~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Kobayashi, Ikunori; Fujiwara, Takeshi; Nakano, Junji; Yamamoto, Yoshikazu

Working Paper
A procedural and object-oriented statistical language

SFB 373 Discussion Paper, No. 2001,68

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Kobayashi, Ikunori; Fujiwara, Takeshi; Nakano, Junji; Yamamoto, Yoshikazu
(2001) : A procedural and object-oriented statistical language, SFB 373 Discussion Paper, No.
2001,68, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and
Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050373

This Version is available at:
https://hdl.handle.net/10419/62712

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10050373%0A
https://hdl.handle.net/10419/62712
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

A Procedural and Object-Oriented Statistical
Language

Ikunori Kobayashi', Takeshi Fujiwara?, Junji Nakano® and
Yoshikazu Yamamoto!

!Tokushima Bunri University, 1314-1 Shido, Kagawa 769-2193, JAPAN
2The Graduate University for Advanced Studies, 4-6-7 Minami-Azabu,
Tokyo 106-8569, JAPAN

3The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Tokyo
106-8569, JAPAN

Summary

A language of a statistical system is important, even though it has an ef-
fective graphical user interface. A language may be used to control the
statistical system at will and to implement new statistical procedures which
are not realized in the system at the beginning. This paper introduces the
features and the syntax of the language of the statistical system Jasp (Java
based statistical processor). We use a procedural function-based script lan-
guage Pnuts as the basis of the language, and add object-oriented mecha-
nism thinking much of ease, flexibility and extendibility.

Keywords: Jasp, Java, Object-Oriented Language, Procedural Language,
Statistical system

1 Introduction

Many statistical systems have been developed from the dawn of the com-
puter, and have continued to adopt the new computer technology of each
age. Famous examples are, to name a few, SAS (SAS Institute Inc. 2001)
and SPSS (SPSS Inc. 1999). Recently, the dissemination of cheap and power-
ful personal computers and the Internet offer new posibilities to data analysis
environments. For example, we are able to browse many kinds of data eas-
ily on the Web, to stock huge data and to handle them even on our laptop
computers. In order to use such modern technologies in statistical analyses
effectively, several statistical systems are newly designed using recent tech-
nologies such as the Java language (Arnold, Goling & Holmes 2000) and the
distributed computing. Our statistical system named Jasp (JAva based Sta-
tistical Processor) (Nakano, Fujiwara, Yamamoto & Kobayashi 2000) is one
of them.

Statistical systems are required to be able to express various computation
procedures easily and clearly, to draw graphics flexibly, and to customize
functions for routine tasks. For realizing these purposes, most statistical
systems use their programming languages as interfaces between systems and
users. Jasp also has a programming language, i.e., the Jasp language. The
Jasp language is based on the Pnuts language (Tomatsu 2000), which is a
script language written in and for the Java language. We modified Pnuts for
statistical users to be able to describe matrix handling and basic statistical
computations simply, and to get graphical results easily. As the Jasp language
is a procedural language based on functions, the syntax for it is relatively
simple.

Procedural languages are flexible and intuitive to express formulae, func-
tions and tentative programs. Examples are the S language (Chambers &
Hastie 1992) and the XploRe language (Hérdle, Klinke & Miiller 1999). Pro-
cedural languages, however, tend to have many small functions and users
sometimes have difficulty finding desired functions among a lot of others.
Object-oriented languages are accepted to be good at bundling existing small
functions or well-organized knowledge. Therefore, we designed a class mech-
anism for constructing class objects from Jasp functions without much mod-
ifications.

Through the Internet, many programs, functions and subroutines for statis-
tical computations are freely available now. Some of them are written in
the Java language, and Jasp can use them directly from inside the language.
Some of them are written in traditional compiler languages such as Fortran,
C and C++. Jasp can also use these programs relatively easily by using the
JNI (Java Native Interface) mechanism (Liang 1999).

In the recent computing environment, GUIs (Graphical User Interfaces) are

popular, especially for beginners in statistics and computing. Although al-
most all statistical systems have GUI environments now, the GUI and the
language are sometimes not well unified. It is clear that a statistical language
should be kept simple even for considering the GUI support. We designed the
Jasp language to be able to support the GUI operations without increasing
the syntactical complexity of the language.

Next section describes the basic principles of the Jasp language design. In
section 3, we show outline of the Jasp language with some examples.

