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Abstract

Two recently published studies argue that conventional parameterizations of cumulative

prospect theory (CPT) fail to resolve the St. Petersburg Paradox. Yet as a descriptive theory

CPT is not intended to account for the local representativeness effect, which is known to

induce ‘alternation bias’ on binary iid sequences such as those generated by coin tossing in St.

Petersburg gambles. Once alternation bias is controlled for, conventional parameterizations

of CPT yield finite certainty equivalents for the St. Petersburg gamble, negating the suggested

need for reparameterization. Moreover, the associated willingness to pay estimates fall within

the generally accepted empirical range.
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1 Introduction

Several authors have recently addressed the question of whether cumulative prospect theory

(CPT) resolves the St. Petersburg Paradox (Blavatskyy, 2005; Rieger and Wang, 2006). These

authors show that direct application of CPT to the St. Petersburg gamble fails to resolve the

paradox under most conventional CPT parameterizations. They also propose a number of

remedial fixes to CPT, central among which is a constraint on the value function exponent to

be smaller than the probability weighting function exponent (α < γ). As this constraint is

violated by most experimentally determined CPT parameterizations,1 the remedy amounts to

a fundamental reparameterization of CPT.

Tversky and Kahneman’s (1992) CPT is a descriptive theory. It is consistent with stochastic

dominance and accounts for framing effects, nonlinear probability preferences,2 source depen-

dence, risk seeking behavior,3 loss aversion,4 and uncertainty aversion. Nowhere has it been

suggested that CPT’s descriptive power extends to local representativeness effects. As Tversky

and Kahneman (1992) stress, “Theories of choice are at best approximate and incomplete.”

Like numerous other heuristics, the operation of the representativeness heuristic (Tversky and

Kahneman, 1974) depends in a complex fashion not only on the structural formulation of the

decision problem, but also on its context and manner of presentation. Hence, explicit incor-

poration of the representativeness heuristic into the formal structure of CPT would limit its

applicability to a narrow range of problems. Incorporation of the binary sequence variant of the

representativeness heuristic, the local representativeness heuristic, into the formal structure of

CPT would limit its applicability still further. Thus, in order for CPT to function as a straight-

forwardly implementable general purpose descriptive theory, the local representativeness effect

must remain outside its formal structure and specification.

Nevertheless, it is evident that the coin-tossing sequence found in the St. Petersburg gamble

is precisely the sort of context where the local representativeness effect is likely to be operative.

Indeed many psychological studies of randomness perception and the local representativeness
1e.g. Abdellaoui (2000), Abdellaoui, Vossmann and Weber (2005), Bleichrodt and Pinto (2000), Gonzalez and

Wu (1999), Tversky and Fox (1995), and Tversky and Kahneman (1992)
2the certainty effect; overweighting small probabilities, underweighting large probabilities
3i.e. the reflection effect; risk seeking in losses and risk aversion in gains; diminishing sensitivity, whereby

individuals are more sensitive to changes near their status quo than to changes that are more remote from their

status quo
4losses are weighed more heavily than gains
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effect in particular have utilized coin-tossing experiments (e.g. Rapoport and Budescu, 1997; Ka-

reev, 1995). Moreover, these experimental studies of local representativeness have been designed

in such a fashion5 so as to allow ‘clean’ estimates of the alternation bias—i.e. estimates that are

free from the confounding of conditional probability distortion with outcome value weighting.

Under the alternation bias, subjects perceive negatively autocorrelated sequences as maxi-

mally random, while the runs that are characteristic of unbiased memoryless Bernoulli processes

are perceived as being excessively regular to be random. Therefore alternation bias leads to

the subjective association of a negative autocorrelation with known memoryless and unbiased

Bernoulli processes. This may be viewed as a subjective distortion of conditional probability. As

phenomena ranging from the Gambler’s Fallacy6 to behavior in the Monty Hall problem7 attest,

people without specialist training in probability theory generally process conditional probability

information differently than probability calculus intimates.

This note contends that once alternation bias is controlled for, conventional parameteriza-

tions of CPT do indeed succeed in resolving the St. Petersburg Paradox. The suggestion, made

by Blavatskyy (2005) and Rieger and Wang (2006), to constrain the value function exponent to

be smaller than the probability weighting function exponent (α < γ), confounds the subjective

distortion of conditional probability with (i) the subjective distortion of unconditional proba-

bility and (ii) the subjective valuation of outcomes. Reparameterization of CPT on the basis of

the St. Petersburg Paradox is not only unnecessary, but would also disturb the theory’s internal

consistency and narrow its scope of applicability.

