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Introduction •"*

v.
It was M. Rothschild [7] who first demonstrated in his

v

pioneering article the importance of the two-armed-bandit

paradigm for applications in the "Economics of Incom-

plete Information".

In his model firms are setting prices as players who

have to pull one arm of a two-armed-bandit. They learn

by experience as "Bayesian statisticians". With the help

of his model Rothschild is able to explain the existence

of price-dispersions even in an economy with identical firms

but with differing experience.

In the present paper we try to exploit a special case of

the two-armed-bandit to give further arguments for the

existence of dispersion of firm's activities: We consider

the case of a two-armed-bandit where the success

probability of one arm is known (see for example Bradt
\

et.al. [3]/ Bellman [l], De Groot [4]). This seems to

be a plausible assumption for decision making in situations

where a decision maker has to choose between pursuing-r a

(probabilistically) well known activity and experimenting

with a new activity about whose success probability he

has only an a priori estimation.

In contrast to the Rothschild model we assume that firms

have finite planning horizons expressing their "degree

of myopic behaviour". In a simple partial model we analyze

the relation between the dispersion of planning horizons

and the existence and persistence of acitivity dispersion.

An economic interpretation of the abstract model yields

conditions for the existence of quality-di spersion and

price-quality-dispersions.

The present paper is organized as follows: In the first

part an abstract model of two-armed-bandit with one arm

known is developed. Explicit calculations of optimal

strategies are made for an example of a priori distributions

of a special type (see De Groot [4]). The simplification



- 2 -

is made mainly to depict clearly the underlying

economic ideas. The economic*implication of the

abstract model is worked out in detail in Chapter II.

In the last chapter it is demonstrated that a formal

generalization of the model to arbitrary a priori

distributions is straightforward.
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I. The formal model .-4

(a) At first the formal structure of the model is

presented in the language of gambling with two one-

armed-bandits (= "Two-armed-bandit"):

In its "wellknown" formulation (e.g. Bradt, et.al. [3],

Robbins [6]) we have a slot-machine with an X -arm and

an X^-arm. When either arm is pulled the machine pays

off one unit (of money for instance) with the success

probabilities II , resp. II . These success probabilities

are unknown to the player but he has an a priori

estimation of (II ,11 ) which is represented by a probability

density function £.

One is allowed (N-l) (N < °°) plays and a strategy is desired

which will maximize the expected payoffs over N stages.

Therefore the following probability model is appropriate

for a formal representation of the game:
\

Let the probability space of the N-stage game be denoted

by (fi,®,?) where

JD ® *J (product a-algebra) , J«J. = ® ~0 . /
1 2 i n== 1 in

denotes the set of all subsets of S) ,
in

1) N

- P = Pn ® prr (product measure) , P'_ = ® II..

Let the winnings on each arm be represented by two sequences

of random variables {x. } , {Xn } . where
1 n n= 1 zn n= 1

X . : Q -* S ,
in
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The sequence of information of a player \L-s described

by the sequence of a-algebras {7 } , where 7 CL i5 f or
n n= 1 n

all n (7" is generated by the n-dimensional cylinder sets

inw) . It is assumed that f := {<J> , Q} represents null-'

information before the game begins.

The policy (strategy) of a player is represented by a
sequence {0 } . of^T .-measurable functions

n n=l n-1

a : n -» { 1 ,2} .

Consequently the choice of an arm i(i €. {1,2}) at stage

n > 2 depends on the information available up to this

stage. The a posteriori probability of (II ,11 ) after n

trials is given by a density function ^ (x . ,...,x. )
11 , 1 1 n , n

where (x. ,...,x. ) denotes a realized sequence of

successes with £ as prior density. By Bayes theorem one

obtains

TT
1

n.

1 ;

N l " n l n^ 2 (
2 v 2 ]

N 2 " n 2 c m

1
,n,j

( x . . , . . . , x . ) = —= = =-i — ( I . I )
I w l 1 n ' n n i N1~ni n-> N9~n?

