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I Introduction

The overfishing problem has several dimensions. First, excessive exploitation of

fish stocks in the short term leads to inefficiently low stocks in the long term.

Secondly, more and more fish stocks are being fished to the point of collapse on a

worldwide scale (FAO 2010), which means that they will not recover in the short

and medium term. This second dimension has attracted considerable scientific

attention and public concern in the last few years (Costello et al. 2008, Essington

et al. 2006, Heal and Schlenker 2008, Pauly et al. 1998, Worm et al. 2006; 2009).

From an economic perspective, the collapse of fish stocks is a problem over and

above the inefficiently low stocks because many consumers like to consume a variety

of different fish. A prominent example is the Japanese preference for sushi which is

traditionally prepared from a whole variety of different species of fish and seafood.

In this paper we analyze the problem of overfishing with reference to both as-

pects, and we study the options available to multi-species fishery management.

There is empirical evidence that different species of fish are imperfect substitutes,

which means that consumers’ willingness to substitute one species for another is

limited (Asche et al. 1997, Barten and Bettendorf 1989, Bose and McIlgorm 1996,

Chiang et al. 2001, Fousekis and Revell 2005). This observation can be regarded

as consumers having ‘preferences for diversity’. In other words, the more fish va-

rieties (species) consumers buy and eat, the higher the utility they draw from fish

consumption in total. We model such preferences for variety by drawing on the

celebrated Dixit-Stiglitz utility function (Dixit and Stiglitz 1977). Stronger pref-

erences for variety are thus represented by lower elasticity of substitution between

the different products (here fish species). This means that a consumer who enjoys

eating many varieties of fish is still willing to replace an expensive variety by a

less expensive one, but he will do so to a lesser extent than a consumer who cares

little about variety in fish consumption (and thus has a high elasticity substitution

between different varieties).

In contrast to the preference structure we model the dynamics of the fish stocks

in a very simple way. We employ a standard biomass growth model for each species

and ignore any ecological interactions between different species as well as the age

structure of fish stocks (Skonhoft et al. 2008; in press, Tahvonen 2009). This

enables us to focus on the demand-side interactions of different fish species and to
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show how these interdependencies impact on harvest and, in extreme cases, may

cause collapse of stocks.

We study four scenarios of multi-species fishery: (i) open access, (ii) socially

optimal harvesting (and management) of all species, (iii) second-best optimal man-

agement of one species, taking into account spill-over effects of regulation on all

other species fished under open access, and (iv) myopic management of one species

ignoring the effects of regulation on other fish stocks.

We find that the stronger is the love of variety, the greater are the number of

stocks prone to collapse. The intuition for this result is as follows. When a fish

stock declines both marginal harvesting costs and thus the species’ market price

increase. The higher the preference for variety, the less consumers will shift de-

mand to more abundant and hence cheaper species and the less such demand shift

contributes to relax the pressure on the dwindling stock. Thus, stronger prefer-

ences for seafood diversity may imply a decrease of fish biodiversity in the oceans.

In particular we show that under open access a low elasticity of substitution in

consumer preferences can trigger a whole cascade of collapsing fish stocks. This

is remarkable since our model does not include any exogenous dynamics such as

increasing demand or technical progress, frequently the driving force for collapse

in other models (see for example Dasgupta and Heal 1979).

We further compare the three scenarios for fishery management with regard to

the ‘strictness’ of regulation. For this purpose we apply two measures of strictness.

Intuitively we would expect a stricter management to employ lower total allow-

able catches (TACs) or a higher harvesting fee. However, a lower TAC in the short

term may lead to higher TACs in the long term steady-state. Hence, this measure

of strictness can only be applied in a meaningful way to the initial state of regu-

lating an overfished stock. When comparing the long-run effects of more or less

strict regulation, the appropriate measure is the resulting long term stock size. A

particular management is called stricter than another one when the resulting long

term steady-state stock is higher. We employ both measures of strictness where

appropriate and find that under symmetry assumptions (i) second-best optimal

management of only one species must be less strict than socially optimal manage-

ment of the same species, and (ii) myopic regulation of one species is too strict in

comparison with second-best management. The intuitive reason is that regulation

of one species drives up its price in the short term. This will increase demand for

3



the unregulated species. For those species with low resilience the resulting increase

in harvesting pressure may have harmful effects. In the second-best scenario this

negative spillover effect of regulation is taken into account and hence second-best

management is less strict than first-best management of the same species. My-

opic regulation, by contrast, is too strict as it ignores these effects. We present

a numerical example in which myopic regulation of one species even leads to the

collapse of stocks that would survive under full open access. Our overall conclusion

is that the stronger are the preferences for variety, the more urgent is the need to

coordinate regulation of different species (first-best management), or at least to

account for regulation spill-overs (second-best management).

Our approach differs from the previous literature on multi-species fisheries

which has mainly focused on biological interactions between different species (e.g.,

Conrad and Adu-Asamoah 1986, Lande et al. 2003, Quinn and Deriso 1999). Only

few studies have looked at the economic value of diversity. Kasulo and Perrings

(2006) focus on how biodiversity affects the effectiveness of fishing effort. They

conclude that traditional freshwater fisheries in Malawi are associated with a higher

diversity of fish catches than can be observed in profit-maximizing modern fisheries.

Although not explicitly considering preferences for seafood diversity, a non-formal

analysis by Wilson (1982; 1985) suggests that with relatively high cross-elasticities

of demand for different species (in terms of our model, weak preferences for di-

versity) a multi-species fishery will be sustainable without any need for regulation

(Wilson 1985:324). Our modeling analysis confirms this conjecture by showing

that high elasticity of substitution favors the sustainability of the multi-species

fishery. Another important strand of literature estimates demand (systems) for

different fish varieties by using fish market data. While the elasticity of substitu-

tion between different fish species has not been estimated directly, several empirical

studies show that different species of fish are generally imperfect substitutes. The

degree of substitutability varies depending on how similar the species are, e.g.

white fish or flat fish (Barten and Bettendorf 1989), and whether fish products

are fresh, frozen, or otherwise processed (Chiang et al. 2001, Fousekis and Rev-

ell 2005). The general finding of fish species being imperfect substitutes gets wide

empirical support: Asche et al. (1997) use data from European households; Barten

and Bettendorf (1989) consider the demand for fish landed at Belgian sea ports;

Fousekis and Revell (2005) analyze fish demand in Great Britain; Bose and McIl-
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gorm (1996) and Chiang et al. (2001) study the Japanese demand for different

species of tuna.

The remainder of this paper is organized as follows: In Section II we set up our

theoretical multi-species fishery model with consumer preferences for seafood di-

versity. In Section III we study the impact of consumer preferences on open-access

fisheries. Section IV deals with the socially optimal coordinated harvesting of all

species. In Section V we analyze second-best management of a single species, tak-

ing into account the regulation spill-overs affecting other species, and in Section VI

we discuss myopic management. In Section VII we illustrate some complex tran-

sitional dynamics by means of numerical simulations. The final section discusses

the results and concludes.

II The Model

In the following we present the assumptions about the different species’ biomass

growth, the harvesting technology, and consumer preferences.

Biomass growth of the different species

The stock dynamics of each species i = 1, . . . , n are mutually independent and

described by a simple equation of motion for its biomass xi

ẋi,t = gi(xit)−mit hit, (1)

where gi(xi) is the biomass growth function, mit the mass of vessels, hit the harvest

per vessel, and Hit = mit hit the total harvest of species i, each at time t. All stocks

grow according to the logistic function

gi(xit) = ρi xit

[
1− xit

κi

]
, (2)

where ρi is the intrinsic growth rate of species i and κi is the carrying capacity. In

the remainder we will omit the time index t.

Harvest technology

Harvest is determined by a vessel’s fishing effort ei in catching species i and by the

stock size xi. It is described by a generalized Gordon-Schaefer production function
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(Clark 1990)

hi = hi(xi, ei) = νi x
χi
i eεii , (3)

where νi is the catchability coefficient of species i and χi > 0 is the harvest

elasticity of the stock of species i. Returns on effort ei are positive but decreasing,

i.e. 0 < εi < 1. Effort is measured in units of labor.1 Beside the variable fishing

costs, there is a fixed cost φi for operating a vessel capturing the capital cost of

fishing (for vessel and fishing gear). Capital is perfectly malleable and can be used

to harvest all species of fish, although the amount of capital needed may differ

across species.

By assuming positive fixed costs, socially optimal harvesting and regimes of

open access (or second-best or myopic management) differ in the mass of vessels,

while the profit-maximizing current effort for targeting species i is socially opti-

mal and determined only by its current price and its current stock size. Under

decentralized decision-making fishermen take stock sizes xi, the wage rate ω, and

output price pi as given. A representative fisherman (but also a social planner)

maximizes short-term profit per vessel pi νi x
χi
i eεii −ω ei−φi with respect to effort

level ei. This results in:

ei =

[
pi νi εi x

χi
i

ω

] 1
1−εi

. (4)

In appendices A.2 and A.9 we show that both under open access and in social

optimum the harvesting costs per unit are given by ci x
−χi
i where

ci =
φ1−εi
i ωεi

(1− εi)1−εi εεii
ν−1
i . (5)

Consumer preferences

Consumer preferences over consumption of a numeraire commodity (y) and con-

sumption of fish (v) are described by the utility function

u(v, y) =

{
y + γ η

η−1
v
η−1
η for η 6= 1

y + γ ln v for η = 1.
(6)

1When effort is measured in terms of mass of vessels, returns on effort may be increasing

(Bjørndal and Conrad 1987). In our model, fishing effort and the mass of vessels are two separate

variables.
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The parameter γ > 0 describes the weight of fish consumption in utility, while η >

0 is the elasticity of demand for fish.2 Fish consumption is composed of different

species, and the sub-utility of fish consumption is represented by the Dixit-Stiglitz

(1977) utility function:

v = v(q1, . . . , qn) =

[
n∑
i=1

q
σ−1
σ

i

] σ
σ−1

, (7)

where qi is the quantity of species i consumed. The parameter σ > 0 measures the

elasticity of substitution in the consumption of two different species.3 Higher values

of σ indicate varieties to be closer substitutes. A lower σ can also be considered

as a stronger preference for diversity. So high elasticity of substitution σ can

be associated with a consumer of fish fingers while low elasticity of substitution

describes a consumer with a preference for sushi.