This note builds upon insights derived from Rabin (2002) on local representativeness. The

following section briefly summarizes the local representativeness effect and presents empirical

estimates of fist-order and higher-order alternation bias. Section 3 uses these estimates to show:

(subsection 3.1) that alternation bias on its own is sufficient for the subjective (mathematical)

expectation of the St. Petersburg gamble to be rendered finite and within conventionally accepted

empirical bounds; (subsection 3.2) that alternation bias relaxes the Blavatskyy-Rieger-Wang
5by not invoking or bundling monetary payoffs with ‘Heads’ or ‘Tails’ realizations
6See e.g. Clotfelter and Cook (1993), Terrel (1994) and Croson and Sundali (2005).
7Also known as the ‘three door problem’; it is mathematically equivalent to the ‘three prisoner problem’.

Although bias is pervasive in these problems (Granberg and Brown, 1995; Granberg, 1999), nevertheless it is

possible to devise schemes that allow subjects to learn how to overcome their anomalous initial biases (Friedman,

1998; Krauss and Wang, 2003). In a market setting, the presence of a small proportion of bias-free agents suffices

to eliminate bias in prices (Kluger and Wyatt, 2004).

3



CPT finiteness constraint; and (subsection 3.3) that once alternation bias is controlled for, CPT

yields a finite willingness to pay for the St. Petersburg gamble, which moreover falls within

conventionally accepted empirical grounds. Section 4 concludes.

2 Local representativeness effect

That people display alternation bias in sequential randomization tasks was first hypothesized by

Reichenbach (1934).8 Experimental and observational evidence consistent with this hypothesis

amassed from the time that the hypothesis was first put to test. The effect is known by different

labels in different contexts—such as the Gambler’s Fallacy in gambling, and the alternation bias

in coin tossing—but these are specific examples of the local representativeness effect.9

People under the influence of the local representativeness effect attribute the salient proper-

ties of the population or generating process to short sequences. That is, such individuals do not

adequately distinguish between local features and the properties of the whole, and they apply

the latter to the former. For Bernoulli sequences this translates into local matching of outcome

proportions with those of the long-run process, i.e. (.5, .5) for unbiased coins, and excessive local

irregularity, i.e. a propensity to anticipate too many ‘reversals’ in short series.

This subjective predisposition to anticipate reversals is called the alternation bias, which

equates to a negative subjective autocorrelation whereby people expect too few streaks in random

sequences. Alternation bias effects have been documented up to sixth order (Budescu, 1987).

Most empirical studies place the first-order effect at P (H|T ) = .6 (see Budescu, 1987; Bar-

Hillel and Wagenaar, 1991; Kareev, 1995). Still, some studies have found an even stronger

first-order effect of P (H|T ) ∈ [.7, .8] (Gilovich, Vallone and Tversky, 1985). Taking higher-order

effects into consideration, Rabin (2002) derives the following conditional probabilities from data

presented in Rapoport and Budescu (1997): P (H|T ) = .585, P (H|HT ) = .46, P (H|HHT ) = .38

and P (H|HHH) = .298, where this last expression refers to the conditional probability of a

toss turning up ‘Heads’ given that the three immediately preceding tosses turned up ‘Heads’.

After rounding we obtain the following higher-order transition probabilities (see Table 1) with

an alternation bias that bridges, between first and third orders, the weaker and the stronger

alternation bias magnitudes reported in the literature.
8In Reichenbach’s terminology, a ‘negative recency’ effect.
9or the ‘law of small numbers’
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——— insert Table 1 here ———

3 Application to the St. Petersburg gamble

In the modern variant of the St. Petersburg Paradox, a subject is offered a stochastic payout of 2ñ

dollars, where ñ is the index of the first toss on which a fair, memoryless coin turns up ‘Heads’.10

The paradox arises because although the mathematical expectation of the gross St. Petersburg

gamble payout GStP =2ñ is infinite, people are typically willing to pay only a small, finite amount

to obtain this gamble. The theoretical literature favors Willingness To Pay (WTP) estimates

between $2 and $4. This accords with Bernoulli’s (1738) ‘expected moral worth’ solution which

he formalized using the logarithmic function: abstracting from prior wealth, the St. Petersburg

gamble is evaluated as E[u(GStP )] =
∑∞

n=1 2−n log(2n) =
∑∞

n=1
n
2n log(2) = 2 log(2) = log(4),

giving a certainty equivalent of $4 (Schmeidler and Wakker, 1998).11 With the exception of

Bottom, Bontempo and Holtgrave (1989), formal experimental studies of the St. Petersburg

gamble are thin on the ground, if for no other reason than the difficulty of bankrolling potentially

very large (infinite in expectation) payouts. Some sources report that the typical WTP is no

more than $10 (Chernoff and Moses, 1959), while others, such as Camerer (2005), report that

people typically disclose a WTP of approximately $20.

The St. Petersburg Paradox was the earliest example of an ‘anomaly’ in choice behavior that

led to a change in theory, insofar as it caused Bernoulli to supplant the Pascal-Fermat theory

of Expected Monetary Value (EMV) with what has become known as Expected Utility (EU).