/ n Uiu^ n (in) ^(nn

N, denotes the number of trials on arm i, n. the number of

successes.

The aim of the player is to find a strategy a = {a . } . _..—

such that the objective function

1,« ,

is maximized.



((b) To derive the structure of the optimal policy it

is often helpful to use dynamic programming techniques.For the

two-armed-bandit problem the following functional v

equation describes the optimal choice of an arm at eaeh

stage. Let V (5) denote the "worth" of the a priori

density with m pulls remaining when an optimal strategy

is followed, we have

- vm(g) = Max Wm(£) , m = 1 , . . . , N-1 (1.2)
{ } x
Max Wm(£) ,

i€{l,2} x

(n.))vm * (g . (oj),

- v°(5) = o

With Ec(n.) = / g.'(n ,TT ) d n d n , and g. . {1) for in-

stance denotes the a posteriori probability after a suc

cess on arm i ("X. = 1"). Suppose the*a posteriori

probability at stage n can be described by £ then an

optimal policy chooses arm i iff

i * ji ifj £ {l,2}. In case of equality of W. (•) and

W. (•) we adopt the convention that arm 2 is chosen. Let

us define
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Then arm 1 is chosen iff A,, (g) > 0, arm 2 is chosen
N—m ..

iff AN_ (g) < 0. •*

(c) For the economic application given in the following^,

chapters a special (simplified) form of the two-armed-

bandit is needed: II (6(0,1)) is known to the player. For

the derivation of the following results we will give a

unified method of proof utilizing only Berry's recurrence

relation (see Berry [2]). A well-known result concerning

the structure of the optimal policy in this case is given

by the following

Lemma 1: (Bradt et.al., [3], Yakowitz, [8]).

The optimal policy a* for the above problem is characterized

by the following property: Define a random variable n* by

n* = min {nI a = 2}n

then a* = 2 for m > n*.
m

Proof: As II is known a priori information can be represented

by a positive density function g (•) for arm 1 alone. The

proof utilizes the following recurrence relation for A (g.)

which has been derived by D. Berry (in Berry, [2], p.876)

where A = max {0,A }, A = min {0,A }.n n n n

Now let's assume there exists in contrast to the statement

of the lemma an integer K > 0 such that

A *_ (g ) < 0 for all m > 0, m < K

and

As g is not changed by observation we have
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o.

By definition of K and because of the implication

Vn*- K
( E1 }

(See Berry [2], p. 889) it follows from (2) that

EF (TTj) = 0

a contradiction to the positivity of g .

For the following a further simplification of the two-

armed-bandit problem is made:

- the a priori probability of T7 (TT is known) is given

TT = ft(>n ) 3 ) with probability g € (0,1)

L = 0 with probability' (1 -£ )

Clearly this assumption is restrictive. It is made in

order to simplify the calculations. In the last chapter

it is shown that a generalization does not change the

direction of the results. -

Under this assumption a characterization of the optimal

policy is given by

Lemma 2: (See De Groot, [4])

The optimal policy 0* is characterized as follows:

There exists a r* 6 {1 , . . . ,N} such that

n u
h < r*

if X = "o for n < r*
n > r* X'n
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a = 1 for all n if X, = 1 for at leas.t one
n 1 , n .-* -

n1 < r*.

Proof: The property of a* stated in the theorem follows

at once from Lemma 1 and the following statements

a) suppose n1 is the time point where the first success

with arm 1 occurs, then A (1) > 0 for all n with
n

1 < n < N-n1 (note: g (1) = 1 ) .

b) A n(g 1) > ^n_1(g1(O)J as far as A ^ g ^ > 0.

ad a) From the recurrence relation (see Lemma 1) we have

(by assumption)

V n . i ^ ;_n ; _ n l l + (i)

+ Vn'(El> > °.
\
It has been proved by (Kelley,[s], p. 1058) that

An(g1) - An(51
I) > o for s

Therefore A ,(1) < 0 is inconsistent with (1).