The representative household maximizes the utility function (6) with sub-

utility (7) for fish subject to the budget constraint ω = y +
n∑
i=1

pi qi, where pi

is the price of species i. The first-order condition with respect to consumption of

species i= 1, . . . , n is given by

γ q
− 1
σ

i

[
n∑
j=1

q
σ−1
σ

j

] η−1
η

σ
σ−1
−1

= pi (8)

Using p = (p1, ..., pn) to denote the price vector and rearranging these conditions

(see Appendix A.1), we can derive the demand function for each species i:

qi(p) = γη p−σi P σ−η, where P =

[
n∑
j=1

p1−σ
j

] 1
1−σ

(9)

is the price index for fish.

Obviously, demand for species i is decreasing in its own price, as σ > 0. Since

empirically different species of fish have been found to be (imperfect) substitutes

2Since ln v is the continuous extension of η
η−1 v

η−1
η for η = 1 there is no need to distinguish

between η 6= 1 and η = 1 in the first-order conditions.
3 The utility function given by equations (6) and (7) is the standard way of describing prefer-

ences for diversity, for example in industrial organization, international trade, and New Economic

Geography. Equation (7) assumes identical elasticities of substitution for every pair of species.

Pairwise different elasticities of substitution could be modeled by nested CES functions, which,

however, makes the model less tractable does not yield additional insight.
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(Asche et al. 1997, Barten and Bettendorf 1989, Fousekis and Revell 2005, Bose

and McIlgorm 1996, Chiang et al. 2001), we concentrate on this case and assume

σ > η. Under this condition, demand for fish species i increases as prices for

other species, aggregated in the price index P , go up. The condition σ > η also

implies that any fish variety can be better substituted by a different variety than

by the numeraire commodity. Furthermore, we assume σ > 1, which means that

the marginal utility of fish species i is positive even if consumption of some other

species j 6= i is zero.4 This assumption is important when we study collapse of

some species, inducing zero consumption of that variety.

To close the model, we assume that each of the identical households inelastically

supplies one unit of labor. The mass of households is normalized to unity such that

total labor force is also equal to one. Rather than being employed in the fishery

sector workers can produce the numeraire commodity with a constant returns to

scale technology, where each unit of labor produces ω > 0 units of output, i.e. the

wage rate equals ω. Given the effort levels required to catch each fish species and

the fixed capital input for the fisheries, the output of the numeraire sector left for

consumption is given by

y = ω

[
1−

n∑
i=1

mi ei

]
−

n∑
i=1

mi φi. (10)

Besides our general assumptions we employ additional more restrictive assump-

tions for some of the propositions derived below. The first one states that species

are identical with respect to biological carrying capacities and harvesting technolo-

gies.

Assumption 1. Species differ with respect to their intrinsic growth rates, w.l.o.g.

we assume ρ1 < ρ2 < ... < ρn, but are symmetric otherwise, i.e. for all i = 1, . . . , n,

κi = 1, ci = c, and χi = χ < 1. Furthermore, aggregate demand elasticity for fish

is equal to one, i.e. η = 1.

The specification η = 1 in Assumption 1 allows to disentangle the effects of

a change in the preferences for diversity from a change in the overall demand for

4 This assumption is well supported by empirical evidence: Asche et al. (1997, Table 4) report

own-price and cross-price elasticities for salmon and crustaceans estimated from the EU trade

data. Using their results we calculate an elasticity of substitution between fresh salmon and

crustaceans of σ = 1.66 (cf. Appendix A.1).
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fish, as in this case aggregate expenditures for fish are constant and equal to γ (see

appendix A.1).

A second assumption states that species are completely symmetric with regard

to their biological characteristics and the harvesting technologies employed.

Assumption 2. Species are symmetric with regard to all parameters such that in

addition to Assumption 1, growth rates are also the same, i.e. ρi = ρ.

In the following sections we study different policy regimes, notably open ac-

cess, socially optimal harvesting, second-best optimal management, and myopic

management.

III Open Access

Under open access, new vessels will enter the business until profits are driven to

zero. Using the profit-maximizing effort level (4) and the corresponding harvest

per vessel in that condition, we derive the open-access minimum average cost for

species i as a function of its stock. Since in equilibrium price must be equal to

unit cost, we obtain

pi = ci x
−χi
i , (11)

where ci is given by (5). Equating supply (= total harvest Hi = mi hi) and demand

(9) and then employing (11), we obtain

Hi = γ p−σi

[
n∑
j=1

p1−σ
j

]−σ−η
σ−1

= γη
[
ci x

−χi
i

]−σ [ n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1

. (12)

Under Assumption 1 this expression simplifies to

Hi =
γ

c

xχσi
n∑
j=1

x
χ (σ−1)
j

. (13)

Both in steady state and along the transitional dynamics, equation (12) (or 13)

relates the total catch of species i to the stocks of the different species. Since the

different species are substitutes, the harvest of species i will increase if the stock

of some other species decreases.

Using (12) and (2) in (1), we derive the following differential equation describing
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the dynamics of stock i under open access:

ẋit = ρi xit

[
1− xit

κi

]
− γη

[
ci x

−χi
i

]−σ [ n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1

. (14)

We first analyze the behavior of the multi-species fishery in open-access steady

state. To obtain clear-cut results we employ Assumption 1:5

Lemma 1. Under Assumption 1, steady-state stocks under open access are ordered

according to intrinsic growth rates, xoa1 ≤ xoa2 ≤ . . . ≤ xoan .

For the proof, see Appendix A.3.

We can use this lemma for the comparative statics analysis of the open-access

steady-state stocks with regard to consumer preferences. The result is that a

change in the elasticity of substitution σ between the different species has a

concertina-like effect on stock sizes.

Proposition 1. Let Assumption 1 hold. Then for all σ there exists some species i0

with 1 ≤ i0 < n such that such in the neighborhood of σ we have:

dxoai
dσ

> 0 for all i < i0

dxoai
dσ
≥ 0 for i = i0

dxoai
dσ

< 0 for all i > i0

(15)

For the proof, see Appendix A.4.

The result is illustrated in the top row of Figure 1 for a specific parameter set.

An intuitive explanation for this result is that stronger preferences for diversity,

implying lower values of σ, mean that consumers have a stronger desire to consume

different species in similar proportions. This implies that harvest levels of different

species are similar in size in the short term. In the mid and long term, this leads to

diverging stocks, as under harvesting pressure the stocks of the less resilient species

will decline faster than those of more resilient ones. If, by contrast, preferences for

diversity are weaker, i.e. σ increases, consumers are less willing to pay a high price

for scarce species. The lower (higher) willingness to pay for relatively abundant

(scarce) species induced by high values of σ is also reflected by the open-access

steady-state market prices as stated in the following result:

5 Note that under Assumption 1 and with utility function (7) a quantitative stock size com-

parison for different species is meaningful as those have commensurable value for consumers.
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Figure 1: The steady-state stocks (left), prices (center), and harvests

(right) of five species of fish with different intrinsic growth rates in the

open-access steady state (top row) and in the socially optimal steady state

(bottom row) for different elasticities of substitution σ. Intrinsic growth

rates are ρ1 = 0.17, ρ2 = 0.2, ρ3 = 0.25, ρ4 = 0.3, and ρ5 = 0.4; the other

parameter values are κi = 1, ci = 1, χi = 0.7, for all i = 1, . . . , 5, η = 1,

γ = 0.55, δ = 0.1.

11



Corollary 1. Let Assumption 1 hold. Then for all σ there exists some species i0

with 1 ≤ i0 < n such that in the neighborhood of σ we have:

dpoai
dσ

> 0 for all i < i0

dpoai
dσ
≥ 0 for i = i0

dpoai
dσ

< 0 for all i > i0

(16)

We now turn to the analysis of collapsing fish stocks. In the framework of

our model, a fish species’ stock is defined to be collapsed (or depleted) if its stock

size is zero.6 Whether or not a species is prone to collapse depends on a simple

condition on the harvesting function and the elasticity of substitution as stated in

the following:

Lemma 2. Unless species i is the only remaining species, χi σ > 1 is a sufficient

condition to guarantee that the open-access steady-state stock of species i is strictly

positive.

For the proof, see Appendix A.5.

Note that the condition above is always satisfied for the classical single-species

Gordon-Schaefer model since in that case χi = 1 and σ = infty (the substitu-

tion between different fish species is implicitly assumed to be perfectly elastic).

However, for many species it is reasonable to assume χi < 1. Table 1 provides a

summary of some typical stock elasticities estimated for different species.

