the thresholds, αj denotes an intercept

and pj is the lag order of the jth regime. d ∈ (1, ..., d) is called the delay parameter, where d is typically

equal to pmax. ejt are white noise sequences, conditional upon the history of the time series Ijt, with zero

mean Et[e
j
t |It−1] = 0 and variance Et[e

2
t |It−1]=σ2j . σ2j s have to be mutually independent for different

regimes. Threshold parameters qj divide the sample into l piecewise linear AR(pj) processes, conditional

on a specific past value of the time series yt−d and threshold value qj . The overall process is nonlinear if

at least two regimes exist.

For known parameters d, qj and pj , the Threshold model can easily be estimated by Ordinary Least

Squares. In this case, the data is separated into its l regimes and the least squares estimate is computed

for each regime individually. Nevertheless, parameters d, qj and pj are normally unknown and have to

be estimated a-priori via a grid search. For all possible combinations of delay parameters d ∈
{

1, d
}

,

threshold values qj ∈ (y(1), ..., y(n)) and lag orders pj ∈ (1, ..., pjmax), it is straightforward to estimate a

SETAR(l, 1, .., pl) model and compute a specific information criterion of interest. Again, a widely used

criterion for this nonlinear model is Akaikes AIC. Its model selection procedure will be explained in

the following.

Let y(1) ≤ y(2) ≤ ... ≤ y(n) denote a ordered time series of interest and let d and yt−d be fixed. For

each fixed combination of d ∈ (1, ..., d), yt−d ∈ (y(1), ..., y(n)) and a given value of pj ∈ (1, ..., pjmax)

compute the corresponding AIC for each regime separately. The selected lag orders of regimes j = 1,..,l

minimize the regime-specific criterion: p̂j = min
0≤pi≤pmax

AICj(pi), with

AICj(pi) = njlog(σ̂2j ) +
2(pi + 1)

nj
. (2.5)

nj is the number of observations of regime j and σ̂2j = 1
nj

∑nj

t=0(e
j
t )

2 is the estimated residual variance

of regime j. Following Tong (1990), the AIC criterion for a Threshold model is given by the sum of

regime-specific AICs2:

AIC(p̂j)
TAR = AIC1(p̂1) +AIC2(p̂2) + ...+AICl(p̂l). (2.6)

Next, keeping p̂j for all regimes and the delay parameter d fixed, the estimated threshold value q̂j is

obtained by minimizing the information criterion over a possible set of threshold values:

q̂j = min
{qj}

AIC(p̂j)
TAR. (2.7)

2This representation is only feasible under the assumption of ejt (j = 1,...,l) being mutually independent for all regimes.
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Finally, keeping all p̂j and q̂j fixed, a search for the lowest information criterion value gives an appropri-

ate estimate for the delay parameter d̂:

d̂ = minAIC(d̂) =
AIC(q̂j)

n−max(d, L)
. (2.8)

L = max(pj) is the maximum lag order over all regimes. Analogous to this, all parameters can be

estimated by Schwarz‘s information criterion (BIC). Nevertheless, both estimation procedures require

a sufficient number of observations in each regime. Accordingly, it can be necessary to restrict the grid

search to a subset of ordered observations. Andrews (1993) suggests the following interval limits for a

ordered time series subset: π1 = .15 and π2 = .85. Using only this range for possible threshold values it

is guaranteed that every regime has a minimum number of observations and a reliable estimation can be

computed. If the grid search leads to an estimated threshold equal to the first value of the ordered time

series, this trimming procedure ensures that even the first regime contains at least 15 percent of ordered

observations. Teräsvrita (2005) argues that nonlinear models have a good chance to outperform linear

models if a sufficient number of observations are available. The possible failure of nonlinear models may

be due to too little observations for specifying the model and estimating its parameters.

3 Data

The following empirical application uses a huge data set of circa 40 monthly time series for each of ten

European countries. All time series span from 1996:3 up to 2008:12, they are seasonally adjusted and can

be classified into five groups of variables: Industrial Production Index, Consumer Price Index, Producer

Price Index, Unemployment and Financial Market3. To obtain stationary processes, all time series are

subjected to two transformations. First, all series were transformed by taking the logarithm. Second,

depending on the result of an Augmented Dickey Fuller test, time series were differentiated. After taking

the logarithm no time series were indicated to be stationary and hence at least one difference needed

to be taken. According to Marcellino et al. (2006), absolute values that exceeded its median by more

than six times its Interquartile Range, were treated as outliers. In order to avoid such defined outliers to

affect the forecasting results, they were dropped. Table A.2 in the appendix lists the number of outliers

and differentiations for each available time series. A graphical investigation of all time series showed

a stationary fluctuation around a nonzero value with no trending behavior. Additionally, a AIC and

3A complete list of time series, economies and additional informations are given in the Data appendix A.
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BIC search over different type of models led to no evidence of a linear trend. Therefore, the linear

Autoregressive model and the nonlinear Threshold model include a constant term but no linear trend.

Hereafter, yi,r,t is referred to a fully transformed and adjusted time series, where i=1,...,10 denotes the

number of economy, r=1,...,Ri is the number of time series and t=1,...,N indicates the time index. Ri is

the total number of time series of economy i.

Several studies find evidence for nonlinearity of economic variables like unemployment rates and

Industrial Production indices. Therefore, all time series are tested for nonlinearity by means of two

nonlinearity tests (see Keenan, 1985 and McLeod & Li, 1983). Each group of variables contains a

minority of variables that are detected to be ’nonlinear’, whereby the following two subsamples comprise

the most detected ’nonlinear’ time series: ”Consume Price Index” and ”Industrial Production Index”.

Furthermore, a test for Threshold nonlinearity is also applied (see Hansen, 1999). According to this test

and its results, solely Threshold models with two regimes are used in this study.

