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Abstract

In this we investigate the welfare effects of optimal monetary policy measurements
within a high-frequency New-Keynesian model i.e. under variation of the period length.
Our results indicate that the policy maker faces a higher welfare loss on a higher
relative to a lower frequency of the agents’ decision making. While overall inertia in
the model increases, we show that the more the pass-through of output gap movements
into inflation rate dynamics is dampened on a higher frequency, this amplifies the
trade-off of the central bank in case of a cost-push shock. This is caused by the
impact of so-called frequency-dependent persistence effects, which mimic the impact
of the increase in the amount of market days on the dynamics of the model. This result
is less severe in the optimal monetary policy regime under Commitment because of a
time-invariant history dependence effect with respect to the period length.
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1 Introduction

In this paper we investigate the welfare effects of monetary policy operations within an
h-economy. Hereby we focus on the purely forward-looking baseline New-Keynesian model
(NKM) and the impact of a cost-push shock on economic dynamics. The reasons for taking
this experimental arrangement under consideration are manifold.

A cost-push shock has gained relative importance since it stands for the source of
stagflation, i.e. a simultaneous increase and decrease in the inflation rate and the output
gap, respectively. As we discussed in Sacht (2014), in order to dampen the increase
in inflation, the monetary authority faces a policy trade-off: it must reduce the output
gap as inflations’ inherited driving force by a subsequent increase in the nominal (real)
interest rate after the shock occurs. This upward movement in the policy instrument is
the only reliable option the central bank will have within the baseline 3-equations NKM.
This observation is confirmed by an overwhelming number of studies on optimal monetary
policy (OMP) in the literature (see Woodford (2003), Winkler and Wohltmann (2008) and
Walsh (2010) among others). The term ‘optimal’ refers to the aim of the central bank
to minimize the value of an intertemporal criterion function. This function in its basic
representation consists of the discounted variability of the inflation rate and the output
gap. Since the central bank seeks to minimize these kinds of variability, the welfare
function is simply called a loss function. In the following we refer to the welfare and loss
function as being synonyms. Furthermore, it is assumed that there exists a prevalence
of inflation rate over output gap stabilization by the central bank, expressed by a higher
weight in the loss function on inflation rate movements. Obviously, the policy trade-off
calls for a more elaborate discussion on the design of optimal monetary policy relative
to demand (technology) or interest rate shocks. The latter both can be easily offset on
a quarterly magnitude by the central bank, since here the dynamics in inflation and the
output gap are rectified. Nevertheless, as we had seen (based on our analysis of IRFs in
Sacht (2014)) there exist quantitative and qualitative differences across higher frequencies
– at least due to the so-called frequency-dependent contraction persistence (FCP) effect –
in all shocks. However, the ineffectiveness of monetary policy is much more apparent in
the case of a cost-push shock.

From an empirical point of view, supply or cost-push shocks account to a large intent
for the variability in economic dynamics, which holds at least for the two oil price shocks
within the Great Inflation period in the 1970’s (Hamilton and Herrera (2004)). Smets and
Wouters (2007, pp. 598) identify supply shocks being significant driving forces in output
growth and inflation dynamics over the time horizon from 1966:1 to 2004:4 in the US. In
addition, Smets and Wouters (2003, p. 1162) show that cost-push shocks account mainly
for the variation in inflation in the Euro Area between 1980:2 and 1999:4.1

Throughout this paper we investigate how the OMP responses of the inflation rate and
the output gap to a cost-push shock are going to change, as we increase the frequency
in decision making. Therefore, again, IRFs are considered and an economic rationale
based on different kinds of frequency-dependent persistency is given. In particular, we
discuss the economic dynamics under two different OMP regimes. Essentially, in the
regime Discretion the central bank must take the expectations of the households as given,
while in the (pre-)Commitment regime expectations can be influenced by the monetary

1The definition of a cost-push or supply shock is ambiguous and depends on the structural representation of
the New-Keynesian Phillips Curve (NKPC). For example, Smets and Wouters (2007) investigate a NKM
with sticky prices and wages, where supply shocks are represented as price and wage mark-up shocks.
Gaĺı et al. (2012) consider non-investment specific technology and price mark-up shocks, while wage mark-
shocks are sorted into labor shocks only. While this kind of differentiation is reasonable when a shock
decomposition analysis is applied, however, for our theoretical discussion here a shock expressed by an
AR(1) process is sufficient.
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authority. It is well known that the outcome with respect to the value of the loss function
in quarterly magnitudes, is higher under Discretion compared to Commitment. While this
can be explained by the ability of the central bank to influence the expectation channel
of monetary policy, it is an open question if this result prevails on a higher frequency.
This is of serious concern, as we observe a more likely discretionary monetary policy
conducted by the European Central Bank (ECB) in the aftermath of the financial and
sovereign debt crisis in the Euro Area. Finally, we apply a sensitivity analysis, where
we evaluate the values of the loss function across all policy regimes under variation of
the Calvo parameter of price stickiness and the autocorrelation parameter in the shock
process. Such a theoretical investigation is non-existent in the literature so far – except
for the work by Sacht and Wohltmann (2013), where their contribution can be seen as
closely related to ours.

There exist a large number of empirical studies, which deal with the impact of monetary
policy on real variables under consideration of high-frequency data. For example, Faust
et al. (2004) estimate the effect of monetary policy announcements on the expected future
values of nominal interest rate and the price level. This is done via the matching of IRFs.
In their work they use high-frequency data on the prices of Fed Funds futures contracts
in a vector autoregression model. The authors report evidence for a small impact of
monetary policy shocks on output. Rosa (2013) applies ordinary least squares under
consideration of high-frequency data on energy prices. He shows that asset prices respond
on a high-frequency due to sudden monetary policy announcements. Finally, Assenmacher-
Wesche and Gerlach (2008) estimate a two-pillar NKPC of the European central bank
(ECB), where they account for the ECBs simultaneous analysis of monetary and economic
indicators. In their study they investigate the impact of high-frequency (e.g. exchange
rates, import and fresh food prices and value-added taxes) as well as low-frequency (money
and real output growth and the rate of velocity) components on the inflation process in
the Euro Area. The authors check on co-integration of the inflation rate relative to these
components under consideration of spectral regression techniques in order to account for
the different time horizons. They find that low-frequency movements of money and real
output growth as well as high-frequency fluctuations of the output gap account for the
variation in the inflation rate over the period from 1970 to 2004.

In order to keep our analysis straightforward, the purely forward-looking specifica-
tions of both the baseline NKM and the h-economy model (as described in Sacht (2014)
and Franke and Sacht (forthcoming)) are considered only. As we would turn to a hybrid
specification of these model variants, backward-looking elements have to be considered
explicitly. In this case the computation of the policy functions (as an outcome of dynamic
programming) under Discretion becomes non-trivial. According to the seminal work of
Woodford (2003), he shows that under Discretion a policy function, being optimal in a
certain period, becomes non-optimal in subsequent periods as new information arrives.
Hence, policy makers must be aware of the change in the optimal behaviour of private
agents because the decisions of the latter are affected by previous states. Two technical
approaches from the literature deal with this problem. The first one makes use of the
Bellman equation within optimal control theory. Here the policy maker applies a single
optimization in the initial period and sticks to the resulting policy function in all periods
after. This procedure meets Bellman’s ‘principle of optimality’.2 Problem-specific solu-
tion algorithms are provided by e.g. Söderlind (1999) among others. Note that here the
decisions of policy makers and private agents are undertaken simultaneously.