As argued in the introduction, also the elasticity of substitution between dif-

ferent species of fish is finite, σ < ∞. Using the value σ = 1.66 derived above

(footnote 4) from Asche et al. (1997) and the values for χi from the literature

(Table 1), condition χi σ > 1 is violated for herring, pollock, prawn, anchovy, and

yellow fin tuna. Under open access these species will be potentially fished down

to collapse. As χi σ > 1 is a sufficient but not a necessary condition for stocks

to survive under open access, even these three species need not be depleted under

that regime. If the above condition is violated, the affected species is still likely to

survive under open access if the following conditions are satisfied: i) the species is

6This definition is useful in the framework of our analytical model. A common definition used

in empirical studies is that a stock is collapsed when harvest from this stock is below 10% of the

historic maximum (Costello et al. 2008, Worm et al. 2006).
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species/stock value for χi reference

Baltic cod 0.64 Kronbak (2005:472)

bigeye tuna 0.60 Grafton et al. (2007, online

supporting material, p. 7)

North Sea herring 0.56 Bjørndal and Conrad (1987),

Nostbakken and Bjorndal 2003:351

pollock 0.50 Quinn and Deriso (1999:28)

Northern anchovy 0.39 Opsomer and Conrad (1994:29)

Australian Northern prawn 0.40 Grafton et al. (2007)

yellow fin tuna 0.23 Grafton et al. (2007)

Table 1: Stock elasticities for different fish species from the literature.

resilient, i.e. ρi and κi are high, ii) the harvesting cost parameter ci is high, and

iii) the weight of fish consumption in utility (γ) is low.

The next result (proved in appendix A.6) shows that if the stock of some species

collapses, this will always happen in finite time rather than asymptotically.

Proposition 2. If the stock of some species collapses, it will do so in finite time.

In the following, we use Ti to denote the point in time when the stock of species i

collapses. This collapse will be smooth in the sense that ẋit → 0 as t → Ti. The

collapse of stock i implies that both the harvest hi per vessel and the number mi

of vessels fishing species i go to zero (see Appendix A.6). What happens to the

harvest of the other species when the stock of species i collapses again depends on

both the elasticity of substitution σ and species i’s stock elasticity χi.

Proposition 3. i) If χi σ < (1+χi)/2, total harvest Hjt of all other species j with

positive stock will rapidly increase to a new finite level with

lim
t→Ti

dHjt

dt
= +∞.

Total harvest Hjt of species j is continuous but not differentiable at t = Ti.

ii) If χi σ ≥ (1 + χi)/2, total harvest Hjt of all other species j with positive

stock will behave smoothly at t = Ti.

For the proof, see Appendix A.7.

The intuition for this result is as follows: The price of species i explodes as

its stock collapses. If species are relatively poor substitutes (case i), harvest rates
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of the substitute species rise infinitely fast at the point in time when species i is

depleted. They approach new equilibrium levels on a market with one product

less. By contrast, if it is sufficiently easy to substitute one species for another

(case ii), the effect of the collapse of species i will have a less pronounced effect.

These results indicate that strong preferences for diversity, i.e. low values of σ,

tend to foster the collapse of fish stocks. Accordingly, the number of stocks sur-

viving in the open-access steady state depends on σ. In the following proposition,

we assume an initial open-access equilibrium with positive stock sizes for n species

when the elasticity of substitution is at some given level σ > 1. The proposition

shows that a low elasticity of substitution may foster the collapse of the least

resilient species. To derive a clear-cut result, we again employ Assumption 1.

Proposition 4. Let Assumption 1 hold for n species in an initial open-access

equilibrium at some given level of σ. If

(n+ 1− i) ρi <
γ

c

(2− χ)2−χ

(1− χ)1−χ for species i = 1, . . . , n (17)

a threshold value σ (1 < σ < σ) for the elasticity of substitution exists such that

the stocks of the n (1 ≤ n ≤ n) least resilient species will sequentially collapse

under open access fishing if the elasticity of substitution falls from σ to a level

equal to or below σ.

For the proof, see Appendix A.8.

Proposition 4 provides an explanation for the cascading collapse of species. If

the elasticity of substitution falls to a sufficiently low value, the stocks of the least

resilient species will collapse one after another under open access fishing. Those

‘least resilient’ species are characterized by intrinsic growth rates below threshold

values specified by condition (17). Note that the lower the remaining number of

fished stocks, the higher is the threshold value for the intrinsic growth rate.

A similar statement can be made for the case where species are identical with

respect to ecological growth parameters (ρi and κi) but differ with respect to

harvesting technology, i.e. the cost parameters ci. If species differ with respect to

both the ecological parameters and harvesting technology, it will not be possible to

derive a monotonic relationship between σ and the number of surviving stocks. In

other words, the equilibrium number of species may rise with stronger preferences

for diversity (see also Section VII). The reason is that the effects of different

14



ecological characteristics and different harvesting technologies may go into opposite

directions.

IV Social Optimum

We now consider socially optimal harvesting of all species. The social planner

maximizes the representative household’s utility by simultaneously choosing in-

tertemporally optimal harvesting paths for all species. Using δ to denote the

social discount rate this problem can be written as (see Appendix A.9)

max
y,{Hi}

∞∫
t=0

y + γ
η

η − 1

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1

 exp(−δ t) dt (18)

subject to

ω = y +
n∑
j=1

cj Hj x
−χj
j (numeraire sector) (19)

and (1), i.e. the fish stock dynamics for all species i.

The full set of conditions for first-best optimal management is given in Ap-

pendix A.10. For the optimal harvest of species i, we obtain

Hi = γ π−σi

[
n∑
j=1

π1−σ
j

]−σ−η
σ−1

, (20)

where πj is the shadow price for harvest of species j. In the optimal steady state

this shadow price is given by (see Appendix A.10)

πj = cj x
−χj
j + cj x

−χj
j

χj gj(xj)

xj
[
δ − g′j(xj)

] .
The first term captures the marginal harvesting costs at a stock size xj, correspond-

ing to the market price of species j in open access. The second term represents the

marginal resource rents. In a decentralized economy this term also corresponds

to the socially optimal harvesting fee or to the price for a quota in a competitive

quota market if the total allowable catch is set at the socially optimal level.

Proposition 5. Socially optimal harvesting can be decentralized either by setting

value-added harvesting fees for all n species or by setting total allowable catches at

the first-best harvesting quantities and issuing tradable harvesting quotas.
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In steady state the optimal value-added harvesting fee (or the optimal price of

the quota in percentage of marginal harvesting costs) for species i is given by

τi =
χj gj(xj)

xj
[
δ − g′j(xj)

] . (21)

There is an interesting parallel between the Dixit-Stiglitz models of monop-

olistic competition with preferences for diversity and the model considered here.

Under monopolistic competition, firms set a price with a markup over marginal

costs and thereby realize a monopoly rent. This markup leads to an inefficiency.

Here, the markup τi over marginal harvesting costs equals the socially optimal

harvesting fee. Setting this fee captures the resource rents dissipated when firms

compete under conditions of open access.

If the species are symmetric except for different intrinsic growth rates (As-

sumption 1), the socially optimal steady-state stocks can be ordered in a similar

way as under open access:

Lemma 3. Under Assumption 1, socially optimal steady-state stocks are ordered

according to intrinsic growth rates, x?1 ≤ x?2 ≤ . . . ≤ x?n.

For the proof, see Appendix A.11.

Similar to the open-access regime a change in the elasticity of substitution has

a concertina-like effect on the steady-state stock sizes. With stronger preferences

for diversity the stock sizes of the less (more) resilient species, i.e. lower (higher)

ρi, will decrease (increase).

Proposition 6. Let Assumption 1 hold. Then for all σ there exists some species i0

with 1 ≤ i0 < n such that in the neighborhood of σ we have:

dx?i
dσ

> 0 for all i < i0

dx?i
dσ
≥ 0 for i = i0

dx?i
dσ

< 0 for all i > i0

(22)

For the proof, see Appendix A.12.

For an illustration, see the bottom row of Figure 1. The intuition for the

result is similar to the open-access regime. With stronger preference for diversity

the marginal benefit for consumers is higher (smaller) for the species with low

(high) intrinsic growth rates, which are relatively scarce (abundant) in the socially
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optimal steady state (Lemma 3). Hence it is socially optimal that the species with

low (high) intrinsic growth rates should be fished more (less) heavily, causing their

steady-state stocks to decline (increase).

Further, both marginal harvesting costs and marginal resource rents decline

with the stock size of the species under consideration.

Corollary 2. Let Assumption 1 hold. Then for all σ there exists some species i0

with 1 ≤ i0 < n such that in the neighborhood of σ we have:

dτi
dσ

< 0 for all i < i0

dτi
dσ
≤ 0 for i = i0

dτi
dσ

> 0 for all i > i0

(23)

In other words, the stronger consumers’ preference for diversity, the lower

(higher) the optimal harvesting fee for the more (less) resilient species.

With sufficiently strong preferences for diversity, the collapse of the less resilient

species may be socially optimal, provided that the intrinsic growth rate of such a

species is smaller than society’s discount rate. More precisely, we can state:

Lemma 4. Under first-best management, the steady-state stocks of all species with

χi σ > 1 (provided species i is not the only remaining species) or ρi > δ are strictly

positive.

For the proof, see Appendix A.13.

