~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Liang, Hua; Hardle, Wolfgang

Working Paper
Asymptotic normality of parametric part in partial
linear heteroscedastic regression models

SFB 373 Discussion Paper, No. 1997,33

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Liang, Hua; Hardle, Wolfgang (1997) : Asymptotic normality of parametric

part in partial linear heteroscedastic regression models, SFB 373 Discussion Paper, No. 1997,33,
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation
of Economic Processes, Berlin,

https://nbn-resolving.de/urn:nbn:de:kobv:11-10064178

This Version is available at:
https://hdl.handle.net/10419/66250

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10064178%0A
https://hdl.handle.net/10419/66250
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ASYMPTOTIC NORMALITY OF
PARAMETRIC PART IN PARTIAL
LINEAR HETEROSCEDASTIC
REGRESSION MODELS

Hua Liang and Wolfgang Hardle *

Abstract

Consider the partial linear heteroscedastic model Y; = Nsﬂm +9(T) + 0ie;,1 <0 <
n with random variables (X;,T;) and response variables Y; and unknown regression
function g(e). We assume that the errors are heteroscedastic, i.e., 2 # const. e; are
i.i.d. random error with mean zero and variance 1. In this partial linear heteroscedastic
model, we consider the situations that the variances are an unknown smooth function of
exogenous variables, or of nonlinear variables T}, or of the mean response X! 34 g(T}).
Under general assumptions, we construct an estimator of the regression parameter
vector [ which is asymptotically equivalent to the weighted least squares estimatores
with known variance. In procedure of constructing the estimators, the technique of
splitting the samples is adopted.

Key Words and Phrases: Nonparametric estimation, partial linear model, heteroscedas-
tic, semiparametric model, asymptotic normality.
Short title: Heteroscedasticity

1 INTRODUCTION

Consider the semiparametric partial linear regression model, which is defined by

Yi= XT84 g(T) +2ni = 1o (1)
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Sonderforschungsbereich 373 “Quantifikation und Simulation Okonomischer Prozesse” . The first author was
supported by Alexander von Humboldt Foundation. The authors would like to thank Dr. Ulrike Grasshoff
for her valuable comments.




with X; = (zq,...,25)" and T; € [0,1] random design points, 3 = (31,...,3,)T the un-
known parameter vector and ¢ an unknown Lipschitz continuous function from [0,1] to R'.
The random errors €4, . ..,&, are mean zero variables with variance 1.

This model was studied by Engle, et al. (1986) under the assumption of constant error
variance. More recent work in this semiparametric context dealt with the estimation of 3
at a root-n rate. Chen (1988), Heckman (1986), Robinson (1988) and Speckman (1988)
constructed /n—consistent estimates of # under various assumptions on the function ¢ and
on the distributions of £ and (X,T). Cuzick (1992a) constructed efficient estimates of 3
when the error density is known. The problem was extended later to the case of unknown
error distribution by Cuzick (1992b) and Schick (1993).

Schick (1996a, b) considered the problem of heteroscedasticity, i.e., of nonconstant error
variance, for model (1). He constructed root-n consistent weighted least squares estimates
with random weight of the finite-dimensional parameter, and gave an optimal weight function
when the variance is known up to a multiplicative constant. His model for nonconstant
variance function of Y given (X, T') assumed that it is some unknown smooth function of an
exogenous random vector W, which is unrelated with § and g¢.

The present paper focus to uniformly existed approaches in the literature and to extend
some of existing results. It is concerned with the cases that o7 is some function of some
independent exogenous variables; for some function of T}; for some function of XT3 + g(T;).
The aim of this paper is to present a uniformly applicable method for estimating the pa-
rameter 3 on the regression model (1) with heteroscedastic error, and then to prove that
in large samples there is no cost due to estimating the variance function under appropriate
conditions.

