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Abstract

In this paper we study new nonlinear GARCH models mainly designed for time series
with highly persistent volatility. For such series, conventional GARCH models have
often proved unsatisfactory because they tend to exaggerate volatility persistence and
exhibit poor forecasting ability. Our main emphasis is on models that are similar to
previously introduced smooth transition GARCH models except for the novel feature
that a lagged value of conditional variance is used as the transition variable. This
choice of the transition variable corresponds to the idea that high persistence in
conditional variance is related to relatively infrequent changes in regime. Using the
theory of Markov chains we provide sufficient conditions for the stationarity and
existence of moments of the considered smooth transition GARCH models and even
some more general nonlinear GARCH models. Empirical applications to two exchange
rate return series show that the new models can be superior to conventional GARCH
models especially in longer term forecasting.
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1 Introduction

In financial applications the linear GARCH model and some of its nonlinear extensions
have been the most popular models for conditional variance. Recently, however,
growing evidence has suggested that the typically observed very high persistence
implied by these models does not characterize the behavior of exchange rates or
stock returns. In particular, it has been demonstrated that GARCH models can
exaggerate volatility persistence compared to the (true) volatility process perceived
by the market (see Engle and Mustafa (1992) and Lamoureux and Lastrapes (1993)).
This discrepancy seems to be especially pronounced after extreme shocks such as the
October 1987 stock market crash. It has also been shown that observed high volatility
persistence can be due to neglected nonlinearities such as level shifts (Lamoureux and
Lastrapes (1990)) and that neglecting such potential nonlinearities can lead to poor
forecasts (Hamilton and Susmel (1994)).

There are by now several alternative GARCH type models that attempt to take
volatility persistence appropriately into account. These include the regime-switching
ARCH models of Hamilton and Susmel (1994) and Cai (1994) and the fractionally
integrated GARCH (FIGARCH) model of Baillie, Bollerslev and Mikkelsen (1996).
A drawback of the former models is, however, that no GARCH terms are allowed
within regimes, and, in practice, mere ARCH terms do not adequately, or at least
not parsimoniously enough, capture the volatility persistence of many economic time
series. As far as the FIGARCH model is concerned, it has the practical difficulty that
in computations an infinite-order lag polynomial must be truncated at some arbitrary
point and the choice of the truncation point can matter substantially when the model
is applied (cf. Taylor (2000)). Besides, in order not to destroy important long-run
dependencies the truncation point must be set at a relatively high value (typically
1000 is used), which necessitates the need of long time series in applications. Finally,
as with the linear GARCH model, there is also evidence that the long memory in

variance implied by the FIGARCH model can arise as a result of a structural change



(see Beine and Laurent (2001)).

In this paper we shall consider a nonlinear alternative of the conventional GARCH
model. Our model is aimed at describing highly persistent volatility and it belongs to
the family of smooth transition GARCH (STGARCH) models considered by Hagerud
(1997), Gonzdlez-Rivera (1998), and Lundbergh and Terisvirta (1998). However,
unlike in these previous STGARCH models the transition variable of our model is
a lagged value of the conditional variance and not a lagged value of the (squared)
series. This appears to be a more suitable specification when the goal is to model
series with persistent volatility. It will be seen that making only the level parameter
in the conventional GARCH model change in this way can explain the observed high
volatility persistence of some exchange rate return series. Our STGARCH model has
features similar to the regime-switching GARCH models of Gray (1996) and Klaassen
(in press): volatility persistence can depend on the level of conditional volatility in the
previous period as well as on the size of the shock. However, compared to these regime-
switching GARCH models, our model appears substantially more parsimonious.

In our empirical examples only a relatively simple STGARCH model turns out to
be adequate. However, theoretical results will be obtained for very general nonlinear
conditional variance models. A main limitation is that only a single ARCH term
can be employed. From a practical point of view, this may not be a serious limita-
tion because first order models are frequently found adequate in applications. The
theoretical results of the paper give sufficient conditions for (a version of) geomet-
ric ergodicity and hence stationarity of both the volatility process and the observed
process and they also establish existence of general integer order moments. These
results allow for more general types of nonlinearity than the previous similar results
of Carrasco and Chen (in press) and Ling and McAleer (in press, 2002). Proofs of
these results make use of the stability theory developed for Markov chains. The afore-
mentioned limitation of the considered general model is due to some difficulties with
the application of this theory to models with more than a single ARCH term.

The rest of the paper proceeds as follows. Section 2 introduces the nonlinear
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GARCH models to be studied in the paper and Section 3 presents the related as-
sumptions. These assumptions are needed in Section 4 to obtain theoretical results of
geometric ergodicity and existence of moments. Section 5 applies the new STGARCH
models to two data sets, exchange return series of the German mark (DEM) and
Japanese yen (JPY) against the U.S. dollar. The empirical results suggest that the
new models manage to capture the volatility dynamics of these series better than lin-
ear GARCH models which particularly shows up as superior forecasting performance.
Section 6 contains concluding remarks. Proofs of the main results are deferred to an

appendix.

2 Nonlinear GARCH Models
A general model for the conditional variance of a real valued zero mean time series is
Ut :htl/Q{‘ft, t= ]_,2,... (].)

where h; is a (measurable) function of us, s < t, and the (continuous) i.i.d.(0,1)
random variables ¢; are independent of w; 1, u; o, .... These assumptions imply that
uy is a martingale difference sequence with conditional variance h;. In the popular

GARCH(1,1) model the conditional variance is specified as
he = w4 Bhi_y +aui |, t=1,2, .. (2)

where the real valued parameters w, § and «a satisfy w > 0, 5 > 0 and o > 0. This
model can be extended to a GARCH(p,q) model by adding linear combinations of
hi—a,... hi—p and us_o,...,u_4 to the right hand side of the equation. Conditions
which ensure the strict and weak stationarity of the GARCH model can be found in
Bollerslev (1986), Nelson (1990), and Bougerol and Picard (1992).! In the case of
the simple GARCH(1,1) model (2) a + 8 < 1 is sufficient for both strict and weak

stationarity.

! Unless specified, the term stationary process will subsequently always refer to a strictly station-

ary process.



In practice the simple GARCH(1,1) model has been by far the most commonly
used model for conditional variance. However, in many cases it has been found that
estimates obtained for the parameters a and 3 are such that the stationarity condi-
tion a + < 1 is nearly violated (e.g., the sum of the estimates of o and 3 exceeds
0.98). As discussed in the introduction, models of this kind are often undesirable be-
cause they can exaggerate volatility persistence and, consequently, result in relatively
poor volatility forecasts. Therefore, we shall consider nonlinear alternatives of the
conventional GARCH model.

A special case of our general nonlinear alternative is given by
ht =w+ (51G1(ht,1) + ﬁht,1 -+ au?_l, t= 1, 2, (3)

where w, § and « are as in (2), 6; > 0, and G;: R, — [0,1] is an increasing
function. In applications the function G; depends on parameters and it is supposed
to be similar to the cumulative distribution function of a positive continuous random
variable. A possible motivation of the function G is to allow for a smooth shift in the
parameter w which determines the level of the conditional variance h;. It will be seen
in Section 5 that, at least in some cases, the observed nearly nonstationary behavior
of the conventional GARCH(1,1) model (2) can be removed by a specification of
this kind. In our empirical applications the function G; is chosen as the cumulative
distribution function of a gamma distribution but any other similar function can also
be considered (cf. Lundbergh and Terisvirta (1998) who use a logistic function in a
related situation).