Thus one of two independent conditions is sufficient to guarantee a strictly

positive steady-state stock under first-best harvesting. The first condition implies

that it cannot be optimal to deplete a stock that would not be depleted under open

access (see Lemma 2). The second condition states that it cannot be optimal to

deplete a stock that has an intrinsic growth rate greater than the social discount

rate. Note also that Lemma 4 provides sufficient but not necessary conditions for

stocks to be strictly positive in social optimum.

According to Lemma 2 for the open-access regime and Lemma 4 for the social

optimum, it is possible to provide lower bounds for steady-state stock numbers

both in the open-access regime and in social optimum. We define:

• noa
min as the number of species satisfying χi σ > 1 (cf. Lemma 2),

• n?min as the number of species satisfying χi σ > 1 or ρi > δ (cf. Lemma 4).
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Both lower bounds weakly increase whereas the difference between those two

weakly decreases with σ. This result, formally stated below (and illustrated in

Section VII), suggests that stronger preferences for diversity enhance the need for

fishery management.

Proposition 7. n?min − noa
min weakly decreases with σ.

For the proof, see Appendix A.14.

V Second-best Optimal Management

It is obviously difficult to fully control the worldwide harvesting activities for all

species interacting on the market. Evidence (e.g. from European fishery policy)

shows that fishing regulations often refer to single species that are under particular

pressure. It is therefore useful to study scenarios where a regulator can only control

a limited number of species. In such a case the regulator should however take into

account the spill-over effects of regulation on the harvest and the stock dynamics

of other non-regulated species. For simplicity we will only consider the case where

the regulator can control just one species, indexed by k. Our results generalize in

a straightforward way to controlling several but fewer than all species.

To keep the analysis tractable we assume that the non-managed species i 6= k

are harvested under open-access and their harvest quantities are determined by

inverse demand (8) and the open-access condition (11), i.e.

γ q
− 1
σ

i

[
q
σ−1
σ

k +
∑
j 6=k

q
σ−1
σ

j

] η−1
η

σ
σ−1
−1

= ci x
−χi
i for all species i 6= k. (24)

If all markets clear, i.e. qi = Hi, the regulator’s optimization problem in the

second-best management setting reads as follows:

max
y,{Hi}

∞∫
t=0

y + γ
η

η − 1

[
H

σ−1
σ

k +
∑
j 6=k

H
σ−1
σ

j

] η−1
η

σ
σ−1

 exp(−δ t) dt (25)

subject to (1), (19), and (24) with qi = Hi. The optimality conditions for this

problem are given in Appendix A.15 (assuming an interior optimum).

We will now compare first- and second-best optimal management rules. In-

tuition suggests that regulation of one species drives up its price (at least in the
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short run) such that the demand for the unregulated species will increase. If re-

silience of the unregulated species is low, too strict regulation may have harmful

effects. Accordingly, it is fair to conjecture that second-best optimal regulation of

one species is less strict than first-best optimal regulation of all species.

Both transitional dynamics and steady-state levels will be different under so-

cially optimal and second-best optimal management. One way of directly com-

paring the two regimes would be to consider the shadow prices in the initial state

when stock sizes are the same. This, however, would require fully solving both

dynamic optimization problems, which is too complicated to generate meaningful

insights. Under the symmetry Assumption 2, however, it is possible to compare

the steady-state levels for the two regimes. For this comparison we consider one

management rule to be stricter than another rule if it leads to a higher steady-state

stock of the managed species.

Proposition 8. Let Assumption 2 hold. If ρ > δ and

c ≤ 22−χ γ
[
n ρ

[
1 +

χρ

2 δ

]]−1

(26)

holds, the second-best optimal steady-state stock of the managed species (xsbk ) will be

smaller than the socially optimal steady-state stock, i.e. xsbk < x?k. The second-best

optimal steady-state stocks of the non-managed species (xsbi for i 6= k) lie between

the steady-state levels in the open-access regime and the socially optimal stock, i.e.

xoa < xsbi < xsbk < x? for all i 6= k.

For the proof, see Appendix A.16.

This result confirms the intuition described above. Since the other species are

substitutes for the regulated species, the reduced supply of the managed species

leads to increased demand for and thus to rising fishing pressure on the non-

managed species. In order to avoid an overall welfare-reducing effect, second-best

optimal management must therefore be less strict than first-best management.

Note that condition (26) is sufficient but not necessary for Proposition 8 to

hold. Condition (26) implies that steady-state harvest under first-best manage-

ment exceeds that under open access, i.e. g(x?) ≥ g(xoa). More precisely, when

(26) holds, the socially optimal steady-state stock is smaller or equal to the stock

size that generates the maximum sustainable yield. This is the case if the dis-

count rate is sufficiently high, the intrinsic growth rate is sufficiently low and the

harvesting costs are sufficiently low.

19



VI Myopic Management

In the final scenario we study the effects of myopic regulation. A regulator is said to

be myopic when he ignores that managing some species k may affect other species

being harvested under open access. The optimization problem is similar to that

of second-best optimal management. It is formally identical to (25) except that

the regulator ignores constraint (24). The resulting myopic optimality conditions

are given in Appendix A.17. Note that under myopic management, the regulator

will have to re-optimize continuously as prices of the other species will not stay

constant contrary to the myopic regulator’s expectation.

At the given initial stock sizes second-best and myopic management can be

directly compared with regard to harvest levels as in both cases only one species

is managed while all other species are harvested in a regime of open access. Thus,

we can use the initial total allowable catches (TACs) or, equivalently, the initial

harvesting fees to evaluate the strictness of regulation here: a management rule is

stricter than another one if the initial TAC is lower or the initial harvesting fee is

higher. We find that myopic management is too strict compared to second-best

management.

Proposition 9. The myopically optimal harvesting fee is larger than the second-

best optimal harvesting fee.

For the proof, see Appendix A.18.

VII Numerical Illustrations

In this section we present the results of some numerical simulations to show the

dynamic patterns that can arise under open access and management scenarios.

Preferences for diversity and collapse of fish stocks

If the supply of one species decreases, the demand for the other species will in-

crease as the different species are substitutes in consumption. One reason for the

decreasing supply of one species may be that its stock is about to collapse. Since

the price mechanism boosts demand for the other species, the collapse of one stock

may induce a collapse of other stocks too.
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Figure 2: The stocks (left column), prices (center column), and harvest

rates (right column) for five fish species with different intrinsic growth

rates. Choice of parameters: κi = 1, ci = 1, χi = 0.44, for all i = 1, . . . , 5,

η = 1, ρ1 = 0.22, ρ2 = 0.26, ρ3 = 0.33, ρ4 = 0.45, ρ5 = 0.7. top row:

σ = 2, γ = 0.5; middle row: σ = 1.2, γ = 0.5; bottom row: σ = 2, γ = 0.6.
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Figure 2 shows the simulation results7 of the open-access dynamics. Here we

study a multi-species fishery with five fish stocks characterized by different intrinsic

growth rates but identical parameter values otherwise. The three columns show

the development of stocks (left column), prices (center column), and harvest rates

(right column) for three parameter sets differing in the elasticity of substitution

(σ) and the weight of fish consumption in utility (γ).

The three graphs in the top row of Figure 2 show the time paths of stocks,

prices, and harvest rates for the case of weak preferences for diversity (σ = 2)

and a relatively low weight of fish consumption in utility (γ = 0.5). Starting at

a steady state without fishing, all stocks first decline, then reach positive, though

not optimal steady-state levels. The prices for all species increase as the marginal

harvesting costs increase with declining stock sizes. Harvest rates for all species

initially decline, but the harvest rate of species 5 reaches an steady-state level

above its initial value.

In the three graphs in the middle row of Figure 2 we display the corresponding

time paths for the case of strong preferences for diversity (σ = 1.2) and γ = 0.5

as above. Condition (17) is fulfilled for all species i = 1, . . . , 5 in this example

and thus Proposition 4 states that there is a threshold value σ such that all the

stocks will collapse if the elasticity of subsitution falls below this threshold value.

For σ = 1.2 this is the case. We see that the least resilient species (the one

with the lowest ρi) suffers a serious decline in stock while initially all the other

species seemingly approach positive steady-state values. However, once the least

resilient species has been depleted, the stock of the species with the second-lowest

growth rate also starts to decline sharply. After that stock has also collapsed, the

same thing happens to the species with the next-lowest growth rate, and so forth.

Along with a collapsing stock, both the corresponding marginal harvesting cost and

price explode to infinity. Close to the point in time where species 1 approaches

depletion the harvest rates of all four remaining species sharply increase. This

illustrates part (i) of Proposition 3. For the parameter values used here, the

condition χi σ < (1 + χi)/2 is fulfilled (as χσ = 0.53 and (1 + χ)/2 = 0.72).

The three graphs in the bottom row of Figure 2 show the corresponding time

paths for a set of parameters satisfying condition χi σ > (1 + χi)/2 in part (ii) of

7 All simulations were done with MATLAB R2010b. Codes are available from the authors on

request.
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Proposition 3. Here, preferences for diversity are weak (σ = 2), but the weight of

fish consumption in utility is slightly higher as in the example before (γ = 0.6).

Stocks collapse under open-access fishisng, but the harvest rates of the remaining

species behave smoothly at the points in time where the other species collapse.

In the examples shown in the middle and bottom rows of Figure 2, all stocks

collapse under the open-access regime. For a different parameter specification (in

particular if condition (17) is fulfilled for the less resilient, but not for the more

resilient species) we can obtain both, some stocks being depleted while other stocks

reach positive steady-state levels even under open-access fishery.