4 Empirical application

4.1 Methods and Parametrization

As mentioned in section 2, lag orders are determined by AIC and BIC. Transformations of lagged time

series values or residuals are irrelevant for both model selection procedures. Furthermore, the usage of

such criterions requires a choice of a maximum lag order pmax. Depending on the monthly frequency

of the data, a maximum lag order of 12 is applied in this study4. Examining the nonlinear Threshold

model it was striking that larger lag orders (12 and higher) led to unreasonable high loss function values.

Therefore and provided by common literature, this model is used along with a maximum lag order of six

(for example, see Byers & Peel, 1995 and Clements & Smith, 1999). The determination of the ’optimal’

lag order pmax requires a truncation of each time series. Dropping the first twelve observations for all

time series, guarantees that every implementation uses the same set of information. For the purpose of

an appropriate number of observations for the estimation and a sufficient quantity of forecast errors, the

forecast horizon was chosen to be 23 months. Hence, the in-sample period for the first regression step

spans from 1997:3 to 2007:1 and merges 119 observations. The out-of-sample period is covering the

time from 2007:2 up to 2008:12.

Model based forecasts and lag order selection are computed recursively. This means, that forecasts

are based on values of the time series up to the date on which the forecast is made. Only actually

4Additional maximum lag orders (6 and 18) have been examined but did not provide any deviating forecasting results since both
information criterions usually did not select significant deviating lag orders.
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available informations are used for each out-of-sample forecast. For the next forecasting step, the lag

order is chosen again and parameters are reestimated. Thus, selected lag orders and estimated coefficients

can vary across time. Moreover, a distinction between a rolling estimation window of fixed size ω

and an expanding estimation window is made. Using a rolling estimation window, the one-step ahead

forecast is added to the data set while the first observation is dropped. In this case, every forecasting

step applies a fixed window size ω = 119 − ir0 for the estimation. ir0 is the number of outliers of time

series r. Adapting an expanding estimation window, the one-step ahead forecast is added to the time

series and no observation is dropped. Thus, the estimation window increases with every forecasting step.

Rolling estimation windows are a useful tool for time series with structural breaks, since this estimation

procedure accommodates the possible instability of AR parameters over time. Such instability leads

to forecast uncertainty and it can be preferable not to use the full data set (Peseran and Timmermann,

2004). Expanding estimation windows lead to more efficient estimates. This approach is exploiting more

available sample information and a steadily increasing information set can lead to a reduced estimation

uncertainty (Herwartz, 2010a). This estimation method is optimal in the presence of no structural breaks

in the data (Peseran and Timmermann, 2007).

As outlined in the introduction, the focus of this empirical application is on the predictive content

of nonlinear transformations of lagged residuals et and lagged time series values yt. Therefore, six dif-

ferent nonlinear transformations will be used and compared in this study: square function (·)2, cubic

function (·)3, sine function sin(·), cosine function cos(·), tangents function tan(·) and exponential func-

tion exp(·). Assuming that the first lag of transformed time series contains the main predictive content5,

only the first transformed lag is added to an Autoregressive process (transformed AR(p) model):

yi,rt = α+ β1yi,r,t−1 + β2yi,r,t−2 + ...+ βpyi,r,t−p + βp+1y
2
i,r,t−1 + ei,r,t, t = 1, ..., N. (4.1)

y2
t−1 is referred to a transformed time series and is representing one of the six transformations described

above. Transformations of lagged residuals and the simple ARMA(p,q) model are combined as follows

(transformed ARMA(p,q) model):

ỹi,r,t = β1ỹi,r,t−1 + β2ỹi,r,t−2 + ...+ βpỹi,r,t−p + βp+1e
2
i,r,t−1 + ei,r,t, t = 1, ..., N. (4.2)

Again, e2i,r,t−1 is referred to the first lag of transformed residuals and the same assumption as before is

made. Solely the first lag of transformed residuals contains important information and is able to systemat-

5Autoregressive models with nonlinear transformations of higher lags of time series values led to equal result conclusions and
thus contain a negligible predictive content.
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ically improve the forecasting performance of a simple linear model.6 Both transformed Autoregressive

models can be estimated by Ordinary Least Squares methods by simply adapting the common regression

matrices.

4.2 Forecast evaluation

Once, all parameters are estimated it is easy to compute a one-step ahead forecast by means of the

following two equations:

ŷt+1|t = α̂+ β̂1yt+1−1 + β̂2yt+1−2 + ...+ β̂pyt+1−p + β̂p+1y
2
t+1−1 (4.3)

and

ŷt+1|t = α̂+ β̂1yt+1−1 + ...+ β̂pyt+1−p + β̂p+1e
2
t+1−1, (4.4)

with yi = ỹi + ȳ for the latter model. Compared to a multi-period ahead forecast, forecasting a nonlinear

model one period ahead does not pose any problem. For example, consider a first order SETAR model

with delay order one, lag orders one, threshold variable qj and two regimes:

yt = (β10 + β11yt−1 + e1t )I(yt−1 < qj) + (β20 + β21yt−1 + e2t )I(yt−1 ≥ qj), (4.5)

where ejt ∼ nid(0, σ2j ), j=1,2. I(·) is an indicator function that is equal to one if the condition in

parenthesis holds. Otherwise it is zero. The one-step ahead forecast for this SETAR model is then given

by:

ŷt+1|t = E(yt+1|yt < qj)I(yt < qj) + E(yt+1|yt ≥ qj)I(yt ≥ qj), (4.6)

where E(yt+1|yt < qj) = β̂10 + β̂11yt and E(yt+1|yt ≥ qj) = β̂20 + β̂21yt. One-step ahead forecasts of

SETAR models with higher lag orders and further regimes are straightforward.

The following remarks have to be considered:

(1) ŷj = yj for j ≤ t

(2) Unobservable observations yt+1 are replaced by its optimal forecasts ŷt+1

(3) Residuals in the first forecasting step are equal to zero: et = 0 for t ≤ 0

6This assumptions was tested as well and could be confirmed for this study.
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εt+1 = yt+1 − ŷt+1 is the corresponding one-step ahead forecast error. The forecast uncertainty is

defined by the forecast variance:

σ̃i,r,t =
√
σ2i,r,t(1 + yi,r,t−1(X′X)−1yi,r,t−1), (4.7)

with

σ2i,r,t =
1

N −K

T∑
t=1

êi,r,têi,r,t. (4.8)

N is the number of observations and K is the column size of the regressor matrix.

