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Abstract. In many applications it is required to segment a time series into its

locally stationary parts. Two applications are presented:

As a �rst example consider online monitoring of a BTA Deep-Hole-Drilling process.

Here chattering and spiralling of the drilling tool should be avoided by process

control. A second example is the analysis of vocal sound signals. It may be required

to analyze only speci�c tones instead of a whole song.

Three new algorithms are introduced in this paper, all based on the theory of

Dahlhaus (1997) and the analysis of the spectrum of time series, but with di�erent

methods to distinguish locally stationary parts of the signals.
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1 Introduction

In many applications it is required to segment a time series into its locally stationary

parts (cp. Dahlhaus (1997)), since on the one hand stationarity may be an assump-

tion for further time series analysis, while on the other hand the transition areas

may be of interest as in engineering or other technical applications.

Two quite di�erent applications are presented:

As a �rst example consider online monitoring of a BTA (Boring and Trepanning

Association) Deep-Hole-Drilling process (cp. Weinert et al. (2001)). Here chattering

and spiralling of the drilling tool should be avoided by process control. This is

possible by online monitoring of the process by analyzing locally stationary parts of

the signal of the drilling torque. The transition between the occurance of changes

in the time series and the start of chattering with an increased amplitude of the

drilling torque is short, i.e. less than a second, so a fast algorithm has to be used.

A second example is the analysis of vocal sound signals. It may be required to analyse

only speci�c tones instead of a whole song, e.g. for pitch tracking or conversion from

wave-format into midi-format. Manual segmentation of the tones of a whole song

is very time consuming, so automatical detection of locally stationary parts of the

wave is desirable.

In the two presented applications it is an obvious idea to use frequency analysis,

for which the Fast Fourier Transform (FFT; cp. Brockwell and Davis (1991)) is a

common method to calculate a periodogram. The basic ideas of the paper are:

� Analysis of segmentation by already known algorithms for detection of locally

stationary segments in time series, particularly by the one introduced by

Adak (1998).

� Development of new fast algorithms combining well known methods of time

series analysis with fundamental facts of the area of application and with

measures which can be calculated quickly.
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Correspondingly, three new algorithms are introduced in this paper, all based on

the theory of Dahlhaus (1997) and the analysis of the spectrum of time series, but

with di�erent methods to distinguish locally stationary parts of the signals. In these

methods segmentation is obtained using

1. Kolmogorov-Smirnov distance of empirical spectral distributions being a basic

approach applicable to many di�erent problems,

2. halftone distance derived from estimated fundamental frequencies (cp. Weihs

et al. (2001)), and

3. note classi�cation by fundamental frequencies.

For the segmentation of vocal sound signals as a particular musical application, the

algorithms are compared on arti�cial series of tones as well as on waves from real

singing (cp. chapter 4). For more details related to these real singers experiments

cp. Weihs et al. (2001), where we also describe �rst steps to �nd objective criteria

for the assessment of the quality of vocal performance. Notice that in this paper the

terms "note" are used for the graphical sign and the corresponding ideal musical

sound planned by the composer, and "sung note" or "tone" for the realized audio

event corresponding to a note.

For the BTA Deep-Hole-Drilling process the Kolmogorov-Smirnovmethod yields suf-

�cing results, i.e. 'early' chattering and spiralling prediction. For details regarding

the time series the analysis is based upon, cp. Weinert et al. (2001). Other methods

applicable to monitoring the process, involving AR models or kernel densities, are

described in Busse et al. (2001).