Thus, the idea in our nonlinear model (3) is similar to that previously used in
the STGARCH models considered by Hagerud (1997), Gonzélez-Rivera (1998), and
Lundbergh and Terésvirta (1998). However, in all these previous studies the argument
of the employed nonlinear function has been a lagged value of u? (or u;) and not the
conditional variance as in our model. In applications we have in mind it appears
to be more useful to use Gy(h; 1) in (3) instead of Gi(u?_;). Indeed, if Gy(u? ;)

were used in (3) the level of the conditional variance would change whenever a small
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(large) value of |u,_;| would be followed by a large (small) value of |u,|. Since u; is
a martingale difference sequence this would imply very frequent changes in the level
of the conditional variance. For instance, even if the process u; evolves in a regime
of high volatility it occasionally takes on small (absolute) values and, whenever this
occurs, the conditional variance will drop to a lower regime. Because we are interested
in modeling time series with highly persistent conditional variance such a behavior
does not correspond to what we would expect to happen in reality. On the contrary,
we would rather think that high persistence is related to rather infrequent changes in
level. It may also be noted that the use of Gi(h;—1) in (3) makes our model similar
to autoregressive smooth transition models used for conditional expectation. In these
models it is a lagged value of the series that is used to model the transition.

One might also be interested in an extension of model (3) in which the slope pa-
rameter § would shift in the same way as the level parameter w. In other words, one
might wish to extend model (3) by adding a term of the form 6G1(h;_1)hi—1 to the
right hand side. This would correspond to what has been considered in the afore-
mentioned previous STGARCH models. We shall give theoretical results which also
apply to such extensions although they are not needed in our empirical applications.

Motivated partly by potential further applications and partly by the desire to test
the simple model (3) against more general alternatives we consider a general extension

of the GARCH(p,1) model given by
he=g(hi1,...,he p)+ flugq), t=1,2,.. (4)

where g: R — Ry and f: R — [0,00) are nonlinear functions to be described
in more detail in the next section. Here, as well as elsewhere, we use the notation
R =(0,00) and RE. =R, x --- x Ry (p copies).

Obviously, the previously discussed models (2) and (3) are special cases of (4).
Both of them assume f (u; 1) = cu? ; which corresponds to the leading choice of the

function f. Another specification of interest is
fug) = (a+62Ga(up 1)) up (5)

6



where o > 0, 6o > 0, and Go: R — [0,1] is an nondecreasing function which in
applications may depend on parameters. Defining G5 as the indicator function of
the set (0,00) yields the specification used in the GJR-GARCH model of Glosten,
Jagannathan and Runkle (1993). A closely related alternative, suggested by Hagerud
(1997), Gonzalez-Rivera (1998), and Lundbergh and Terésvirta (1998), is obtained by
choosing G as the logistic function. The motivation of these specifications is to allow
for an asymmetric behavior in the conditional variance of previous GARCH models.
The same idea may also be useful in the case of model (3).

Although our general model (4) covers a variety of interesting special cases it has
the limitation that only a single lag of u; is allowed. As far as the derivation of our
theoretical results is concerned, it appears nontrivial to relax this assumption. To
give an idea why this is the case and also to facilitate later developments, denote

Xi 1 =[h1 -+ hip) and combine equations (1) and (4) as
he=g(Xio1) + f(hPey), t=1,2,.... (6)

Then define
F(Xe) = [F1(Xe1) -+ Fp (X))

where F} (X; 1) = g(X;1) and F; (X3 1) = hy_i41, © = 2,...,p. With this notation

equations (4) and (6) can be expressed as

he = X, (7)
Xt = F(thl) +H(Xt7178t71)7 t = 1,2,..., (8)

!/

where ¢ = [10 --- 0] (px 1) and H (X;_1,e01) = |f(h2e1) 0 -+~ 0| (px1).
Since &;_1 is independent of X;_; it follows from (8) that X;, t = 1,2, ... is a Markov
chain.

The above discussion implies that the theory of Markov chains can be employed to

prove the geometric ergodicity of the process X; and hence that of h;.2 Once geometric

2We refer to Meyn and Tweedie (1993) for a comprehensive treatment of the needed Markov

chain theory and to Chan (1990) and Tjgstheim (1990) for shorter reviews.
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ergodicity has been established the existence of a stationary solution of equations (8)
and (4) follow along with useful mixing results. From equation (1) one can then
obtain similar results for the process u; and for the joint process formed from u; and
.

Adding more lags of u; to model (4) complicates the application of the resulting
Markov chain representation considerably. This particularly concerns proving the
irreducibility of X; which we need as an intermediate step to obtain geometric er-
godicity. Since lags of u; should be included in the model in the form h%ﬁ gat,i the
difficulty is similar to that encountered in bilinear models and generalized random
coefficient models discussed by Pham (1986, p. 295). Carrasco and Chen (in press)
avoid this difficulty because they use an approach which does not require proving
irreducibility. However, this approach is not suitable in our case because the form of
nonlinearity is considerably more general than permitted by Carrasco and Chen (in
press). For these reasons we shall not try to extend the model by including more lags
of us. A further reason for this is that a single lag of u; has typically proved adequate

in the applications of both linear and nonlinear GARCH models.

3 Assumptions

This section presents the assumptions needed to prove the subsequent theoretical
results. Our first assumption is concerned with the innovation sequence ¢; and the

function f in the general model (4).>

Assumption 1. (i) The i.i.d.(0, 1) random variables e, have a probability density
function which is continuous and positive everywhere on R. In addition, for some
integer k > 1, Fe?* < oo.

(ii) The function f: R —|0, c0) is bounded on bounded subsets of R, monotonically

3For ease of exposition, our assumptions rule out the possibility that f is constant. This is not
restrictive, however, because it essentially means that we only rule out the trivial case where the

conditional variance h; is constant.



decreasing on (—o0,0), and monotonically increasing on (0, c0) . Moreover, f(z) has
a nonzero continuous derivative for z # 0.
(iii) There exists a nonconstant function b: R —[0,00) such that f (htl/ ’e) <

hib (g¢) and b (x) < bz? for some b < .

The first assumption is standard in the statistical analysis of Markov chains and
met in most cases where GARCH models are applied. From a practical point of
view, the second assumption is not restrictive either and it could even be generalized

considerably. In its present form Assumption 1(ii) implies that we can write

f (@) = fi(z) + fa(2)

where f1(z) = f(z)1(x <0) and fo(z) = f(x)1(z > 0) with 1(-) the indicator
function. The function f; () is monotonically decreasing on (—o0,0) and the function
f2 (+) is monotonically increasing on (0, 00). The function f (-) may be nondifferen-
tiable or even discontinuous at the origin. Assuming that the slope of the function
f () changes at the origin instead of some other point is not essential. In a similar
way we could allow for the possibility that the slope changes at any point. We have
preferred to use the present form of Assumption 1(ii) because it is directly applicable
to most of the models considered so far. The leading case f (u;_1) = au? | is a sim-
ple example. A slightly more complicated example is provided by the GJR-GARCH
model of Glosten et al. (1993) (see the discussion after equation (5)).

By elementary probability calculus one can obtain the conditional density function
of f (htli 2ei_1) given hy_y = h. If ¢_(-) denotes the common density function of the

random variables ¢; the result can be expressed as

df ! (2)

dz

dfy ' (2)

Y — p1/2
U (zh) = -

o (W12 f 1 (2)) +h7 12 ¢ (h12f 1 (2) (2>0).

(9)

Here f; ! (-) is the inverse function of the restriction of f; (+) to the interval (—oo,0)

with f; ' (z) = 0 for z not belonging to the range of f; (-). The function f, ! (-) is

defined similarly in terms of the function f; (-) and the interval (0, c0) . It is straight-
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forward to check that ¢ (- — g (z) ;1) is the conditional density function of h; given
hy ; =x;, 1 =1,...,p. This conditional density function is needed in our theoretical
developments. However, these theoretical developments would allow us to assume
more generally that, instead of two monotone functions, the function f can be ex-
pressed in terms of more than two such functions. For simplicity, we have preferred
not to work with this extension explicitly.