4.3 Measuring the forecasting performance

According to Herwartz (2010a, 2010b) and Marcellino et al. (2006), this subsection introduces five loss

functions that are used to appraise the forecasting performance of two competing forecasting models.

Moreover, Mean group statistics for aggregating across time series and economies are explained. Each

implementation compares a specific forecasting model of interest with a benchmark model. The basic

benchmark model is a linear Autoregressive model as in equation (2.1) which does not include any non-

linear transformation of lagged residuals or time series values. Based on the choice of AIC or BIC

and rolling or expanding estimation window, the benchmark model uses the same specification and es-

timation strategy. The objective of this study are nonlinear transformations and its predictive content,

different estimation methods and model selection procedures are used for robustness reasons. In order

to detect a reliable statement about the average forecasting performance of transformed Autoregressive

models, the benchmark model is adjusted according to selected estimation and modeling procedures.

The benchmark model is labeled by ∗ and a specific forecasting model of interest by •. All time series

were separated into an in-sample period (t = 13, ..., T ), and an out-of-sample period (t = T +1, ..., N),

where T=131-iro and N=154-iro (see section 4.1). Each out-of-sample forecasting step provides a one-

step ahead forecasting error εt+1 and a forecasting variance σ̃i,r,t on which basis the following five loss

functions are computed.

(1) Differential of relative Mean Absolute forecast Error (DMAE)

DMAE•i,r = RMAE•i,r −RMAE∗i,r (4.9)
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with

RMAE•i,r =
1

23

N∑
t=T+1

|yi,r,t − ŷi,r,t|
σ̂i,r,t

. (4.10)

RMAE is the Relative Mean Absolute forecast Error and

σ̂i,r,t =

√√√√ 1

t−K

t∑
j=1

êi,r,j êi,r,j (4.11)

is a strategy- and transformation invariant estimator of the residual variance. êi,r,t are computed based

on the whole set of regressors X = {1, y−1, ..., y−pmax}, where 1 is a constant vector of ones. K is the

column size of the regressor matrix X.

(2) Differential of frequencies for Minimum absolute forecast errors (DMIN )

DMIN•i,r =
1

23

N∑
t=T+1

I(|ε∗i,r,t| ≤ |ε•i,r,t|)− I(|ε•i,r,t| ≤ |ε∗i,r,t|), (4.12)

εi,r,t = yi,r,t - ŷi,r,t|t is the forecast error and I(·) as an indicator function.

(3) Differential of frequencies for minimum ex-ante uncertainty (DPUC)

DPUC•i,r =
1

23

N∑
t=T+1

I(σ̃∗i,r,t ≤ σ̃•i,r,t)− I(σ̃•i,r,t ≤ σ̃∗i,r,t), (4.13)

with σ̃i,r,t as the estimated ex-ante forecast uncertainty (see 4.7).

(4) Directional Accuracy loss statistic (DA)

DAi,r =
1

23

N∑
t=T+1

I(|d̃a•i,r,t| > |d̃a
∗
i,r,t|)− I(|d̃a•i,r,t| < |d̃a

∗
i,r,t|), (4.14)

with

d̃ai,r,t = I(yi,r,t × ŷi,r,t ≥ 0)− I(yi,r,t × ȳi,r,t ≥ 0) (4.15)

as the directional accuracy excess over the naive forecast ȳi,r,t = 1
n

∑n
t=1 yi,r,T−t+1. n is the number of

observations. This forecast is averaging the in-sample observations of a time series.
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(5) Relative Mean Squared Forecast Error (RMSFE)

RMSFEi,r =
MSFE•i,r
MSFE∗i,r

(4.16)

with

MSFEi,r =
1

23

N∑
t=T+1

ε2i,r,t. (4.17)

Positive values of loss functions (1),(2),(3) are in favor of the benchmark model. Negative values

are related to a better forecasting performance of the model that is under consideration. The reverse

condition is true for the Directional accuracy loss statistic in (4). A value greater than one for loss

function RMSFE provides a better forecasting performance of the benchmark model. All five loss

functions are computed for each time series (382 series), for each model selection procedure and for

each estimation method.

Absolute forecast errors εt+1 and forecast uncertainties σ̃i,r,t are scale dependent measures. This

may present a problem for the aggregation over time series and economies. In order to avoid this prob-

lem, all measures are converted into scale free statistics. Calculating loss function DMAE, Relative

Mean Absolute Errors are scale adjusted by the estimated modeling-invariant in-sample standard error.

Accordingly, this measure treats large and small forecast errors in the same way. Indicator functions

in (2),(3) and (4) are additional helpful tools and translate the forecasting performances into scale free

statistics. A disadvantage of the DPUC loss function is its dependency on the model size (for exam-

ple, see Herwartz, 2010a). The forecast uncertainty σ̃i,r,t is negatively related to the column size of the

regressor matrix. For further discussion on this issue, see section 5.

4.4 Mean group statistics

Considering 382 available time series and 23 forecasting steps, 8786 = 382 · 23 loss function values

are computed for each implementation, each considered transformation and each estimation procedure.

Because of the large number of available loss functions, this study does not focus on the forecasting

performance of single time series, it rather answers the question which forecasting model performs better

on average and most frequently leads to the best forecasting results.

In order to compare alternative forecasting schemes, Mean Group-statistics (MG-statistics) are eval-

uated according to Herwartz (2010a). The forecasting performance of economy i, averaged over its Ri
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time series is given by:

ĝ•i = 1/Ri

Ri∑
r=1

ĝ•i,r, (4.18)

where ĝ•i,r represents any of the five loss functions described above. The cross sectional Mean Group

statistic is then denoted by:

4̃•G =
1

10

10∑
i=1

ĝ•i . (4.19)

Furthermore, the null hypothesis H0:4̃•G = 0 is tested against the alternative hypothesis H1:4̃•G 6= 0.