Preferences for diversity in the open-access setting may thus provide an expla-

nation for the cascading collapse of fish stocks that has recently been documented

on a worldwide scale (Costello et al. 2008, Heal and Schlenker 2008, Worm et al.

2006; 2009). This is perhaps surprising as the model does not include any ex-

ogenous dynamic driving forces such as technical progress in fishing technology

or increasing overall demand for fish, which are also likely to contribute to the

collapse observable in reality (Skonhoft 2009, Squires and Vestergaard 2009).

To assess the quantitative effect of a change in σ on the number of stocks

that survive under open access and under first-best management we conduct a

Monte-Carlo-like simulation. Using the Latin Hypercube sampling method we

randomly and independently selected values for the three parameters ρi, ci, χi for

n = 33 species according to uniform distributions, while κi = 1 for all i, η = 1,

γ = 0.66, and δ = 33% are fixed.8 The intrinsic growth rates are drawn from the

interval ρi ∈ [0.1; 1.5], the cost parameters from ci ∈ [0.75; 1.25], and the stock

elasticities from χi ∈ [0.25; 1]. Then by varying σ we determine the number of

species that have strictly positive steady-state stocks, first in open access and then

under socially optimal management.

In the left hand diagram of Figure 3 the thick solid (thick dotted) line depicts

the steady-state number of stocks as a function of σ under open access (under first-

best management). The thin lines depict the corresponding lower bounds noa
min and

n?min. For the calculation a randomly chosen set of parameters is held fixed (except

for σ) and for each σ ∈ [1.1, 3] the steady-state numbers of species with strictly

positive stock sizes (and their lower bounds) are calculated. We observe that the

8We have chosen a comparatively high discount rate of δ = 33% in order to trigger the collapse

of some stocks in a social optimum.
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Figure 3: The simulated number of stocks in the open-access steady state

(thick solid lines) and the first-best optimal steady state (dotted lines) as

a function of σ for one parameter set (diagram left) and averaged over a

random sample of 50 parameter sets (diagram right).

steady-state number of stocks under open access does not increase monotonically

in σ. The steep downward decline at σ = 1.24 is due to the different effects of the

various parameters discussed at the end of Section III.

The right-hand diagram in Figure 3 shows the result of averaging these curves

over 50 such parameter sets. We see that the relationship between σ and the

steady-state number of species becomes almost monotonic, both under open access

and under optimal management. The two thin lines depicting the averaged lower

bounds n?min and noa
min are weakly increasing with σ, and their difference decreases

with σ (cf. Proposition 7).

Comparison of fishery management scenarios

In the following, we compare the different management scenarios using a numerical

example with species satisfying symmetry Assumption 1. The intrinsic growth

rates are chosen as ρ1 = 0.5, ρ2 = 0.52, ρ3 = 0.56, ρ4 = 0.6, and ρ5 = 0.66.

Moreover, we select a stock elasticity of harvest χ = 0.33, a discount rate δ = 0.2,

and an elasticity of substitution between species of σ = 2.

Read from top to bottom, Figure 4 shows the simulation results for (i) open

access, (ii) socially optimal harvesting, (iii) second-optimal management, and (iv)
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Figure 4: Stocks (left column), (shadow)prices (center column), and har-

vest rates (right column) for five species under open access (top row),

socially optimal management (second row from top), second-best man-

agement of species 3 (third row from top), and myopic management of

species 3 (bottom row). Parameter values: κi = 1, ci = 1, χi = 0.33, for

all i = 1, . . . , 5, η = 1, γ = 0.88, δ = 0.2, σ = 2, ρ1 = 0.50, ρ2 = 0.52,

ρ3 = 0.56, ρ4 = 0.60, and ρ5 = 0.66.
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myopic management. For the five different species, the left-hand column displays

the time paths of the stocks, the central column those of prices (in the case of open-

access fishing) and shadow prices (in case of the management scenarios) while the

right hand column contains those of the harvesting rates.

Under open access, stock sizes start at the carrying capacities. Similarly to the

top row in Figure 2, stock sizes decline and prices increase and eventually converge

to the stable steady-state levels. For the three management scenarios, we assume

that regulation starts off at open-access steady-state stock levels. Socially opti-

mal harvest quantities (as control variables) start at low levels and then increase.

Accordingly, shadow prices (as co-state variables) start at high levels and then

decrease. As a consequence stocks (as state variables) recover and reach steady-

states well above the maximum sustainable yield levels. The latter observation

holds because larger stock sizes induce lower harvesting costs. Note also that in

all scenarios the optimal steady-state shadow prices exceed the open-access prices.

Under second-best management (third row) we assume that species 3 is man-

aged while the remaining species 1, 2, 4, and 5 are harvested under open access.

Harvesting of the controlled species initially also starts at a lower level than the

open-access equilibrium harvest. This leads to an increase of the managed stock.

Since species are substitutes, harvests of the non-managed species slightly increase,

and the corresponding stocks slightly decline. However, as the steady-state stock

and harvest of species 3 are higher under second-best management than under

open access, harvest levels for the non-managed species slightly decline, and the

steady-state stocks are also modestly above the initial open-access steady-state

levels. Overall, the changes in stock and harvest of the managed species are much

smaller under second-best management than in the social optimum. This pat-

tern reflects our analytic result from Proposition 8, establishing that second-best

optimal management is less strict than first-best optimal management. We find

this also for the case shown in the figure where species differ with respect to their

intrinsic growth rates.

Under myopic management (bottom row of Figure 4), harvesting of the regu-

lated species 3 starts at a drastically lower level than the initial levels under first-

or second-best management. This induces the harvest rate of all other species

to jump to an initially high level because consumers replace the expensive reg-

ulated species with cheaper non-regulated species, including those species with
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small intrinsic growth rates. Eventually, the harvest rates of the non-managed

species decline. The increased harvesting pressure on the least resilient species 1

leads to its collapse, reinforcing the harvesting pressure on the remaining species.

This ultimately leads to the collapse of all species except for the managed one,

which finally reaches a steady-state level below the initial open-access level. The

reason for the latter, rather disturbing phenomenon is that at the end of the day

the managed fishery has to supply the whole market. This example demonstrates

strikingly that regulation can cause quite detrimental effects on other species not

subject to regulation. The channel of such unwanted side-effects runs through the

demand-side feedback of consumers who replace the regulated product with other

products. At first glance, this observation may suggest that high elasticity of sub-

stitution (preference for fish fingers) is bad. However, the contrary is the case. If

the elasticity of substitution is high, the consumer will eat fish fingers consisting

of mainly abundant species. If the elasticity of substitution is low, they will suffer

from decreasing product variety and will want to substitute the regulated expen-

sive product with a whole set of other varieties, including those produced from

the less resilient species. This example shows that it is important to account for

spillovers of regulation on other, possibly even more threatened species.

VIII Discussion and Conclusions

We have analyzed the impact of consumer preferences for seafood diversity on har-

vesting patterns and stock dynamics by means of a multi-species fishery model.

Our results open up a new perspective on the economics of collapsing fish stocks

and on multi-species fishery management. We have shown that consumer prefer-

ences for diversity may play an important role in the ongoing collapse of fish stocks

presently observed.

Clearly other factors are likely to also contribute to the collapse of fish stocks.

In particular technical progress and exogenously changing consumer patterns may

increase harvesting pressure (Skonhoft 2009, Squires and Vestergaard 2009). In

contrast to these explanations for the collapse of fish stocks, our analysis highlights

the fact that different fisheries are linked through demand-side interactions, and

we have derived some important consequences for management.

We have shown that, other things being equal, species with low intrinsic growth
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rates are likely to collapse first under a regime of open access. As high-trophic

level species typically have lower growth rates than low-trophic ones (Froese and

Proelß 2010), this result provides an explanation for the empirical observation

that mean trophic level of catches has declined over time (“fishing down the food

web”, Pauly et al. 1998, Essington et al. 2006).9 Specifically, our model suggests

that a sequential collapse and replacement of higher-trophic-level species by lower-

trophic-level ones will occur. Essington et al. (2006) identify a second mechanism,

where the mean trophic level of catches decreases by the sequential addition of less

valuable, lower-trophic-level species (“fishing through the food web”). This mode

of fishing down the food web could be explained by a slightly modified version of

our model where consumers value species differently10 and overall fishing pressure

increases, e.g. due to a generally increasing demand for fish or due to technical

progress in fishing technology. A full analysis of this issue is beyond the scope of

this paper, however.

Recent empirical studies have argued that management by individual transfer-

able quotas (ITQs) could significantly reduce the global trend toward the widespread

collapse of fish stocks (Costello et al. 2008, Heal and Schlenker 2008). However,

these studies have mainly focused on the own-stock effects of the regulated species.

They have not tested for possible negative spill-overs onto other stocks. This would

however be important, since our analysis has shown that myopic management of

some stocks may cause the collapse of other non-regulated stocks, even though the

managed stock itself does not collapse. Indeed, fishing effort has moved from indus-

trialized countries (with relatively strict regulation of their fisheries) to developing

countries (especially African countries with less strict regulation and enforcement),

thus increasing harvesting pressure in those countries (Worm et al. 2009).

One important conclusion from our analysis is that in order to prevent the

world-wide collapse of fish stocks, it is necessary to move from the current manage-

ment of some stocks to a coordinated management of all fish stocks. If first-best

coordinated management of all species is not possible, spill-overs to other non-

regulated species should be taken into account in order to prevent the unwanted

collapse of those.