In our analysis it is related to the literature on attention in semiparametric models.
FEarlier papers are Bickel (1978), Carroll (1982), Carroll and Ruppert (1982) and Miiller,
et al. (1987). There are mainly two kind of theoretical analysis, that is, the parametric
approach, which generally assumed o? = H(X;,0) or H(XIj3,0) for H being known. [See
Box and Hill (1974), Carroll (1982), Carroll and Ruppert (1982), Jobson and Fuller (1980)
and Mak (1992)] ; and the nonparametric approach, which assumed o? = H(X;) or H(X! 3)
for H being unknown. [See Carroll and Hardle (1989), Fuller and Rao (1978) and Hall and
Carroll (1989)]



Let {(Yi, X;, T;),t =1,...,n} denote a random sample from

where X;, T;, T; are the same as these in model (1). e; are i.i.d. with mean 0 and variance 1.
2

o? are some functions of other variables, whose specific form is discussed in later sections.
The classic approach works as follows. Assume {(X;,T;,Y;);¢ = 1,...,n.} satisfy the
model (2). Let {W,;(t) = W, (t; T1, ..., T,), 1 = 1,...,n} be probability weight functions
depending only on the design points T4,...,T,.

Since g(T;) = E(Y; — X' 3). Let 3 be the "true” value, and then suppose
galt) = 3 Wi (t)(Y; = X[13)
7=1

Replace now ¢(7;) by ¢,(T;) in model (2), we then obtain least squares estimator of 3

Brs = (XTX)'XTY (3)

where X7 = (X1,...,X.), X; = Xi = 20, W (T)X;; Y = (Vi,..., V)7, Y = Vi -
i=1 Wi (T9)Y5.

When the errors are heteroscedastic, G s is modified to a weighted least squares estimator
n 21, o
Bw = AMU ﬁ.uﬁ.uﬁ.ﬂv AMU ﬁ.uﬁ&.v (4)
=1 =1

for some weight v; i = 1,...,n. In our model (2) we take v; = 1/a?.

2

In principle the weights ; (or o7)are unknown and must be estimated. Suppose {7;, i =

I,...,n} be a sequence of estimators of 3. Naturally one can take By given in (4) by
substituting 3 by 7; as our estimator of 3.

In order to develop the asymptotic theory, we use the idea of splitting of sample. Let
) (2)

k, be the integer part of n/2. ws.ﬁ and 7;” are the estimators of +; based on the first k,

sample (X1,71,Y1), ..., (X&,, Tk, Yx,); and the later n — k,, samples (Xy, 11, Tht1s Yip+1)s
ooy (X0, T, Y5), respectively. Define

b = (SN (X504 3 0% ®)
= i1 i=kn+1

as the estimator of .
The next step is to establish our conclusion, that is, to prove that 3,y is asymptotic

normal. We intend to prove By is asymptotic normal, and then prove /n(G.w — Bw)



converges to zero in probability. Some notations are introduced. ¢ = (ey,...,5,)7, & =

(i @) & = = Sy Wai(Thess g = (1) — Shoy War(T)g(Tx), G = (g(Th) —
Gn(Th), .., g(T) — G (T )T hi(t) = E(ay|T: = t), ugj = xij — hy(T;) for i = 1,...,n and
g =1,....p. We will use the following assumptions.

Assumption 1. supgc,, E(||[X:1|P|T' = 1) < 0o and lim,_.oo 1/n Y0 youiu] = B and B is
a positive definite matriz. Where u; = (w1, ..., uyp)T.

Assumption 2. g(-) and h;(-) are all Lipschitz continuous of order 1.

Assumption 3. Weight functions W,;(-) satisfy the following:

1<i<n =
(1)  max W,(T;) =0(,), a.s. b,= n=2/3,
1<e,5<n

(1i1) HHM.MMMMU W, (THI(T; — T;| > ¢) = O(cy), a.s. ¢, = n='/? log™! n.

Assumption 4. There exist constants Cy and Cy such that
0< i < b@bﬁ. < max; < (.
We suppose that the estimators 7; of 7; satisfy

~

sup |7 — | =op(n™?) ¢=>1/4 (6)
1<i<n

We shall construct such as estimators for several kinds of 7; in Sections 3-5. The following
theorems present general results for parameter estimate of partial linear heteroscedastic
models.