For this purpose, a standard t-ratio-test using the following test statistic is applied:

t =
√

10
4̃•G − 0

σ4̃•G

. (4.20)

Testing the significance of the RMSFE loss function (5) zero is replaced by one in this statistic. σ•4̃G
is

the standard deviation of cross sectional Mean Group statistics.

5 Empirical results

5.1 Full sample results

Table 5.1 documents all MG-statistics for the full sample evaluation of the transformed AR(p) model.

Test statistics are also provided in parenthesis and bolded values indicate significance at the 5% level. The

left-hand side panel provides the outcome for implementations using an expanding estimation window

and the right-hand side panel the rolling estimation results. As obvious from this table, the benchmark

model, a simple linear model, provides more frequently minimum absolute forecast errors (DMIN ).

Accordingly, any considered transformation of lagged time series values achieves lower absolute fore-

cast errors than a simple Autoregressive model. But, applying transformations (·)2, cos(·) or exp(·) leads

to negative values that are in favor of the transformed AR(p) model. Using an expanding estimation win-

dow these values are even significant unequal to zero. The next loss function (DMAE), measuring the

differential of relative mean absolute forecast errors is always lower than zero. Nevertheless, these val-

ues are mostly not significant in favor of transformed models. The directional accuracy over the naive

forecast ȳi,r is constantly significant higher than zero. This implies, that transformed AR(p) models lead

to superior ’forecasting signs’ than the benchmark model and the naive forecast. ’Forecasting signs’ in

12



this context means that forecasts of the transformed AR(P) model exhibit the same signs as the true time

series values. This conclusion holds independent of the considered estimation window. Relative mean

squared forecast errors (RMSFE) indicate equal forecasting results for all competing implementations.

Each value of this loss function is not significant unequal to zero. On average, adding nonlinear transfor-

mations of lagged time series values to an Autoregressive process does not result in lower mean squared

forecast errors.

Results for loss function DPUC, regarding the ex-ante forecast uncertainty are striking. Consid-

ering the expanding estimation window first, this MG statistic is positive for implementations related

to transformations (·)2, cos(·) and exp(·). Accordingly, the benchmark model achieves lower ex-ante

uncertainties. The remaining implementation provide not significant negative values. Forecasting re-

sults for the rolling estimation window look quite superior. Each considered transformed AR(p) model

provides a highly lower ex-ante forecast uncertainty than the benchmark model. As mentioned in sec-

tion 4.3 and pointed out by Herwartz (2010a), this loss function is negatively related to the number of

regressors. Therefore, the ex-ante forecast uncertainty increases if the model size (K=p̂+1) decreases

and this consequently affects the results of this loss function. Whereas the AIC tends to overestimate

lag order p̂, the BIC is known for its parsimonious lag order selection7. In comparison to the bench-

mark model, both information criterions usually select a smaller lag order for transformed AR(p) models

along with the rolling estimation window and for the expanding estimation window along with the BIC

criterion. Therefore, the ex-ante forecast uncertainty can be reduced by applying nonlinear transforma-

tions of lagged time series values along with the rolling estimation window and the BIC model selection

approach. The distinction between the AIC and BIC model selection is due to the constantly lower

selected model size for the latter criterion. Hence, it is mostly leading to superior forecast uncertainty

results.

Overall, transformed AR(p) models provide superior ex-ante uncertainty (DPUC) and directional

accuracy excess (DA) loss function values. Compared to the benchmark model, absolute and squared

forecast errors can not be improved by using additional transformed time series values. With respect to

these loss functions, nonlinear transformations of lagged time series do not contain helpful predictive

content and are not able to significantly improve the overall forecasting performance of simple AR(p)

models. Nevertheless, the overall forecasting results are superior for the expanding estimation window.

This approach is using more available sample information and thus generally leads to lower loss functions

values that are related to forecast errors (DMIN,DMAE,RMSFE). The remaining two functions

7This property was supported by the empirical results in this study. But still, the overall lag order selection was very similar for
both model selection procedures.
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Table 5.1: Results for the transformed Autoregressive AR(p) model

Transformed Autoregressive model
expanding estimation window rolling estimation window

trans. IC DMIN DMAE DPUC DA RMSFE DMIN DMAE DPUC DA RMSFE

(·)2 AIC -2.411 0.466 7.970 0.219 1.001 -0.465 -0.020 -82.800 0.238 0.998
(2.8) (-2.83) (1.78) (2.97) (0.45) (-0.14) (-0.47) (-73.21) (3.9) (-0.84)

(·)2 BIC -2.835 -0.144 12.182 0.291 0.999 -0.214 -0.099 -83.212 0.312 0.997
(-0.99) (-2.47) (2.71) (2.84) (-0.23) (-0.67) (-0.21) (73.03) (3.34) (-1.29)

(·)3 AIC -0.658 0.746 -4.761 0.079 1.009 -0.703 0.306 -84.520 0.101 1.007
(1.87) (-0.38) (-1.19) (3.5) (2.74) (0.8) (-0.4) (-81.62) (3.46) (2.27)