Numerous alternative solutions to the paradox have subsequently been proposed.12 Moreover,

Yaari’s (1987) dual theory of choice under risk has shown that the concave utility function

(distortion of outcomes) solution is observationally indistinguishable from a distortion of prob-

abilities solution, and that as such, concave utility is therefore not a necessary precondition for

solving the St. Petersburg Paradox. Yet ultimately it was the mounting evidence of experi-

mentally demonstrated EU-violating ‘anomalies’—heuristics and biases of choice under risk and

uncertainty—that allowed CPT to emerge as an alternative to EU. Although CPT serves as a
10In Daniel Bernoulli’s (1738) variant of the St. Petersburg gamble, the subject’s (Paul’s) payout is 2ñ−1 ducats.
11If the payout is specified as 2ñ−1 dollars, then the certainty equivalent associated with the logarithmic utility

function is 2 currency units: E[u(2ñ−1)] =
∑∞

n=1 2−n log(2n−1) =
∑∞

n=1
n−1
2n log(2) = log(2).

12Alternative solutions proposed for the St. Petersburg Paradox are too numerous to be discussed in detail here.

For reviews see Samuelson (1977), Vlek and Wagenaar (1979) and Bottom, Bontempo and Holtgrave (1989).
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descriptive model for a number of distinct behavioral biases and effects, alternation bias is not

among them. Nevertheless, alternation bias is particularly relevant in the context of coin tossing

sequences.

The next subsection shows that alternation bias is sufficient on its own to induce finite and

moderate WTP for the St. Petersburg gamble. The following two subsections show in turn that

by controlling for alternation bias, currently popular CPT parameterizations do in fact satisfy

appropriately specified finiteness constraints for the St. Petersburg gamble, and moreover they

yield Certainty Equivalents (CEs) and WTP within the accepted empirical range.

3.1 Mathematical expectation revisited

In the present context, alternation bias enters the formulation of subjective (mathematical)

expectation by distorting the subject’s perception of the probability distribution of ñ, the index

of the first toss on which an unbiased memoryless coin turns up ‘Heads’.

Objectively ñ follows a geometric distribution with parameter p = 1
2 , i.e. the objective

probabilities are simply pn = 1
2(1− 1

2)n−1 = 2−n for n = 1, 2, ... .

Accounting for first-order alternation bias, under which P (H|T ) = .6 and P (T |T ) = .4,

the subjectively perceived probability of the coin turning up ‘Heads’ for the first time on toss n

then takes the form

pf-o
n =





P (H) = 1
2 for n = 1

1
2P (H|T )P (T |T )n−2 = .3 · .4n−2 for n ≥ 2

, (3.1)

which gives a subjectively distorted mathematical expectation of

Ef-o(GStP ) =
∞∑
n=1

pf-o
n 2n = 1 + .3

∞∑
n=2

.4n−22n = 1 +
(

.3
.42

) ∞∑
n=2

.8n

= 1 +
(

.3
.42

)[
.8
.2
− .8

]
= 7.0 . (3.2)

So under first-order alternation bias alone, WTP is limited to $7.0.

Accounting for higher-order alternation bias (see Table 1), the subjectively perceived prob-
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ability of the coin turning up ‘Heads’ for the first time on toss n then takes the form

ph-o
n =





P (H) = 1
2 n = 1

1
2P (H|T ) = 1

2 · .58 = .29 n = 2

1
2P (T |T )P (H|TT ) = 1

2 · .42 · .62 = .1302 n = 3

1
2P (T |T )P (T |TT )P (H|TTT )P (T |TTT )n−4 = 1

2 ·.42·.38·.7·.3n−4

= .05586 · .3n−4

n ≥ 4

(3.3)

which gives a subjectively distorted mathematical expectation of

Eh-o(GStP ) =
3∑

n=1

ph-o
n 2n +

∞∑
n=4

ph-o
n 2n =

3∑
n=1

ph-o
n 2n +

(
.05586

34

) ∞∑
n=4

.6n

=
3∑

n=1

ph-o
n 2n +

(
.05586

34

)[
.64

.4

]
= 5.436 . (3.4)

So under third-order alternation bias alone, WTP is limited to $5.436.

Relative to the objective geometric distribution, first-order alternation bias induces a higher

perceived probability of the coin-tossing sequence terminating on the second throw (p2 = .25 <

.3 = pf-o
2 ) than on subsequent throws (pn > pf-o

n ∀n ≥ 3), while third-order alternation bias

induces a higher perceived probability of the coin-tossing sequence terminating on the second

and third throws (p2 = .25 < .29 = ph-o
2 , p3 = .125 < .1302 = ph-o

3 ) than on subsequent throws

(pn > ph-o
n ∀n ≥ 4).