Theorem 1. Under Assumptions 1-4 . [w is an asymptotically normal estimator of 3,

i.€.,

Vi(Bw — B) —* N(0,B~'B,B™)

with mH == QD@AXH — mﬂkw_mﬂwvw
Theorem 2. Under Assumptions 1-4 and (6). B.w is an asymptotically equivalent, i.e.,

V1 (Baw — B) and \/n(Bw — ) have the same asymptotically normal distributions.
2

7

by many authors. See for example, Speckman (1988) and Gao et al. (1995). The point is

Remark. 1.1. In the case of constant error variance, i.e. 02 = o*, Theorem 1 was obtained

that it has no cost neither from the adaptition nor the splitting method.

4



Remark. 1.2. Assumptions 1-4 are rather general in nature, we will give concrete examples
in section 3-5.
Remark. 1.3. Theorem 2 not only assures that our estimator given in (5) is asymptotically
equivalent to the weighted LS estimator with known weights but also generalize the earlier
results of related literature.

The outline of the paper is as follows. Section 2 states some prelimary results for proving
the main results. Sections 3-5 present various different variance functions and state the
corresponding estimates. Section 6 gives results of simulations. The proofs of Theorems 1

and 2 are postponed in Section 7.

2 SOME LEMMAS

In this section we make some preparation for proving our main results. Lemma 2.1 provides
the boundedness for h;(T;) — S5y War(Ti)h;(Ty) and g(T;) — Xr_; Wk (1) g(Ty). Tts proof
is immediate. Denote h,(T%) = hs(T:) — vy Wor(Ti) ks, recall that uy; = x;; — h;(1;) and
u; = (W1, ..., uy)T. The variables {u;} are also independent identically distributed random
vectors.

Lemma 2.1. Suppose that Assumptions 2 and 3 (iii) hold. Then

max
1<i<n

GAT) — 3 Wok(T)G(Ty)| = O(e,)  forj=0,....p
k=1

where Go(+) = ¢g(+) and Gi(-) = hy(-) forl=1,...,p.
Lemma 2.2. Suppose Assumptions 1-3 hold. Then

1 &N =y
lim —> XX, =B
31003&HH

Proof. It follows from x;; = hs(7T;) + u,s that the (s,m)—th element of WMUM.@HH Q&NHW@
(s,m=1,...,p)is

H_, n H_, n H_, n _
— iTisTim = — UsUip + — s (15 )i
:WWQ&& :quz +:WW< (T3)u
13 - 13, - —
=1 =1

LN+ LS RO
n = YilisUim SQHH ST



i w: ul = B. Lemma 2.1 and Assumption 4 imply

R®) = o(n). Then Cauchy-Schwarz inequality yields R() = op(n) and R?) = op(n).

nsm nsm nsm

Assumption 1 implies lim,,_ . v; >°"

These arguments prove the lemma.

Next we shall prove a rather general result on strong uniform convergence of weighted
averages in Lemma 2.3, which is applied in the later proofs repeatly. First we give an
exponential inequlity for bounded independent random variables, that is
Beinstein’s Inequality. Let Vi,...,V, be independent random variables with zero means

and bounded ranges: |V;| < M. Then for each n > 0,

_M (| > ) < 2exp|- w\ﬁmgéész.

Lemma 2.3. Let Vi,...,V, be independent random variables with means zero and finite
variances, i.e., SUpy<ic, E|V;|" < C < oo (r > 2). Assume (ap, k,1=1...,n) be a sequence
of positive numbers such that sup,; pe, lar| < n™P for some 0 < py < 1 and Y5_; aj; =

O(n??) for ps > max(0,2/r — p1). Then

max
1<i<n

MUSAL\L =0(mn *logn) for s=(p1—p2)/2. a.s.

Proof. Denote V! = Vi I(|V;| < n'/") and VIi=V,=Viforj=1,...,n Let M = Cn=ript/
and n = n~*log n. By Beinstein’s inequality

Mu@ﬁ <v > Qil AMWﬁM@E mﬁ\v
AI Cin~% log* n v

2370 @Wlﬁ\m + 2n=P1tl/r=slog
< 2nexp(—C2Clogn) < Cn™>/%  for some large Cy > 0.