The paper is structured as follows. Chapter 2 provides the description of an exact

determination of the fundamental frequency for vocal sound signals, which is re-

quired for exact note classi�cation in section 3.4. In chapter 3 the algorithms are

introduced, which are compared in chapter 4. A conclusion is given in chapter 5.
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2 Exact determination of fundamental frequency

for vocal sound signals

In all the segmentation algorithms that will be introduced in chapter 3, the Dahlhaus

(1997) theory about piecewise local stationary time series is used and so peri-

odograms are determined for parts of the time series. Assume the wave was sampled

with 11kHz and the window for which the periodogramwas calculated covers n = 512

observations. Then the values of the periodograms can be determined only for the

following Fourier frequencies (in Hertz): 21:53; 43:07; 64:60; : : : ; 5512:50. Therefore,

since the di�erence between the frequencies corresponding to the very low notes

E and F , e.g., is only 5 Hertz, tones corresponding to these two notes cannot be

expected to be well separable, because the distance between two Fourier frequencies

is roughly 21.5 Hertz. Assume that 10 tones per second are sung, then on the one

hand the compared parts should be shorter than one tenth of a second. On the other

hand, however, using sectors of roughly 0.05 seconds, roughly corresponding to 512

observations, would lead to problems when very low tones, e.g. corresponding to E

and F , have to be separated.

Please notice that the observed periodogram in �gure 1, which corresponds to the

sine wave with 70 Hertz (dashed line), does not have the ideal form since 70 Hz is

not a Fourier frequency. Obviously, a rough estimate of the basic frequency would

lie at 64.6 Hz based on only the highest peak of the periodogram.

This "highest{peak" estimator can be improved, however, by "averaging" between

the frequencies with non-zero periodogram value. Comparing mean, harmonical

mean, geometrical mean and the following estimator (cp. Weihs et al. (2001)):

^

� = �

h

+

�

s

� �

h

2

�

v

s

v

h

�

1

e

; (1)

which averages the frequency �

h

of the highest peak with value v

h

and the frequency

�

s

of the highest peak of the direct neighbors of �

h

with value v

s

of the periodogram,

the last estimator is the best one of these four in the following sense:
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Figure 1: Periodogram { exact determination of fundamental frequency.

We simulated wave �les (16-bit, 11kHz, 512 observations, sine waves without noise)

for all halftones between D (73.4 Hz) and c

0000

(2093 Hz)

(a) consisting of the fundamental frequency only and

(b) weighted with 70% of the fundamental frequency and 30% of the �rst overtone.

Then the maximum error of the approximation described in (1) was never larger

than (a) 2.73 respective (b) 1.51 Hertz with a maximum MSE of (a) 0.36 respective

(b) 0.29, while the maximal error of the other three "means" was never smaller than

5.06 Hertz with a minimum MSE of 7.53.

That means with the method described in (1) the true frequency can be estimated

accurately enough to be able to separate even very low tones. In �gure 1 the dotted

line shows the frequency (69.41 Hz) estimated with this method.
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3 Segmentation algorithms

Since the segmentation of vocal sound signals and online monitoring of the drilling

torque (for BTA Deep-Hole-Drilling) are obviously special cases of change point

detection, at �rst a look at already existing methods was taken. It can be assumed,

that the expectation of the time series is equal to zero.

3.1 Algorithm by Adak

Since change from a musical point of view is not necessarily abrupt, but could also

be somehow "smooth", as a �rst step the algorithm for "Time{Dependent Spectral

Analysis of Nonstationary Time Series" introduced by Adak (1998) was implemented

and used for segmentation of the "real singers" waves. This algorithm has been

developed particularly for the segmentation of seismological data and speech, so

hopefully it would also be useful for the segmentation of vocal sound.

A binary tree structure is used in this algorithm, which causes time expensive calcu-

lations, because on all levels of the tree, a FFT is calculated and particularly in the

root of the tree a FFT of the whole time series has to be calculated. The compu-

tation time would be multiplied, if cross validation would be used as recommended

by Adak (1998).