In contradiction, as we allow the policy maker to make its decisions first, we end up

2Bellman (1957, p. 83) states that “[a]n optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” The work on dynamic programming with respect to discretionary policy
was pioneered by Oudiz and Sachs (1985), who study a finite instead of an infinite horizon problem.
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in a Stackelberg-Nash equilibria, where the current policy maker is the Stackelberg leader
and the private agents as well as the future policy maker are the Stackelberg follower. For
this case, solution algorithms are provided by e.g. Dennis (2007) among others. Similar
to Söderlind (1999), Dennis (2007) considers the structural representation of the model
directly instead of its associated state-space representation. As far as we know, an intensive
discussion on the outcome and the computational properties (in terms of convergence and
computational speed) of both classes of algorithms is missing in the literature so far.
Rather than undertake an exercise, which consists on the comparison of different solution
techniques for discretionary monetary policy, we account for clearness of our approach.
The purely forward-looking specification is sufficient in this respect since the solution is
less time-consuming. As in Sacht (2014), across all policy regimes, the policy functions are
computed via the method of undetermined coefficients in combination with the brute force
iteration procedure. In general, this proceeding can be seen as a natural starting point for
the analysis of OMP in DSGE models - independently, of course, of the underlying timing
convention.3

The remainder of this paper is structured as follows. In the next section we discuss the
design of OMP within a baseline purely forward-looking NKM in its h-economy variant.
Furthermore, along with the presentation of the analytical results, we give an economic
explanation for the upcoming results based on the change in the frequency-dependent
persistence parameters in the model. Section 3 provides the numerical analysis of both
OMP regimes in an h-economy environment based on IRFs. In section 4 we apply a
numerical welfare analysis, where we investigate the value of the welfare loss (relations)
together with a sensitivity analysis with respect to the degree of price stickiness and the
autocorrelation parameter in the shock process. Section 5 concludes. The Appendix
contains the reduced-form solutions to the corresponding minimization problems of both
OMP regimes and all Figures.

2 Optimal Monetary Policy Responses in an h-Economy

2.1 The Design of Optimal Monetary Policy

For our analysis, we refer to purely forward-looking NKM in its (quarterized) high-
frequency specification (0 < h ≤ 1):

yjt = yjt+h − δ1(h)(i
j
t − πjt+h − ī) (1)

πj = β(h)πjt+h + κ̃(h)yjt + vπt (2)

ijt = φππ
j
t + φyy

j
t . (3)

vπt = ρ(h)πvπt−h + επt (4)

where j = {D,C} indicates the dynamics of the inflation rate and the output gap associ-
ated with the corresponding OMP regimes D iscretion and Commitment. The definitions
of the parameters can be found in Table 1 later on. In order to account for a(n auto-
correlated) cost-push shock only, the autocorrelated nominal interest rate (vit) and the
technology (vyt ) shocks are now discarded from the Taylor rule and the dynamic IS equa-
tion, respectively. We omit the expectation operator in front of the forward-looking terms
since we only consider a deterministic shock. As already discussed, as the shock occurs,

3It must be emphasised that the above statement does not apply to the hybrid (baseline) NKM under
Commitment due to an explicit consideration of the expectation channel in this OMP regime. This means
that future states of the variables in the model can be controlled by the central bank based on previous
realizations. For consistency and clearness of our study, where we compare the numerical outcomes given
by the OMP regimes Discretion and Commitment, we leave this kind of investigation to further research.
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this leads to a boost in (future) inflation on impact, which forces the central bank to
increase the nominal interest rate according to the Taylor rule. As a result the output gap
declines on impact.4 This leads to a decrease in the inflation rate and so forth. However, as
the inflation rate and the output gap move in opposite directions, the central bank faces
a policy trade-off if stagflation occurs, which can be interpreted as an output-inflation
trade-off of monetary policy.

The welfare effects of OMP are in general measured by the following intertemporal
function:

Lj
t = Et

∞
∑

k=0

β(h)hk{hα1(π
j
t+hk − π̄j)2 + α2(y

j
t+hk − ȳj)2} (5)

where α1 and α2 denote the weights on inflation rate and output gap stabilization, respec-
tively. It must be emphasized that we do not allow for nominal interest rate stabilisation
as done in various papers on OMP. According to equation (5) the aim of the central bank
is to minimize the quadratic deviations of inflation and the output gap from their fixed
steady state values π̄ and ȳ, respectively. Therefore, equation (5) can be denoted as a
loss function. For simplicity we assume for both OMP regimes that π̄j = ȳj = 0 holds.5

Again, for a direct comparison of two h-economies, the stock variable πjt+hk is uniformly
expressed in quarterized magnitudes. Note that

πjt+hk = (pjt+hk − pjt+hk−h)/h (6)

is then considered with respect to the loss function (5), i.e. the latter must augmented by h
in order to ensure mathematical consistency. Therefore, based on the following definition

(pjt+hk − pjt+hk−h)
2 = (∆pjt+hk)

2 (7)

it follows for π̄j = 0 that

h(πjt+hk)
2 = h

(

(∆pjt+hk)

h

)2

= h
(∆pjt+hk)

2

h2
=

(∆pjt+hk)
2

h

holds. Hence, according to the systematic/skip sampling aggregation scheme, the squared
deviations of the inflation rate (from zero) are expressed in quarterized magnitudes.6 Since
the output gap is a dimensionless adjustment rate, the weight α2 is not augmented by h.
According to optimal control theory, the loss function has to be minimized subjected to
the equations for yjt and πjt . This approach differs across the monetary policy regimes to
be considered (see also the next section as well as in the Appendix).

4Note that ceteris paribus the cost-push shock triggers an increase in the real interest rate denoted by
rjt = ijt−Et[π

j

t+h]. According to the Euler equation as theoretical basement of the dynamic IS curve, future

consumption becomes more attractive, which would lead to a decrease in yj
t . Hence |dijt | > |dEt[π

j

t+h]|
holds if dynamic stability is ensured, i.e. as the Taylor principle φπ > 1 holds.

5We depart from the strand of the literature on OMP, where a second-order approximation of household’s
utility function is considered as a loss function (cf. Woodford (2003)). We also do not consider the so-called
Ramsey approach (Kahn et al. (2003)). Instead, we follow an overwhelming number of studies, where an
ad-hoc formulation of the loss function of type (5) is assumed. Essentially, equation (5) serves as a good
compromise since its structure mimics a (microfounded) second-order approximation of household’s utility
function (cf. Walsh (2010) and Gaĺı (2008)).

6It is easy to see that (∆pjt+hk)
2 should not be divided by h2, what probably would be a natural way to

think of. Therefore, note that in this case we get f2 · (∆pjt+hk)
2, where f = 1/h defines the frequency of

decision making. In e.g. a monthly economy (f = 3) this leads to f2 · (∆pjt+hk)
2 = 9 · (∆pjt+hk)

2 which is
simply implausible since a quarter consists on 3 and not 9 months. In other words, in order to compare
the values of the stock variables in an h-economy to its counterpart given in quarterly magnitudes, this
requires the correct amount of subperiods to be considered on a higher frequency for aggregation. This
holds regardless as we consider the level or squared deviation in the stock variable.

5



An important assumption must be made with respect to the solution of the shock
process:

E0v
π
t = [ρ(h)π ]t/hεπ0 , (8)

again, E0 denotes the expectation operator conditional on the information given in the
initial period. Note here that the parameter ρ(h)π, which measures the FCP effect, is
taken to the power of t/h instead of period t only. Hence, the period has to be multiplied
by the frequency of decision making, i.e. t · f holds. This means that all points in time
which correspond to a quarter on a higher frequency are selected. While this step is not
necessary for the computation of the IRFs (where in Sacht (2014) we just consider period
t only), it is required for the analysis of welfare effects on different frequencies. The reason
is that in order to compare the values of the loss functions along the dimensions of the
period length and the OMP regimes, the quarterly realizations of the variables have to be
considered only. In particular, since the quarterly NKM with h = 1 serves as our baseline
model, for a direct comparison of the corresponding loss functions for 0 < h ≤ 1, the shock
process must be adjusted accordingly. Therefore, it must be emphasized that we take the
entire stream of realizations of the variables over an infinite amount of periods, namely
quarters, into account. Accordingly, the loss function is described by the weighted sum of
these realizations. Without an adjustment of the shock process, this will lead to biased
results as the period lengths is varied.

2.2 Analytical Results

In this section, the key equations for the OMP regimes Discretion and Commitment are
revealed. Further explorations can be found in more detail in the Appendix. One of our
main results indicates that the loss increases as the period length decreases. This general
observation implies that welfare is always higher (based on the value of the loss function)
on a quarterly magnitude (h = 1) relative to the case where subperiods (h < 1) are
considered. This can be explained by the FCP effect, where the increase in the persistence
of the shock process leads to a stronger destabilization effect on the economy – which
holds independently in the OMP regimes Discretion and Commitment. In the following,
we shed a light on the question how this increase in destabilisation can be explained by
other (frequency-dependent) influences besides the FCP effect.