> Qil

P+ max
1<i<n

< 2Znexp

The last second inequality from
i3 i3
MU @W&@SN < sup |a;i| MU @ima\% = p Pt apd gt/ logn < n~Prtr2,

By Borel-Cantelli Lemma

M W (T)(V] — EV))| =

max
1<i<n

O(n"*logn) a.s. (7)
Let 1 <p<2 1/p+ H\Q = 1 such that 1/¢ < (p1 + p2)/2 — 1/r. By Holder’s inequality

. 1 1< " mp\ /P
o (2 b)) T (5 1V - BVYP)

< ('p~Pra=1)/a AMU _a\\ . @S\\_@VH\@ Amv

max
1<i<n

MU @ﬁ a\: ma\w\\v



Observe that

3|~

SV = EV/P = E|V/ = EV/I") =0 as. (9)
7=1
and E|V/'|P < E|V;|"n='*?/" and then
SCEWV = EV'P < Cnfl" as. (10)
7=1
Combining (8), (9) with (10), we obtain

max

< —p1+1/at1/r _ -5
max < (Cn o(n™%) a.s. (11)

> an(Vy — EVY)
1

k=
Lemma 2.3 follows from (7) and (11) directly.

Let r =3, Vi = e or up, aj; = Wy (1), p1 = w and py; = 0. We obtain the following
formulas, which will play critical roles in the process of proving the theorems.

n

max MU S\iﬁﬁ.me = QASL\w logn) a.s. (12)
slj\ \A”H
and
Y Nt = Ofn=113 _
@mex MU S\siﬁv:i =0O(n logn) forl=1,...,p a.s.

k=1

3 VARIANCE IS A FUNCTION OF OTHER RAN-
DOM VARIABLES

This section is devoted to the nonparametric heteroscedasticity structure

o; = H(W;), H unknown Lipschitz continuous

where {W;;1 = 1,...,n} are also design points, which are assumed to be independent of ¢;
and (X;,T;) and defined on [0, 1].
Define

() = M?@é — X785 — Gu(T)))?

as the estimator of H(w). Where AHQ(\SQVL = 1,...,n} is a sequence of weight functions

satisfying also the same assumptions on {W,;(t);7 =1,...,n}.



Theorem 3.1. Under our assumptions,
sup [T1,(W5) = H(W)| = op(n~logn)

Proof. Set ¢; = g;¢; for 1 = 1,...,n. Note that

W (W)(Y; = X] Brs)?

=

3
I

Ms

1

.
Il

Wi (WL XT (B — Brs) + §(Ty) + &}

Il
=

1

.
Il

= )" VK3 )+ 2 W70 + 3 W0
2(8 — Brs) MW Wi XTG(T) 4 2(8 — Brs) MW W, (W) XTE,
@Mﬁégﬁw (13)

Since 377, u)@u)@ﬂ is a symmetric matrix, and 0 < E\\EAS\L < Cn~%3,
W (W) = Cn 2 XX

is a p x p nonpositive matrix. Recall that Brs — 3 = O(n~'/?). These arguments mean
the first term of (13) is Op(n~%?). The second term of (13) is easily shown to be order
meziwnwv.

Now we want to show that

= Op(n~?logn) (14)

éﬁﬁ%vls§

=1

This is equivalent to prove the following three items

n o n w
sup| S W (W) {32 War(T)er} | = Op(n7/2log ) (15)
tog=1 k=1
sup|>_ Wy (Wi)e? — H(W;)| = Op(n~"logn) (16)
tog=1
sup| 32 Wy (Wo)e {3 Wl T)er}| = Op(n="/2 log ) (17)
tog=1 k=1

(12) assures that (15) holds. Lipschitz continuity of H(e) and assumptions on Q(\Sﬂov entails
(16), i.e.,

= Op(n~?logn) (18)

sup| > Wi (Wi)e? — H(W;)
1 %”H



whose proof is similar as that of Lemma 2.1.