Assumption 1(iii) restricts the increase of the function f to be at most quadratic.
This requirement is met in most of the models considered so far. The formulation
of this assumption may look somewhat peculiar but it has real advantages over its
simpler alternative f (z) < bx?. To illustrate this point, consider the GJR-GARCH
model of Glosten et al. (1993). As pointed out after equation (5), this specification can
be obtained by defining G5 (u; 1) therein as G (u; 1) = 1 (u¢_1 > 0). From equation
(5) it then follows that Assumption 1(iii) could be used with b (z) = (o + 63)x2. This
essentially means that one ignores the first inequality in Assumption 1(iii) and uses
only the condition f (x) < bx?. However, since 1 (u; 1 > 0) = 1 (g1 > 0) we can
write

F(h%e;) = hy (@ + 621 (241 > 0)) 2. (10)

This shows that Assumption 1(iii) can also be used with b(z) = (a + 821 (z > 0)) 2°.
It will be seen later that to obtain geometric ergodicity we need a bound for Eb (&)
and it will be advantageous to have this bound as small as possible. If one uses
Assumption 1(iii) with b(z) = (a + 821 (z > 0)) % and imposes the commonly used
additional assumption that the innovations have a symmetric distribution one obtains
Eb(g) = o+ 63/2. This is smaller than Eb(,) = a + 62 obtained when Assumption
1(iii) is used with b (z) = (a + 62)22.

The next assumption imposes restrictions on the function g in (4). When applied

to a vector, the symbol |-| will signify the norm defined by |v] = >7_ |u;|.

Assumption 2. (i) The function g: Rf. — R% is measurable and bounded on

bounded subsets of RE.. Moreover, for some 1 > 0, inf,err g (x) =n.
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(ii) There exists a vector a = [a; --- a,] with a; > 0,i=1,...,p, and such that

g(x) <dz+o|z]) as || — oc.

The first assumption is very mild. The requirement that the function g has a pos-
itive lower bound is assumed for technical reasons to facilitate mathematical deriva-
tions. As our previous examples demonstrate, this assumption is met in most of the
models considered so far. Conditions of the type required for the function g in As-
sumption 2(ii) have also been used previously when Markov chain theory is applied
to obtain stability results for time series models (see Masry and Tjgstheim (1995), Lu
(1996, 1998), and Lu and Jiang (2001)). As with Assumption 1(iii), this assumption
is also satisfied in the standard GARCH(p,1) model as well as in (3) whose extension
will be discussed in the next section.

The last condition in assumption 2(i) implies that h; > 7 for all ¢ > 1. In what
follows, we shall therefore assume that the state space of the Markov chain X, is

X =[n,00) X -+ X [n,00).

4 Geometric Ergodicity

Given the representation (8) and Assumptions 1 and 2, we can show the geometric
ergodicity of the process h; defined in (6). Instead of the usual version of geometric
ergodicity we shall employ the so-called V-geometric ergodicity of a Markov chain (see
Meyn and Tweedie (1993, p. 356)). Here V signifies a real valued function defined on
the state space of the considered Markov chain and such that V (-) > 1. For such a
function V, the Markov chain X; is said to be V-geometrically ergodic if there exists

a probability measure 7 on the Borel sets of X and a constant ¢ > 1 such that

[o.¢]

E o' sup
=1 Tldsv

E(g(X)) |Xo=w>—/

X

W(dy)q(y)' <oo forallzeX. (11)

The definition also assumes that the function V is integrable with respect to the
probability measure 7. The weakest form of this definition results when V () = 1.

Then the Markov chain X; is said to be geometrically ergodic. Geometric ergodicity
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entails that the ¢t-step transition probability measure P* (z,-) defined on the Borel sets
of X by P'(z,A) = P(X; € A | Xo=x) converges at a geometric rate and for all
x € X to the probability measure 7 (-) with respect to the total variation norm. Note
that the conditional expectation in (11) is defined in terms of the one-step transition
probability measure P! (z,-) = P (z,-).

It is straightforward to show that geometric ergodicity implies stationarity of the
process X; if the distribution of the initial value X is defined by the probability mea-
sure m (see Meyn and Tweedie (1993, p. 230-231)). Therefore, 7 is often referred to
as the stationary probability measure of X;. Of course, the stationarity of the process
X; implies the stationarity of h;. A convenient feature of V-geometric ergodicity is
that it immediately shows existence of moments. Specifically, when the Markov chain
X, is initialized from the stationary distribution, V-geometric ergodicity implies that
the expectation of ¢ (X;) exists for all ¢ such that |¢ (-)] <V (+).

In the following theorem we show that the Markov chain X; is |z|"-geometrically

2%

ergodic where the integer £ > 1 is such that Fe;*® < oo (see Assumption 1(i)). To be

able to formulate this theorem, we define the companion matrix

ap Qg -+ Qp-1 Qp
1 0 -~ 0 O
A=|10 1 --- 0 0 (p X p) (12)
0 0 1 0
and the matrix
B(g) =b(g) ' (pxp). (13)

Here the notation is as in Assumption 1(iii) and (8) so that the matrix B (g;) has
zero elements except for b (¢;) in the (1,1) position. We use p (+) to signify the largest
absolute eigenvalue of the indicated matrix or the so-called spectral radius. Further-
more, for any square matrix M, M®* = M ® --- ® M denotes Kronecker’s product

taken k times. Now we can prove the following theorem.
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Theorem 1 Consider the Markov chain X, in (8) and suppose that Assumptions 1
and 2 hold. Then, if p (E (A+ B(g,))®*) < 1 the following results hold.

(a) X; is |z|"-geometrically ergodic and the same is true for the joint process (uq, hy).
Hence, EhF < oo and Eu?* < occ.

(b) If the distribution of the initial values has finite moments of order k then the
process (ug, hy) is strong mizing with geometrically decaying mizing numbers.

(c) If the initial values have the stationary distribution the process (uy, ht) is 3-mizing

(absolutely regular) with geometrically decaying mizing numbers.

As our previous discussion makes clear, the first result of Theorem 1 implies that
there exists a choice of initial values such that the process (uy, h¢) is stationary and
has finite moments of order k. A proof for the result Eu?* < oo is obtained from this
and equation (1). Parts (b) and (c¢) of Theorem 1 are useful because they make it
possible to apply conventional limit theorems needed in the development of asymptotic
estimation and testing procedures. A definition of the concept of S-mixing can be
found in Doukham (1994, Section 1.1) where it is also shown that S-mixing implies
strong mixing with mixing numbers converging to zero at least at the same rate. It
would be possible to relax the assumption imposed on initial values in part (c) of
Theorem 1 but something stronger than assumed in part (b) is needed (see Doukham
(1994, p. 89 and 92)).

The eigenvalue condition used in Theorem 1 is simple to check in the leading cases
where k = 1,2 and b (g;) = be?. For k = 1, this condition becomes p (A + bu') < 1,
which is equivalent to > ¥ | a;+b < 1 because a; > 0 (j = 1,...,p) and b > 0. If k = 2
the condition also involves the fourth moment of &;. Then, if &, ~ N (0,1) and p = 1,
the condition p (A + bu’) < 1 reduces to af + 2a;b + 3b* < 1.

Theorem 1 can be specialized to various special cases. In our empirical applications

we are interested in models which are special cases of
h,t = w+ﬁlht,1+~ . '+ﬁpht,p+(51G1(ht,d)+(Oé + 62G2(Ut,1)) Ut2_1, t = 1, 2, (14)
where 1 < d < p. This model extends the conventional GARCH(p,1) model by

13



simultaneously allowing for nonlinearities of the form discussed in the contexts of the
equations (3) and (5). From Theorem 1 we can easily obtain the following result
which applies to the GJR-GARCH model of Glosten et al. (1993) and the analogous
alternatives proposed by Hagerud (1997), Gonzalez-Rivera (1998), and Lundbergh
and Terédsvirta (1998).