(·)3 BIC -0.542 0.181 -1.499 0.113 1.006 -0.868 0.255 -85.257 0.134 1.005
(0.52) (-0.32) (-0.44) (4.0) ( 2.36) (0.69) (-0.61) (-80.67) (3.34) (1.71)

sin(·) AIC -0.658 0.746 -4.761 0.079 1.009 -0.681 0.306 -84.520 0.101 1.007
(1.87) (-0.38) (-1.19) (3.5) (2.75) (0.8) (-0.39) (-81.62) (3.46) (2.27)

sin(·) BIC -0.542 0.181 -1.499 0.113 1.006 -0.868 0.255 -85.235 0.134 1.005
(0.52) (-0.32) (-0.44) (4.0) (2.36) (0.69) (-0.61) (-80.66) (3.34) (1.71)

cos(·) AIC -2.411 0.466 7.970 0.219 1.001 -0.465 -0.020 -82.800 0.238 0.998
(2.8) (-2.83) (1.78) (2.97) (0.46) (-0.14) (-0.47) (-73.21) (3.9) (-0.83)

cos(·) BIC -2.835 -0.144 12.182 0.291 0.999 -0.214 -0.099 -83.212 0.312 0.997
(-0.99) (-2.47) (2.71) (2.84) (-0.22) (-0.67) (-0.21) (-73.03) (3.34) (-1.28)

tan(·) AIC -0.503 0.744 -4.699 0.079 1.009 -0.659 0.305 -84.520 0.101 1.007
(1.87) (-0.29) (-1.19) (3.5) (2.72) (0.8) (-0.38) (-81.62) (3.46) (2.25)

tan(·) BIC -0.499 0.179 -1.436 0.113 1.006 -0.868 0.254 -85.257 0.134 1.005
(0.52) (-0.29) (-0.42) (4.0) (2.35) (0.69) (-0.6) (-80.67) (3.34) (1.69)

exp(·) AIC -2.320 0.464 7.618 0.219 1.001 -0.577 -0.021 -82.799 0.238 0.998
(2.78) (-2.63) (1.69) (2.97) (0.58) (-0.14) (-0.59) (-73.94) (3.9) (-0.75)

exp(·) BIC -2.874 -0.145 11.764 0.291 1.000 -0.480 -0.099 -83.256 0.312 0.997
(-0.99) (-2.5) (2.78) (2.84) (-0.15) (-0.66) (-0.46) (-73.47) (3.34) (-1.25)

Note: MG- and test-statistics 4̃•
G = 0 for loss functionsDMIN ,DMAE,DPUC,DA andRMSFE. A maximum

lag order of 12 is used in this application. MG statistics are multiplied by 100 (except for loss function RMSFE).
Small numbers in parenthesis denote t-ratios for testing the null hypothesisH0 : 4̃•

G = 0(or 1). Bolded values indicate
significance at the 5% level. Considered nonlinear transformations (trans.) and information criterions (IC) are given
as well.

DA and DPUC provide superior forecasting results for the rolling estimation window. Furthermore, a

significant distinction between the various considered transformation is not recognizable for this model.

Using the expanding estimation window it is striking that transformations (·)2, cos(·) and exp(·) are

leading to the best results for loss functions DMIN , DMAE and DA. This is especially true for BIC

model selection procedure. Considering a rolling estimation window these distinction are not visible

anymore. Solely loss function DA is leading to superior forecasting results for these transformations.
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Table 5.2: Results for the transformed Autoregressive Moving Average model ARMA(p,q)

Transformed Autoregressive Moving Average model
expanding estimation window rolling estimation window

trans. IC DMIN DMAE DPUC DA RMSFE DMIN DMAE DPUC DA RMSFE

AIC -14.385 -0.818 -66.272 2.272 1.187 -12.118 1.676 -89.352 2.106 1.126
(-7.24) (-1.2) (-17.17) (15.43) (6.02) (-7.86) (0.85) (-68.32) (11.94) (-0.1)

BIC -16.877 -1.369 -67.463 2.223 0.982 -14.082 -1.438 -92.398 2.002 0.988
(-8.34) (-2.37) (-16.57) (12.99) (-1.45) (-8.82) (-3.22) (-68.7) (11.86) (-1.72)

(·)2 AIC -16.003 -1.392 -58.243 2.269 0.980 -15.044 -1.421 -86.205 2.080 0.984
(-10.4) (-3.14) (-11.63) (13.81) (-2.03) (-12.38) (-3.36) (-44.74) (11.93) (-1.67)

(·)2 BIC -16.894 -1.459 -51.645 2.277 0.980 -15.615 -1.496 -81.055 2.002 0.985
(-8.67) (-3.4) (-9.84) (13.27) (-2.01) (-12.64) (-3.78) (-28.14) (12.12) (-1.12)

(·)3 AIC -15.968 -1.357 -60.114 2.269 0.983 -14.659 -1.326 -87.746 2.071 0.988
(-7.93) (-2.93) (-14.01) (13.81) (-1.13) (-9.28) (-3.15) (-54.06) (12.34) (-1.22)

(·)3 BIC -17.137 -1.438 -61.577 2.255 0.982 -15.344 -1.447 -86.013 2.002 0.987
(-8.12) (-3.2) (-11.49) (12.62) (-1.15) (-9.7) (-3.45) (-31.25) (12.12) (-0.87)

sin(·) AIC -14.550 -0.898 -65.713 2.272 1.081 -12.259 3.414 -88.939 2.106 1.092
(-7.44) (-1.42) (-15.75) (15.43) (10.21) (-7.94) (0.9) (-64.34) (11.94) (-0.18)

sin(·) BIC -16.834 -1.311 -66.731 2.223 1.002 -14.102 -1.438 -92.376 2.002 0.988
(-8.35) (-2.35) (-15.45) (12.99) (9.52) (-8.73) (-3.21) (-68.81) (11.86) (-1.7)

cos(·) AIC -12.589 0.322 61.158 1.904 1.002 -11.457 0.400 -78.453 1.646 1.001
(-6.75) (1.59) (37.7) (11.49) (7.08) (-6.11) (1.63) ( -36.73) (8.32) (7.22)

cos(·) BIC -14.434 0.375 77.192 1.879 1.002 -13.673 0.352 -75.876 1.601 1.002
(-7.02) (2.24) (23.09) (10.48) (8.97) (-6.98) (1.98) (-21.43) (8.09) (9.16)

tan(·) AIC -14.376 -0.949 -66.988 2.270 1.067 -12.372 0.521 -89.525 2.094 1.011
(-7.44) (-1.49) (-17.55) (14.65) (10.29) (-8.1) (0.37) (-65.78) (11.69) (-0.73)