Even worse, the algorithm results in inexactness of segmentation if the time series

being analyzed are "large". One cause, why this happens, is that change points

detected in higher levels of the binary tree cannot be determined exactly as the

parts of the time series represented by parts in the higher levels of the tree are quite

large. A large number of both kinds of errors can be found: Detected change points

in the middle of tones and not detected change points between di�erent tones. Some

error rates and comparisons to the other algorithms are shown in chapter 4. This

leads to the conclusion that this is not an appropriate algorithm for the segmentation

of vocal sound signals.
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In the case of online monitoring of a BTA Deep-Hole-Drilling process, on the one

hand the tree cannot be build every time, because future data is not available, on

the other hand using this algorithm online, computation in time is not possible with

recent computers.

Because the binary tree structure is the most problematic fact of the algorithm,

in section 3.2 a new algorithm will be developed without the tree structure, nev-

ertheless taking interesting ideas, like comparing cumulated periodograms using a

KS{distance, from Adak's algorithm.

3.2 Segmentation using KS{distance

Since there were many problems with the tree structure in the algorithms by Adak

(cp. section 3.1), we pass through the time series with a window of span n, for each

window calculating the periodogram.

To compare two periodograms, the Kolmogorov{Smirnov{distanceD

KS

of their em-

pirical spectral distributions is used. In principle, if this distance is larger than a

threshold w 2 [0; 1], a change point is detected. For di�erent singers di�erent values

of D

KS

indicate a change point, e.g. because of di�erent importance of overtones.

So it is necessary to adjust the threshold w for each vocal times series.

If we know that the real number of tones of the song we want to separate is, say,

T

r

2 N , the threshold w can be adjusted automatically so that approximately T

r

segments will be found. The limits of the possible values of the threshold w can be set

to reasonable values w

min

; w

max

2 [0; 1] to speed up the algorithm. Now the "best"

w can be determined by searching a number of detected change points T

d

close to

T

r

on the following grid of possible thresholds: w

max

; w

max

� g; w

max

� 2 � g; : : : ; w

min

with g 2 [0; 1]. Since T

d

rises monotonously for smaller values of w, the search on

the grid can be stopped, if T

d

> T

r

.

Let N be the length of the time series with values t

i

(i = 1; : : : ; N) and n 2 f2

N

g

the size of a window, which passes through the time series. Further let us de�ne a

"tone" as a series of minimum l neighboring parts of the time series with size n. At

the beginning of the algorithm, set w := w

max

:
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1. Normalize, so that t

i

2 [�1; 1] 8i = 1; : : : ; N and

�

t = 0.

2. Set the number of parts to B :=

�

N

n

�

.

3. For all b = 1; : : : ; B estimate the empirical spectral distribution

^

S

b

.

4. For all b = 3; : : : ; (B � 1) check as in (*), whether a change point has to be

announced at the beginning of the b-th part.

5. Find whole "tones" in the segmented parts ("tone":= l neighboring parts).

Set T

d

:= number of segmented tones.

6. If ((T

d

< T

r

) ^ (w > w

min

)) is true, replace w by w � g (w  w � g) and go

back to step 4.

7. Result:

All detected change points (e.g. i-th point in the time series), start- and

endpoints of tones, but cutting o�

n

2

points at each side of the tone.

(*) To avoid the segmentation of any "silence" in the wave because of strange e�ects

of noise, a minimal variance is required. So parts of the time series with a variance

smaller than a threshold u 2 R are assumed to be "silence". A change point at

the beginning of the b-th part of the time series will be detected, if and only if the

variance of the b-th or the (b � 1)-th part is larger than u and the following three

inequalities are valid:

D

KS

(

^

S

b�1

;

^

S

b

) > w and

D

KS

(

^

S

b�2

;

^

S

b

) > w and (2)

D

KS

(

^

S

b�1

;

^

S

b+1

) > w ;

where D

KS

(

^

S

b�1

;

^

S

b

) is the Kolmogorov{Smirnov{distance of the empirical spectral

distributions

^

S

b�1

and

^

S

b

. The three inequalities are required to make the algo-

rithm more robust against vibrato. For theory regarding vocal performances (e.g.

de�nition of "vibrato") compare Seidner and Wendler (1997).