9 We thank a reviewer for pointing this out.
10 To model this, weights could be introduced into the utility function (7) such that utility

from fish consumption would be v(q1, . . . , qn) =
[∑

i αi q
(σ−1)/σ
i

]σ/(σ−1)
.
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Appendix

A.1 Derivation of Demand Function (9)

Taking both sides of condition (8) to the power of 1− σ and summing over i, we

obtain

n∑
i

p1−σ
i =

[
γ v

η−1
η
−σ−1

σ

]1−σ
v
σ−1
σ =

[
γ v−

1
η

]1−σ
(27)

⇔ v = γη

[
n∑
i

p1−σ
i

]− η
1−σ

= γη P−η (28)

where P is the price index for fish. Note that for η = 1 overall expenditures for

fish are constant and equal to γ. Substituting into (8) and rearranging leads to

the demand functions (9). Own and cross elasticity of demand (9) are

pi
qi

∂qi
∂pi

= − σ + (σ − η)
p1−σ
i

n∑
j=1

p1−σ
j

(29)

pi
qj

∂qj
∂pi

= (σ − η)
p1−σ
i

n∑
j=1

p1−σ
j

(30)

Hence,

σ =
pi
qj

∂qj
∂pi
− pi
qi

∂qi
∂pi

(31)

If we take crustaceans as species i and fresh salmon as species j, and use the

compensated price elasticities from Asche et al. (1997, Table 4), we obtain σ =

0.898− (−0.762) = 1.66.

A.2 Cost of Fishing under Open Access

Using (4) the zero-profit condition pi νi x
χi
i eεii − ω ei = φi may be written as

ei =
εi

1− εi
φi
ω

(32)

Substituting into the harvesting function (3) we derive equilibrium harvest as a

function of the species’ biomass: hi = νi x
χi
i

[
εi

1−εi
φi
ω

]εi
. Total cost of fishing is

ω ei + φi = φi εi/(1− εi) + φi = φi/(1− εi). Hence cost per unit of harvest may be

written as ci x
−χi
i , where ci is given by (5).
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A.3 Proof of Lemma 1

Under Assumption 1 total harvest Hoa
i of species i is given by equation (13). For

the stable equilibrium stock, open-access harvest must increase more strongly with

stock size than natural growth, i.e. the stable equilibrium is characterized by the

condition
dHoa

i

dxoa
i

> ρi

[
1− 2

xoa
i

κ

]
(33)

Next, we differentiate the equilibrium condition ρi x
oa
i [1− xoa

i /κ] = Hoa
i with re-

spect to ρi, where Hoa
i as given by (13) is a function of the stock sizes. This leads

to the condition

xoa
i

[
1− xoa

i

κ

]
=

[
−ρi

[
1− 2

xoa
i

κ

]
+
dHoa

i

dxoa
i

]
dxoa

i

dρi

By condition (33), the term in brackets on the RHS of this condition is positive.

We thus have dxoa
i /dρi > 0, i.e. the larger the intrinsic growth rate, the larger the

steady-state stock.

A.4 Proof of Proposition 1

In a first step, we prove the following intermediate result: For all σoa there exists

a species i0 such that if we increase σ in a neighborhood of σoa, the harvest of all

species i ≤ i0 at given stock sizes will decrease. Differentiating (13) with respect

to σ leads to

∂Hi

∂σ
= Hi χ

ln xi −

n∑
j=1

x
χ (σ−1)
j lnxj

n∑
j=1

x
χ (σ−1)
j

 (34)

The last term in brackets is independent of the species under consideration. It is

the logarithm of a weighted geometric mean of fish stocks:

n∑
j=1

x
χ (σ−1)
j lnxj

n∑
j=1

x
χ (σ−1)
j

=

ln

[
n∏
j=1

x
x
χ (σ−1)
j

j

]
n∑
j=1

x
χ (σ−1)
j

(35)

Since the logarithm of the stock size of some species must be smaller than the

weighted geometric mean, the RHS of (34) must be negative for those species.

Now let i0 denote the species with the largest stock smaller than the weighted
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geometric mean. For all species i with i ≤ i0, the RHS of equation (34) is still

negative, except for the case where the bracket term in (35) is zero, in which case

harvest of species i0 does not change with σ.

Differentiating the equilibrium condition ρi xi (1 − xi/κ) = Hi with respect to σ

yields [
ρi

[
1− 2

xoa
i

κ

]
− dHoa

i

dxoa
i

]
dxoa

i

dσ
=

∂Hoa
i

∂σ

As the term in brackets on the left hand side of this equation is negative (see

Appendix A.3) we conclude that for or all σ? there exists a species i0 such that an

increase of σ in a neighborhood of σ? raises the open-access equilibrium stocks of

all species i < i0.

A.5 Proof of Lemma 2

We show that for a sufficiently small initial stock size, xi will increase under open

access. For this purpose we show that under the conditions of proposition 1 growth

gi(xi)−mi hi increases with xi at xi = 0. Using (12), we get

lim
xi→0

∂

∂xi

{
ρi xi

[
1− xi

κi

]
− γη

[
ci x

−χi
i

]−σ [ n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1
}

= lim
xi→0

{
ρi

[
1− 2

xi
κi

]
− χi σ γη c−σi xχi σ−1

i

[
n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1

− χi (η − σ) γη c−2σ
i x2χi σ−χi−1

i

[
n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1
−1}

≥ lim
xi→0

{
ρi

[
1− 2

xi
κi

]
− χi σ γη c−σi xχi σ−1

i

[
cj x

−χj
j

]η−σ}
= ρi > 0 (36)

A.6 Proof of Proposition 2

Consider first the case where some species will never collapse. Define

xj ≡ lim inf
t≥0
{xjt}

with xj > 0 for some species j. Then define the quantity

Ω ≡ γη

[
n∑
j=1

c1−σ
j x

χj(σ−1)
j

]−σ−η
σ−1

> 0
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Thus the equation of motion for species i (14) can be bounded from above:

ẋit = ρi xit

[
1− xit

κi

]
− γη

[
ci x

−χi
i

]−σ [ n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1

< ρi xit − Ω c−σi xσ χiit ≡
dx̃it
dt

The solution to the last differential equation is given by

x̃it =


[

Ω
ρi cσi

(
1− eρi (1−σ χi) (t−T̃i)

)] 1
1−σ χi for t ≤ T̃i

0 for t > T̃i

 (37)

where T̃i > 0, the point in time after which x̃i = 0, is a constant of integration.

Since the true function xit falls faster than x̃it, the stock of species i will approach

zero at a point in time Ti < T̃i. Consider now the case where all stocks collapse

and look at the species that converges to zero with the lowest speed. Then all

other species must collapse in finite time by virtue of the first case. Therefore,

after the point in time when the second last species has collapsed, (14) reduces to

ẋit = ρi xit

[
1− xit

κi

]
− γηc−ηi xχiηi < ρi xit − γηc−ηi xχiηi ≡ dx̃it

dt

Since species i can only collapse if χiσ < 1 and since σ > η by assumption, χiη < 1

must hold. But the solution of the last equation has the same structure as (37),

xit hits zero in finite time.

Harvest per vessel, hi = νi x
χi
i eεii , goes to zero with xi → 0 because each vessel’s

profit-maximizing effort level is independent of the stock size, ei = (ci νi εi/ω)1/(1−εi)

(this can be verified by plugging 11 into 4). The mass of vessels fishing species i,

which can be calculated as total harvest divided by harvest per vessel, also goes

to zero.

lim
xi→0

mi ≤ lim
xi→0

Ω c−σi xσ χii

hi
=

Ω c−σi
νi e

εi
i

lim
xi→0

x
(σ−1)χi
i = 0.

A.7 Proof of Proposition 3

Assume that species i is collapsing at time Ti, and let np be the number of stocks

j with strictly positive stock sizes at and shortly before Ti. Then differentiating
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(12) for species j 6= i with respect to time yields (with xj > 0)

dHj

dt
= γη c−σj x

χj σ−1
j ẋj

[
n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1

−
[
cj x

−χj
j

]−σ
(σ − η)

[
n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1
−1 ∑

k 6=i

χk c
1−σ
k x

χk (σ−1)−1
k ẋk

−
[
cj x

−χj
j

]−σ
(σ − η)

[
n∑
j=1

[
cj x

−χj
j

]1−σ
]−σ−η

σ−1
−1

χi c
1−σ
i x

χi (σ−1)−1
i ẋi (38)

For t→ Ti, the very last two factors become

lim
t→Ti

x
χi (σ−1)−1
i ẋi ≤ lim

t→Ti
x
χi (σ−1)−1
i (ρi xi − Ωxχi σi ) (39)

= lim
t→Ti

(
ρi x

χi (σ−1)
i − Ωx2χi σ−χi−1

i

)
(40)

(i) Under the condition 2χi σ − χi − 1 < 0, or, equivalently, χi σ < (1 + χi)/2,

this expression diverges to −∞. Thus, limt→Ti Ḣj = ∞. (ii) Under the condition

χi σ > (1 + χi)/2 all terms in equation (38) remain bounded.