Both the first-order (3.2) and higher-order (3.4) estimates of WTP induced by alternation

bias alone fall within the generally accepted empirical range. Whereas Camerer (2005) shows

that the ‘anomalies literature’—through loss aversion13 in particular—provides a solution to

the St. Petersburg Paradox that requires neither a nonlinear value function nor a nonlinear

(unconditional) probability weighting function, equations (3.2) and (3.4) show that the anoma-

lies literature also gives rise to a second solution—based on alternation bias—which similarly

makes no requirement for a nonlinear value function or a nonlinear (unconditional) probability

weighting function.

3.2 CPT finiteness constraint revisited

Blavatskyy (2005) and Rieger and Wang (2006) contend that conventional parameterizations of

CPT fail to yield finite valuations for the St. Petersburg gamble, and that in order to resolve
13in conjunction with piecewise linear utility and large but finite upper ceiling on the maximum payout
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the St. Petersburg Paradox the parameterization of CPT must satisfy an additional constraint,

namely α < γ. Yet given what has been established above about the alternation bias—i.e.

(i) that it is well-documented, (ii) that it affects sequence trials exemplified by coin-tossing

sequences such as those found in St. Petersburg gambles, and (iii) that it has been established

independently of unconditional probability distortion and non-linear outcome weighting—and

given that CPT has been conceived as a descriptive theory to explain numerous heuristics and

biases in choice under risk and uncertainty but exclusive of local representativeness effects, it

is indeed no surprise at all that direct application of CPT to the St. Petersburg gamble proves

problematic. For these very same reasons, however, it is neither necessary nor desirable to

enforce the constraint α < γ even for the sole purpose of analyzing the St. Petersburg gamble.

This holds with even more force for the parameterization of CPT for general use.

Incorporation of alternation bias into the analysis of the St. Petersburg gamble proceeds by

way of distortion of conditional probabilities between coin tosses. Just as a casino player under

the influence of the Gambler’s Fallacy believes that his probability of winning this hand is higher

because of a long sequence of losing hands leading up to this hand, an individual contemplating

the St. Petersburg gamble under the influence of alternation bias believes that the probability of

a particular toss turning up ‘Heads’ is higher because of an unbroken string of preceding ‘Tails’.

As a consequence, the following two propositions may be proved using the estimates for

first-order and higher-order alternation bias set out in Table 1. Proofs are collected in the

appendix.

Proposition 3.1 (First-order constraint). Once first-order alternation bias is controlled for,

the finiteness constraint relaxes to

α <
log(5/2)
log(2)

· γ ≈ 1.32 · γ . (3.5)

Proposition 3.2 (Higher-order constraint). Once alternation bias effects up to third order

are controlled for, the finiteness constraint relaxes to

α < − log(.3)
log(2)

· γ ≈ 1.737 · γ . (3.6)

As Figure 1 illustrates, popular conventional parameterizations of CPT comfortably satisfy

the finiteness constraint once it is adjusted for alternation bias up to third order.

——— insert Figure 1 here ———
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Mathematically, the Blavatskyy-Rieger-Wang constraint without alternation bias, illustrated

as (a) in Figure 1, is derived from the limit behavior of the gross payout from the St. Petersburg

gamble (GStP ). Similarly, the constraints (3.5) and (3.6) above, illustrated as (b) and (c) in Figure

1, are also derived from the limit behavior of the gross payout from the St. Petersburg gamble

(GStP ). Using numerical procedures it is possible to determine the Certainty Equivalent (CE) of

this gross payout for each parameterization of CPT and for each of the three assumptions about

alternation bias. The results of this numerical implementation are presented below in Table 2.

——— insert Table 2 here ———

For the single-parameter probability weighting function specification, higher-order alterna-

tion bias brings the CE of the gross payout down to within the range [5.64, 20.39]. The distance

of the parameter pair (γ, α) from the finiteness constraint is one determinant of the magnitude

of this CE, but so is its location along the length of the finiteness constraint. Figures 2 and 3

illustrate this by way of the CE=$5, CE=$10 and CE=$20 contours for the gross payoff un-

der first-order alternation bias and higher-order alternation bias respectively. The differences

between these contour maps explain for instance why the Tversky and Fox (1995) parameteri-

zation yields a larger CE than the Gonzalez and Wu (1999) parameterization under first-order

alternation bias (74.81 > 56.53) while the reverse is true under higher-order alternation bias

(10.15 < 13.05).

——— insert Figure 2 here ———

——— insert Figure 3 here ———

3.3 WTP under CPT revisited

Nevertheless the above gross payout CE calculations should not be confused with WTP for the

St. Petersburg gamble under CPT. Correct calculation of WTP under CPT must incorporate

loss aversion over the shortfall between the gross payout GStP and the up-front payment P

exacted as the entry fee for participation in the St. Petersburg coin-tossing gamble. As Camerer

(2005) points out,14 attention must be focused on the net gamble payout GStP−P , which involves
14Camerer (2005) uses piecewise linear utility, loss aversion, and the realistic assumption of the existence of a

finite maximum payout ceiling to show that risk aversion is not a necessary condition for resolution of the St.