We can deduce A , (1) > 0 by similar reasoning

ad b) Suppose i n_ 1£ (0)) > An (E ) > 0

Then we obtain the contradiction

as

because of (2), and A .(I) > A , (g , (0) )
n-1 n - 1 1
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Because of Lemma 2 the computation of the optimal

*tstrategy is simple: Before *the game begins an integer

(r*-l) is chosen which represents the last possible\

instant of pulling arm 1 if one begins with arm 1

and experience with this arm is bad. Therefore it

remains to show how the optimal r* is computed:

Lemma 3: Given a strategy 0 characterized by an in-

teger r (see Lemma 2).

Define M(1,N) = N •

r-1 N
M(r,N) = I E( I X

1=1 n=l

E ( Z / a fn
| Br- 1

) P ( Br-l )

n=l n

for r 6 {2,3,...,N+1}

j-l
where

= 0 }

then the optimal strategy a* is characterized by r

which is defined as

r* = min {rIM(r+1,N)-M(r,N)<0>.

Proof: Obviously one has to consider as candidates for

optimal strategies only N strateg

zed by an integer r. Then we have

optimal strategies only N strategies 0 each characteri-
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as one can show by a straight forward generalization' .

of De Groot's proof (De Groot, [4], p. 397/398 )

M(r + 1 ,N)-M(r,N) = £ (1 -ft) r~1 (fT-T^) [ (N-r + 1) fi+ (1)

+ 1- ft] -TT2(1-S)

which is for TT > TT a decreasing function of r.
2. N

Consequently the r which maximizes E( £. x r ) is
n=1 o , n

given by r* defined above.

In the following Corollary two conditions are

given which characterize two extreme strategies: to

play the same arm.at every stage regardless of the ex-

perience gained during the game.

Corollary:

A player will always choose arm 2 iff

ft-n
5 < i / { ( — - ± } [ T T { N - 1 } + 1 ] - + 1 } ( 1 . 3 )

2

a player will always choose arm 1 if —

fr-n
5 > i/{(~n--) (i-fi)N +1} d.4)

2

Proof: a) Condition (1.3) is easiliy derived by taking

r = 1 in (1) (Lemma 3) and solving for E, .

If the condition is violated at least one pull with arm

1 is made.

b) A sufficient condition for always pulling arm 1 is

M(r + 1 ,N) -M(r,N) > 0 (2)
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for all r 6 {l,...,N}. AS this difference's decreasing

in r (see Lemma 3) (2) is equivalent to

M(N+1,N) - M(N,N) > 0. (2*)

By solving (21) for £ one obtains (1.4).

Even if this condition is violated it is still possible

to pull arm 1 at every stage.

From an economic point of view it is interes-

ting to note that the validity of the conditions (1.3)

and (1.4) depends on the number of stages N and £. If

one defines myopic behaviour of an economic agent by

setting a "short" planning period for economic activities

then it is implied by the Corollary that keeping £ con-

stant the choice of an arm (that is a particular econo-

mip activity) is determined by the degree of myopic be-

haviour of the agent. This remark will be important for

the following economic applications. *

II. Applications in Economics

(a) We think of the following problem which economic

agents often have to solve: In an "uncertain environment"

the success of a particular economic activity is known

in a probabilistic sense. But for the success probability

of a new activity only an a priori estimation is avail-

able. If there is a positive (a priori) probability that

the expected success with the new activity is higher than

the well known expected success with the old activity it

may be profitable for the economic agent to change his

behaviour.

We simplify this problem by assuming that the a priori

estimation has the following simple structure: The ex-

pected success with the new activity will be either

higher than that with the old one or will be zero. As
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mentioned earlier this assumption is made mainly for

keeping the mathematics .- as simple as possible. Beyond

this technical point it is from an economic point of.

view not unreasonable to expect some economic agents
v

to have a simple (two-valued) a priori estimation of

a "strong"-form: Either one regards the new activity

as perhaps much better resp. much worse than the old

one or one does not anticipate any change at all. As

an approximating value for the a priori estimation

of the bad result of the experiment we take zero.