Of course the algorithm sometimes detects change points at such locations, we want

no change points to be detected, particularly if the singer is performing a strong

vibrato on a note. Because of this, it happens that T

d

is larger than T

r

, even if not

all change points are detected. Some experiments have shown heuristically that it

8



555000 560000 565000 570000

time (in samples)

a
m

p
lit

u
d
e

−
3
0
0
0

−
1
5
0
0

0
1
5
0
0

3
0
0
0

chattering prediction at t=558592

Figure 2: Chattering prediction on the drilling torque of a BTA-Deep-Hole-Drilling

process.

is reasonable to raise T

r

about 10 percent over its original value at the beginning of

the algorithm.

It is possible to improve the accuracy: The windows passing through the time series

are visiting neighboring parts (intervals) without overlapping. The above described

algorithm can easily be changed so that the parts overlap each other, e.g. by

n

2

points. In the following discussion the algorithm will be extended to allow for

overlapping parts (intervals) which are compared for change point detection and a

raised T

r

by 10 percent.

The algorithm described in this chapter is much better in segmentation of vocal

musical sound signals than the algorithm of Adak (a comparison in chapter 4).

Nevertheless it is not really satisfying because of error rates above 20 percent on

real singers data.

In �gure 2 it is shown, however, that the algorithm is already satisfactory for online

monitoring of the drilling process, because prediction of chattering is very early.

Thus, no further algorithm was developed for this example.
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3.3 Segmentation using halftone distance

Let us now change the algorithm described in section 3.2 in an attempt to solve

the problem from a musical point of view. In the last algorithm, the Kolmogorov{

Smirnov{distance D

KS

, which is a well known and easy to calculate distance, was

used. It can be replaced by the halftone distance D

HT

, which is an implicitly given

musical distance measure. The di�erence in halftones (D

HT

) between the frequencies

�

1

and �

2

is described by the following function (cp. Berg and Stork (1982)):

D

HT

(�

1

; �

2

) := 12 � log

2

�

�

1

�

2

�

: (3)

In principle, to detect a change point, the distance in halftones between the fun-

damental frequencies of two neighboring parts of the time series must be equal or

larger than one. In chapter 2 a method to estimate the fundamental frequency ac-

curately enough is described. Since the halftone distance is a constant, in principle

no threshold has to be adjusted like in the "KS{algorithm".

As in section 3.2 let N be the length of the time series with values t

i

(i = 1; : : : ; N)

and n 2 f2

N

g the span of a window, which passes through the time series. Further

let us de�ne a "tone" as a series of minimal l neighboring parts of the time series

with size n. Then the algorithm is de�ned as follows:

1. Normalize, so that t

i

2 [�1; 1] 8i = 1; : : : ; N and

�

t = 0.

2. Set the number of parts to B :=

�

N

n

�

.

3. For all b = 1; : : : ; B estimate the fundamental frequency �

b

(chapter 2).

4. For all b = 3; : : : ; (B � 1) check as in (**), whether a change point has to be

announced at the beginning of the b-th part.

5. Find whole "tones" in the segmented parts ("tone":= l neighboring parts).

6. Result:

All detected change points (e.g. i-th point in the time series), start- and

endpoints of tones, but cutting o�

n

2

points at each side of the tone.
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(**) As in section 3.2, parts of the time series with a variance smaller than a threshold

u 2 R are assumed to be "silence". A change point at the beginning of the b-th

part of the time series will be detected, if and only if the variance of the b-th or the

(b� 1)-th part is larger than u and the following three equations are valid:

jD

HT

(�

b�1

; �

b

)j > 0:9 and

jD

HT

(�

b�2

; �

b

)j > 0:9 and (4)

jD

HT

(�

b�1

; �

b+1

)j > 0:9 :

On the one hand these three inequalities are required to make the algorithm more

robust against vibrato, on the other hand many singers are sliding from one tone to

the other, so the "absolute" di�erence of 1 between two halftone is being reduced

heuristically to 0.9, which was a good optimization in some experiments.