We start by discussing the case of Discretion. The minimization problem associated
with this OMP regime is a static one. The reason is, that households’ expectations on
future movements of the output gap and the inflation rate are pre-existing for the central
bank due to a lack of its credibility. Given the expectations, the monetary authority is
forced to re-optimize every single period. Technically speaking, the loss function (5) is
minimized with respect to the dynamic IS and NKPC, where all forward-looking terms
are treated as being fixed expressions. As a result of the optimization, the relationship
between the inflation rate and the output gap in case of a cost-push shock is described by
the so-called targeting rule:

yDt = −ξ(h)πDt (9)

with

ξ(h) =
hκ̃(h)α1

α2
=
κ(h)α1

α2

and κ̃(h) = κ(h)/h. A targeting rule describes the optimal adjustment path of variables,
which depend directly on each other. According to equation (9), an increase in the in-
flation rate requires a decrease in the output gap in order to dampen inflation after the
shock occurs. Since inflation rate and output gap stabilisation being the target of the
central bank, this type of rule is different to the so-called instrument rule. The standard

6



Taylor rule or an Optimal Simple Rule serve as examples of the latter.7 The (frequency-
dependent) composite parameter ξ(h) is known as the stabilisation bias. It measures the
effectiveness of OMP, where a high value of ξ(h) indicates a decrease in the stabilisation
bias and a stronger reduction in the output gap, which leads to less pronounced increase
in the inflation rate and vice versa. Hence, OMP becomes increasingly effective the higher
ξ(h) will be.

Under (pre-)Commitment, the central bank’s reputation is confirmed, i.e. the house-
holds believe in the monetary policy announcement regarding the stabilisation of the
inflation rate and the output gap. Hence, the monetary authority is able to control for
the expectation channel of monetary policy, where private sector expectations on future
movements in yCt and πCt can be influenced over time. It follows that the minimization
problem becomes indeed intertemporal, allowing the cental bank to manipulate house-
holds’ expectations. The corresponding targeting rule reads

yCt = −ξ(h)πCt + ψ(h)yCt−h (10)

with
ψ(h) = β(h)(1−h).

The previous equation accounts for history dependence, i.e. the optimal reaction of yCt to
changes in πCt does not depend only on contemporaneous but also on past movements of the
output gap. The reason is given by the timeless perspective policy (see Woodford (2003, p.
473)), which indicates that, by committing herself to a long-run optimal rule (linked to the
reputation of the agents), the central bank is able to react smoothly to shocks. According
to equation (10) the monetary authority is able to stabilize the inflation rate by allowing
for a smaller decline in the output gap compared to the OMP regime Discretion. In total,
the deviations in both variables are smaller under the OMP regime Commitment relative
to Discretion since the central bank commits itself to lower future values of the output gap
and, hence, the inflation rate (below their corresponding targets given by π̄j = ȳj = 0).

Setting h = 1 leads to the well-known expression for the reduced-form solutions and
targeting rules in the Discretion and Commitment cases reported by an overwhelming
amount of studies (see Woodford (2003), Gaĺı (2008, his Chapters 3 and 4) and Walsh
(2010, his Chapters 7 and 8) among others). From the same literature it is known, that due
to the structure of the OMP regimes Discretion and Commitment, the former generates a
higher welfare loss compared to the latter (LD

(t) > LC
(t)). In section 4 we will analytically

(and numerically) show that this result prevails as we allow for a decrease in the period
length.

It is worth mentioning that the weight ψ(h) indicates a frequency-dependent history
(dependence) persistence (FHP) effect. First of all, in his seminal paper, Leitemo (2008)
shows that in a purely forward-looking model, the maximum degree of history dependence
is required in order to achieve the lowest welfare loss in the OMP regime Commitment.
While this means that ψ(h) = 1 holds, this condition is valid only in the baseline case of
h = 1. In transition to an h-economy, we observe that the FHP effect is dampened as the
period length declines.8 As a result, the stabilization effect on πCt is reduced as h decreases,
i.e. on a higher frequency relative to a quarter, the inertia in the targeting rule (10) is

7See also Svensson (1999) as well as Svensson and Woodford (2005) for a discussion of targeting versus
instrument rules. In the case of an Optimal Simple Rule, the optimal values for the monetary policy
parameters φπ and φy stem from the minimization of the loss function under consideration of the cor-
responding solution paths for the inflation rate and the output gap given the Taylor rule (cf. Sacht and
Wohltmann (2013)).

8In his paper, Leitemo (2008) sets the discount factor given in quarterly magnitudes equal to unity i.e.
β(1) = 1 holds. While he argues that this assumption is grounded on the matter of ‘convenience’ (p. 268),
it is obviously the case, that this treatment is misleading as an h-economy is considered.
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Figure 1: Development of the weights ψ(h) and ξ(h).

Note: The Figure depicts the development in the weights ψ(h) = β(h)(1−h)

(upper panel) and ξ(h) (lower panel) – as component of the targeting rule
under the OMP regime Commitment (cf. equation (10)) – with respect to h.
The scale of the horizontal axis is limited on the interval h ∈ [1, ..., 1/12], while
it is confirmed that ψ(h) = 1 holds for h = 0. The solid line in the lower panel
depicts the development of ξ(h) for α2 = 0.05. The dashed line in the lower
panel depicts the development of ξ(h) for α2 = 0.5. The dashed/dotted line in
the lower panel depicts the development of ξ(h) for α2 = 1. The associated
parameter values are taken from Table 1 together with α1 = 1.

less considered. However, the quantitative effects are quite small. This can be seen by
the upper panel in Figure 1, which depicts the change in the degree of history dependence
with respect to h. Here a non-linear development in the weight can be observed, where the
minimum is reached at a value of h = 0.5. It follows from this that the dampening effect
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on the history dependence and, therefore, the reduced stabilization effect is not dramatic
as h decreases. Most importantly, a degree of history dependence below unity induces
a long-run deviation in the price level from its initial steady state value. Hence, in an
h-economy the central bank fails to stabilize the price level in OMP regime Commitment,
which does not hold in the case h = 1 (therefore consider also the IRFs presented in the
next section).

On the contrary, the frequency-dependent inherited persistence (FIP) effect (Sacht
(2014)) has a distinct negative impact on the effectiveness of OMP. The latter is weakened
in transition from a lower to a higher frequency. In particular, as the period length h
decreases – ceteris paribus – this leads to a decline in the slope of the NKPC measured by
κ(h). This can be explained by the increasing amount of transactions and reallocations
the central bank has to react to more frequently in an h-economy (cf. Sacht (2014)). As a
result the stabilisation bias is amplified, i.e. ξ(h) declines for a given value of α2. Compared
to the FHP effect, the influence of the FIP effect on the stabilization of the inflation rate
is remarkable. It can be seen from the solid line (where α2 = 0.05 holds) in the lower
panel of Figure 1 that the decline in ξ(h) is quite strong as the period length decreases.

This result is obviously strengthened by high values for the weight on output gap
stabilization measured by α2. In reality, it can be stated that the ECB follows a strict
inflation target (α1 > 0, α2 ≈ 0), while the latter is more flexible with respect to the US
Federal Reserve Bank (FED; α1 > 0, α2 > 0). As we can see from equations (9) and (10),
the more flexible the inflation targeting is this leads to a more destabilizing effect. The
reason is, that for high values of α2, the central bank is cautious about a strong negative
output gap needed for stabilizing the inflation rate. Hence, the drop in the output gap
is less pronounced as being necessary, which leads to a smaller dampening effect on the
inflation rate. Furthermore, high values of α2 amplify the impact of the FIP effect on
the stabilisation bias, i.e. ξ(h) becomes close to zero even on a low frequency (that is,
as h is close to 1). The dashed and dashed/dotted lines in the lower panel of Figure 1,
which represent the developments in ξ(h) for α2 = 0.5 and α2 = 1, respectively, show
this explicitly. Technically, this observation can be easily explained: as we turn to a more
flexible inflation targeting environment, ξ(h) becomes more compressed as h decreases
relative to low values of α2 given.