(b) To give concrete examples of the problem mentioned

above we consider three related choice-problems under

uncertainty:

Let (P-C.)(i 6 {1,2}) denote the profit per sold unit

produced by "activity" (i.e. production process) i,

where "i = 1 " denotes the new, "i = 2" denotes the old

activity. Let TT_ denote the (well-known) success prob-

ability of activity 2. TT. will be interpreted as the

probability that a customer will buy one unit of the

product produced by activity i.

And the producer is confronted with the following sim-

plified purchase process (See for example M. Roth-

schild, [ ]): In each period one customer enters his

store and either buys one unit (with probability TT.)

or leaves the store without buying (with probability

To be more concrete we think of the following interpre-

tations of an "activity":

- Suppose C < C and the new production process is

distinguished from the old one by producing items with

low quality. For instance the break down probability of

the product may rise. Under these circumstances it is

reasonable to assume that ft < TT_. Then a change of the

production process would be considered only if
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n(p - Cj) > n2_fP - c2) .
 v- (ii.i)

- Suppose the new activity is the production of a "new"

product which may be made possible by technological v

improvements ("product innovation"). In this case it

will also be reasonable to assume C < C_ and ft < TT

at least for the first few periods. Then product inno-

vation may be profitable if (II. 1) is fulfilled.

- A more realistic variant of the latter interpretation

is the following: Suppose the producer tries to com-

pensate the expected reduction of the purchase prob-

ability to TT by a price reduction to p1. Then product

innovation will be considered if

fl(p'-C ) > TT2(p - C2) . (II.I1)

(c) Clearly an appropriate formal model for the econo-
\mic applications described above is the framework of

the two-armed-bandit developed in chapter I. One has to

take

) ,
X ,

and together with the assumptions about the customer's

purchasing process the problem of the optimal choice of

a new activity is equivalent to the problem of a player

pulling the arms of a two-armed-bandit where the success

probability of one arm is known to him. Consequently

the results of chapter I are applicable almost without

modifications.

Let us denote the profit per sold unit on activity i by

G.. Then condition (1.3) can be transformed by straight

forward manipulations into

ft - G n N
[fo i) fr + i] + i}. (ii.2)
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Regarding all terms in (II.2) exept N as constant we

can deduce the following interesting

Suppose assumptions (II.1), (II.1') areProoosition 1:
valid. Then there existra real number N* > 1 such that

agents with N < N* stay with their old activity while

agents with N > N* try out the new one for at least one

period.

Proof : Let us denote the right hand side of (1112) by

F (N) . As is easiliy seen F(N) is strictly decreasing

in N. Defining N* by F(N*) = £ if B, < F(l) and N* = 1

otherwise the assertion follows.

As the set of agents with planning period N < 1

is empty the case N* = 1 in Proposition 1 must be read

as follows: All agents try out the new activity at least

'for one period. ,

The next question to be answered is the persistence of

the period of experimentation. »

For that condition (1.4) is transformed into

Glft - G2 n2\ 1 - N-l + } 3

G2n2 /

Keeping all variables except N constant we obtain

Proposition 2: Suppose (II.3) is fulfilled for at least

one N > 1 and assumption (II.1) and (II.1') are valid

then there exist a real number N** > 1 such that all

agents with N < N** try out activity 1 for all periods.

Proof: Obvious.

The asymmetry in the assertions of proposition 1 and 2

stems from the fact that condition (II.2) is necessary
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and sufficient while (II.3) is only sufficient (See

Chapter 1,Corollary).