The error rate of the algorithm described in this chapter was in �rst comparisons (cp.

chapter 4) approximately as good (or bad) as the error rate of the "KS{algorithm"

described in section 3.2.

3.4 Segmentation using note classi�cation by

fundamental frequency

Another measure to distinguish tones, and so to segment the time series, is the

note a tone corresponds to. Under the assumption that the frequency tuning of

instruments is known, e.g. diapason a

0

= 440 Hertz, it is possible to perform a

classi�cation. For each part of the vocal time series the fundamental frequency can

be estimated from the periodogram as already described. After that, this part can

be classi�ed by the fundamental frequency into its class: a particular note. Given

�

0

is the (known) frequency of a reference note, e.g. a

0

= 440 Hertz, this can be

achieved by using the fundamental frequency note classi�er

C

FF

�

0

(�) :=

�

12 � log

2

�

�

�

0

�

+

1

2

�

; (5)

which is derived straightforward from formula (3), for a fundamental frequency �.
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Figure 3: Fragment of a segmented vocal sound signal.

All in all, this algorithm works analogously to that described in section 3.3, except

the three equations labelled by (4) have to be replaced by:

jC

FF

�

0

(�

b�1

)� C

FF

�

0

(�

b

)j > 0 and

jC

FF

�

0

(�

b�2

)� C

FF

�

0

(�

b

)j > 0 and (6)

jC

FF

�

0

(�

b�1

)� C

FF

�

0

(�

b+1

)j > 0 :

In the comparisons (chapter 4) it is shown, that on real singers' vocal sound signals

this algorithm has the best segmentation rate of all algorithms described here. A

typical segmentation of a fragment of the vocal sound signal from a semi-professional

bass singer performing "Tochter Zion" is shown in �gure 3. In this particular frag-

ment the algorithm has segmented the time series very accurately.
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4 Comparison of the algorithms

After the algorithms described in chapter 3 were implemented with the statistical

software "R" (cp. Ihaka and Gentleman (1996)) three kinds of comparisons were

done.

As already mentioned in section 3.1, the algorithm by Adak is neither appropriate

for the segmentation of vocal sound signals nor for the chattering prediction of a

BTA Deep-Hole-Drilling process, because it has a large runtime and it produces

inaccurate results, which is obvious when looking at the results in section 4.1. So in

the last two comparisons this algorithm is not compared to the others.

4.1 Simulation: arti�cial series of tones

In a �rst test of the algorithms two waves (16 bit, 11kHz) of each 25 tones are

arti�cially generated and the length of the tones is randomly chosen between 0.05

and 1 second with abrupt change points. Also the pitch is randomly chosen (from

D to f

000

), except tones 7 - 12 with �xed pitch: D, Dis, d

0

, dis

0

, d

000

, dis

000

; in order

to test the algorithms on neighboring halftones. The "only" di�erence between the

two generated waves is the weighting of fundamental frequency and overtones (sine{

waves), which is set as follows:

(a) fundamental frequency 70%, 1

st

overtone 20%, 2

nd

overtone 10% and

(b) fundamental frequency 15%, 1

st

overtone 70%, 2

nd

overtone 15%.

The parameter n (span of the window) was set to 512 for all algorithms.