As we jointly consider the impacts of the FIP and FHP effects together with the
variation in the degree of inflation targeting, several observations are worth mentioning.
First, while the increase in the stabilization bias (due to the FIP effect) has a stronger
impact in the OMP regime Discretion compared to the Commitment one, in the latter
case the FHP effect ensures the lowest welfare loss. Although, the reduction of the output
gap is dampened on impact on a higher frequency, a decrease in h leads only to a small
decrease in history dependence. Hence, the central bank is still able to reduce the inflation
rate (and the output gap) below its target and, therefore, maintains a less destabilizing
adjustment of the variable compared to the discretionary case. Second, in conjunction
with the FCP effect, the almost unchanged degree in the history dependence leads to
more pronounced humped-shaped adjustments in all variables under Commitment.

Finally, regarding the OMP regime Commitment only, the FHP effect offsets (or even
dominates) the FIP effects in the case of strict inflation targeting, while the opposite holds
under a flexible inflation targeting scenario. Therefore, note that a high value of ξ(h) leads
to a stronger reduction in the output gap relative to when this value is low. However, this
strong reduction feeds back into the targeting rule (10) in the next period via the past
value of the output gap, which is multiplied by ψ(h). While this feedback effect is more
pronounced for h = 1, we are able to see from Figure 1 that for α2 = 0.05 the smooth
decrease in ξ(h) leads to a quantitatively strong consideration of the non-linear movement
in ψ(h) in the targeting rule (10). This observation helps to explain the corresponding non-
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linear development we obtain within our welfare analysis, where we study the difference
in LD compared to LC for the case α2 = 0.05. As we turn to higher values of α2, this
non-linear movement in ψ(h) is less considered since ξ(h) decreases rapidly for even high
values of h. Under flexible inflation targeting, the weak reduction in the output gap feeds
less back into the targeting rule and, therefore, dampens the FHP effect.

3 Numerical Results: Impulse Response Functions

In the following we shed a light on the dynamics of the model variables as a result of
the output-inflation trade-off linked to the cost-push shock. Furthermore, we discuss the
implications for OMP based on our investigations undertaken in the previous section.
First, we study the IRFs for all model variables based on the reduced-from solutions for
yjt and πjt . Based on these solutions, the dynamics of the nominal interest rate is simply
computed by solving the dynamic IS equation (1) for ijt . Therefore, the dynamics of the
nominal interest rate mimics the monetary policy reaction given by the associated targeting
rules (9) and (10). The real interest rate is then given by the difference (rjt = ijt − πjt−h)

and the price level is simply computed by pjt =
∑t

k=0 π
j
k. We adopt the calibration of the

parameters from Sacht (2014), where the corresponding values are given in the following
Table.

ν Households’ time preference rate 0.010

σ Inverse intertemporal elasticity of substitution in consumption 1.000

η Intertemporal elasticity of substitution of labour 1.000

θ Calvo degree of price stickiness 0.667

α Degree of Price Indexation 0.500

χ Habit-formation parameter in consumption 0.500

i Natural Interest Rate 0.000

φπ Weight on inflation in the Taylor rule 1.500

φy Weight on the output gap in the Taylor rule 0.125

ρz Persistence in the shock process 0.500

εz Impulse associated with the shock process 1.000

α1 Monetary policy reaction with respect to the inflation rate 1

α2 Monetary policy reaction with respect to the output gap 0.2

Table 1: Numerical parameter scenario.

Note: In the purely forward-looking NKM the parameters χ and α are set to
0. In case of a non-autocorrelated shock ρz is set to 0. The parameters of the
shock process ρz and εz are identical across all shocks z = {y, π, i}.

In addition we follow the ECB strategy when analyzing the IRFs by assuming strict
inflation targeting, where α1 = 1 and α2 = 0.05 hold. However, as we turn to the in-
vestigation of the welfare effects of both OMP regimes in the next section, we apply a
sensitivity analysis regarding different values of α2. For a clear arrangement, the corre-
sponding Figures for a non-autocorrelated shock process (ρπ = 0) and the autocorrelated
case (ρπ = 0.5) can be found in the Appendix.

The IRFs for the OMP regime Discretion in case of a non-autocorrelated shock process
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are depicted in Figure 2. In a quarterly economy (h = 1), we observe a large drop in yDt ,
which leads to a weak increase in πDt on impact according to the targeting rule (9). Since
the latter exhibits no history dependence, all variables converge back to their long-run
steady states in next quarter. As we turn to a monthly (h = 1/3) and weekly (h = 1/12)
frequency, the impact effects on yDt become weaker the more h is reduced. This can be
explained by the FIP effect, where the stabilization bias increases on a higher frequency.
This leads to a more destabilizing impact effect regarding πDt . It can be seen that the
quantitative differences are not negligible – even in the case of a transition from monthly
to weekly magnitudes. In the same vein, the movements in iDt and rDt become ambiguous:
both variables increase stronger on impact in the monthly economy compared to h = 1
, while in a weekly economy even a strong drop on impact (in conjunction with hump-
shaped movements afterwards) can be observed. The latter observation coincides with the
quite weak impact effect on yDt . This can be interpreted as an indication for the central
bank loosing control over stabilizing the economy on a higher frequency. The increase in
pDt emerges for all values of h, while the development is more pronounced quantitatively
on a higher frequency. The dramatic upward-movement in pDt is grounded on the increase
in the persistence of πDt due to the FCP effect.

In case of an autocorrelated shock (see Figure 3) the quantitative effects are more
pronounced. Interestingly, yDt is further reduced on impact for h = 1/3 compared to h = 1.
Accordingly, iDt and rDt exhibit a stronger increase on impact in a monthly compared to
a quarterly economy. It can be guessed, that the increase in ρπ amplifies the FCP effect,
which leads to a dominance of this (now) amplified effect over the FIP one on relative high
frequencies.

Figure 4 shows the dynamics in the OMP regime Commitment in case of a non-
autocorrelated shock process. In the case h = 1, less strong reactions on impact for
yCt and πCt are observed compared to Discretion. This can be explained by the history
dependence in the targeting rule (10), which causes (more) persistence in the variables.
The inertia in yCt mimics the commitment of the central bank to dampen future values
of the inflation rate below its target. Furthermore, the pCt converges back to its steady
state value due to history dependence. Again, on a higher frequency the reduction in
yCt is less pronounced, while inertia is amplified (in all variables due to the FCP effect).
Based on the FIP effect, the central bank fails to stabilize the inflation rate on impact also
under Commitment. However, since the degree of history dependence is quantitatively
less affected as h decreases, the corresponding FHP effect explains the increase in the
persistence in yCt and πCt on higher frequencies. Especially, in the case h = 1/12 we
see that πCt is pushed below its target for several periods. As we will see in the next
section, the low impact effects together with the increase in inertia lead to a lower value
of the loss function under Commitment relative to Discretion – even within an h-economy
environment.

The hump-shaped behaviour of πCt leads also to the convergence of pCt back to its
initial steady state value in the case h = 1. It is worth mentioning, that this result does
not hold on a higher frequency. Again, due to the FHP effect, the decrease in the degree of
history dependence for 0 < h < 1 hinders the one-to-one response to yCt−h, i.e. as ψ(h) < 1

holds (cf. targeting rule (10)). Finally, like under Discretion, the movements in iCt and rCt
change qualitatively in transition from a lower to a higher frequency.

In case of an autocorrelated shock, Figure 5 shows that the amplified FCP effect itself
amplifies the FHP one: inertia increases rapidly, while the corresponding hump-shaped
movements in all variables are more pronounced. It goes without saying that the quanti-
tative effects are strengthened, while pCt (still) does not converge back to its initial steady
state.9

9In Figure 4 (5) we limit the horizontal axis to 15 (20) quarters with respect to pCt , in order to account
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We also make a comparison of the IRFs for a daily (h = 1/90) economy. Here we also
compute the dynamics based on the baseline NKM with an ad-hoc Taylor rule assumed
(labeled by TR). According to the Figures 6 (ρπ = 0) and 7 (ρπ = 0.5), not surprisingly,
more pronounced effects are quantitatively observed for most of the variables (especially
for the output gap) in the TR case compared to both OMP regimes. Since no minimization
of the loss function is targeted by the central bank under consideration of an ad-hoc Taylor
rule, it is well known that the corresponding loss is higher than in both OMP regimes –
this result holds independently for any length of the period. Despite this observation,
in general, across all specifications the quantitative effects on a daily frequency are quite
strong due to the amplified FCP effect.