Petersburg Paradox.
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an ex ante probable loss for P > 2. For each parameterization the maximum WTP will be less

than the CE of the gross payout. Thus for any entry fee P > 2, the CPT evaluation occurs with

respect to both gains and losses

V (GStP−P ) = V +((GStP−P )+) + V −((GStP−P )−) (3.7)

where the ‘+’ superscript refers to gains and the ‘−’ superscript refers to losses. The maximum

WTP is the entry fee P ∗ that solves

V +((GStP−P ∗)+) + V −((GStP−P ∗)−) = 0 . (3.8)

For the Tversky and Kahneman (1992) parameters γgains = .61, αgains = .88, λ = 2.25, γloss = .69,

αloss = .88 and third-order alternation bias, equation (3.8) is solved by P ∗ ≈ $9.95, which is a

finite maximum WTP that resolves the St. Petersburg Paradox.

4 Conclusion

If it could be shown that alternation bias is not operative in the St. Petersburg gamble setting,

then present results would not diminish the case for restricting CPT parameterization in accor-

dance with the Blavatskyy-Rieger-Wang finiteness constraint. However, experimental studies

suggest strongly that coin-flipping series are indeed an exemplar contexts where alternation

bias is operative and for which reliable and replicated empirical estimates of alternation bias

magnitude are available.

The Blavatskyy (2005) and Rieger and Wang (2006) papers expose an important feature

of conventional CPT parameterizations. Yet their elegantly straightforward remedy, namely

the Blavatskyy-Rieger-Wang finiteness constraint (α < γ)—although mathematically unobjec-

tionable and certainly a solution worthy of consideration per se—is not without logical and

theoretical consequences of its own. It localizes the remedy to the popular and conventional

parameterizations of CPT, and these parameterizations are singled out as the effective cause

of the finiteness problem. Yet the substantial experimental literature on the alternation bias

suggests strongly that the solution to the finiteness problem may in fact lie in the subjective

distortion of conditional probabilities, rather than in the subjective distortion of unconditional

probabilities. The former (distortion of conditional probabilities), is formally outside the scope

of CPT, whereas the latter (distortion of unconditional probabilities), is a proper part and ob-

ject of the analytical structure of CPT. To require CPT’s unconditional probability distortion

10



parameterization to reflect and incorporate the conditional probability distortion caused by al-

ternation bias induced in the St. Petersburg gamble is to introduce a ‘foreign’ element into

CPT (conditional probability distortion) and to do so in a way that confounds the magnitude

of conditional probability distortion with the magnitude of unconditional probability distortion,

as opposed to keeping the magnitudes of these two distinct effects separate and individually

identifiable. Moreover, imposition of this constraint on parameterization limits the scope of

applicability of CPT, insofar as the Blavatskyy-Rieger-Wang constraint rules out most of the

widely used conventional parameterizations, which are tuned to achieving descriptive accuracy

in a variety of settings that do not share the St. Petersburg gamble’s sequential structure.

None of these concessions are necessary, though the cost of avoiding them is to bring more

of the experimental and behavioral literature into the foreground. Recognizing the role of al-

ternation bias in the St. Petersburg coin-tossing sequence allows the Paradox to be resolved,

while preserving the distinction between conditional and unconditional probability distortion,

and moreover preserving CPT’s scope of descriptive applicability that is embodied in its con-

ventional parameterizations.

As CPT becomes increasingly popular and is adopted and applied ever more widely, the

question that is at the root of the divergence between the approach of this paper and that of

Blavatskyy (2005) and Rieger and Wang (2006) will re-emerge with increasing frequency: How

are we to apply, interpret and evaluate CPT? Is CPT a self-contained portable module that

can be applied across the whole spectrum of problem settings without any need to anticipate

complications, or is CPT essentially inseparable from the wider ‘heuristics and biases’ program?

The special application studied in this paper lends weight to the latter. Although CPT has

a concise, self-contained mathematical form, it should not be applied without giving due care

and attention to the full range of behavioral effects that may arise. Some of these effects are

captured by CPT, yet others require separate accommodation.

11



References

Abdellaoui, M., 2000. Parameter-free elicitation of utilities and probability weighting functions,
Management Science 46(11), 1497-1512.

Abdellaoui, M., Vossmann, F., Weber, M., 2005. Choice-based elicitation and decomposition of
decision weights for gains and losses under uncertainty, Management Science 51(9), 1384-1399.

Bar-Hillel, M., Wagenaar, W.A., 1991. The perception of randomness, Advances in Applied
Mathematics 12(4), 428–454.

Bernoulli, D., 1738. Specimen theoriae novae de mensura sortis, Commentarii Academiae Sci-
entiarum Imperialis Petropolitanae.

Blavatskyy, P.R., 2005. Back to the St. Petersburg paradox?, Management Science 51(4), 677–
678.