The following figure illustrates (for two values of

the assertions expressed by the propositions

Fig. 1

(d) Now let us give a brief sketch of a "partial-partial"

model of firm behaviour: Consider an economy with a finite

number of firms which decide with the help of the two-

armed-bandit paradigm which activity to pursue inasmuch

as a new activity is available. The firms are assumed to

be identical with respect to their a priori estimation £

but differ from each other in the length of the planning

horizon N. The latter could be motivated for instance by

the assumption that firms use different discount rates.

Let us suppose for simplicity that before

a fixed moment t* all firms pursue the same activity which

they have pursued for a long time. At t* a new activity

characterized by a possible expected return G n (for instance

a new technology) is available and all agents decide'

according to the calculations described above.
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After (t* + N) a firm with planning period '(*N - 1) stays

with the activity it has selected at t = (t* + N) .'

The point in question now is the existence of activity •

dispersion at t >. t* . v

The following proposition summarizes the main result

of this paper that a dispersion of activities may be

generated exclusively by an appropriate dispersion of

myopic behaviour in the economy. To be more precise

let us call a distribution of agents "sufficiently

dispersed" if there exist agents with planning stages

N < N*, N** and N > N*, N**. That implies N*, N** < N

( = longest planning period in the economy).

Finally let us assume that there exists a positive

("objective") purchase-probability p 6 (0,1) for the

new activity. Consequently there exists a positive

probability ( = (1 - p)r) that an "experimenting"

agent with experience period r (for the definition see

lemma 2) will switch/over to the new activity.

Proposition 3: _ „
/ G n - e n v

a) Suppose g < 1/ — — - + 1 ,
• G2 n2 '

then there exists a non-degenerate dispersion of activities

at t*if the agents are "sufficiently dispersed". With

positive probability a dispersion may be maintained for all

t > t*.

/ Gl f i " G2 H2 \
b) Suppose g > 1/ — £ - £ + 1 ) ,

V G 2n 2 /

then there exists a degenerate dispersion (concentrated at

the new activity) at t*. For all t > t* a nondeqenerate

dispersion may be maintained if the agents are "sufficiently

dispersed".
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In terms of our examples explained at the"-beginning

of this chapter the latter, proposition gives suffi-

cient conditions for existence and persistence of V

quality and price dispersions generated exclusively

by the agents myopic behaviour in face of uncertainty.

Ill . A generalization of the model

(a) As our knowledge about a priori probability dis-

tributions g is restricted a generalization of the

results to arbitrary a priori distributions is re-

quired. Naturally the particular distribution g.

(concentrated at TT = TT , TT = 0 ) was not intended to

represent a realistic estimation of firm's a priori

beliefs. This distribution was introduced mainly for

illustrative purposes. As sequential strategies in gen-

eral are very difficult to describe we needed a simpli-

fication to illustrate the point relevant for economic

applications.

On the other hand this distribution g. can be regarded

as representative for "drastic" two-point a priori be-

liefs about the success probability of the "unknown

arm" of a two-armed bandit ("either the new arm is

better than the "old" one or its success probability

is neglegible"). As it is easily understood the restric-

tion to g simplifies the problem considerably : A success

on arm 1 (i.e. "X. = 1") is inconsistent with the
1 , n

hypothesis TT = 0.

(b) In the following the main results are derived

which are needed to generalize the conclusions of the

last chapter. Let g denote a continous positive a

priori density function of TT . To be more concrete let

us assume henceforth that
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g (TT ) = Y~ !—=* "~ (III.l)
/ n. (1-n1)

r'dy
o 1 1 "

where y denotes a positive measure concentrated at

the interior of [0,1]. Consequently g can be charac-
~° 2

terized by two real numbers r, r1 6 {(r,r!) 6 R )l
1J n^(i-n 1)

r'
o

The optimal policy can now be characterized by a real

number &-(n,g,.) depending on the number n of trials

remaining and g at that time.