A.8 Proof of Proposition 4

We make use of the result shown in appendix A.3 that harvest of species of the

least resilient species i monotonically increases when the elasticity of substitution

decreases. This implies that, everything else equal, harvest of this species i is

maximal for a level of σ = 1, and equal to

H̄i =
γ

n c
xχi (41)

The proof then continues as follows: we will first show that for σ = 1 the stock

of the least resilient species 1 will collapse under open access fishing if condi-

tion (17) holds. Because harvest of species 1 continuously decreases with σ (cf.

appendix A.4), a value σ1 > 1 must exist for which harvest of species 1 is still so

large that the stock of species 1 will collapse. Once the stock of species 1 has col-

lapsed, species 2 is the least resilient among the remaining n−1 species. A similar

argument then shows that a value σ2, with 1 < σ2 ≤ σ1, must exist under the

conditions given in the proposition such that the stock of species 2 will collapse.

Iterating this argument, we conclude that a value σ = σn > 1 must exist such that

that the stocks of species i = 1, . . . , n will collapse one after another.
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Using (41) and (2) in (1), and employing Assumption 1, stock dynamics of species

1 is given by

ẋ1 = ρ1 x1 (1− x1)− γ

n c
xχ1 (42)

Under condition (17), the expression on the RHS of equation (42) is negative for all

x1, as we show in the following. The maximum of the RHS of (42) is determined

by the condition

ρ1 (1− 2 x̄1)− χ γ

n c
x̄χ−1

1 = 0 (43)

⇔ γ

n c
x̄χ1 =

ρ1

χ
x̄1 (1− 2 x̄1) (44)

From condition (17) we conclude that the solution x̄1 to equation (44) must fulfill

x̄1 < (1−χ)/(2−χ) because for all x̄1 ≥ (1−χ)/(2−χ) the LHS of (44) is larger

than the RHS of (44). By condition (17) this holds for x̄1 = (1− χ)/(2− χ):

γ

n c

(
1− χ
2− χ

)χ
>
ρ1

χ

1− χ
2− χ

(
1− 2

1− χ
2− χ

)
=

ρ1

2− χ
1− χ
2− χ

Because the LHS (RHS) of (44) is monotonically increasing (decreasing) in x̄1, this

also holds for all x̄1 > (1− χ)/(2− χ).

Using (44) in the RHS of (42), we obtain

ρ1 x1 (1− x1)− γ

n c
xχ1 < ρ1 x̄1 (1− x̄1)− γ

n c
x̄χ1 (45)

<
ρ1

χ
x̄1 [χ (1− x̄1)− (1− 2 x̄1)] < 0, (46)

as x̄1 < (1− χ)/(2− χ).

As harvest H1 of species 1 is monotonically decreasing with σ and the stock of

species 1 collapses for σ = 1, a σc > 1 (but sufficiently small) must exist for which

the stock of species 1 still collapses.

A.9 Setting up the Planner’s Optimization Problem

The social planner maximizes the present value of utility with respect to y, qi, ei,

and mi. Using (7) in (6), the problem can be written as

max
y,{qi,ei,mi}

∞∫
t=0

y + γ
η

η − 1

[
n∑
j=1

q
σ−1
σ

j

] η−1
η

σ
σ−1

 exp(−δ t) dt (47)

34



subject to qi = mi νi x
χi
i eεii , (1), and (10). Plugging in (10) and using the co-state

variables πi for the constraints qi = mi νi x
χi
i eεii and µi for constraints (1), the

current-value Hamiltonian reads

H = γ
η

η − 1

[
n∑
i=1

q
σ−1
σ

i

] σ
σ−1

+ ω

(
1−

n∑
i=1

mi ei

)
−

n∑
i=1

mi φi

+
n∑
i=1

πi [mi νi x
χi
i eεii − qi] +

n∑
i=1

µi [gi(xi)−mi νi x
χi
i eεii ] (48)

The necessary conditions for optimal effort and mass of vessels are

∂H
∂ei

= 0 ⇔ [πi − µi] εimi νi x
χi
i eεi−1

i = λωmi (49)

∂H
∂mi

= 0 ⇔ [πi − µi] νi xχii eεii = λω ei + λφi (50)

Both conditions hold for all species i. Using (49) in (50), we derive the optimal

effort levels ei = εi φi/((1 − εi)ω). Evidently, the effort per vessel in the open-

access setting (equation 32) is equal to the optimal effort level. To determine

the optimal transitional dynamics toward the steady state we reformulate the

regulator’s optimization problem by considering total harvest Hi = mi νi x
χi
i eεii as

the decision variable. Using ei = εi φi/((1− εi)ω), the cost of fishing species i is

ωmi ei+φimi =
ωHi

νi x
χi
i eεi−1

i

+
φiHi

νi x
χi
i eεii

=

 ω

νi

[
εi φi

(1−εi)ω

]εi−1 +
φi

νi

[
εi φi

(1−εi)ω

]εi
 Hi

xχii

= [εi + 1− εi]
ωε1 φ1−εi

i

νi (1− εi)1−εi εεii

Hi

xχii
= ci

Hi

xχii
(51)

Substituting this and the market-clearing condition qi = Hi into (47) and rear-

ranging leads to the optimization problem (18).

A.10 Conditions for First-best Optimal Management

The current-value Hamiltonian for the regulator’s optimization problem is

H = γ
η

η − 1

[
n∑
i=1

H
σ−1
σ

i

] η−1
η

σ
σ−1

+ ω −
n∑
i=1

ciHi x
−χi
i + µi [gi(xit)−Hi]}
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The first-order conditions for the optimal management of the fishery read

∂H
∂Hi

= 0 ⇔ γ H
− 1
σ

i

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−1

= ci x
−χi
i + µi (52)

∂H
∂xi

= δ µi − µ̇i ⇔ χi ciHi x
−χi−1
i + µi g

′
i(xi) = δ µi − µ̇i (53)

where both conditions (52) and (53) hold for all species i. As the objective function

is strictly concave and as all growth functions are strictly concave, the first-order

conditions are also sufficient for a maximum. From (19) and (52) we derive the

total harvest of species i as a function of the shadow prices µi:

Hi = γη
(
ci x

−χi
i + µi

)−σ [ n∑
j=1

(
cj x

−χj
j + µj

)1−σ
]−σ−η

σ−1

(54)

Note that (54) holds both in and off the steady state. In a steady state the

shadow price for fish does not change, i.e. µ̇i = 0. Using this in (53), we obtain

the steady-state shadow price of the stock of species i

µi = ci x
−χi
i

χi gi(xi)

xi [δ − g′i(xi)]
= ci x

−χi
i

χi ρi [1− xi/κi]
δ − ρi [1− 2xi/κi]

(55)

The social cost of harvesting one unit of species i, reflected by ci x
−χi
i + µi, equals

the current marginal cost of harvest plus the present value of additional future

harvesting cost due to the marginally smaller fish stock.

A.11 Proof of Lemma 3

Let πi = c x?i
−χi

[
1 +

ρi

(
1−x

?
i
κ

)
δ−ρi

(
1−2

x?
i
κ

)
]

. Given Assumption 1 , total harvest H?
i of

species i is (by equation 12)

H?
i = γ

π−σi
n∑
j=1

π1−σ
j

Since dπi/dx
?
i < 0, it is straightforward to show that Hi is monotonically increasing

in x?i , as x?i >
κ
2

(
1− δ

ρi

)
. Hence, for the optimal steady state (see A.16) we obtain

dH?
i

dx?i
> ρi

[
1− 2

x?i
κ

]
(56)
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Next we differentiate the equilibrium condition ρi x
?
i [1− x?i /κ] = H?

i with respect

to ρi. This yields

x?i

[
1− x?i

κ

]
=

[
−ρi

[
1− 2

x?i
κ

]
+
dH?

i

dx?i

]
dx?i
dρi

+
∂H?

i

∂ρi

By condition (56) the term in brackets on the RHS of this condition is positive.

Also, it is straightforward to show that ∂Hi/∂ρi < 0. We thus have dxoa
i /dρi > 0,

i.e. the larger the intrinsic growth rate, the larger the first-best steady-state stock.

A.12 Proof of Proposition 6

The proof is analogous to the one of Proposition 1. Differentiating (20) with

respect to the σ leads to

∂Hi

∂σ
= Hi

− ln πi +

n∑
j=1

π1−σ
j ln πj

n∑
j=1

π1−σ
j

 (57)

Again the last term in brackets is independent of the species under consideration.

Note also as in Lemma 1 that

n∑
j=1

π1−σ
j ln πj

n∑
j=1

π1−σ
j

=

ln

[
n∏
j=1

π
π1−σ
j

j

]
n∑
j=1

π1−σ
j

As reasoned in the proof of Lemma 1, the RHS of (57) must be negative for some

species. Let j denote the species with the smallest shadow price that is larger than

the weighted geometric mean. For all species i with i ≤ j the RHS of equation (57)

is still negative. Similar to the proof of Lemma 3, one can show π1 < π2 < . . . < πn.

A.13 Proof of Lemma 4

With a similar argument as in the proof of Lemma 2 (A.5) we can show that if

χi σ > 1 then the optimal steady-state harvest of species i is smaller than natural

growth for small stock sizes of species i. This is because the optimal shadow price

of species i is proportional to the open-access price ci x
−χi
i . It remains to be shown

that ρi > δ is a sufficient condition for the steady-state stock to be strictly positive.

Consider the steady-state shadow price of the stock i (equation 55). If ρi > δ, this
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shadow price will diverge to +∞ as the stock approaches xi = κi
2

(
1− δ

ρi

)
from

above. Hence the optimal steady-state stock must be greater than xi with xi > 0

whenever ρi > δ.