By taking ap; = Wop(W;)H(Wy) and Vi, = ef — 1 and r =2 and p; = 2/3 and p, =0 in

Lemma 2.3, we have

K3

p 32 Ty (W H(W, (e = 1) = Op(n~* log ) (19)

A combination of (19) and (18) means (15). (16) and (15) and Cauchy-Schwarz inequality
imply (17). Thus we proved (14).
The later three terms of (13) are all of order op(n="/%log n) by Cauchy-Schwarz inequality

and the conclusions for the first three terms of (13). Thus we complete the proof of Theorem

3.1.

4 VARIANCE IS A FUNCTION DESIGN T7T;

2

In this section we consider the case in which we suppose the variance o7 is a function of the

design points T;, i.e.
o = H(T;) H unknown Lipschitz continuous
Similar as in section 3, we define our estimator of H(e) as
T (t) = M Wi (O1Y; — XT Bus — Gu(T)}?
=

Theorem 4.1. Under our assumptions,

o~

sup [H,(T3) — H(Ti)| = op(n™"/*logn)

1<i<n

Proof. The proof of Theorem 4.1 is similar to that of Thorem 3.1 and is omitted.

5 VARIANCE IS A FUNCTION OF THE MEAN
Here we consider the model (2) with
o? = H{X!B+ ¢(T;)}, H unknown Lipschitz continuous

which means that the variance is a unknown function of mean response. A related situations

in linear and nonlinear models are discussed by Carroll (1982), Box and Hill (1974), Bickel



(1978), Jobson and Fuller (1980) and Carroll and Ruppert (1982). Engle et al. (1986), Green
et al. (1985) and Wahba (1984) and others studied the estimator for the regession function
XT3+ g(T).

Since H(-) is assumed completely unknown, the standard method is to get information
about H(-) by replication, i.e., we consider the following ”"improved” partial linear het-

eroscedastic model
Yi = XIB 4 g(T) +oveys = loooymii=1,...n

Here Y;; is the response of the jth replicate at the design point (X;, 1), €;; are i.i.d. with
mean 0 and variance 1, 3, g(-) and (X;,T;) are the same as that in model (2).

We will borrow the idea of Fuller and Rao (1978) for linear heteroscedastic model to
construct an estimate of o?. That is, to compute predicted value X! 315 + G.(T;) by fit
least squares estimate (s and nonparametric estimate g,(7;) to the data, and residuals
Y, —{XIBrs + G.(T;)} and estimate

. I & .
o) = p— YW = {X Brs + Ga(T3)}*. (20)
t =1
When each m; stays bounded, Fuller and Rao (1978) concluded that the weighted estimate
based on (20) and the weighted least squares estimates based on the true weights have

different limiting distributions results from the fact that 6? do not converge in probability
2

PR

to the true o

2g def

Theorem 5.1. Let m; = a,n*? = m(n) for some sequence a, converging to infinite. Under

our assumptions,
sup [5f — H{X 8+ g(T)}| = op(n™) q=1/4

Proof. We only outline the proof of the theorem. In fact
67 = H{X[ B+ g(T)} < 3{X/ (8 = Brs)}* + 3{g(T:) = gu(T)}* + — D ai(eli = 1)
i =1
The first two items are obviously op(n~?). Since ¢;; are i.i.d. with mean zero and variance
1, after taking m; = a,n*?, 327" (ef; — 1) is equivalent to Mumznmsﬁmw — 1). Using the law of
the iterated logarithm and the boundedness of H(-) one know that

— S e —1) = O{m(n)?logm(n)} = op(n™9)
Thus we derive the proof of Theorem 5.1.

10



6 SIMULATION

We present a small simulation study to explain the behaviour of the previous results. We

took the following model with different variance functions.
Yi= X4 g(T)) + oies, i=1,...,n =300

Here {e;} are standard normal random variables, {X;} and {7} are both of uniform random
variables on [0, 1]. 8 = (1,0.75)T and g(¢) = sin(¢). The simulation number for each situation
is 500.