2 Basic Design Principles

We first decided to use the Java language for developing our statistical system.
Java is a general purpose and pure object-oriented programming language
developed by Sun Microsystems since 1991. It is a portable, architecture-
neutral language, whose program codes are compiled into bytecodes which are
interpreted and executed by Java Virtual Machines (Java VMs). Any system
that supports a Java VM can execute all pure Java programs. Java has a rich
set of libraries, which contains classes for a wide variety of functions, including
network communications, security, graphical user interfaces, remote method
calls and database accesses. Recently using the Internet, we can download
many well written Java programs which is able to be used freely.

As Java is a powerful general purpose language, it is too complicated for
statisticians, who are not professional programmers. We use Pnuts script
language as a basis for our Jasp language, because it has simpler syntax than
Java and is still able to use Java classes directly. Pnuts is also a general
purpose language and lacks special functions for statistical computing. Then
we develop a pre-processor to add the ability to handle statistical algorithms
naturally. Pre-processor approach is adopted mainly because of the ease of
implementation. Jasp programs are internally translated to Pnuts programs
by the pre-processor, then processed by the Pnuts interpreter.

Pnuts is a procedural language which uses function definitions mainly. To-
gether with additional statistical functions, Jasp functions can realize com-
mon characteristics and features of modern statistical systems, such as S and
XploRe, i.e., they can express algorithms directly according to the flow of data
processing without thinking unimportant programming concerns like types
of variables. Jasp functions are easy to write tentative and small programs.
Statistical works can be performed fully by many such small programs.

Jasp functions are formally independent one another, even there are some de-
pendencies among them. Functions have no means to describe their relations.
To bundle related functions, object-oriented programming is useful.

In the object-oriented programming, a system is constructed by objects which
encapsulate data (attributes) and procedures (methods). As objects can de-
scribe real objects directly, they are easy to understand. Objects are also well
encapsulated and have enough modularity, therefore, they are easily reused
as parts of other programs. Although the object-oriented programming is a
powerful technology, it has some demerits. When users want to create new
objects or use objects, they have to know the structure of objects well. If
there are many classes in the system, it is not easy to find an adequate object.
By these facts, the object-oriented programming is not suitable for tentative
and small programs.

In statistical systems, Xlisp-stat (Turney 1990) used the object-oriented pro-
gramming technology mainly for graphical programming. It adopts the Lisp
language as its development platform. The Lisp is a pure functional language
and good at list processing. It is usually implemented by interpreter and can
be operated interactively. The Lisp does not offer the object-oriented pro-
gramming originally. However, because the language design is very flexible,
object-oriented programming abilities such as CLOS (Keene 1989) are added.
Xlisp-stat uses Lisp functions and defined objects for staistical analyses. Sim-
ple analyses are performed by built-in functions, and more complicated sta-
tistical techniques such as linear regression and time series analysis are exe-
cuted using objects. This approach is thought to be useful for both users and
developers, and was adopted in the current S language (Chambers 1998).

We also think that the object-oriented programming is powerful and useful
for bundling related functions and describes the structure of the statistical
techniques. However, we do not suggest to use this programming technique at
the beginning of statistical analysis. Usually at the first stage of a statistical
analysis, we have few information about data and do not know what to do
next exactly. We try to execute many possible statistical procedures to the
data and seek clues for clearing the data generation mechanism. Therefore,
we propose using many functions at first. When we have meaningful results
after many trial and error of executing functions and find some of them
are useful for other data, we suggest to use a object-oriented framework for
arranging them for the future use.

To realize this end, we design the Jasp class to use Jasp functions without
much modification. In the class definition, we do not need to define attributes,
and can define methods for using already written functions as they are.

Although Jasp functions and Jasp classes are easy to write and powerful
enough, we sometimes want to use programs written in Java, Fortran, C and
C++, for extending system by using fast execution speed of them. This is
possible by Java and Pnuts abilities. First, Java classes are directly available
from Jasp language by Pnuts ability. Second, foreign language programs in
Fortran, C and C++4 are relatively easily used by the JNI mechanism of the

conponent s

| 4
Jasp Jasp Java
Functi on d ass Cl ass

% N

v =
C, Fortran
Jasp Pr ogr anms

Figure 1: Jasp programming

Table 1: Purposes of Jasp programming

concept | purpose
Jasp Function | Description of a procedure of calculations
Jasp Class Bundling related Jasp functions according to a mean-
ingful statistical technique
Java Class System extension

Java language. Java classes which use JNI are used directly from the Jasp
language as same as other Java classes. Thus, Jasp programs are written in
the way shown in Figure 1 and Table 1.