Bleichrodt, H., Pinto, J.M., 2000. A parameter-free elicitation of the probability weighting
function in medical decision analysis, Management Science 46(11), 1485–1496.

Bottom, W.P., Bontempo, R.N., Holtgrave, D.R., 1989. Experts, novices, and the St. Petersburg
Paradox: Is one solution enough?, Journal of Behavioral Decision Making 2(3), 139–147.

Budescu, D.V., 1987. A markov model for generation of random binary sequences, Journal of
Experimental Psychology: Human Perception and Performance 13(1), 25–39.

Camerer, C., 2005. Three cheers—psychological, theoretical, empirical—for loss aversion, Jour-
nal of Marketing Research 42(2), 129–133.

Camerer, C., Ho., T.-H., 1994. Violations of the betweenness axiom and nonlinearity in proba-
bility, Journal of Risk and Uncertainty 8(2), 167–196.

Chernoff, H., Moses, L., 1959. Elementary Decision Theory. John Wiley & Sons, New York, NY.

Clotfelter, C., Cook, P., 1993. The “Gambler’s Fallacy” in lottery play, Management Science
39(12), 1521–1525.

Croson, R., Sundali, J., 2005. The Gambler’s Fallacy and the Hot Hand: Empirical data from
casinos, Journal of Risk and Uncertainty 30(3), 195–209.

Friedman, D., 1998. Monty Hall’s three doors: Construction and deconstruction of a choice
anomaly, American Economic Review 88(4), 933–946.

Gilovich, T., Vallone, R., Tversky, A., 1985. The Hot Hand in basketball: On the misperception
of random sequences, Cognitive Psycology 17(3), 295–314.

Gonzalez, R., Wu, G., 1999. On the shape of the probability weighting function, Cognitive
Psychology 38(1), 129–166.

Granberg, D., 1999. Cross-cultural comparison of responses to the Monty Hall dilemma, Social
Behavior and Personality 27(4), 431–438.

12



Granberg, D., Brown, T.A., 1995. The Monty Hall dilemma, Personality and Social Psychology
Bulletin 21(7), 711–723.

Kareev, Y., 1995. Positive bias in the perception of covariation, Psychological Review 102(3),
490–502.

Kluger, B.D., Wyatt, S.B., 2004. Are judgment errors reflected in market prices and allocations?
Experimental evidence based on the Monty Hall problem, Journal of Finance 59(3), 969–997.

Krauss, S., Wang, X.T., 2003. The psychology of the Monty Hall problem: Discovering psycho-
logical mechanisms for solving a tenacious brain teaser, Journal of Experimental Psychology:
General 132(1), 3–22.

Rabin, M., 2002. Inference by believers in the law of small numbers, Quarterly Journal of
Economics 117(3), 775-816.

Rapoport, A., Budescu, D.V., 1997. Randomization in individual choice behavior, Psychological
Reveview 104(3), 603–617.

Reichenbach, H., 1934. Wahrscheinlichkeitslehre: Eine Untersuchung uber die logischen und
mathematischen Grundlagen der Wahrscheinlichkeitsrechnung. Translated as Reichenbach, H.,
1949. The Theory of Probability; An Inquiry into the Logical and Mathematical Foundations
of the Calculus of Probability. University of California Press, Berkeley, CA.

Rieger, M.O., Wang, M., 2006. Cumulative prospect theory and the St. Petersburg Paradox,
Economic Theory 28(3), 665–679.

Samuelson, P.A., 1977. St. Petersburg Paradoxes: Defangled, dissected, and historically de-
scribed, Journal of Economic Literature, 15(1), 24–55.

Schmeidler, D., Wakker, P., 1998. Expected utility and mathematical expectation. J. Eatwell,
M. Milgate, P. Newman, eds. The New Palgrave; A Dictionary of Economics. Macmillan,
London, 229–232.

Terrel, D., 1994. A test of the Gambler’s Fallacy: Evidence from pari-mutuel games, Journal of
Risk and Uncertanty 8(3), 309–317.

Tversky, A., Fox, C., 1995. Weighing risk and uncertainty, Psychological Review 102(2), 269–283.

Tversky, A., Kahneman, D., 1974. Judgment under uncertainty: Heuristics and biases, Science
185(4157), 1124–1130.

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: Cumulative representation of
uncertainty, Journal of Risk and Uncertainty 5(4), 297–323.

Vlek, C., Wagenaar, W.A., 1979. Judgement and decision under uncertainty. J.A. Michon, E.G.J.
Eijkman, L.F.W. de Klerk, eds. Handbook of Psychonomics – Vol. 2. North-Holland, Amster-
dam.

Wu, G., Gonzalez, R., 1996. Curvature of the probability weighting function, Management
Science 42(12), 1676–1690.

Yaari, M., 1987. The dual theory of choice under risk, Econometrica 55(1), 95–115.