Three models for the variance functions are considered. LSE and WLSE represent the
least squares estimator and the weighted least squares estimator given in (3) and (5), re-

spectively.

e Model 1: ¢ = T?;

K3

e Model 2: o2 = W?; where W; are i.i.d. uniformly distributed random variables.

e Model 3: 02 = a; explao{ XI5 + g(T})}?], where (a1, az) = (1/4,1/3200). This model
is mentioned by Carroll (1982) without the item ¢(T;).

TABEL 1: Simulation results (x107?)

Estimator | Variance Go=1 0 =0.75

Model Bias MSE Bias MSE

LSE 1 8.696 | 8.7291 | 23.401 | 9.1567
WLSE 1 4.230 | 2.2592 | 1.93 | 2.0011
LSE 2 12.882 | 7.2312 | 5.595 | 8.4213
WLSE 2 5.676 | 1.9235 | 0.357 | 1.3241
LSE 3 5.9 4.351 | 18.83 | 8.521
WLSE 3 1.87 1.762 3.94 2.642

From tabel 1, one can find that our estimator (WLSE) is better than LSE in the sense
of both bias and MSE for above each model.
By the way, we also mention the behaviour of the estimate for nonparametric part, that

ST = X )

11



Simulation comparation

g(T) and its estimate values
05

Figure 1: FEstimates of the function g(T') for the first model

wr.(+) are other weight functions which also satisfy the Assumption 3. In procedure of simula-
tions, we take Nadaraya-Watson weight function with quartic kernel (15/16)(1 —u?)?I(|u| <
1) and use Cross-Validation criterion to select bandwidth. Figures 1,2,3 are devoted to the
simulation results of the nonparametric parts for the models 1, 2, 3, respectively. In the

following figures, solid-lines for real values and dished-lines for our estimate values. The

figures indicate that our estimators for nonparametric part perform also well except the

neighbourhoods of the points 0 and 1.

7 PROOFS OF THEOREMS

First two notations are introduced.

=1 =1
For any matrix S, s(j,[) denotes the (j,[)-th element of S.

Proof of Theorem 1. It follows from the definition of Fy that

Bw — B = hmﬁm ﬁ.wﬁ.mﬁﬁ.v + Muﬁu)msme@
=1 =1

12



g(T) and its estimate values
05

Simulation comparation

O 1
T T

0 05 1
T

Figure 2: Estimates of the function g(T') for the second model

g(T) and its estimate values

Simulation comparation

05

OI T T T
0 0.5 1
T

Figure 3: Estimates of the function g(T') for the third model
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We will complete the proof by the following three steps, for 7 =1,...,p,
(1) Hyy = 1//n iy vidig(Ti) = op(1);
(i) Hj = 1/3/m Sl 3idi { iy War(To)erf = op(1);
(i) Hy = 1/y/n 0, i Xee; —= N(0, B~ B,B~).
The proof of (i) is mainly based on lemmas 2.1 and 2.3. Denote h,; = h;(T;) —

Spy War(Ti)h;(T)). Note

/\mmsHMUﬁ:&?s{_'MUﬁ?S@s Muﬁ MU S\E:S?S @C
=1 =1 1=

In Lemma 2.3 we take r = 2, Vi, = ug, aji = gn;» w <pp < w and p; =1 — py. Then the first

term of (21) is

2pp —1

Op(n™"%) = op(n'?)

The second term of (21) can be easily shown to be order Op(nc?) by using Lemma 2.1.