An easy-to-use operating environment is necessary for a statistical system,
even though it has a sophisticated programming language. Now, most sta-
tistical systems have GUIs for visual operations. As a CUI (Character User
Interface) in which a language is used for operating the system and a GUI
have their own merits and demerits, they had better be united seamlessly and
used almost alternatively. For example, when a Jasp Function is defined, an
icon for representing it should appear on the GUI and the function should
be executed by a mouse operation on the icon. For realizing such a user
interface, Jasp has two windows for a CUI and a GUI. A GUI shows much
information about functions on the screen, for example, an explanation of
function, meanings and data types of inputs, etc. We have to include these
additional information to definitions of functions and classes. We do not want
to make the syntax complex for the GUI support, because users usually do
not think the GUI support when they write programs for statistical calcula-
tion. Therefore, we decide to add these information as comments written in
a specified special format. This style enables us to write programs without
thinking the GUI first, to add necessary information on it when we decide to
use it on the GUI.

3 Jasp Language

At a glance, the Jasp language is almost as same as usual procedural statisti-
cal languages. First two subsections explain such parts of the Jasp language.
Third subsection shows object-oriented part, and fourth describes how to
import Java classes. Last subsection explains the comments for the GUI
support.

3.1 Data and Procedures

We are able to omit declarations of data type in Jasp language. A data type
of a variable is determined by the type of data to which the variable is first
assigned. Data types in Jasp are divided roughly into three categories: basic
data types, Jasp classes and Java classes. Basic data types include integer,
real, character string. Jasp classes are defined by original class declaration,
and Java classes are written in Java and compiled into class files for Java
VMs. They are treated almost equally in the Jasp language. Like other
procedural languages, Jasp has the ”if” statement, the ”"for” statement,

[

etc. Each statement needs to be delimited by ”;” or line feed.

As matrix operations are often used in data analyses, the Jasp language
offers a data type to handle matrices as JaspMatrix, and equips expressions
to manipulate them. For first example, mat = JaspMatrix(2,3) generates a
2x 3 matrix named mat. We can extract elements of a matrix by the operator [
1 such as mat[1,2]. The expression mat[!1,1:3] extracts elements which
include all rows except the first one, and columns between the first and the
third. JaspMatrix has labels of rows and columns, we can specify elements
by using them (e.g., mat ["no2", "x3"]).

Operators for appropriate numeric matrices x and y are:

X +y adds x and vy,

X -y subtracts y from x,

X %y multiplies x and vy,

xX.inv computes the inverse matrix of x,

x.trans computes the transpose matrix of x,

x.det computes the determinant of x,

x.eigen computes eigen values and corresponded eigen vectors.

Here, we show an example to calculate the Durbin-Watson statistics (Ryan
1997) given by the expression

n

D= Z(el — 61',1)2/2612

=2

where ¢; is an i-th residual. A Jasp program for it is:

dw = 0.0
for(i=2; i<=e.nr; i++){

dw = dw + pow(e[i,1]-e[i-1,1], 2.0)
}

dw = dw / (e.tramns * e)

where e is a JaspMatrix of residuals, and e.nr returns the number of the
rows. The pow function calculates the second argument’s power of the first
argument.

3.2 Jasp Function

A Jasp function requires input arguments, performs calculation defined in it,
and returns output values to the environment. It does not change the value
of data or variables outside of the function. All Jasp functions can be used
in the same way as built-in functions.

The general form of Jasp function is
function NAME (ARGUMENTS) BODY

where NAME is a name of the function, ARGUMENTS is a list of arguments,
and BODY is statements for building the body of the function. The list of
arguments can be empty or have several arguments delimited by ”,”. We
do not need to specify types of arguments. Even if names of functions are
same, Jasp distinguishes them by the number of arguments. If the BODY
part includes two or more statements, they are enclosed with ”{” and ”}”.
Returning a result of the function to its caller, "return” statement is used.

Variables declared in a function are temporary. The scope of them is in the
function, and they can not be modified by other functions. The scope of their
arguments is also in the function. If the values of arguments are changed in
the function, the changes are not reflected in the caller. We can define Jasp
functions inside a Jasp function for using them internally. Jasp functions can
be called recursively like C language.

3.3 Jasp Class

We can write all statistical calculations by Jasp functions. When we write a
lot of functions for our particular analysis, we often notice that they are useful
for other data and should be bundled and arranged in some way for reusing
them in future easily. In addition, it often happens that some functions are

related to a particular kind of data set. These characteristics are expressed
by the object-oriented approach so well that we add this structure to the
Jasp language as one of the basic properties.