4 Numerical Results: Welfare Analysis

In this section we study the differences in the value of the loss functions given the reduced-
form solutions (targeting rules) for the inflation rate and the output gap under Discretion
and Commitment, respectively. All upcoming numerical results are obtained under con-
sideration of the analytical solutions (for the loss functions) given in Sacht and Wohltmann
(2013), which had been modified for the systematic/skip sampling instead of the temporal
aggregation scheme. The reason for this is that our numerical solution approach presented
here demand a large amount of main memory and time for execution. This can be ex-
plained by the computation of the loss function, where a discounted sum of all weighted
squared deviations in the inflation rate and the output gap must be considered. However,
the analytical solutions are grounded on the expression for the loss functions based on the
relationship of all associated parameters of the model. In this case no streams of values
over an infinite time horizon must be added up. However, it is confirmed that the numer-
ical and analytical (based on Sacht and Wohltmann (2013)) solution procedures lead to
the same results.10 All corresponding Figures can be found in the Appendix.

We consider the absolute and relative loss relations of Discretion compared to Commit-
ment. The former is given by the difference LD −LC , while for the latter the percentaged
change in the difference with respect to the loss under Commitment is computed, i.e.
(LD − LC)/LC holds. We study the developments in these differences with respect to
the variation in the period length for the cases of a (non-)autocorrelated shock. Figure 8
contains the related diagrams. According to both upper panels, the absolute loss relations
are positive and increase monotonically as h decreases. The first observation confirms
that the loss under Discretion is always higher compared to the one under Commitment
– regardless of the length of the period. The second observation emphasizes one of our
main results, that the more information and transactions (reallocations) is availaible/are
observed on a higher frequency, the higher the welfare loss will be. This can be again
explained by the FCP and FIP effects, where the former leads to an overall increase in the
persistence of the shock, while the latter leads to an increase of the stabilisation bias. Due
to the FHP effect this increase in the stabilisation bias is dampened under Commitment,
where the weight on the past value of the output gap is only marginally affected by the
decrease in h. Hence, the stabilisation of the economic indicators is much more successful
under Commitment, which results in a positive value in the absolute loss relation. As
we increase the weight on output stabilisation (α2), the loss relation curve becomes flat-

for the less humped-shaped movements of the variable in the cases h = 1 and h = 1/3. However, it is
confirmed that the price level does not converge back to zero as 0 < h < 1 holds, i.e. in an h-economy.

10As already stated, this problem does not appear when computing all IRFs presented in this thesis. The
related reduced-form solutions are given by the equations (21) and (22) for Discretion as well as (40) and
(41) for Commitment – all given in the Appendix, respectively. The corresponding MATLAB codes can
be downloaded from the authors’ webpage at http://www.makro-vwl.uni-kiel.de/de/team/dipl.-vw.

-stephen-sacht.
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Non-Autocorrelated Cost-Push Shock (ρπ = 0):

α2 = 0.05

h 1 1/2 1/3 1/12 1/90

LD − LC 0.0555 0.6138 1.2747 4.8546 16.2144

(LD − LC)/LC 22.53 % 85.47 % 96.68 % 57.81 % 18.94 %

α2 = 0.5

h 1 1/2 1/3 1/12 1/90

LD − LC 0.1888 0.5614 0.7973 1.8668 4.6486

(LD − LC)/LC 30.28 % 39.04 % 33.65 % 16.15 % 4.78 %

α2 = 1

h 1 1/2 1/3 1/12 1/90

LD − LC 0.1805 0.4491 0.6090 1.3163 2.9710

(LD − LC)/LC 25.21 % 27.98 % 23.46 % 10.86 % 3.00 %

Table 2: Selected values of the loss relations for ρπ = 0.

Note: LD and LC denote the loss for the optimal policy regimes Discretion
(D) and Commitment (C), respectively. The difference LD − LC denotes the
absolute loss relation. The difference (LD − LC)/LC denotes the relative loss
relation.

ter, i.e. the absolute difference becomes less pronounced. The reason is that this change
in the inflation targeting regime leads to a stronger consideration of the fluctuations in
the output gap by the central bank. Since the FIP effect becomes amplified by this (the
stabilisation bias increases much further), both OMP regimes are affected. For the case
ρπ = 0.5 we see stronger quantitative effects due to the (now) amplified FCP effect.11

Both middle panels in Figure 8 depict the relative loss relations with respect to ρπ.
We observe a non-linear development of the relative loss relations, which is much more
pronounced in the case α2 = 0.05. As we already explained in section 2.2, the FHP effect
offsets and even dominates the FIP effect under strict inflation targeting over a specific
interval of h. As the period length decreases, the non-linear movement in the degree of
history dependence becomes more considered the lower α2 will be for high to moderate
values of h. Due to the low value of the stabilisation bias, the strong reduction in the
output gap on impact feeds into the targeting rule (10)) for Commitment via the past
value of this variable. The additional degree of inertia due to the FHP effect leads to a
stronger stabilisation effect under Commitment.

At a specific value of h, a maximum in the relative loss relation Discretion/Commit-
ment is reached. We denote this value by h̃. Beyond this point, the FIP effect dominates
the FHP one: the stabilization bias increases more rapidly the more h approaches to
zero. Hence, the impact effect on the output gap becomes more and more negligible in

11We limit the scale of the upper panels by h ∈ [0.2, 1] to ensure a clear arrangement. We do so because
for values of h close to 0, the loss relation curve, which represents the case α2 = 0.05, increases rapidly
compared to the other ones. However, in the Tables 2 and 3 we report also the values for the case
h = 1/90 = 0.01.
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Autocorrelated Cost-Push Shock (ρπ = 0.5):

α2 = 0.05

h 1 1/2 1/3 1/12 1/90

LD − LC 0.1300 2.6918 7.3873 40.0296 158.5244

(LD − LC)/LC 30.58 % 152.00 % 203.60 % 133.24 % 40.90 %

α2 = 0.5

h 1 1/2 1/3 1/12 1/90

LD − LC 1.2859 4.7321 7.1605 18.6095 49.6553

(LD − LC)/LC 74.18 % 89.58 % 76.33 % 34.89 % 10.00 %

α2 = 1

h 1 1/2 1/3 1/12 1/90

LD − LC 1.5672 4.1744 5.8594 13.5675 32.1513

(LD − LC)/LC 68.66 % 64.56 % 52.72 % 23.20 % 6.25 %

Table 3: Selected values of the loss relations for ρπ = 0.5.

Note: LD and LC denote the loss for the optimal policy regimes Discretion
(D) and Commitment (C), respectively. The difference LD − LC denotes the
absolute loss relation. The difference (LD − LC)/LC denotes the relative loss
relation.

this case (cf. Figure 4). Note that under Discretion this observation does not hold since
history dependence is not considered in the corresponding targeting rule (9)). As we turn
to a more flexible inflation targeting scenario, the FIP effect has a stronger impact on
the relative loss relations. While the FHP effect is less considered (i.e. the non-linear
movement in the relative loss relation almost vanishes), the differences between Discretion
and Commitment decrease since the stabilization bias increases rapidly.

If an autocorrelated shock is assumed, the FCP effect amplifies the FHP effect, which
can be seen especially in the case α2 = 0.05. Here, the relative loss relation peaks at a
value of 203.60 %. This value is taken from Table 3, where we together with Table 2 report
the values of both loss relations for selected values of h. From these Tables, we can see
that the absolute differences in the loss are low for the case h = 1, while it is increasing
strongly as h decreases. However, this development is dampened as α2 increases but it is
still remarkable for values of h close to 0 (especially in the case of an autocorrelated shock,
cf. Table 3). The values of the relative loss relations indicate a loss under Discretion being
less than 100 % (higher) relative to Commitment – except for the strict inflation targeting
scenario as an autocorrelated shock occurs. In this case the OMP regime Commitment is
strongly superior to the Discretion one, which holds mainly on a monthly frequency.