tan(·) BIC -16.921 -1.361 -67.681 2.234 0.981 -14.106 -1.440 -92.398 2.002 0.988
(-8.33) (-2.35) (-16.49) (12.9) (-2.76) (-8.97) (-3.23) (-68.7) (11.86) (-1.85)

exp(·) AIC -12.987 0.320 41.841 1.880 1.002 -11.059 0.391 -78.499 1.635 1.000
(-6.75) (1.6) (14.41) (10.7) (7.01) (-5.5) (1.61) (-36.8) (8.54) (7.15)

exp(·) BIC -13.845 0.372 45.043 1.867 1.002 -13.136 0.347 -75.715 1.590 1.001
(-7.2) (2.24) (10.02) (10.25) (9.07) (-7.03) (1.97) (-21.16) (8.29) (9.11)

Note: MG- and test-statistics 4̃•
G = 0 for loss functionsDMIN ,DMAE,DPUC,DA andRMSFE. A maximum

lag order of 12 is used in this application. MG statistics are multiplied by 100 (except for loss function RMSFE).
Small numbers in parenthesis denote t-ratios for testing the null hypothesisH0 : 4̃•

G = 0(or 1). Bolded values indicate
significance at the 5% level. Considered nonlinear transformations (trans.) and information criterions (IC) are given
as well.

Table 5.2 lists all loss functions values for the comparison of the benchmark model and transformed

ARMA(p,q) models. The first two rows compare a simple ARMA(p,q) model with no transformed

lagged residuals to a linear Autoregressive model. It is obvious, that a simple ARMA(p,q) model already

represents an improvement compared to a simple Autoregressive model. Almost all loss functions are

significant in favor of the ARMA(p,q) model. Applying the rolling estimation window, the ex-ante un-

certainty (DPUC) can be greatly reduced by not applying a simple linear process but an ARMA(p,q)

process. Forecast errors (DMIN , DMAE and RMSFE) are as well usually lower if such a model is

used. The directional accuracy over the naive forecast (DA) clearly provides significant inferior fore-

casting results for the benchmark model. Furthermore, nonlinear transformations of lagged residuals do

carry a even greater predictive content. Any considered transformed ARMA(p,q) model mostly outper-

forms the linear benchmark model. Particular for the rolling estimation window, all MG-statistics are

almost anytime significant in favor of transformed models. Again, the ex-ante uncertainty loss function

depends on the model size and leads to superior forecasting results for the BIC model selection ap-

proach. A transformed model is leading to a lower ex-ante uncertainty if the rolling estimation window
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is applied. Using the expanding estimation window leads to partially positive values that are in favor of

the benchmark model. Whereas the majority of loss function values for the rolling estimation procedure

are significant in favor of transformed ARMA(p,q) models, forecasting results for the expanding win-

dow do not look that clear. Both, mean absolute forecast errors and mean square forecast errors are not

significantly negative. A clear distinction between the forecasting results of the benchmark model and

the transformed ARMA(p,q) model can not be found for these cases.

Nevertheless, the following three transformations constantly achieve the best forecasting results:

(·)2, (·)3, sin(·) and tan(·). These transformations obtain the lowest loss function values connected

to absolute and mean squared forecast errors (DMIN and DMAE) and mainly along with the BIC

model selection procedure. The ex-ante uncertainty loss function provides the best forecasting results

for transformations sin(·) and tan(·). The remaining two loss functions (DA and RMSFE) provide

no outstanding results for certain transformations. But still, nonlinear transformations of lagged resid-

uals contain important predictive content and obviously improve the forecasting performance of simple

Autoregressive models.

5.2 Subsample results

Considering all available time series, this study figured out that nonlinear transformations of lagged time

series and lagged residuals contain a significant predictive content and help to improve the forecasting

performance of simple linear Autoregressive models. Especially nonlinear transformations of lagged

residuals reduce both, forecasting uncertainty and forecast errors. Certain transformations of lagged

residuals led to even better results with respect to forecast errors than others. This section now examines

whether these results can be carried over to different subsamples of time series. The objective is to find

reliable statement about the forecasting performance of transformed Autoregressive models with respect

to different economic variables and may figure out which transformed model works best for which type

of time series.

The overall forecasting performance of each considered group of variables8 is very similar to the

forecasting performance of the full sample. Especially subsamples ”Industrial Production Index” (88

time series), ”Consumer Price Index” (126 time series) and ”Producer Price Index” (57 time series)

which includes the most detected nonlinear time series provide the same magnitude of results. The

main difference lies in the loss functions’ significance. Especially the transformed AR(p) model leads

8The minority of time series of each group have been tested to be nonlinear according to both considered nonlinearity tests (see
section 3).
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to barely deviating forecasting results for all type of considered variables. Several loss functions pro-

vide constantly higher or lower loss function, but remain the same result conclusions as the full sample

evaluation.

Applying both transformed Autoregressive models for time series that have been detected to be

’nonlinear’ according to nonlinearity tests leads to quite different forecasting results. Whereas Keenan’s

nonlinearity test detects 133 time series to be nonlinear, McLeod and Li’s tests solely finds 82 nonlinear

time series. Transformed AR(p) models generally provide inferior forecasting results for nonlinear time

series according to Keenan‘s test. But, applying a transformed ARMA(p,q) model to these time series

leads to significant better forecasting results. This is especially true for the expanding estimation win-

dow with loss function values almost as twice as big as before. Nevertheless, an outstanding nonlinear

transformation is no longer recognizable. Using a transformed AR(p) model for nonlinear time series

according to McLeod and Li’s test provides loss function values that are strongly in favor of the bench-

mark model and is therefore not recommended. Transformed ARMA(p,q) models provide similar results

as the full sample evaluation and no great distinction is recognizable. These general results can be car-

ried over to subsamples of time series detected to be nonlinear. Any transformation of lagged residuals

provide especially good forecasting results if time series are tested to be nonlinear according to Keenan’s

test. Nevertheless, the overall performance of both transformed models does not depend on considered

group of variables.