The results of the segmentation are shown in table 1. In the �rst columns of that

table you will �nd: name of the note, corresponding frequency (Hertz), change point

at the end of the note (in samples�100). In the following columns the results of the

segmentation procedure of all four algorithms on both waves are shown. More than

one number per line means the algorithm has incorrectly detected more than one

change point during the tone. "NA" means, the algorithm has not detected a change

point. Errors are printed in bold font type. "Error" means the particular algorithm

did not detect a change point or the algorithm detects the change point inaccurately

13



note frequ. change p. Adak a Adak b KS a KS b HT a HT b NC a NC b

e 164.8 17 NA NA 15 15 18 18 20 20

d 146.8 24 NA NA 26 26 26 26 26 26

fis 185.0 66 NA NA 67 67 67 67 67 67

c

0

261.6 120 NA NA 120 120 120 123 118 123

f 174.6 203 163 163 205 205 154 195 210 210

203 203 179 205

200

g 196.0 210 NA NA 210 210 210 215 215 215

D 73.4 222 NA NA 220 NA NA 230 225 NA

Dis 77.8 255 NA NA 256 256 256 256 256 256

d

0

293.7 331 NA NA NA 327 328 333 333 333

dis

0

311.1 425 429 429 425 425 425 430 430 430

d

000

1174.7 513 511 450 515 515 515 517 517 512

490

511

dis

000

1244.5 532 531 531 532 532 532 532 532 532

g 196.0 624 572 572 625 625 625 630 630 630

622 612

f

0

349.2 635 645 622 635 635 635 635 635 635

a

0

440.0 708 716 NA 707 707 712 712 712 712

cis

00

554.4 755 797 797 753 753 758 753 753 753

c

0

261.6 865 878 878 865 865 865 865 865 865

b 233.1 915 919 919 916 916 916 916 911 911

fis 185.0 973 NA 962 973 973 978 973 973 978

cis 138.6 992 1003 NA 988 988 993 998 993 998

f

0

349.2 1029 1043 NA 1029 1029 1034 1034 1034 1034

dis

00

622.3 1084 1084 NA 1080 1080 1085 1085 1085 1085

f

00

698.5 1192 1125 NA 1193 1193 1188 1193 1193 1193

cis

0

277.2 1271 NA NA 1270 1270 NA NA NA NA

d

00

587.3 1290 1290 1290 1290 1290 1290 1290 1290 1290

errors 19 23 1 1 4 2 2 3

Table 1: Comparison with an arti�cial series of tones (change points in samples�100).
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(i.e. more than 512 data points away from the real one) or the algorithm detects a

change point at a place without any real change points.

A short description of the table headers follows:

Adak algorithm by Adak (cp. section 3.1),

KS segmentation algorithm using KS{distance (section 3.2),

HT segmentation algorithm using halftone distance (section 3.3),

NC segmentation algorithm using note classi�cation (section 3.4),

a for the wave with frequency weighting 70%, 20%, 10% (see above),

b for the wave with frequency weighting 15%, 70%, 15% (see above).

Example for the interpretation of table 1

The KS{algorithm produces one error for each wave at the halftone change points

D�Dis (wave b) and d

0

�dis

0

(wave a), because it does not detect the change point.

The reason is that the pitch, and therefore the frequency, changes only slightly and

the shift probably cannot be distinguished from a vibrato.

Since there are no large di�erences in the segmentation exactness of the algorithms

KS, HT and NC for this problem (minimal one error, maximal four errors; cp. table 1),

more comparisons have to be done.

4.2 Simulation: An arti�cial performance of

"Tochter Zion"

In a second step arti�cial 4 � 252 = 1008 waves of "Tochter Zion" were generated,

each sampled with 11 kHz and 16 bit and consisting of 77 tones. The duration

of a half note corresponds to 1 sec and between two notes there are breaks of

1

100

seconds duration. Four versions are required for the di�erent types of singing voices

(soprano, alto, tenor, bass). For each of these versions an experimental design is

used to simulate di�erent types of voices related to the weighting of fundamental

frequency and its �rst �ve corresponding overtones. All of these six frequencies

are weighted by all of the following ratios

0

6

;

1

6

; : : : ;

6

6

with the restrictions that the

fundamental frequency must have at least a weighting of

1

6

and that the sum of

the weights must be equal to one. So this design results in 1008 waves totally
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soprano alto tenor bass

KS HT NC KS HT NC KS HT NC KS HT NC

Min. 8.00 8.00 8.00 8.00 6.00 5.00 8.00 3.00 6.00 8.00 3.00 3.00

Median 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 13.00 8.00

Mean 8.01 8.41 8.00 8.01 7.77 7.41 8.03 7.56 7.94 8.04 12.66 8.51

Max. 11.00 9.00 8.00 11.00 9.00 8.00 10.00 10.00 10.00 11.00 23.00 16.00

Table 2: Error rates of a segmentation of arti�cially generated waves of

"Tochter Zion".