Corollary 2 Let h; be generated by (14) where u; is as in (1), w > 0, 8; > 0
(t=1,..,p), 6; >0 (i =1,2) and o > 0. Assume that G1: R, — Ry is a measurable
bounded function and Gy: R — [0, 1] is such that Assumption 1(ii) holds with f (z) =
(a0 + 62Go(x)) 2. Assume further that p (E (A+ B(g,))®*) < 1 with the matrices A
and B (&) defined by choosing a; = 3; (i=1,...,p) and b(g;) = (a + 82)e2. Then, if
e in (1) satisfies Assumption 1(i) the results of Theorem 1 hold.

Corollary 2 can be proved by verifying the assumptions of Theorem 1. Assump-
tions 1(i) and (ii) hold trivially whereas, by the definitions of the functions G and f,
Assumption 1(iii) holds if we take b (z) = (a + 85)2? and b = a + 6. As for Assump-
tion 2, its first part is immediate and the validity of the second part follows from the
choice a; = 8, (i =1, ..., p) and the boundedness of the function Gj.

When 63 = 0 and k£ = 1 the condition imposed on the parameters a and [,
(¢ =1,...,p) in Corollary 2 agrees with previous stationarity conditions obtained for
the standard GARCH(p,q) model with ¢ = 1 (see Bougerol and Picard (1992) for strict
stationarity and Bollerslev (1986) for weak stationarity). Proposition 12 of Carrasco
and Chen (in press) proves a result similar to Corollary 2 for power GARCH(p,q)
models whereas Ling and McAleer (in press) give conditions for the existence of mo-
ments in a vector ARMA-GARCH model. Corollary 2 provides a (partial) extension
of these previous results by including the bounded nonlinear terms Gj(h; 1) and
Go(us—1) in the model.

Although Corollary 2 applies to the GJR-GARCH model a better result can be
obtained in this case, as indicated after Assumption 1. Specifically, we have the

following result.
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Corollary 3 If Go (z) = 1(x > 0) in Corollary 2 the stated result holds with b (g;)
defined as b (e) = (o + 621 (g4 > 0))e7.

As the discussions after equation (10) and Theorem 1 show, if the innovations
have a symmetric distribution the application of Corollary 3 in the case k = 1 gives
the condition Y % | 8; + o + 62/2 < 1 instead of 77 | 3; + a + 65 < 1 obtained
from Corollary 2. When ¢; ~ N (0,1), £ = 2 and p = 1 we get the condition
3%+ 20 + 302 + 4,62 + 3aby + 362/2 < 1 previously obtained in Example 2.1(ii) of
Ling and McAleer (2002) for the conventional GJR-GARCH(1,1) model.

Our final application of Theorem 1 is concerned with the first order model

hi =w+ 61G1(he 1) + (B + 863Gy (hy_1)) b1 + (o + 82Ga(ug 1)) ui_y, t=1,2,....

(15)
Thus, in this case also the coefficient of h;_; is allowed to change. However, unlike
in Corollaries 2 and 3, we shall now assume that (; is similar to the cumulative
distribution function of a positive continuous random variable. From Theorem 1 the

following result can then be obtained.

Corollary 4 Let h, be generated by (15) where u; is as in (1). Assume that G:
R, — [0,1] s an nondecreasing function such that Gy (x) — 1 as v — oco. Assume
further that B + 63 > 0 and that w, 6; (i =1,2), a and Gy are as in Corollary
2. Then, if & in (1) satisfies Assumption 1(i) and E (8 + 65+ b ()" < 1, where
b(g)) = (a+ 82) €2, the results of Theorem 1 hold. Moreover, if Gy (z) = 1 (z > 0)

the same conclusion obtains if b(g;) is defined as b (g;) = (a + 621 (g, > 0))e2.

According to what was said to justify Corollary 2, we only need to verify Assump-

tion 2 whose first part is obviously satisfied. Moreover, now p = 1 and
g(@)=w+ 606G (x)+ (B+ 635Gy () x = (B+63)x+o0(z) as |z| — oo.

Here the latter equality follows from the assumptions made of the function G;. Thus,
Assumption 2(ii) holds with a; = (B + 63 and the stated result is obtained be-

cause in the case of Corollary 4 the assumed moment conditions are equivalent to
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p (E(A+ B(g))®*) < 1 used in Theorem 1. If k = 1 the first moment condition in
Corollary 4 reduces to 3+ 63 + a+ 0o < 1 and, if the distribution of &; is symmetric,
the second one becomes [ + 63 + a + 62/2 < 1. Setting d3 = 0 yields the conditions
obtained from Corollaries 2 and 3 in the case p = 1 and £ = 1. Note that these
conditions require 3 < 1 whereas in Corollary 4 we may have 3 > 1 because 63 < 0
is possible.

It would be of interest to consider extensions of models (14) and (15) and make the
coeflicients of hy_1, ..., hy—, in the former depend on h;_4 (1 < d < p) in the same way
as the corresponding coefficient depends on h; 1 in (15). However, such extensions
are not easy to handle with Theorem 1 and therefore we leave this topic for future

research.

5 Empirical Illustration

To illustrate the properties of our nonlinear STGARCH models applications to two
exchange rate return series are presented. The model we consider is given by (1) and
(3) with G1(h¢—1) the cumulative distribution function of the gamma distribution,

that is,

he— Y
(/o)
Gi(h :/ ~ L 1 lems/eqs
1) 0 I'(7)

where I' () is the gamma function. In practice, estimation is greatly facilitated by
using the standard form of the gamma distribution in which the restriction v = ¢ is
employed. According to our experience, relaxing this restriction has a negligible effect
on the value of the likelihood function and estimates of the other parameters of the
model. Therefore, this restriction is assumed in the empirical models. The model ob-
tained from (1) and (3) with this restriction will be referred to as the STGARCH(1,1)
model.? Results concerning the corresponding linear GARCH model defined by (1)

and (2) are provided for comparison.

4We also considered a model where the term §;Gy(h;—1) was replaced by 6Gy(hi—1)hi—1. For
these series, however, this model turned out to be dominated by the linear GARCH(1,1) model.
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Once a distribution for £; in (1) has been specified the parameters of the STGARCH
model described above can be straightforwardly estimated by the method of maxi-
mum likelihood. As many financial time series, including exchange rate returns, are
leptokurtic, quasi maximum likelihood estimation based on the conditional normal
distribution may not be optimal, and instead some leptokurtic distribution such as
the t distribution may be a more appropriate choice. Asymptotic properties of such
quasi maximum likelihood estimators are unknown. However, assuming that the pa-
rameters are located in the stationary region given in Theorem 1 or Corollary 3 it is
reasonable to expect that standard asymptotic results of statistical inference apply.

To check the adequacy of the estimated models analogues of standard diagnostic
tests developed for linear GARCH models will be employed to evaluate the STGARCH
models. In particular, the hypotheses of no remaining ARCH, no unmodeled auto-
correlation, symmetry and parameter constancy are of interest. The asymmetry we
consider is of the GJR-GARCH type (Glosten et al. (1993)) discussed in Section
2. When applied to the estimated linear GARCH model, especially the test for pa-
rameter constancy is likely to have power against the STGARCH model. Recently,
Lundbergh and Terésvirta (in press) introduced robust versions of LM tests for some
of these hypotheses and showed that they are superior when the errors are nonnormal,
as is likely to be the case with most financial time series. Therefore, these tests and
their analogues for the STGARCH model will be employed.

The data set consists of the daily spot rates of the DEM and JPY against the U.S.
dollar covering the period from the beginning of 1980 until the end of July 1998 (4773
observations), obtained from Datastream®. The returns are computed as logarithmic
differences multiplied by 100. Daily exchange rate return series can be, in general,
characterized by strong volatility persistence. Indeed, the sum of the estimated «
and [ coefficients of a standard GARCH(1,1) model fitted to the DEM and JPY
return series equal 0.984 and 0.988, respectively, potentially hinting at an integrated
GARCH model. The series are depicted in Figure 1. They have both tranquil and

>The dataset was downloaded from the internet web site of Franses and van Dijk (2000).
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volatile periods with the JPY return series having an exceptionally volatile period at
the end of the sample. The estimated kurtosis of the DEM return series is 4.921 and
that of the JPY return series 6.897, each clearly exceeding the value 3 implied by
normality.