We consider a Jasp class as a set of related Jasp functions. Jasp functions
can be used in the definition of a Jasp class with little modifications. We
decide not to declare the type of the internal data (attributes) of objects.

The general form of a Jasp class definition is
jaspclass NAME(SUPER) BODY

where NAME is a name of the class, SUPER is the name of the super class. If
there is no super class, (SUPER) can be omitted. BODY consists of constructors,
methods, and private functions. Private functions are Jasp functions which
are effective only in the class, and methods are used as interfaces of private
functions to the outside of the class. Constructors are methods of the same
name as its class name, and make instances of the class.

The next program shows a simple example of the Jasp class for fitting and
diagnosing a linear regression model. For calculating diagnostic statistics of a
regression model, we need information of the model. Thus, the Diagnostics
class is derived from the LinearRegression class:

jaspclass Diagnostics(LinearRegression){

method Diagnostics(file){
super.LinearRegression(file)
y = this.depVar
x = this.indepVar
this.Diagnostics(y, x)

}

method Diagnostics(y, x){
this.hat = hat(x) // projection matrix
this.leverage = diag(this.hat)
this.dw = dw(this.res) // Durbin-Watson ratio

}
function hat(x){
tmp = x.trans * X
return x * tmp.inv * x.trans
}
function dw(e){
dw = 0.0
for(i=2; i<=e.nr; i++){
dw = dw + pow(el[i,1]-e[i-1,1], 2.0)
}

return dw / (e.trans * e)
}
}

where hat, leverage and dw are attributes to hold results of calculations,
because variables prefixed by this. in methods are treated as attributes.
Method calls prefixed by this. show the use of the corresponding method
in the same class. As the identifier super in a method indicates the super
class, super.LinearRegression(file) calls the constructor of the super
class. The constructor generates a model from the specified file. In the
above program, diag and pow are Jasp functions. The diag function returns
the diagonal elements of a specified matrix. The content of the function
dw is the same as the example in section 3.1. If an instance have a private
function whose name is as same as a Jasp function, the private function has
first priority. Note that hat and dw functions can be used separately as
usual functions, and a Jasp class Diagnostics is defined for bundling these
functions together.

We can generate an instance of this class by
diagl = Diagnostics(datafile.dat)

where datafile.dat is a text file in which data are written. If we send
the instruction diagl.leverage to Jasp, it returns the leverage of the fitted
model.

3.4 Using Java Classes

Pnuts, on which Jasp is based, can handle Java classes directly. Therefore,
Jasp can use Java classes easily in Jasp programs. Although Jasp functions
and classes are easy to write, they are translated by the pre-processor and in-
terpreted by the Pnuts interpreter when they are executed. This mechanism
causes slow excecution speed of them compared to compiled Java programs.
Thus, heavy calculations or frequently used calculations should be imple-
mented by Java programs to improve performance.

To import Java classes into Jasp system, we use the identifier class or the
function import. For example,

big = class java.math.BigDecimal

means that the variable big is assigned to the Java BigDecimal class. We
can generate an instance of BigDecimal class named pi by the statement pi
= big(3.14159265358979323846264338328). The same tasks can be done
by

10

import ("java.math.BigDecimal")
pi = BigDecimal(3.14159265358979323846264338328)

For handling Java classes in Jasp program, the dot operator is used to access
instance attributes and instance methods, and the double colon is used for
accessing class attributes and class methods. For example, pi.intValue()
and Math: :sqrt (4) return 3 and 2.0, respectively.

Some Java classes have been already built into the Jasp system; Jampack
(Stewart 2000) is used for matrix computations, Ptplot (Lee & Hylands 2000)
is for statistical graphs and Colt (Hoschek 2000) is for statistical distributions.

As an practical example of importing a Java class into Jasp, we show the
use of an optimization package (Verrill 1998). We implement a function to
calculate simple maximum likelihood estimators by using Opti F9 class of
this package. The class is used in mle function as follows:

function mle(func, data, para){
size = para.length
opti = Opti_F9::define(model, size) // set a target model
opti.initialize(para) // set initial values
ans = opti.optimize()
return ans

where the variable model represents the likelihood function calculated by
using func, data and para. The size holds a number of parameters, and
the para is initial values of parameters. For having the maximum likelihood
estimates of the normal distribution from 50 random numbers, the program

function nor(x, p){ // normal distribution

pi = 3.14159265358979

exp (- (x-p[0]) *(x-p[0])/ (2*p[1]*p[1]))

/ (sqrt (2xpi)*p[1])

}
data = normal (50) // generate random data for simulation
para = [0.1, 1.1] // initial values of parameters
ans = mle(nor, data, para)

is used, where p[0] and p[1] are a mean and a standard deviation of the
normal distribution, respectively.