As we can see from both middle panels, the value of h̃ (especially in the case α2 = 0.05)
slightly moves to the left as ρπ increases. The lower panel of Figure 8 shows this in more
detail. In general, quite high values of ρπ induce quite low values of h needed to maintain
an (relative) advantage of the OMP regime Commitment over Discretion, i.e. h̃ decreases
as ρπ increases. Furthermore, the higher the value of α2, the higher h̃ will be. Finally, at a
maximum value of ρπ = 0.99 we observe almost a convergence in h̃ across different values
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of α2.
12 Based on these observations it can be stated that the (amplified) FCP effect has

an impact on the interaction of the FIP and the FHP effect.
We close this section by investigating the impact of a variation in the price sticki-

ness measured by the frequency-dependent Calvo parameter denoted by θ(h). The latter
probability consists on the corresponding value of this parameter in quarterly magnitudes
given by θ. So far, we discuss the FIP effect as being described by the change in the slope
of the NKPC. However, besides the degree of price indexation (which is set to zero in
this paper), the degree of price stickiness plays also an important role via the FIP effect.
The higher the probability of the firm to not adjust their prices the lower the dampening
effect of reducing the output gap by the central bank will be. From an economic point of
view, a high degree of price stickiness makes it difficult for the policy maker to influence
inflation rate dynamics. The reason is that the price setting scheme becomes increasingly
degenerated from the movement in the real marginal cost (output gap) the higher the
likelihood for sticky prices will be. As a result the welfare loss increases with a higher
degree of price stickiness, i.e. as θ increases.

Applying a sensitivity analysis with respect to θ is meaningful since the empirical
evidence regarding this parameter is ambiguous. While θ ≈ 2/3 is a generally accepted
benchmark that is supported by several empirical studies (Gaĺı et al. (2001, p. 1255),
Christiano et al. (2005, p. 18) or Álvarez et al. (2006,p. 578)), one can also find lower
and higher degrees of stickiness in the literature. Fabiani et al. (2007, p. 41) analyze data
from surveys of 11000 firms which were conducted by the national banks of 9 European
countries. The median number of price changes per year in these different countries is
equal to one, which implies θ ≈ 3/4. By estimating a DSGE model with sticky prices
and wages for the Euro Area with Bayesian techniques, Smets and Wouters (2003, p.
1144) obtain a much longer average duration of price contracts of two and a half years,
or θ ≈ 9/10. In contrast, from the data of the US Bureau of Labor Statistics, Bils and
Klenow (2004, p. 953) derive evidence for firms in the US changing their price every two
quarters or even less, according to which θ can become as low as 1/2 and less. Therefore,
we consider for our simulation a range of θ between 0.5 and 0.9.13

In the following we repeat our computation exercise with respect to the relative loss
relations under variation of θ.14 The results are depicted in Figure 9. The results from the
two dimensional investigations are resembled: the FHP effect dominates the FIP effect
with respect to h on a lower to a moderate frequency, i.e. the corresponding loss relation
increases towards h̃, which represents a peak on a low value of h. This holds only for a low
value of α2. As the latter increases the differences are high for almost all values of h – but
only for low values of θ. As the degree of price stickiness increases, the stabilization bias
increases. In this case the advantage of the OMP regime Commitment over Discretion
vanishes as monetary policy becomes more ineffective. This holds independently for the
variation in α2.

More pronounced effects can be observed if an autocorrelated shock occurs. Again, the
values of the relative loss relation decreases in transition from more a flexible to a more
sticky price scenario. If prices are close to being fixed, the OMP regime Commitment is
nearly as being effective as the Discretion one. Therefore the FIP effect with respect to

12Note that we do not study the case ρπ = 1 since we consider a temporary shock only. Therefore, we
discard the possibility of a random walk in the shock process since in this case the dynamic system
becomes obviously hard to evaluate empirically (which is not done in this thesis).

13Ahrens and Sacht (forthcoming) report a value of θ close to or even equal to zero in the case of Argentina,
which stems from the estimation of a high-frequency (i.e. daily) NKPC. We omit this polar case in our
sensitivity analysis here, where we consider observations for the industrialized countries, the United States
and in the Euro Area only.

14Similar results can be found in Franke and Sacht (forthcoming). In particular, in their study an equivalent
three dimensional numerical investigation (given in their Appendix) in the case of a nominal interest rate
shock in the (baseline) NKM with an ad-hoc Taylor rule (regime TR) is applied.
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h becomes amplified as θ increases. The central bank can be advised, first, to ensure a
strict inflation targeting scenario and, second, to react more frequently to the fluctuations
in the economic indicators than on a quarterly base. However, the effectiveness of such
kinds of strategies can be still hindered if prices become more rigid. Furthermore, keep in
mind that the absolute loss is always higher on a higher relative to a lower frequency due
to the FCP effect.

Finally, we study the change in the value of h̃ with respect to θ, α2 and ρπ. Figure 10
applies. We observe a convergence in h̃ as ρπ approaches to the value of 0.99. A decrease
in the degree of price stickiness requires a low value of h in order to maintain a maximum
in the relative loss relations. In the other way around, the more prices are rigid the more
a lower frequency is required to observe a maximum. The reason is that in this case the
FHP effect dominates the FIP one only for high values of h since the increase in θ leads
to stronger increase in the stabilization bias due to the (now) reinforced FIP effect. This
observations put an emphasis on the role of the degree of price stickiness – together with
the FCP effect (see above) – for the interaction of the FIP and the FHP effect.

5 Conclusion

In this paper we study the OMP responses to a cost-push shock within an h-economy envi-
ronment. Our analytical and numerical results reveal the impact of frequency-dependent
persistence on the effectiveness of OMP in transition from a lower to a higher frequency.
Therefore, the OMP regimes Discretion and Commitment are applied under consideration
of a purely forward-looking NKM. We show that the central bank fails to stabilize the
inflation rate and the output gap on a higher frequency – even if its response is stemming
from welfare maximization. Our main observation indicates that the welfare loss is in-
creasing rapidly as the period length declines. This can be explained by the increase in
the information available, which causes rapid changes in the inflation rate and the output
gap. This must lead to destabilisation in the economy, which is analogous to the impact
of an anticipated shock in quarterly magnitudes as analyzed by Winkler and Wohltmann
(2012).

Given that the welfare loss increases as the period length decreases, our results call
for an optimal response of the central bank in terms of a timeless perspective. Here, the
central bank makes use of the expectation channel of monetary policy in order to generate
smooth dynamics of the economic indicators over time. In comparison, a discretionary
optimal monetary policy response, where expectations of agents are given for the central
bank, leads to a higher welfare loss. The overall increase in the welfare loss is trigged
by the frequency-dependent contraction persistence (FCP) effect, where the persistence of
the shock process is amplified by a decrease in the period length.

In particular, the magnitudes of the reduction of the output gap needed in order to
dampen the increase of the inflation rate are small on a higher frequency. The reason is
that the stabilization bias is increasing in this case due to the frequency-dependent inher-
ited persistence (FIP) effect. While in this case the pass-trough of changes in the output
gap into inflation dynamics is hindered, this outcome is more severe in the OMP regime
Discretion relative to Commitment. In the latter case, the frequency-dependent history
(dependence) persistence (FHP), which describes the decrease in the history dependence
with respect to the period length, is less affected by the frequency of decision making.
Hence, the welfare loss under Commitment is lower relative to the one under Discretion,
which holds independently of the period length. The difference is strengthened in transi-
tion from a strict to a flexible inflation targeting. This is confirmed by various robustness
checks, where we also find evidence for an increase in the stabilization bias due to an
increase in the price stickiness. In addition, as an interesting result we observe that the
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price level does not converge back to its initial steady state level under Commitment due
to the FCP effect, which does not hold on quarterly magnitudes. According to this, the
recent discretionary policy conducted by the ECB in the aftermath of the financial and
sovereign debt crisis in the Euro Area can be seen as being harmful with respect to welfare
maximization – regardless of low- or high-frequent movements in the economic indicators
being considered in general.