13



Figure 1: Conventional parameterizations of cumulative prospect theory and the finiteness con-

straint computed (a) without alternation bias, (b) with first-order alternation bias, and (c) with

higher-order alternation bias.
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Figure 2: The $5, $10, and $20 Certainty Equivalent contours of the gross St. Petersburg gamble

payout under first-order alternation bias.
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Figure 3: The $5, $10, and $20 Certainty Equivalent contours of the gross St. Petersburg gamble

payout under higher-order alternation bias.
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Table 1: Alternation bias estimates from the literature expressed as transition probabilities

First order

P (H|T )

.6

Higher order

P (H|T ) P (H|TT ) P (H|TTT )

.58 .62 .70
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Table 2: Certainty Equivalents of the gross payout from the St. Petersburg gamble under con-

ventional parameterizations of CPT computed (a) without alternation bias, (b) with first-order

alternation bias, and (c) with higher-order alternation bias.

(γ, α)a (a) without (b) first-order (c) higher-order

(δ, γ, α)b alternation bias alternation bias alternation bias

Wu & Gonzalez (1996)

1-param w+(p) (.71, .52) 16.00 6.95 5.64

2-param w+(p) (.84, .68, .52) 17.18 7.00 5.58

Camerer & Ho (1994)

1-param w+(p) (.56, .37) 19.32 7.98 6.07

Abdellaoui et al (2005)

1-param w+(p) (.76, .91) ∞ 22.08 8.18

2-param w+(p) (.98, .83, .91) ∞ 11.39 6.75

Bleichrodt & Pinto (2000)

1-param w+(p) (.67, .77) ∞ 22.21 8.72

2-param w+(p) (.82, .55, .77) ∞ ∞ 16.23

Gonzalez & Wu (1999)

1-param w+(p) (.44, .49) ∞ 56.53 13.05

2-param w+(p) (.77, .44, .49) ∞ 46.00 12.30

Tversky & Fox (1995)

1-param w+(p) (.69, .88) ∞ 74.81 10.15

2-param w+(p) (.76, .69, .88) ∞ 56.15 8.53

Tversky & Kahneman (1992)

1-param w+(p) (.61, .88) ∞ ∞ 17.39

Abdellaoui (2000)

1-param w+(p) (.60, .89) ∞ ∞ 20.39

aw+(p) = pγ/(pγ + (1− p)γ)1/γ , u+(x) = xα

bw+(p) = δpγ/(δpγ + (1− p)γ), u+(x) = xα
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A Mathematical appendix

The St. Petersburg gamble pays out 2ñ where ñ ∈ N is the index of the first toss on which an

unbiased memoryless coin turns up ‘Heads’. Alternation bias alters the subjective perception of

the distribution of ñ.

An individual with CPT preferences evaluates the gross St. Petersburg gamble payout GStP

as

V +(GStP ) =
∞∑

n=1

u+(2n) ·
[
w+

( ∞∑
i=n

pi

)
− w+

( ∞∑
i=n+1

pi

)]
(A.1)

where

u+(x) ≡ xα x ≥ 0, α ∈ (0, 1) (A.2)

is the value function for gains (x ≥ 0) and

w+(p) ≡ pγ

(pγ + (1− p)γ)1/γ
γ ∈ (0, 1), p ∈ [0, 1] (A.3)

is the Tversky and Kahneman (1992) inverse S-shaped probability weighting function for gains.

Blavatskyy (2005) shows that as n →∞ the denominator of the probability weighting function

w+(p) converges to 1, and as attention may be restricted to the limit tail behavior, the ap-

proximation w+(p) ≈ pγ is valid, and thus in the case computed without alternation bias (A.1)

simplifies to

V +
w (GStP ) = (2γ − 1)

∞∑
n=1

2(α−γ)n . (A.4)

In order to ensure that the geometric series in (A.4) is convergent so that V +
w (GStP ) remains

finite, the constraint α < γ must be imposed (see finiteness constraint (a) in Figure 1). However

as Figure 1 illustrates, this constraint is violated by most conventional parameterizations of

CPT.

A.1 Finiteness constraint with first-order alternation bias

Consider the form of (A.1) with the first-order alternation bias that Kareev (1995) reports as

being a standard finding in the literature: P (H|T ) = .6 and P (T |T ) = .4. The probability of

the coin turning up ‘Heads’ for the first time on toss n then takes the form

pf-o
n =





P (H) = 1
2 for n = 1

1
2P (H|T )P (T |T )n−2 = .3 · .4n−2 for n ≥ 2

(A.5)
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and
∑∞

n=1
pf-o

n = .5 + .3
∑∞

j=0
.4j = .5 + (.3/.6) = 1. Therefore the first term in the outside sum

of (A.1) is

af-o
1 = u+(21)

[
w+

( ∞∑
i=1

pf-o
i

)
− w+

( ∞∑
i=2

pf-o
i

)]
= u+(21)[1− w+(2−1)] = 2α[1− 2−γ] (A.6)

and subsequent terms are of the form

af-o
n = u+(2n)