A.14 Proof of Proposition 7

Let n?1 be the number of species for which ρi > δ, but χi σ ≤ 1, while noa
min

is the number of species for which χi σ > 1. By construction of n?1, we obtain

n?min = n?1+noa
min. Thus we have n?min−noa

min = n?1 ≥ 0 and hence (n?min − noa
min) = n?1,

which is weakly decreasing with σ.

A.15 Conditions for Second-best Management

The current-value Hamiltonian for the regulator’s optimization problem is

H = γ
η

η − 1

[
H

σ−1
σ

k +
∑
j 6=k

H
σ−1
σ

j

] η−1
η

σ
σ−1

+ω−
n∑
i=1

ciHi x
−χi
i +

n∑
i=1

µi [gi(xit)−Hi]

+
∑
i 6=k

λi

ci x−χii − γ H−
1
σ

i

[
H

σ−1
σ

k +
∑
j 6=k

H
σ−1
σ

j

] η−1
η

σ
σ−1
−1


The first-order conditions for the second-best management of species k

γ H
− 1
σ

k

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−1

= ck x
−χk
k + µk −

(
1

η
− 1

σ

)
H
− 1
σ

k γ

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−2 ∑

i 6=

λiH
− 1
σ

i (58)

χk ckHk x
−χk−1
k + µk g

′
k(xk) = δ µk − µ̇k (59)

Conditions (58) and (59) must hold for the managed species k. In addition, for

the non-managed species i 6= k the following first-order conditions with respect to
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Hi and xi must hold for all species i 6= k11

γ H
− 1
σ

i

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−1

= ci x
−χi
i + µi − λi

γ

σ
H
− 1
σ
−1

i

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−1

−
(

1

η
− 1

σ

)
γ H

− 1
σ

i

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−2 ∑

i 6=k

λiH
− 1
σ

i (60)

δ µi − µ̇i = χi ciHi x
−χi−1
i + µi g

′
i(xi)− λi χi ci x

−χi−1
i

Since in a steady state we have µ̇i = 0 for all species, we obtain

µk = ck x
−χk
k

χk gk(xk)

xk [δ − g′k(xk)]
(61)

for the managed species, just as in the first-best, and

µi = ci x
−χi
i

χi (gi(xi)− λi)
xi [δ − g′i(xi)]

(62)

for the non-managed species. Plugging this into (60), we find

ci x
−χi
i

χi (gi(xi)− λi)
xi [δ − g′i(xi)]

= λi
ci x

−χi
i

σHi

+
∑
l 6=k

λl

(
1
η
− 1

σ

)
H
− 1
σ

l ci x
−χi
i

H
σ−1
σ

k +
∑
j 6=k

H
σ−1
σ

j

(63)

A.16 Proof of Proposition 8

The condition ρ > δ guarantees that the steady state stock sizes of the managed

stocks are positive in the social optimum and in second-best. For identical species

condition (54) for first-best steady-state management becomes

γ

[
c x?−χ

[
1 +

χ g(x?)

x? [δ − g′(x?)]

]]−1

n−1 = g(x?) (64)

11 As stated in the main text, we assume an interior optimum here. In general we cannot

exclude a priori that one of the non-managed stocks will collapse under second-best management

(in particular if this stock already is about to collapse in the initial state). In such a case the set

of conditions that apply for the non-managed species will be different as the number of stocks

would change over time.
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The LHS of this equation is monotonically increasing with x?, as

d

dx?

{
c x?−χ

[
1 +

χ g(x?)

x? [δ − g′(x?)]

]}
= −χ c x?−χ−1

[
1 +

χ g(x?)

x? [δ − g′(x?)]

]
− c x?−χ

χ ρ
κ

(δ + ρ)

[δ − g′(x?)]2
< 0 (65)

For identical species condition (58) for second-best becomes

γ g(xk)
− 1
σ

[
g(xk)

σ−1
σ + (n− 1) g(xo)

σ−1
σ

]−1

= c x−χk

[
1 +

χ g(xk)

xk [δ − g′(xk)]

]
− σ − 1

σ
γ g(xk)

− 1
σ

[
g(xk)

σ−1
σ + (n− 1) g(xo)

σ−1
σ

]−2

(n− 1)λ g(xo)
− 1
σ (66)

where xk is the stock of the managed species and xo are the stocks of the non-

managed species that are fished under open access conditions. By symmetry, all

the stocks sizes are the same. Rearranging, we obtain[
1 + (n− 1)λ

σ − 1

σ

c x−χo
γ

]
× n g(xk)

σ−1
σ

g(xk)
σ−1
σ + (n− 1) g(xo)

σ−1
σ

×

× γ
[
c x−χk

[
1 +

χ g(xk)

xk [δ − g′(xk)]

]]−1

n−1 = g(xk) (67)

The RHS of this condition is formally identical to the RHS of (64). The last factor

on the LHS of (67) is identical to the LHS of (64). We proceed by showing that

for xk = x? the first two factors on the LHS of (67) are both larger than one. As

the LHS of (64) is monotonically increasing with x?, the solution xsb
k of (67) must

thus be smaller than x?.

To show that the first factor on the LHS of (67) is larger than one, we have to

show that λ > 0. With identical species and η = 1, condition (63) becomes

χ g(xo)− λ
xo [δ − g′(xo)]

=
λ

σ g(xo)
+ (n− 1)λ

σ−1
σ
g(xo)

− 1
σ

g(xk)
σ−1
σ + (n− 1) g(xo)

σ−1
σ

⇔ λ

[
1− xo [g′(xo)− δ]

g(xo)︸ ︷︷ ︸
<1 (concavity of g(x))

1
σ
g(xk)

σ−1
σ + (n− 1) g(xo)

σ−1
σ

g(xk)
σ−1
σ + (n− 1) g(xo)

σ−1
σ︸ ︷︷ ︸

<1(σ>1)

]
= χ g(xo)

This shows that the term in curly brackets on the LHS is positive. As the RHS is

also positive, we conclude that λ > 0.
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The second factor on the LHS of (67) is also larger than one for xk = x?, as the

following argument shows: For identical species, the open-access constraint (24)

for the non-managed species under second-best management becomes

γ
[
c x−χo

]−1 g(xo)
σ−1
σ

g(xk)
σ−1
σ + (n− 1) g(xo)

σ−1
σ

= g(xo) (68)

Comparing this condition with the open-access condition for symmetric species,

γ
[
c xoa−χ]−1

n−1 = g(xoa) (69)

we conclude that xo > xoa for g(xk) > g(xoa). As by assumption g(x?) = g(xoa),

we conclude for xk = x? that

n g(xk)
σ−1
σ

g(xk)
σ−1
σ + (n− 1) g(xo)

σ−1
σ

>
g(xk)

σ−1
σ + (n− 1) g(xo)

σ−1
σ

g(xk)
σ−1
σ + (n− 1) g(xo)

σ−1
σ

= 1. (70)

Thus, the second factor on the LHS of (67) is larger than one for xk = x?. It also

follows that xo > xoa and obviously xo < xk < x?. This concludes the proof of the

proposition.

The socially optimal steady-state stocks are smaller than xMSY = 1/2 if at xMSY

the LHS of (64) is larger than the RHS, i.e. if

γ

[
c

(
1

2

)−χ [
1 +

χρ

2 δ

]]−1

n−1 ≥ ρ

4
. (71)

Rearranging leads to (26).

A.17 Conditions for Myopic Management

The current-value Hamiltonian for the regulator’s optimization problem is

H = γ
η

η − 1

[
H

σ−1
σ

k +
∑
j 6=k

H
σ−1
σ

j

] η−1
η

σ
σ−1

+ω−
n∑
i=1

ciHi x
−χi
i +

n∑
i=1

µi [gi(xit)−Hi]

The first-order conditions for the optimal management of the fishery with respect

to Hk and xk read

γ H
− 1
σ

k

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−1

= ck x
−χk
k + µk (72)

χk ckHk x
−χk−1
k + µk g

′
k(xk) = δ µk − µ̇k (73)

These conditions are formally identical with conditions (52) and (53) for the first-

best optimal management, with the notable difference that they hold only for the

managed species.
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A.18 Proof of Proposition 9

Harvest of the managed species is

Hsb
k = γ

(
πsb
k

)−σ(
πsb
k

)1−σ
+
∑
j 6=k

(
cj x

−χ
j

)1−σ under second-best management

Hmyopic
k = γ

(
πmyopic
k

)−σ
(
πmyopic
k

)1−σ
+
∑
j 6=k

(
cj x

−χ
j

)1−σ
under myopic management,

where

πsb
k = ck x

−χ
k + µsb

k −
(

1

η
− 1

σ

)
H
− 1
σ

k γ

[
n∑
j=1

H
σ−1
σ

j

] η−1
η

σ
σ−1
−2 ∑

i 6=k

λiH
− 1
σ

i

πmyopic
k = ck x

−χ
k + µmyopic

k

Assume myopic management of species k is always the same as second-best man-

agement. Then we would have µmyopic
k = µsb

k at any time (by equations 73 and 59).

Thus, πmyopic
k > πsb

k , and Hmyopic
k < Hsb

k , which is a contradiction of the assump-

tion that myopic management is the same as second-best management. A similar

contradiction is derived if one assumes that myopic management is less strict, i.e.

if harvest is higher under myopic management than second-best management. We

thus conclude that myopic management is stricter than second-best management.
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