Sacht and Wohltmann (2013) show that similar results can be obtained when an Op-
timal Simple Rule is applied. Here, while the specification of an ad-hoc Taylor rule is
assumed, the optimal values of the corresponding weights on the inflation rate and the
output gap are given by the outcome of the minimization of the loss function. In their
paper, the authors report qualitative equivalent results with respect to the absolute and
relative loss relations, i.e. that the welfare loss under Commitment is lower compared to
the case of an Optimal Simple Rule. Only small quantitative differences are observed in
general for the remaining loss relations, which are stemming from the temporal aggregation
scheme applied in their paper.

In particular, one seeks to identify an amount of Optimal Simple Rules, which represent
a good approximation of the (in reality unobservable) targeting rule under Commitment.
It means that as an outcome, this specific rule becomes as close as possible in describing
the dynamics, which are obtained under the OMP regime Commitment (cf. Wohltmann
and Winkler (2009) as well as Winkler and Wohltmann (2012)). It is meant by that a
specific instrument rule must be imposed under consideration of the optimal weights in
the loss function. An example is given by a Taylor rule with interest smoothing, where
the central bank responses partly also to the previous value of the nominal interest rate.
This has not been done so far when studying different frequencies of decision making. In
addition, the volatility of the nominal interest rate can also be taken into account as part
of the central bank’s welfare function. We leave this to further research.

We like also to emphasise, that the analysis of the OMP responses within the hybrid
NKM under Commitment would be fruitful. In this case the investigation does not require
the corresponding solution methods for the computation of the policy functions like in the
case of Discretion – see our discussion with respect to the approaches provided by Söderlind
(1999) and Dennis (2007) given in the Introduction. Note that, given a hybrid specification
of the NKM under Commitment, the degree of price indexation now plays a significant role
in the determination of the movements of the variables on a higher frequency. According
to our analysis of the cost-push shock based on an ad-hoc Taylor rule (cf. Sacht (2014)), we
guess that the existence of intrinsic persistence will amplify the FIP effect, which leads to a
decrease in the effectiveness of OMP along with stronger hump-shaped adjustments of the
variables being observed. However, those thoughts call for a more elaborate investigation
in further research.

In addition, the question arises if the central bank has to be forced to intervene on
a lower frequency when facing high welfare losses on a higher one. This implies that it
could be welfare increasing to adjust the monetary policy instrument (via the targeting
rule) on e.g. a monthly or quarterly basis as information for the remaining economic
indicators are available on a, let’s say, daily basis. In this case the central bank monitors
the adjustments on a higher frequency and react to them on a lower one in order to
avoid strong destabilisation effects in case of a cost push shock. This treatment calls for
an heterogeneous specification of the period length across agents in the economy. We
leave such kind of investigation also to further research. We would like to emphasise that
the availability of daily information on movements in the economic indicators is not an
unrealistic assumption to make. This holds especially for the (Argentine) inflation rate as
we discuss in Ahrens and Sacht (forthcoming).
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6 Appendix

6.1 Solution of the OMP Regime Discretion in the Case 0 < h ≤ 1

For a clear arrangement, the expectation operator Et on the future values of the variables
is omitted throughout this Appendix. The corresponding Lagrangian under Discretion is
given by

LD
t = hα1(π

D
t )2+α2(y

D
t )2+ θ̃t(y

D
t + δ1(h)(i

D
t − ī)− ft)+ ρ̃t(π

D
t − κ̃(h)yDt − gt)+Ft (11)

where θ̃t and ρ̃t denote the Lagrangian multipliers (which are predetermined under Dis-
cretion), where their initial values in t = 0 are equal to 0. In the OMP regime Discretion,
the central bank must take all expectations regarding the future values of the economic
indicators as given:

Ft = Et

∞
∑

k=1

β(h)hk{hα1(π
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t+hk)

2 + α2(y
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t+hk)

2}

ft = yDt+h + δ1(h)π
D
t+h (12)

gt = β(h)πDt+h + vπt .

The first-order conditions read

∂LD
t

∂πDt
= 2hα1π

D
t + ρ̃t = 0 (13)

∂LD
t

∂yDt
= 2α2y

D
t + θ̃t − ρ̃tκ̃(h) = 0 (14)

∂LD
t

∂θ̃t
= yDt + δ1(h)(i

D
t − ī)− ft = 0 (15)

∂LD
t

∂ρ̃t
= πDt − κ̃(h)yDt − gt = 0. (16)

In addition,
∂LD

t

∂iDt
= θ̃t = 0 holds, since interest rate stabilization is not the aim of the

central bank (cf. Walsh (2010, p. 358)). Solving equation (14) for ρ̃t and plug it into (13)
results in the targeting rule (9) under Discretion:

πDt = −
α2

hκ̃(h)α1
yDt ⇔ yDt = −

hκ̃(h)α1

α2
πDt

(

= −
κ(h)α1

α2
πDt

)

. (17)

Note that κ̃(h) = κ(h)/h holds. Inserting the first part of the targeting rule into the
NKPC (cf. equation (16)) leads to

−

(

α2

hκ̃(h)α1

)

yDt +

(

β(h)
α2

hκ̃(h)α1

)

yDt+h − κ̃(h)yDt − vπt = 0

⇒

(

α2

hκ̃(h)α1
+ κ̃(h)

)

yDt −

(

β(h)
α2

hκ̃(h)α1

)

yDt+h + vπt = 0

⇒ d1 y
D
t + d2y

D
t+h + vπt = 0 (18)

with

d0 = −
α2

hκ̃(h)α1

d1 = κ̃(h) − d0

d2 = β(h)d0.
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Based on the method of undetermined coefficients (McCallum (1983)), we guess that the
dynamics in yDt are described by the following law of motion:

yDt = d3v
π
t . (19)

By plugging equation (19) into equation (18) we get the solution for d3:

d1 d3 v
π
t + d2 d3 v

π
t+h + vπt = 0

⇒ d2d3 (ρ(h)
π vπt + επt+h) + (d1 d3 + 1) vπt = 0

⇒ [(d2 ρ(h)
π + d1) d3 + 1)] vπt = 0

⇒ −
1

d1 + d2ρ(h)π
= d3. (20)

Note that in case of an (deterministic) impulse shock επt+h = 0 holds. By plugging equation
(19) together with equation (20) into the targeting rule (17) we obtain

xDt = ΓD v
π
t =

(

1
d0

)

d3 v
π
t

with xDt = (yDt , π
D
t )′. The reduced-form solution for the output gap and the inflation rate

under Discretion are then explicitly given by

yDt = −
κ(h)ᾱ1

[1− β(h)ρ(h)π ]ᾱ2 + {[κ(h)2]/h} ᾱ1
[ρ(h)π]t/hεπ0 (21)

πDt =
ᾱ2

[1− β(h)ρ(h)π ]ᾱ2 + {[κ(h)2]/h} ᾱ1
[ρ(h)π ]t/hεπ0 (22)

where κ̃(h) = κ(h)/h has been already applied. Therefore consider also the forward
solution of the shock process for 0 < h ≤ 1 given by15

E0v
π
t = [ρ(h)π ]t/hεπ0 . (23)

6.2 Solution of the OMP Regime Commitment in the Case 0 < h ≤ 1

The Lagrangian under Commitment is given by

LC
t = Et

∞
∑

k=0

β(h)hk[hα1(π
C
t+hk)

2 + α2(y
C
t+hk)

2

+ θt+h+hk(y
C
t+hk − yCt+h+hk + δ1(h)(i

C
t+hk − πCt+h+hk − ī)

+ ρt+h+hk(π
C
t+hk − β(h)πCt+h+hk − κ̃(h)yCt+hk + vπt+hk)] (24)

where θt+h+hk and ρt+h+hk, again, denote the corresponding Lagrangian multipliers (which
are, again, predetermined since πt and yt are forward-looking), where their initial values

15Therefore, consider the derivation of the shock process under 0 < h ≤ 1 in Appendix A2.
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are equal to 0. The first-order conditions read