The estimation results of the nonlinear STGARCH(1,1) and GARCH(1,1) models
are presented in Table 1. The models for the mean-adjusted series were estimated
by the method of maximum likelihood assuming ¢ distributed errors to take the ex-
cess kurtosis into account®. The estimates of the degrees of freedom parameter v are
precisely estimated and indicate deviations from conditional normality. According
to asymptotic standard errors all the other parameters are also very accurately esti-
mated. As was mentioned above, the sums of a and 3 in the linear GARCH models
are estimated close to unity. For the nonlinear STGARCH models, the parameter es-
timate of 3 was not significantly different from zero, and hence only models assuming
3 = 0 are considered (the p values of the likelihood ratio test for the null hypothesis
B = 0 were 0.159 and 0.095 for the DEM and JPY return series, respectively). When
both h;_; and G;(h;_1) were included in the model, both of the parameters 3 and
01 turned out to be imprecisely estimated, indicating that to some extent they are
close substitutes. As will be discussed below, this seems to be true only at low levels
of conditional variance, though. The estimated « coefficients obviously satisfy the
condition in Theorem 1 or Corollary 3, guaranteeing stability of the models.

Table 1 also reports the marginal significance levels of the diagnostic tests men-
tioned above. The null hypotheses of no remaining (first order) autocorrelation and
ARCH up to order 10 cannot be rejected at the 5% level for either model. For the
DEM return series both models also seem to be able to capture potential asymme-
tries, while there is evidence of unmodeled asymmetry in the linear GARCH model
for the JPY return series. For the corresponding nonlinear STGARCH model the null
of no asymmetry, in contrast, cannot be rejected. Although the news impact curve

(see below) of the STGARCH model is symmetric, the model can to some extent

6The models were also estimated assuming normality, and the results were qualitatively similar.
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alleviate asymmetric effects if, for instance, large negative shocks typically coincide
with high conditional volatility as seems to be case for the JPY return series. The
model then moderates the effect of these shocks compared to the corresponding linear
GARCH model. Results of the parameter constancy tests are not alarming for any of
the models although slight evidence of parameter nonconstancy may be seen for the
DEM series.

The properties of the nonlinear STGARCH models can best be described by con-
sidering their implied news impact curves (Pagan and Schwert, 1990) which show the
relationship between the current shock u; and conditional volatility in the next pe-
riod, hyy1, keeping all other information constant. For the linear GARCH(1,1) model

the news impact curve is thus defined as

which is a parabola centered at u; = 0 indicating that the impact of a shock on
next period’s conditional volatility is increasing in its absolute value. The value
of the conditional volatility h only moves the curve vertically and the moves are
proportional to h. For the STGARCH(1,1) model, on the other hand, the NIC is

given by the following equation
NIC(uhy = h) = w + auf + 6:G(h; )

which is also symmetric around zero. Here the value of h also moves the curve
vertically but the size of these moves depends on h such that the effect of h on the NIC
diminishes with increasing conditional volatility. This is depicted in Figure 2 which
displays the NICs of the GARCH(1,1) and STGARCH(1,1) models as functions of h
at u; = 1. For the STGARCH models the effect of a shock grows rapidly with h at low
levels of conditional volatility, but when the conditional volatility is initially high this
growth levels off, hence moderating the effect of shocks at high conditional volatility
levels. This is in contrast with the linear GARCH(1,1) model where the corresponding

curves are straight lines, indicating proportional dependence of the impact of a shock
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on the size of initial conditional volatility. The curves for the GARCH models also
lie above those for the STGARCH models at all levels of conditional variance with
the difference increasing as a function of h. Although over 95% of the values of the
conditional variance implied by all the models fall below 1.0, where this difference
does not seem to be large, for a substantial amount of observations the effects implied
by the GARCH models deviate considerably from those implied by the STGARCH
models (the maximum values of conditional variance implied by the GARCH models
are 2.0 and 4.2 for the DEM and JPY returns, respectively).

Further insight into the differences between the estimated models can be gained
by examining their dynamic properties. To this end we have computed the cumu-
lative impulse response functions implied by the estimated models. The cumulative
impulse response functions give the cumulative effect of a shock in period ¢, u;, on
the conditional volatility s periods ahead conditional on the size of the shock, A\, and
the value of h;. For GARCH(1,1) models the impulse response function can be com-
puted analytically but for STGARCH models the following simulation technique is
employed. Given initial values h; = h and u; = A, the model is simulated s periods
ahead to obtain N realizations, and these are averaged to approximate the so-called

conditional volatility profile (see Gallant, Rossi and Tauchen (1993))
E(ht+s|ht:h,ut:)\), 8:1,2,...

The cumulative impulse response function IRF (h,s, \) is then obtained as the dif-

ference between this profile and the one assuming a zero initial shock,
IRF (h, 8,)\) = E(ht+s|ht == h,ut == )\) - E(ht+3|ht == h,ut == 0)

The shape of the cumulative impulse response functions of the GARCH model does

not depend on A or h whereas that of the STGARCH model can depend on both.
Cumulative impulse response functions for the STGARCH(1,1) models estimated

for the DEM and JPY returns are depicted in the top and middle panels of Figures

3 and 4 for A = 1 and 2, respectively. Three different values of h are considered,
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0.1, 0.5 and 2.0. The middle value is rather close to the unconditional variance of
both return series, while 0.1 represents a "low” and 2.0 "high” conditional volatility.
When the shock is small (A = 1) the decay of the cumulative IRF is slowest near the
unconditional volatility and fastest in the case of high initial conditional volatility.
For the JPY return series the ranking of the cumulative IRFs is similar when A = 2,
while the IRFs implied by the DEM return model decay slowest when h = 0.1, and
the difference between the h = 0.1 and A = 0.5 cases is minor. Most importantly, the
decay is always fastest when the initial conditional volatility is high, indicating the
transient nature of very volatile periods, i.e., when the volatility is already high, the
effect of a shock is only temporary.

The bottom panels of Figures 3 and 4 depict the cumulative impulse response
functions for the GARCH(1,1) models assuming A = 1. For both return series the
decay is much slower for the GARCH(1,1) models. The contrast to the STGARCH
models is consistent with the finding that linear GARCH models tend to exaggerate
the persistence of volatility (see e.g. Lamoureux and Lastrapes (1993) for evidence on
stock market returns based on comparison with volatility implicit in option prices).
Moreover, the GARCH model may also be too restrictive if there indeed are nonlin-
earities such that the market perceives shocks in the high volatility regime as having
different persistence properties. Klaassen’s (in press) regime-switching GARCH mod-
els for exchange rate returns and Engle and Mustafa’s (1992) results indicating that
linear GARCH models exaggerate volatility persistence after the 1987 stock market
crash, lend support to this kind of behavior.