5.3 Results for the (Self-Exciting) Threshold Autoregressive model

This last subsection compares the forecasting results of the nonlinear (Self-Exciting) Threshold Autore-

gressive model (SETAR) and the simple linear Autoregressive model. Its related forecasting results are

stored in Table 5.3. Considering the full sample evaluation first, the overall forecasting performance is

clearly in favor of the nonlinear SETAR model. Loss function DMAE provides negative values that

are significant in favor of the nonlinear model (expanding estimation window). Applying a rolling esti-

mation window this is only true for the BIC model selection approach. The ex-ante uncertainty can be

significantly reduced by applying a Threshold model using a rolling estimation window. Applying an ex-

panding estimation window does not lead to a significant higher forecast uncertainty for the benchmark

model. With respect to the directional accuracy excess over the naive forecast (DA) nonlinear Threshold

models are again preferable. Carrying a value around two, this loss function clearly indicates better fore-

casting results for the nonlinear model than for the benchmark model. Regarding Relative Mean Squared

Forecast errors (RMSFE), the linear benchmark model provides significant lower forecast errors for

17



Table 5.3: Results for (self-Exciting) Threshold Autoregressive model

Threshold Autoregressive Model
expanding estimation window rolling estimation window

IC DMIN DMAE DPUC DA RMSFE DMIN DMAE DPUC DA RMSFE

All time series
AIC 16.154 -82.057 12.118 2.075 1.089 16.597 16.098 -42.279 2.212 1.0817

(8.78) (-36.99) (1.82) (16.66) (3.27) (8.96) (6.44) (-8.46) (16.27) (2.89)

BIC 15.524 -82.648 1.226 2.116 1.083 15.684 -83.103 -49.725 2.055 1.043
(9.96) (-36.46) (0.28) (28.25) (1.31) (11.24) (-37.85) (-12.87) (16.26) (2.17)

Industrial Production Index
AIC -140.095 -0.593 24.802 1.433 1.133 -140.920 0.593 -19.565 1.433 1.137

(-0.22) (-25.98) (3.00) (6.58) (3.07) (0.22) (-26.18) (2.88) (6.58) (1.43)

BIC -141.318 -4.644 10.97 2.519 1.082 -142.221 -2.569 -36.561 2.519 1.086
(-1.93) (-25.52) (1.63) (11.01) (2.79) (-1.10) (-25.69) (-7.13) (11.01) (2.91)

Consumer Price Index
AIC -100.215 3.244 -0.345 2.519 1.159 -100.740 1.311 -44.859 2.519 1.161

(1.16) (-17.07) (-0.05) (13.17) (4.56) (0.48) (-17.17) (-9.26) (13.17) (4.76)

BIC -101.222 3.658 -12.008 1.967 1.186 -101.668 2.346 -62.526 1.967 1.190
(1.25) (-15.89) (-1.96) (10.20) (3.58) (0.84) (-16.02) (-16.79) (10.20) (3.73)

Producer Price Index
AIC -18.665 37.757 18.993 2.212 2.035 -17.467 36.994 -44.012 2.212 2.024

(11.37) (-2.81) (1.86) (7.68) (4.50) (10.93) (-2.67) (-5.47) (7.68) (4.45)

BIC -20.397 38.062 38.673 1.526 1.943 -19.146 37.452 -38.825 1.526 1.932
(12.50) (-3.29) (5.41) (5.55) (4.85) (12.51) (-3.16) (-4.77) (5.55) (4.79)

Unemployment
AIC 31.544 -59.786 11.192 2.035 1.454 30.435 23.040 -45.236 2.405 1.451

(8.47) (-6.31) (1.08) (6.43) (2.55) (8.51) (5.9) (-7.02) (7.63) (2.50)

BIC 26.179 -62.397 10.453 2.220 1.384 26.919 -60.605 -50.416 2.590 1.378
(6.15) (-6.63) (0.91) (7.00) (2.91) (7.04) (-6.48) (-7.48) (8.32) (2.83)

Financial Market
AIC -37.229 38.440 13.596 2.001 1.467 -39.612 38.026 -43.133 2.001 1.461

(11.00) (-4.77) (1.46) (7.33) (4.10) (10.72) (-5.22) (-7.25) (7.33) (4.0)

BIC -33.252 42.443 3.244 1.725 1.449 -35.689 41.477 -51.691 1.725 1.444
(12.28) (-4.19) (0.40) (6.44) (4.35) (11.99) (-4.74) (-9.26) (6.44) (4.19)

Note: MG- and test-statistics 4̃•
G = 0 for loss functions DMIN , DMAE, DPUC, DA and RMSFE. A

maximum lag order of 6 is used in this application. MG statistics are multiplied by 100 (except for loss function
RMSFE). Small numbers in parenthesis denote t-ratios for testing the null hypothesis H0 : 4̃•

G = 0(or 1).
Bolded values indicate significance at the 5% level. Considered information criterions (IC) are given as well.

the AIC criterion. Nevertheless, the benchmark model more frequently provides lower absolute forecast

errors (DMIN ).

Considering subsamples of time series next, these forecasting results look almost the same. Espe-

cially subsample ”Unemployment” achieves the same magnitude of loss functions. Time series related

to groups ”Industrial Production Index” and ”Consumer Price Index” provide forecasting results that are

even stronger in favor of the nonlinear SETAR model. It is striking that loss function DMIN provides

highly negative but still not significant values. Loss function DMAE exhibits positive values that are

significant in favor of the linear benchmark model. The remaining loss functions provide the same results

as for the full sample evaluation. Subsamples ”Producer Price Index” and ”Financial Market” are leading

to superior values of loss function DMIN .
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6 Conclusion

This study examined whether nonlinear transformation of lagged residuals or time series values carry

important predictive content that improves the average forecasting performance of simple Autoregressive

models. Furthermore, it investigated the forecasting performance of a simple nonlinear model, the (Self

exciting) Threshold Autoregressive model. A large scale comparison over 382 time series from ten

European economies was applied. The forecasting performance was appraised by means of several loss

functions, Mean Group statistics and simple t-test statistics. Each implementation compared a specific

forecasting model with a benchmark model, the simple Autoregressive model. Furthermore, all models

have been tested for its robustness over different types of economic variables. Three notably findings can

be detected from this empirical application.