(252 permutations of overtone weighting multiplied by the four versions mentioned

above).

In table 2 statistics about error rates corresponding to the four types of singing voices

are shown for the algorithms KS, HT, NC (cp. section 4.1). The number 8 appears

at many places in table 2, because 8 times there are two neighboring notes with

the same pitch only interrupted by breaks of

1

100

seconds duration. Obviously these

tones are problematic to be distinguished, because the corresponding periodograms

are similar, nevertheless sometimes these "change points" are detected astonishingly.

Looking at the error rates in table 2, the KS{algorithm seems to be the most ro-

bust one (particularly for bass singers), while the other two algorithms in some

circumstances have very good minimal error rates.

4.3 Segmentation on real singers' performances

Since in the simulation described in section 4.2 no noise and no vibrato was added

to the arti�cially generated sine waves, we �nally use real data to �nd out, whether

the algorithms work on real vocal sound signals appropriately.

So at last the algorithms are compared by results of segmentations of 17 versions

of the classical song "Tochter Zion" (H�andel) performed by 17 singers (from real

amateurs to real professionals) to a standardized piano accompaniment played back

by headphones. The waves were recorded in CD quality, that means with sampling
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soprano alto tenor bass sum

1 2 3 4 1 2 3 4 5 6 1 2 3 1 2 3 4

KS 35 20 31 38 25 18 31 22 26 28 27 40 35 31 24 31 34 496

HT 49 24 32 36 26 29 26 25 19 24 39 28 23 28 27 32 33 500

NC 27 19 20 25 22 18 12 9 6 12 12 17 16 27 22 21 23 308

Table 3: Error rates of 17 real singers performances of "Tochter Zion".

rate 44100 Hertz in 16-bit format. For time series analysis the waves were reduced

to 11kHz (in order to restrict the number of data), and standardized to the interval

[-1,1]. For more details related to these real singers' experiments cp. Weihs et al.

(2001), where we also describe �rst steps to �nd objective criteria for the assessment

of the quality of vocal performance.

The number of errors in this experiment is shown in table 3, where each column

(2-18) represents one particular singer. Obviously the segmentation algorithm using

note classi�cation is much better (error rate < 20%) than the error rate of the other

algorithms (roughly 30%) on real singers performances.
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5 Conclusion

In section 3.2 it is shown that the algorithm "Segmentation using KS{distance"

already satis�es for online monitoring of a BTA Deep-Hole-Drilling process, because

prediction of chattering is possible early.

From the musical point of view the cause of the most errors of the newly developed

algorithms is the appearance of vibrato which can be observed frequently and in a

strong manner in professional singers' performances. Even in one particular case,

one long tone sung by a professional bass singer was divided into eight segments.

Vibrato is not or only slightly observed on time series derived from vocal sound

signals of singing amateurs. For these time series the error rate of the segmentation

algorithms is much lower. Applying the algorithms on pure sine waves as in sections

4.1 and 4.2 shows that without vibrato an accurate segmentation is possible.

The algorithms "Segmentation using KS{distance" (cp. section 3.2) and "Segmenta-

tion using halftone distance" (cp. section 3.3) are quite equal in their error rates and

computational time consumption. The algorithm "Segmentation using note classi�-

cation by fundamental frequency" (cp. section 3.4) is the best of the here described

algorithms on segmentation of real singers' vocal performances with an error rate

less than 20%.
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