[
w+

((
.3

.42.6

)
.4n

)
− w+

((
.3

.42.6

)
.4n+1

)]
∀n ≥ 2 (A.7)

=
(

.3
.42.6

)γ

2αn[.4γn − .4γ(n+1)] ∀n ≥ 2 (A.8)

giving a CPT evaluation of the gross St. Petersburg gamble payout GStP under first-order alter-

nation bias of

V +
f-o(GStP ) = af-o

1 +
∞∑

n=2

(
.3

.42.6

)γ

2αn[.4γn − .4γ(n+1)] (A.9)

= af-o
1 +

(
.3

.42.6

)γ
[ ∞∑

n=2

2(α+γ)n

5γn
−

(
2
5

)γ ∞∑
n=2

2(α+γ)n

5γn

]
(A.10)

= af-o
1 +

(
.3

.42.6

)γ (
1− 2γ

5γ

) ∞∑
n=2

(
2(α+γ)

5γ

)n

(A.11)

which is finite if the parameterization satisfies the constraint

2α+γ

5γ
< 1 (A.12)

α <
log(5/2)
log(2)

· γ ≈ 1.32 · γ . (A.13)

This result is formalized as Proposition 3.1 and illustrated as finiteness constraint (b) in Figure

1.

A.2 Finiteness constraint with higher-order alternation bias

Using the transition probabilities up to third order presented in Table 1, the probability of the

coin turning up ‘Heads’ for the first time on toss n then takes the form

ph-o
n =





P (H) = 1
2 n = 1

1
2P (H|T ) = 1

2 · .58 = .29 n = 2

1
2P (T |T )P (H|TT ) = 1

2 · .42 · .62 = .1302 n = 3

1
2P (T |T )P (T |TT )P (H|TTT )P (T |TTT )n−4 = 1

2 ·.42·.38·.7·.3n−4

= .05586 · .3n−4

n ≥ 4

(A.14)
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and
∑∞

n=1
ph-o

n = .5 + .29 + .1302 + .05586
∑∞

j=0
.3j = .9202 + .05586

.7 = 1. The first, second and

third terms in the outside sum of (A.1) are

ah-o
1 = u+(21)

[
w+

( ∞∑
i=1

ph-o
i

)
− w+

( ∞∑
i=2

ph-o
i

)]
= u+(21)[1−w+(2−1)] = 2α[1−2−γ] , (A.15)

ah-o
2 = u+(22)

[
w+

( ∞∑
i=2

ph-o
i

)
− w+

( ∞∑
i=3

ph-o
i

)]
= u+(22)[w+(2−1)− w+(1− .5− .29)]

= 22α[2−γ − .21γ] , (A.16)

and

ah-o
3 = u+(23)

[
w+

( ∞∑
i=3

ph-o
i

)
− w+

( ∞∑
i=4

ph-o
i

)]
= u+(23)[w+(.21)− w+(1− .5− .29− .1302)]

= 23α[.21γ − .0798γ] . (A.17)

Subsequent terms (∀n ≥ 4) are of the form

ah-o
n = u+(2n)

[
w+

( ∞∑
i=n

ph-o
i

)
− w+

( ∞∑
i=n+1

ph-o
i

)]
(A.18)

= u+(2n)

[
w+

(
.05586

∞∑
i=n

.3i−4

)
− w+

(
.05586

∞∑
i=n+1

.3i−4

)]
(A.19)

= u+(2n)

[
w+

(
.05586

.34

∞∑
i=n

.3i

)
− w+

(
.05586

.34

∞∑
i=n+1

.3i

)]
(A.20)

= u+(2n)
[
w+

(
.05586
.34 · .7 .3n

)
− w+

(
.05586
.34 · .7 .3n+1

)]
(A.21)

=
(

.05586

.34 · .7
)γ

2αn[.3γn − .3γ(n+1)] . (A.22)

Thus the CPT evaluation of the gross St. Petersburg gamble payout GStP under higher-order

alternation bias may be written as

V +
h-o(GStP ) =

3∑
n=1

ah-o
n +

∞∑
n=4

(
.05586
.34 · .7

)γ

2αn[.3γn − .3γ(n+1)] (A.23)

=
3∑

n=1

ah-o
n +

(
.05586
.34 · .7

)γ
[ ∞∑

n=4

(2α.3γ)n − .3γ

∞∑
n=4

(2α.3γ)n

]
(A.24)

=
3∑

n=1

ah-o
n +

(
.05586
.34 · .7

)γ

(1− .3γ)
∞∑

n=4

(2α.3γ)n (A.25)

which converges to a finite value if the parameterization satisfies the constraint

2α.3γ < 1 (A.26)

α < − log(.3)
log(2)

· γ ≈ 1.737 · γ . (A.27)

This result is formalized as Proposition 3.2 and illustrated as finiteness constraint (c) in Figure

1.
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