The third term of (21) can be handled by using Abel’s inequality and lemmas 2.1 and

2.3. Hence
< Cyn max |gn; | max

7MU MU 3 3@ QS@S n i<n MU E\gﬁﬂ&vﬁgi = QASN\wms yom SV

=1 g=1 q=1

Thus we complete the proof of (i).
We now show (ii), i.e., /nHz; — 0. Notice that

VnHy; = Wﬁ.ﬁ%m@%ﬂﬁ&@
= MWQ#MWU :SS\Q:ASAVT& + MWQ#MWU bzsz\iﬁﬂiw@
S v ) o

H k=1 g=1

wﬁu —1

The order of the first term of (22) is O(n~
Sorey Uk Whai(Ty), and w <pp < w and p; =1 — p; in Lemma 2.3.
It follows from Lemma 2.1 and (12) that the second term of (22) is bounded by

i=1 1

logn) by letting r = 2, Vi = e, ay =

max |hnkj| = Aw\wnsﬁom:v a.s. (23)
7,k<n

< nmax
k<n

MUS\QS MJNA ms

i=1

14



The same argument as that for (23) yields that the thrid term of (22) cab be dealt with as

n

7MU Vi EMU*MU 23 3@ MJNA WS\%& MJNA g m n H\MHA@QWA MU :\ﬂzﬂmﬂw € HMHA@QWA MU 23 3@ i
=1 k=1 g=1 =" =1 g=1
= Qﬁzw log?n) = o(n'?) a.s. (24)

A combination (22)—(24) entails (ii).
Finally the central limit theorem and Lemma 2.2 derive that

1
/\I

which and the fact that A, — B imply that

Muﬁum e; —*© N(0, By),

NG

This completes the proof of Theorem 1.

1 n
— Ay v Xie; —* N(0,B7'BB™Y).
=1

Proof of Theorem 2. In order to complete the proof of Theorem 2, we prove

Vi(Baw — Bw) = op(1)

First we state a fact, whose proof is immediately derived by (6) and Lemma 2.2,

~Jau(7.0) ~ an(3. )] = op(n™) (25)

for y,l =1,...,p. This will be used later repeatly.
It follows that

1 s —
Baw =B = AT (A= A)AT Y Xig(T)

=1

+A; HM NXG(T) + A7 (A — A)ATYY v X
VA HM NXE+ AT Y (v -AXE(n)
i=kn+1
AT Y (- A XE) (26)
1=kn+1

By Cauchy-Schwarz inequality, for any 5 = 1,...,p,

7MU QS&CQ




This is op(n®/*) by lemmas 2.1 and 2.2. Thus each element of the first term of (26) is
SUASL\J by watching the fact that each element of A7*(A, — szxﬁﬂ is n=%/%, The similar
argument shows that each element of the second and fifth terms is also op(n='/?).

Recall that the proofs for Hy; = op(1) and Hs converges to normal distribution, we
conclude that the third term of (26) is also op(n~'/2). Thus we see that the difficult problem
is to show that the fourth and the last terms of (26) are both op(n='/2). Since their proofs

are the same, we only show that, for y =1,...,p,

J

kn —
Tfﬁ MUSS - &.@Juﬁm@ = SUA:L\NV
=1

or equivalently

kn
S (v = A)E e = op(n'/?) (27)
=1
Let {6, } be a sequence numbers converge to zero but satisfy 6, > n~"/%. Then for any
p>0and y=1,...,p,
kn
o@D 22 1/2 . _ 22
QWSS el (|3 — A7) = 6,) > pn'l?} < iﬁwx = A7 =6, =0 (28)
The last step is due to (6).
Next we shall deal with the term
kn
P{S (3 = 3zl (s = 38 < 8,) > un*l?)
=1
by Chebyshv’s inequality. Since ws@ is independent of e; for ¢« = 1,... k,, we can easily
calculate
S CINRT
B{Y (v =3 3ue: )
=1

This is why we use splitting technigne to estimate ~; by w@ and \ﬁ:. In fact,

7 7

kn
PO = A Eged (i = 301 < 8,) > un/?
=1
_ T Bl = Ak = 3] < 6P B X2
< o
k62
< OC"2 =0 (29)
np

16



Thus, by (28) and (29),

b
> (3 =36 = op(n'/?)

=1

Finally

kn n
(=37 & WMU Wor(Ti)er }|
=1 =1

S Wak(Th)ex|

k=1

En —_—
< V(3o X2) " max | - 32 max
=1

This is op(n'/?) by using (25) and (12) and Lemma 2.2, which and (29) entail (27). We
complete the proof of Theorem 2.
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