arm 2 is required if and only if

rr2 ̂

Proof: By (1.2) arm 2 is required iff

(n1)v
n"l(g

where the last equality follows from Lemma 1. Let us

devide the left hand side of (1) by n and denote it

by F (g ,TT-) . One can prove by induction that F ( . , . )

is non-decreasing convex and continous in TT_ . Further

F (E ,0) = Er (nj > o,
n 1 s1 1

F ( E w D = (Ec (n.) + (n-l) )/n = (1-(1-EP (̂  ) ) )/n < 1.n 1 i=. I S . I

Take for Q(n,E ) the (unique) fixed point of F (E.. , • ) .
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The following property which is important., for our

applications has been proven by Bradt, Karlin, Johnson

[.3 I , p. 1069 \

Qdi/gj) > Q(n-l,g ) for n > 2, and all gj. (III.2)

Now let us suppose that TT < Q(l,g ). Then because

of (III.2) arm 2 is never pulled at the first stage.

In case TT2 > Q(l,g ) it is not clear whether there

exists at least one planning horizon N such that

^2 < Q(N,g.). In view of the economic applications

•it would be very undesirable if for all g either

Q(N,g1) < n 2 or Q(N,S1) > TT2 for all N. In the follow-

ing Lemma it is demonstrated that these inequalities

will not be valid for all g resp. N.

Lemma 5 : There always exists a g and an integer

N*> 2 such that

Q(n,g1) < TT2 for n < N „ (III.3)

Proof: We write Berry's recurrence relation in the

following form (for an arbitrary N < OO,N > 2)

As A^_ is continous in (r,r') there exists for any

TT2 6 (0,1) a pair (r,r!) such that
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As has been proven by Berry [2], p. 888 ,. (5,17)/ we

have A (r + l,r") > O implying A (r,r') > O and

Q(n,g ) > TT_ for all n > N. From the result of lemma

1 we have Q(n,g.) < TT_ for all n < N.
1 = £.

As is demonstrated in the proof: given TT2 we can

for any N find an appropriate g which satisfies (III.3)

Before summarizing the results so far we will fi-

nally give a condition analogous to (1.4) for pulling

arm 1 at all stages.

Lemma 6: (See Bradt, et. al. [3], p. 1074 )

Given N, g (characterized by (r,r'))then arm 2 should

never be used at all if

TT2 > E(r,r'+N-1) (T̂ ) (III.4)

\

Proof: Suppose arm 2 should be used if m pulls remain.

By Lemma 1 arm 2 should be used at the last stage too

implying

n2 ^ E(r,r'+N-m)
(TV

By the Cauchy-Schwartz inequality we have

E(rfr'+N-1)
(TT1) = E(r,r'+N-m)

(TV "

in contrast to (III.4).
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Summarizing the results relevant for economic appli-

cations we can conclude from the foregoing lemmas that

with respect to the existence of activity dispersions v

the same propositions can be proven as in chapter II:

Given the success probability TT9 of the well known

activity and g

- there exists a dispersion of activities at t* iff

g belongs to the type of distributions described

by (III.3) and if the degree of myopic behaviour is

"sufficient" in the sense that there are agents

with planning periods larger than that required by

: " 1 •

- there is a positive probability for a dispersion

of activities at least at stage N if g1 is such that

(III.4) is not satisfied by all agent's planning horizons N, that

means if the agents' myopic behaviour is "sufficiently dispersed".For

the agents characterized by large N might turn to
\

arm 2 again if experience with the new activity is

disappointing.
it

For the results concerning the persistence of disper-

sions we can refer to propositions 1 and 2 (last

chapter) whose generalization to arbitrary density

functions is immediate.



FOOTNOTES

1. It is implicit in this assumption that the two arms

are "independent".

2. proj (co . ) denotes the projection of to . ( = (to
n 1 X

on its n-th coordinate (co . ) .
in

3. If II < II it would trivially be optimal to pull arm two

at all stages.

4. Obviously to be a reasonable assumption this presupposes

a large number of small firms without (any significant)

experience with the new activity.
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