To further compare the properties of the linear and nonlinear GARCH models,
both in-sample and out-of-sample volatility forecasts one and ten days ahead were
computed. The one-day forecasts can be given in closed form for both models, and for
the ten day period the forecasts from the STGARCH models were obtained by Monte
Carlo simulation. The conditional variance computed from the estimated models was
used as the initial value. The root mean squared errors (RMSE) of forecasts are

presented in Table 2. Evaluating volatility forecasts is difficult because true volatility
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is not observable as was recently forcefully pointed out by Andersen and Bollerslev
(1998), who suggest estimating true conditional volatility from intradaily returns.
Because we are here mainly interested only in comparing the performance of the two
models, we have chosen to follow the common practice in the literature of approximat-
ing the true volatility by squared daily returns. This should be adequate to bring out
potential differences between the linear and nonlinear GARCH models. The out-of-
sample forecasts were computed for the latter half of the exchange rate return series
from STGARCH(1,1) models estimated from the first half. The STGARCH models
produce smaller RMSEs in each experiment. For the DEM returns the differences are
rather small (less than 0.5%) but for the JPY returns they are more substantial in
favor of the STGARCH models, especially in the out-of-sample experiments, where
the resulting reductions in RMSESs were 6.7 and 7.5 per cents for the one and ten-day
horizons, respectively. This was also to be expected based on the fact that, according
to the NICs and IRFs, the properties of the two models are particularly different
when the conditional volatility is high, which is the case for the JPY return series
in the latter half of the sample period. There the STGARCH model manages to
moderate the volatility consequences of shocks while the GARCH model presumably
exaggerates persistence. For the DEM return series, on the other hand, the latter
half of the sample period is relatively tranquil, and the differences in overall forecast
accuracy therefore smaller.

Further evidence for the conjecture that the differences in predictive accuracy
mainly arise in periods when the conditional variance is initially high, is provided
by computing the conditional RMSEs for different levels of the initial conditional
variance implied by the models. In each case the difference in predictive accuracy
between the STGARCH model and the corresponding GARCH model turned out to
be the more in favor of the former the higher the initial conditional variance was.
For the JPY returns the differences in the RMSE in the out-of-sample experiment at
the ten-day horizon were 10.6, -4.3 and -35.7 per cents for ”low” (lower than 0.3),
”middle” (0.3-0.9) and "high” (higher than 0.9) initial variance, respectively, while
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the corresponding figures for the DEM returns were 0.1, 2.0 and -41.7 per cents,
respectively. This shows that even for the DEM return series for which the overall
forecasting performance of the STGARCH model did not seem to much exceed that
of the GARCH model, substantial gains could be made when forecasting in periods

of high volatility.

6 Conclusion

In this paper we have studied new nonlinear GARCH models motivated by the desire
to model time series with highly persistent volatility. Time series of this kind have
often proved difficult for conventional GARCH models. The main emphasis was on
models that are similar to previous STGARCH models except for the novel feature
that a lagged value of conditional variance is used as the transition variable. Empirical
applications to exchange rate return series showed that the new STGARCH models
can be superior to conventional GARCH models especially in longer term forecasting.

In the paper we also gave sufficient conditions for the stationarity and existence
of moments of STGARCH models and some more general nonlinear GARCH models.
These results appear quite satisfactory in the case of first order STGARCH models.
However, for higher order STGARCH models the situation turned out to be more
difficult. Extending these results to higher order models, as well as to presently
excluded models with more than a single ARCH term, is therefore an interesting
future research problem. Similar extensions to models which allow for dynamics in the
conditional expectation are also of interest. A further open research problem related
to the considered nonlinear GARCH models is the development of asymptotic theory
of estimation and statistical inference. On the applied side, it would be useful to

gather more experience about the practical usefulness of the new STGARCH models.
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Appendix: Proof of Theorem 1

The idea of the proof is to apply Theorems 15.0.1, 16.01 and 16.15 of Meyn and
Tweedie (1993). This requires showing first that the Markov chain X; defined in (8) is
irreducible and aperiodic. The identification of appropriate small sets is also needed.
After these preliminaries, we have to verify an appropriate version of the so-called
drift condition given in inequality (15.3) of the same reference.

Irreducibility. We start with establishing the irreducibility which is here a some-
what more complicated task than in previous models which only involve ARCH-type
conditional heteroskedasticity (cf. e.g. Lu (1996, 1998) and Lu and Jiang (2001).
The reason is that the state space of our Markov chain is X C RE instead of R?.

To establish the irreducibility of X;, we need to show that, for some measure ¢

on the Borel sets of X,
> Pl(z,A)>0 forallzeX (16)
t=1

whenever ¢ (A) > 0 (see Meyn and Tweedie (1993, p. 87)). Recall that here P’ (z, A)
is the t-step transition probability measure of the Markov chain X;. In the proof of
the following lemma we need an explicit expression for PP (z, A). To this end, recall
from Section 2 that the conditional density function of h; given X; 1 = x = [z - -- wp]/
is ¥ (- — g (z) ;x1) where the function ¢ (-;-) is defined in equation (9). Using these
facts it is straightforward to check that

PP (2, A) = /AH% (z;x)dz (17)
where now z = [z -+ - 2, ,

Vo (z32) =V (2p — g (21,0, 1) 5 71)

and

¢i (Z,ZL') = ¢ (pri -9 (Zp71'+1> ooy Zpy L1y "'>xp7i) ) zpfiJrl)? L= 1a P 1
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(cf. the proof of Proposition A1.7 in Chan (1990), or the proof of Lemma 1 in Lu
(1998)). For later purposes we also note that the function # (-;-) is continuous and
positive whenever the first argument is positive.

The following lemma shows the irreducibility of X;. We use the symbol p to signify

the Lebesgue measure on RP.

Lemma 5 Suppose that the assumptions of Theorem 1 hold. Then there exist inter-
vals (bi,c;) C Ry, i =1,...,p, such that D = (by,¢1) X -+ X (bp,¢p) C X and the
Markov chain Xy is @-irreducible with ¢ (-) = p(-N D).

Proof. Assumption 2(ii) implies that, for every e > 0, we can find a real number

M, such that

P
g(z) < Z(ai +¢€)x; for x € X and |z| > M.. (18)

i=1
Let k = [k; --- k1] be a vector with 0 < k; < 1 for all i = 1,...,p. An explicit

definition of this vector will be given shortly. Here we use it to define the set
Sie ={zx € X : |kz| > M.} (19)

Notice that |kz| < |z| and therefore |z| > M, for every = € Si.. In what follows we
also make use of the facts that |z| = z and |kz| = kx for z € X.

Now, suppose that X; ; € S and, for simplicity, denote ag; = a;+€ (i = 1,...,p) .
Then equations (8) and (18) in conjunction with Assumption 1(iii) show that

p—1
H/Xt = /ilg (thl) + Z /€i+1ht71 + Klf(hiiigtfl) (20)
i=1
p—1

p
< Ki Z il + Z Kiv1hi—i + K1h_1b(gi-1).

i=1 i=1
Define the matrix C, (g;_1) = A+ B (g¢_1) where the matrix A, (p X p) is defined by
replacing a; in (12) by a.; (i = 1,...,p) and B(g,_1) is as in (13). Then the preceding

inequality can be written as
H/Xt S /4}/06 (Etfl) thl.
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Note that the quantities on both sides of this inequality are positive. Thus, since

1K' X" = (k' X;)®*, well-known properties of Kronecker’s product give

XN < (5 Ce (1o)X, (21)

— (®HVE [ce (et_l)‘@ﬂ XEE 4 (kEhY {ce (ee)® — E [ce (et_l)m} } X&k.
Using (21) we can show that there exists a finite integer n such that
pP" (37,526) >0, z¢€ Slg, (22)

where Sy = {z € X : 7* < |W'z|" < M.} and 7 = Y%, k; > 0 with 5 given in
Assumption 2(i). Clearly, X = 51U Sa.

To justify (22), assume that Xy = = € Si. and consider the event
Qn = {CLel + b (5t—1) < F (agl + b (515—1)) s t = ]_, ceey n} .

Due to the nonconstancy of the function b, the probability of the event €2, is positive
for every value of n. From the definitions it can be seen that the random elements of
the matrix C; (,_1) are of the form ¢ (a¢ + b (5,_1))’ where j € {1,...,k} and ¢ > 0.
Furthermore, on Q,, we have ¢ (aq +b(g,.1)) < cE (aaq +b(e1)), j € {1,...,k}.