The first major finding is that nonlinear transformations of lagged residuals (transformed ARMA(p,q)

models) provide a mostly significant better forecasting performance than the benchmark model. Esti-

mating transformed ARMA(p,q) models by a rolling window procedure leads to further enhancements

compared to forecast models estimated by an expanding window. The best forecasting results constantly

appeared in conjunction with the following three transformations of lagged residuals: (·)2, (·)3 and

cos(·).

A second main finding is that Autoregressive models with additional transformations of lagged time

series values (transformed AR(p) model) do not generally lead to superior forecasting results. Absolute

and mean squared forecast errors can not be reduced by transformations of lagged time series. Never-

theless, the ex-ante forecast uncertainty (measured by minimum estimates of the forecast errors standard

deviation) is lower for transformed AR(p) models, as well as the loss function measuring directional

accuracy excess over a naive forecast (ȳi,r). A significant distinction between various nonlinear trans-

formations can not be found. These results are in particular true for the expanding estimation window.

In addition, subsample implementations have been evaluated to investigate whether these findings are

robust for different types of economic variables (Industrial Production Index, Consumer Price Index,

Producer Price Index, Unemployment and Financial Market). The previous described results can be car-

ried over to each considered group of variables. There is no clear result that transformed Autoregressive

models most frequently performs the best for certain type of time series. Furthermore, it can not useful

to apply transformed models especially to time series that have been detected to be nonlinear according

to nonlinearity tests. This procedure leads to significant inferior forecasting results for certain type of

tests.

The last finding is that a nonlinear Threshold model is generally able to capture certain behavior in
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the data and therefore provides better forecasting results than a simple Autoregressive model, especially

for the rolling estimation window. This finding is widely independent of considered groups of time series.

Nevertheless, such a nonlinear Threshold model is unsuitable for the usage with higher lag orders and

should be applied along with relative low lag orders. Furthermore, applying an AIC or BIC procedure

for the lag order selection of all considered models does not lead to significant deviating forecast results

since both criterion usually choose similar model sizes.
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A Data appendix

A total of 382 time series have been examined in this study. All time series were categorized into five

groups of variables: Industrial Production Index (88 series), Consumer Price Index (126 series), Producer

Price Index (57 series), Unemployment (48 series) and Financial Market (63 series). They originate from

different sources like Eurostat, IMF International Financial Statistics or Main Economic Indicators by

the OECD and are online available via Datastream.

Table A.1: Detailed data information

no. series description information
Industrial Production Index

1 ips11 Industrial production index: total index 2000=100, pc
2 ips12 Industrial production index: consumer goods 2005=100, vc
3 ips13 Industrial production index: consumer durable goods 2005=100, vc
4 ips25 Industrial production index: manufacturing - electrical equipment 2005=100, vc
5 ips43 Industrial production index: manufacturing, total 2005=100, vc
6 ipi Industrial production index: intermediate goods 2005=100, vc
7 ipmi Industrial production index: mining and quarrying 2005=100, vc
8 mdq Industrial production index: new orders, capital goods 2005=100, vc
9 moq Industrial production index: new orders, manufacturing 2005=100, vc

Financial Market
10 fy Long term government Bond yield in in %
11 fm1 Money supply M1: Notes and coins in circulation, traveler’s checks of

non-bank issuers, demand deposits, other checkable deposits
million e/£/krona

12 fm2 Money supply M2: M1 + savings deposits, time deposits million e/£/krona
13 fm3 Money supply M3: M2 + large time deposits million e/£/krona
14 ex Nominal effective exchange rate: cpi based, real 2005=100, vc
15 fer Foreign exchange rate reserves million US $
16 spi Share price index 2000=100

Unemployment
17 lu Total unemployment rate in %
18 lu25 Unemployment rate: persons under 25 in %
19 lo25 Unemployment rate: persons over 25 in %
20 luw Unemployment rate: women in %
21 lum Unemployment rate: men in %

Producer price index (PPI)
22 pw PPI: consumer goods 2005=100, pc
23 pwx PPI: consumer goods excluding food, beverages and tobacco 2005=100, pc
24 pwd PPI: durable consumer goods 2005=100, pc
25 pwn PPI: non durable consumer goods 2005=100, pc
26 pwi PPI: intermediate goods 2005=100, pc
27 pwm PPI: manufacturing 2005=100, pc

Consumer price index (CPI)
28 pu CPI: all items (harmonized) 2005=100, pc
29 pu882 CPI: industrial goods 2005=100, pc
30 pu81 CPI: food and non alcoholic beverages 2005=100, pc
31 pu83 CPI: clothing and footwear 2005=100, pc
32 pu84 CPI: transport 2005=100, pc
33 puh CPI: housing, water electricity, gas and other fuels 2005=100, pc
34 pus CPI: miscellaneous goods and services 2005=100, pc
35 puc CPI: communications 2005=100, pc
36 pux CPI: all items less seasonal food 2005=100, pc
37 puxh CPI: all items less housing, water, electricity, gas and other fuels 2005=100, pc
38 pum CPI: all items less education, health and social protection 2005=100, pc
39 pu CPI: all itmes less energy 2005=100, pc
40 puxs CPI: all items less services 2005=100, pc

Note: Labels and description of all time series. All time series are seasonally adjusted and transformed into stationary time
series (via logarithm and differentiation up to two times). ps denotes a price index and vc indicates a volume index. The base
period is indicated by the year equal to 100.
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