11

3.5 Comments for GUI

We decide not to specify data types of variables and arguments in the Jasp
language for ease of programming. This syntax is convenient for users when
they write many small temporal functions, and it might be the main reason
that many script languages do not have the type declaration syntax. The
type declaration, however, has some merits. For example, it is useful for
making clear the structure of the program for users who do not know the
content of the program well. It is also useful for supporting the graphical
user interface (GUI). Then, we decide to use comments for specifying data
types of arguments.

If there are lines which are started by @summary, @param or @return in com-
ment parts, they have special meanings for the GUI. For example, in the
program

/%%
* Q@summary "estimate coefficients of a regression model"
* @param JaspMatrix y "dependent variable"
* Q@param JaspMatrix x "independent variables"
* Qreturn '"regression coefficients"
*/
function estimate_coefficients(y, x){
beta = (x.trans * x).inv * x.trans * y
return beta

}

the string enclosed by ”/#*” and "*/” is the comment part just like Java
programs. The @summary line shows an explanation of the function, the
@param lines show types and explanations of arguments, and the @return
line shows the meaning of the return value. The format of @param part is

@param TYPE NAME "STRINGS"

where TYPE is a data type of the argument named NAME. These lines are
omitted by the Jasp interpreter on the Jasp Server as usual comments, but
is used by the Jasp GUI client to help GUI operations. When we try to
execute methods or functions which need arguments from the GUI, a pop-up
input window appears. The data types of inputs are checked by the @param
information and it prevents users from making mistakes.

Functions and constructors without this information are thought to be private
ones and are not directly available from the GUI window.

12

4 Conclusion

In a general purpose statistical system, the language design is important for
users to control full system abilities. The language should be able to express
statistical algorithms easily and clearly, and to make clear the structure and
relation of whole programs naturally. For the first purpose, function-based
procedural language is known to be useful, and for the second purpose, object-
oriented language is admitted to be preferable.

In the design of the Jasp language, we propose to use simple procedural
functions at the first stage of analysis, and to arrange them with little mod-
ifications for constructing classes for general usage later. This approach is
useful for both naive and expert users, because procedural part is simple and
easy for naive users, and object-oriented part is enough powerful for advanced
aims such as grouping statistical procedures systematically. The Jasp lan-
guage can also import Java classes directly, therefore, can be extended easily
by using various Java features such as importing Fortran or C programs using
the JNI mechanism.

References

Arnold, K., Goling, J. & Holmes, D. (2000), The Java Programming Lan-
guage, Third Edition, Addison Wesley. (http://java.sun.com/)

Chambers, J. M. & Hastie, T. J. (ed.) (1992), Statistical Models in S, Pacific
Grove: Wadsworth.

Chambers, J. M. (1998), Programming with data: a guide to the S language,
Springer.

Hérdle, W., Klinke, S. & Miiller, M. (1999), XploRe - Learning Guide,
Springer. (http://www.xplore-stat.de/)

Hoschek, W. (2000), Colt, http://nicewww.cern.ch/hoschek/colt/

Keene, S. (1989), Object-Oriented Programming in Common Lisp: A Pro-
grammer’s Guide to CLOS, Symbolics.

Lee, E. A. & Hylands, C. (2000), Ptplot,
http://ptolemy.eecs.berkeley.edu/java/ptplot

Liang, S. (1999), The Java Native Interface: Programmer’s Guide and Spec-
ification, Addison Wesley.

Nakano, J., Fujiwara, T., Yamamoto, Y. & Kobayashi, 1. (2000), A statistical
package based on Pnuts. In: COMPSTAT2000 Proceedings in Compu-
tational Statistics, 361-366. Heidelberg: Physica-Verlag.

13

Ryan, T. P. (1997), Modern Regression Methods, John Wiley & Sons.

SAS Institute Inc. (2001), Statistical Analysis System,
http://www.sas.com/

SPSS Inc. (1999), SPSS Base 10.0 Applications Guide, Prentice Hall.
(http://www.spss.com/)

Stewart, W. (2000), Jampack,
http://math.nist.gov/pub/Jampack/AboutJampack.html

Tomatsu, T. (2001), Pnuts, http://javacenter.sun.co. jp/pnuts/
Turney, L. (1990), LISP-STAT, John Wiley & Sons.

Verrill, S. (1998), Package-optimization,
http://wwwl.fpl.fs.fed.us/Package-optimization.html