Thus, since Assumption 2(ii) entails h; > n > 0 and since the components of the

vector £ are positive it follows from (21) that, on the event €,,,
WX < (5B [ Ce (20)**] XE5. (23)

Now, by assumption we have p (E (Ce(g;-1))®*) < 1 when e = 0. Using the con-
tinuity of the spectral radius and dominated convergence we can conclude from this
that there exists a choice of e such that p (E (Cc(g1-1))®*) < 1. (The use of dominated
convergence is justified by the assumption b(z) < bz? imposed in Assumption 1(iii).)
Such a choice of € will be assumed in all subsequent derivations. Thus, we can use
Lemma A.2 of Liang and McAleer (in press) and choose the vector x such that the
vector v = (ka - F (Ce(at,l))‘@k)//ﬁ@’“ has positive components. (The given proof

makes clear that it means no loss of generality to assume that the components of
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are bounded by unity although this is not stated explicitly in the formulation of the

lemma.) Thus, we can write inequality (23) as

KX < WX -V XER

/X®k
= |&'X, " I W (24)
(X,

< (=7 WX

where 7 > 0 is the minimum of the components of . Note that here we have also
made use of the fact that the components of x are bounded by unity. Thus, starting
with ¢ = 1 and proceeding inductively we find from this inequality that, whenever
Xiq1 € S1e (t=1,...,n),

KX, " < (1—7)" |w'z|". (25)

Because 0 < 1 — 7 < 1, the right hand side of (25) is smaller that M, for all n large
enough. Choosing n as the smallest integer for which this occurs shows that (22)
holds.

Next suppose that z € Ss.. Since the function g is bounded on bounded subsets of
X there exists a positive real number M, such that ¢ (z) < M, < oo for all z € Ss..
Without loss of generality, we can assume that M, > M,.. Thus, we can find an open

interval (b, ¢,) such that M, < b, < ¢, < co and
zp—g(x) >0, 2z, € (by,cp), TE Soe.

In the same way, when z € Sy we have sup.c(, )9 (2,21, 2p1) < Mg < 00
for all x € Sy Hence, it is possible to find an open interval (b,_1,cp,—1) such that

Mp—l < bp—l < Cp—1 <0 and
Zp1— G (Zps 1y ey Tp1) >0, 2, € (bp,¢p)y 2p—1 € (bp_1,¢p-1), T € Sae.

Continuing in this way we can find the remaining intervals (b;, ¢;) and use them to
construct the set D = (by,¢1) X -+ X (b, ¢p). Then, since the function ¢ (-;-) is

positive when the first argument is positive, the integrand on the right hand side of
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(17) is positive on the set D. Thus, we can conclude that PP (z, AN D) > 0 whenever
x € Sy and for every Borel set A such that p (AN D) > 0. This shows that the
desired condition (16) holds for x € Ss.. To show that it also holds for x € S, and

to facilitate later proofs, we establish the stronger result

inf PP (z,AND)>0 (26)

weK
for every compact set K C Sy and all Borel measurable A such that (AN D) > 0.
A proof of (26) will be given shortly. Assume for the moment that this result holds
and let A be a Borel set such that p (A N D) > 0. Then, by the Chapman-Kolmogorov
equation (see Meyn and Tweedie (1993, p. 67)) one obtains, for any = € Sy,

PP (2, AN D) — /P” (z,dy) P" (y, A1 D)
X

v

/ P" (2, dy) P? (y, AN D) (27)
SZE
> cP"(z,S)

where ¢ > 0. Here the former inequality is obvious whereas the latter is obtained from
(26) with K = Sy. In view of (22) the last probability in (27) is positive which shows
that the condition in (16) also holds for z € Sic and ¢ (-) = p(- N D). Thus, since
X =51 U Sy, condition (16) holds for all z € X with ¢ (-) = (-N D).

To complete the proof we still have to establish (26). This can be done by following
the arguments in the proof of Lemma 2 of Lu (1998). Thus, suppose that (26) does
not hold so that there exists a Borel set A such that u (AN D) > 0 and

inf PP (x,AND)=0, K C Ss.

TEK
By the definition of infimum, there then exists a sequence {Z,} C K such that
limy, 00 P? (T, AN D) = 0. Hence, (17) and Fatou’s lemma give

p—1
/ liminf [ [ 4, (2:%,) dz < lim PP (Z,; AN D) =0
A =0

nD n—oo A n—0o0

We shall obtain a contradiction with this by showing that

p—1
a(z) «f limian@/Ji (2;T,) >0
=0

n—oo -
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for any z € AN D.
Let z € AN D be arbitrary but fixed. Then, there exists a subsequence {Z,} of
{Z,} such that

= lim H¢ 2, Ty ) (28)

=00
Since {Z,,} C K and K is compact there is a subsequence of {Z,, }, still denoted by
{Zy, } , such that lim;_., T, = To for some Ty € K. Let Ty, and Ty (1 = 1, ..., p) signify
the components of the vectors 7, and Ty, respectively. Then, since the function g is
bounded on bounded subsets of R” the limit

Hm g (Zp—it1s s Zps Tlngs oos Tp—imy) = Li

[—o0

exists and is finite. (Here Ly is defined by omitting the arguments z, ;i1, ..., 2p.)
Thus, combining this fact with (28), the definition of ¢, (z;Z,,), and the continuity
of the function 1 (+;-) we find that

p—1

a(z) = g (2p — Lo; T1o0) H% (2p—i — Li; 2p—it1) -

i=1
Now recall that we could assume M, > M, so that D C Si.. Thus, since z € D and
Tp € K C Sy we have 2z, ; — L; > 0foralli =0,...,p—1, as seen from the discussion
leading to (26). Since the function v (-;-) is positive when the first argument is
positive the above equality and the definition of the functions v, (+;+) (: =0, ...,p—1)
yield a (z) > 0. Notice that here we also used the assumption inf,cge g (z) =7 > 0 to
ensure that ¢, (2, — Lo;T10) > 0 (cf. Remark 1 of Lu (1998)). This gives the desired
contradiction and completes the proof. m

Aperiodicity and small sets. The following result will be used to prove the

aperiodicity of the Markov chain X; and to identify small sets.

Lemma 6 Suppose that the assumptions of Theorem 1 hold and let K be any compact
subset of X. Then, infoex D70 P? (v, A) > 0 for some positive integer m = m (A)
and for all Borel sets A such that A C D and ¢ (A) > 0.
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Proof. If K C Sy the stated conclusion follows directly from (26). Next suppose
that K C Sj. and note that we can strengthen (22) to the form inf,cx P™ (x, Sa) > 0.
To justify this, use the proof given for (22) and dominate the right hand side of (25)
by (1 —7)" sup,e i K’z < ¢ < oo. Finally, suppose that both K NS;. and K N Sy, are
nonempty and let n be as in (22). Then, since X = S U Sy, the stated result follows

from

n+p
. yi > . . 7 . n ]
2 2P e A) 2 wmin B, 7 050, P52
]:

The following lemma shows the aperiodicity of the Markov chain X;.

Lemma 7 If the assumptions of Theorem 1 hold then the Markov chain X, is aperi-

odic.

Proof. Let the integer d > 1 stand for the period of X; and ¢,, a maximal
irreducibility measure of X; (for a definition, see Meyn and Tweedie (1993, p. 88-
89)). Then, we can partition the state space of X; as X = F U E; U --- U E4 where
F, Ey, ..., E;4 are disjoint Borel sets such that ¢,, (F) =0 and P (z, E;;11) = 1 for all
x € E;,1=0,..,d—1 (mod d) (see Meyn and Tweedie (1993, p. 117)). Assume
that X, is periodic so that d > 1. Let D and ¢ be as in Lemma 5 and notice that,
since ¢, is a maximal irreducibility measure, ¢,, (F)) = 0 implies ¢ (F') = 0. Since
¢ (D) > 0 we therefore have ¢ (E; N D) > 0 for some j € {1,...,d}. Let z; € E; and
zj+1 € Ej41. From the assumed periodicity it then follows that P” (z;, E; N D) = 0
for every n that is not a multiple of d and P"™ (2,41, E; N D) = 0 for every n that is a

multiple of d. Thus, we have found a compact set K = {z;, zj+1} such that

inf P"(z,E;ND)=0

zeK
for every positive integer n. This, however, contradicts the result of Lemma 6 because

¢ (E;N D) > 0. Thus, we must haved =1. =

Lemma 8 If the assumptions of Theorem 1 hold then all compact subsets of X with

positive Lebesgue measure are small.
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Proof. The proof is obtained by applying Lemmas 6 and 7 in conjunction with
Proposition A1.3 of Chan (1990). =

Verification of the drift condition. We know now that the Markov chain X;
is irreducible and aperiodic and that all compact subsets of X with positive Lebesgue
measure are small. Thus, to prove the first statement in part (a) of the theorem, we
need to show that condition (15.3) of Meyn and Tweedie (1993, p. 355) holds. To

this end, we introduce the function
g(x) =1+ xz[

where k is the vector defined in the proof of Lemma 5.

We have to consider the conditional expectation

p—1 k
E@@Xy) | X;1=2)=1+4+F </<olg (x) + Zﬁi_t'_lxi + R f (x1841) )

where the equality is obtained from (8) in the same way as its analog in (20). Now
suppose that z € Sj. defined in (19). Then, the above equality and arguments used
in (20) yield

P p—1 k
E@Xy) | Xymi=2) < 1+ F (Iﬁ Z el + Z Kig1%; + lﬁl‘lb(f?t—l))

i=1 i=1

— 1+ (kYE [06 (EH)®’“} 2F

where the equality is obtained by arguments similar to those used to obtain (21) from

(20). Repeating the arguments used to arrive at (24) we can now further conclude

that
E(q(Xy) | Xpa=2) < ﬂ@b-;:%gﬁ@}
< (1-7)q(z), =€ S, (29)

where 0 < 7 < 1. On the other hand, by the definition of the set Sy, (see (22)) it is
obvious that

E(q(X) | X1 =2)<1+|wMJ*, zeb8,. (30)
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Since S1U Soe = X and the set Sy, is compact it follows from (29) and (30) that
condition (15.3) of Meyn and Tweedie (1993, p. 355) holds with the function ¢ ().
Thus, the Markov chain X; is V-geometrically ergodic with V (z) = ¢(x). Since
¢ (z) > |z|* with & > 0 the minimum of the components of the vector & the stated
|z|"-geometric ergodicity of X, also follows.

The second statement can be proved in the same way as Proposition 4 of Car-
rasco and Chen (in press) which shows a similar result with |z|*-geometric ergodicity
replaced by geometric ergodicity. The only change we have to make in the proof of
that proposition concerns statements similar to those in (11). In these statements
we have to replace the upper bound unity in supremums by |:zc|’€ . By the established
|z|"-geometric ergodicity this replacement is justified.

To prove part (b), first recall that we have shown that the Markov chain X; is
irreducible and aperiodic and that condition (15.3) of Meyn and Tweedie (1993, p.
355) holds with an appropriate small set and the function V' given by V' (z) = ¢ (x) =
1+|x'z|" . Since it is clear that ¢! |z|* < ¢ (x) < ¢|z|* for some ¢ > 1 we can therefore
conclude from Theorem 16.0.1 of Meyn and Tweedie (1993) that the Markov chain
X is |z|*-uniformly ergodic (for a definition of this concept, see page 382 of the same
reference). Given the ]m]k—uniform ergodicity, the stated strong mixing property of
X follows from Theorem 16.1.5 Meyn and Tweedie (1993, p. 388) and the discussion
given after its proof.

Regarding part (c) of the theorem, it suffices to note that geometric ergodicity is

known to imply [-mixing in the case of stationary initial values (see Pham (1986) or

Doukham (1994, p. 4 and 89)). This completes the proof of Theorem 1.1
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Figure 1: The daily percentage returns for the German mark and Japanese yen against

U.S. dollar from January 1, 1980 through July 1998.
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Figure 2: The news impact curves for the STGARCH(1,1) models for the DEM (solid
curve) and JPY (dashes) returns as functions of conditional variance h, given u; = 1.

The straight lines depict the corresponding news impact curves for the GARCH(1,1)

models.
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Figure 3: The cumulative impulse response functions for the conditional variance for
the estimated STGARCH(1,1) and GARCH(1,1) model for the DEM returns. For
STGARCH models (top: A = 1, middle: A = 2) three levels of initial conditional
variance are considered: low (hg = 0.1, solid line), average (ho = 0.5, dashes) and
high (hg = 2.0, long dashes). The bottom panel graphs the cumulative impulse
response function for the GARCH(1,1) model for A = 1.
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Figure 4: The cumulative impulse response functions for the conditional variance for
the estimated STGARCH(1,1) and GARCH(1,1) models for the JPY returns. For
STGARCH models (top: A = 1, middle: A = 2) three levels of initial conditional
variance are considered: low (hg = 0.1, solid line), average (ho = 0.5, dashes) and
high (hg = 2.0, long dashes). The bottom panel graphs the cumulative impulse
response function for the GARCH(1,1) model for A = 1.
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Table 1: Estimation results of the GARCH(1,1)-t and STGARCH(1,1)-t models for
the DEM and JPY exchange rate return series.

DEM JPY
GARCH(1,1) STGARCH(1,1) GARCH(L,1) STGARCH(LI)
w 0.009 0.064 0.008 0.083
(0.002) (0.012) (0.002) (0.013)
! 0.071 0.075 0.058 0.060
(0.009) (0.009) (0.009) (0.009)
1G] 0.913 0.931
(0.011) (0.012)
01 1.843 2.016
(0.075) (0.080)
y 1.434 1.519
(0.048) (0.051)
v 6.318 6.382 4.419 4.457
(0.592) (0.603) (0.302) (0.305)
AR(1)" 0.997 0.956 0.380 0.985
ARCH(10)" 0.733 0.426 0.239 0.342
Asymmetry* 0.184 0.173 0.006 0.103
Constancy
n=1 0.159 0.654 0.640 0.348
n=2 0.078 0.145 0.134 0.282
n=3 0.048 0.056 0.223 0.155

The figures in the parentheses are standard errors computed from the inverse of the final
Hessian matrix. The figures reported for the diagnostic tests are marginal significance levels.

“The alternative model is the corresponding AR(1)-(ST)GARCH model, and under the null
hypothesis of no remaining autocorrelation the coefficient of the AR(1) term equals zero. The
test is robustified against misspecified conditional variance following Wooldridge (1990, Example
3.3), for details, see Lanne and Saikkonen (2000).

"Under the alternative hypothesis € in (1) follows an ARCH(10) process, whose coefficients
equal zero under the null hypothesis of no remaining ARCH.

¢Under the alternative hypothesis the coefficient of the ARCH term u?_; depends on the sign
of up_1.

¢Under the alternative hypothesis the parameters change as a smooth function of time, see
Terdsvirta and Lundbergh (in press) for details. Setting n = 1 indicates only one-time change,
whereas as larger values of n allow for more complicated parameter nonconstancy.
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Table 2: Forecast performance of the GARCH(1,1)-t and STGARCH(1,1)-t models
for the DEM and JPY exchange rate return series.

Forecast
Horizon In Sample Out of Sample
GARCH(1,1) STGARCH(1,1) GARCH(1,1) STGARCH(1,1)
DEM 1 0.895 0.880 0.850 0.848
10 0.930 0.926 0.866 0.861
JPY 1 0.996 0.962 0.971 0.906
10 0.987 0.959 0.969 0.896

In the out-of-sample experiment the parameters are estimated from data cov-
ering the first half of the sample period and held fixed over the forecast period
consisting of the latter half of the sample. The figures are root mean squared

errors computed as

T
1 ~
RMSE = ? E (ht—U?)Q,

t=1
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