∂LC
t

∂πCt+hk

= β(h)hk(2hα1π
C
t+hk)− β(h)hk−hθt+hkδ1(h)

+ ρt+h+hk − β(h)hk−h+1ρt+hk = 0 (25)

∂LC
t

∂yCt+hk

= β(h)hk(2α2y
C
t+hk + θt+h+hk − κ̃(h)ρt+h+hk)− β(h)hk−hθt+hk = 0 (26)

∂LC
t

∂iCt+hk

= θt+h+hk = 0 ∀ h = 0, ..., 1; k = 0, ...,∞ (27)

∂LC
t

θt+h+hk

= yCt+hk − yCt+h+hk + δ1(h)(i
C
t+hk − πCt+h+hk − ī) = 0 (28)

∂LC
t

ρt+h+hk

= πCt+hk − β(h)πCt+h+hk − κ̃(h)yCt+hk − vπt+hk = 0. (29)

By dividing (25) and (26) by β(h)hk and taking into account that k = 0 holds, it follows

0 = 2hα1π
C
t + ρt+h − ρtβ(h)

1−h (30)

ρt+h =
2α2

κ̃(h)
yCt ↔ ρt =

2α2

κ̃(h)
yCt−h. (31)

Plugging (31) into (30) results in the targeting rule under Commitment:

πC = −
α2

hα1κ̃(h)

(

yCt − β(h)(1−h)yCt−h

)

⇔ yCt = −
α1κ(h)

α2
πCt + β(h)(1−h)yCt−h. (32)

Note, again, that κ̃(h) = κ(h)/h holds. The expression in front of the brackets is equal
to d0 given under Discretion. Hence, the stabilization bias being the same in both OMP
regimes. Inserting the first part of the previous equation into the NKPC (cf. equation (29)
for k = 0) leads to

−
α2

hα1κ̃(h)

(

yCt − β(h)(1−h)yCt−h

)

− κ̃(h)yCt

+
β(h)α2

hα1κ̃(h)

(

yCt+h − β(h)(1−h)yCt

)

= vπt

⇒ yCt

(

−
α2

hα1κ̃(h)
− κ̃(h) − β(h)(1−h) β(h)α2

hα1κ̃(h)

)

+ yCt−h

(

α2

hα1κ̃(h)
β(h)(1−h)

)

+ yCt+h

(

β(h)α2

hα1κ̃(h)

)

= vπt

⇒ yCt

(

1 +
hα1κ̃(h)

2

α2
+ β(h)(2−h)

)

− β(h)(1−h)yCt−h

− β(h)yCt+h +
hα1κ̃(h)

α2
vπt = 0

⇒ c1y
C
t + c2y

C
t−h + c3y

C
t+h + c0v

π
t = 0 (33)

with

c0 =
hα1κ̃(h)

α2

c1 = 1 +
hα1κ̃(h)

2

α2
+ β(h)(2−h)

c2 = −β(h)(1−h)

c3 = −β(h).
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Based on the method of undetermined coefficients, we guess that the dynamics in yCt are
described by the following law of motion:

yCt = c̃1y
C
t−h + c̃2v

π
t . (34)

By plugging equation (34) into equation (33) we are able to compute the solution for c̃1
and c̃2:

c1(c̃1y
C
t−h + c̃2v

π
t ) + c2y

C
t−h + c3[c̃1y

C
t + c̃2(ρ(h)

πvπt + επt+h)] + c0v
π
t = 0

⇒ c1(c̃1y
C
t−h + c̃2v

π
t ) + c2y

C
t−h + c3[c̃1(c̃1y

C
t−h + c̃2v

π
t ) + c̃2ρ(h)

πvπt ] + c0v
π
t = 0

⇒ (c1c̃1 + c2 + c3c̃
2
1)y

C
t−h + [c1c̃2 + c3(c̃1c̃2 + c̃2ρ(h)

π) + c0]v
π
t = 0. (35)

Note, again, that in case of a (deterministic) impulse shock επt+h = 0 holds. The first term
in equation (35) displays a characteristic polynomial:

c3c̃
2
1 + c1c̃1 + c2 = 0 ↔ c̃21 +

c1
c3
c̃1 +

c2
c3

= 0 (36)

with

c1

c3
= −

1 + [hᾱ1κ̃(h)
2]ᾱ−1

2 + β(h)(2−h)

β(h)

c2

c3
=

1

β(h)h
.

Based on the numerical parameter scenario given, we choose the specific solution of (36)
which ensures dynamic stability, i.e. 0 < c̃1 < 1 holds.16 Given the solution of c̃1, we are
able to compute the one of c̃2, which follows from the second term in equation (35):

c1c̃2 + c3[c̃1c̃2 + c̃2ρ(h)
π] + c0 ↔ c̃2 = −

c0
c1 + [c̃1 + ρ(h)π]c3

. (37)

The dynamics in the inflation rate under Commitment are now described by (cf. targeting
rule (10))

πCt = −
1

c0

[

(c̃1 − β(h)(1−h)yCt−h + c̃2v
π
t

]

(38)

The laws of motion in xCt can be summarized by

xCt = ΓC,1x
C
t−h + ΓC,2v

π
t (39)

where

ΓC,1 =

(

c̃1 0

− c̃1−β(h)(1−h)

c0
0

)

ΓC,2 =

(

c̃2
− c̃2

c0

)

16Obviously, this observation serves as a necessary but not sufficient condition since it depends on the
underlying parameter scenario. In our case we obtain numerically that c̃1,1 is the unstable root of (36),
while c̃1,2 it the stable one, e.g. 0 < c̃1,2 < 1 holds. This is true for all values of h over its admissible
range. It is also confirmed that when plugging both solutions into the characteristic polynomial above,
this results in 0 in both cases. However, in general, analytical solutions for c̃1,1 and c̃1,2 are hard to find
since the non-trivial expressions c1

c3
and c2

c3
are considered to be part of the associated quadratic formula.

Therefore, we rely on the numerical computation of the roots but give the strong advise to check on the
(stable) solutions for any given parameter scenario. For a clear arrangement in the following we define
c̃1 := c̃1,2.
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with xCt = (yCt , π
C
t )

′ and xCt−h = (yCt−h, π
C
t−h)

′ hold. More explicitly, the reduced-form
solution for the output gap can be written as (cf. equation (34))

yCt =
c̃
(t+1)/h
1 − [ρ(h)π](t+1)/h

c̃1 − ρ(h)π
c̃2ε

π
0 . (40)

Plugging this law of motion into equation (38), after some re-arrangement we get the
reduced-form solution for the inflation rate:

πCt = −
˜̃c c̃

t/h
1 − (˜̃c− c̃2)[ρ(h)

π ]t/h

c0
επ0 (41)

with

˜̃c =
(c̃1 − β(h)(1−h))c̃2

c̃1 − ρ(h)π
.

The previous expression make, again, use of the forward solution of the shock process for
0 < h ≤ 1 given by

E0v
π
t = [ρ(h)π ]t/hεπ0 . (42)
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6.3 Impulse Response Functions (D,C) in the Case 0 < h ≤ 1
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Figure 2: IRFs in case of a non-autocorrelated cost-push shock in the NKM under the OMP
regime Discretion (D).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 3: IRFs in case of an autocorrelated cost-push shock in the NKM under the OMP regime
Discretion (D).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 4: IRFs in case of a non-autocorrelated cost-push shock in the NKM under the OMP
regime Commitment (C).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 5: IRFs in case of an autocorrelated cost-push shock in the NKM under the OMP regime
Commitment (C).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 6: Daily (h = 1/90) IRFs in case of a non-autocorrelated cost-push shock in the baseline
NKM (TR) and under the OMP regimes Discretion (D) and Commitment (C).

Note: The dashed line represents the daily IRFs under the regime TR. The
solid line represents the daily IRFs under the regime Discretion (D). The
dashed/dotted line represents the daily IRFs under the regime Commitment
(C). The time in quarters and the change in percent(age points) are displayed
on the horizontal and vertical axis, respectively.
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Figure 7: Daily (h = 1/90) IRFs in case of an autocorrelated cost-push shock in the baseline
NKM (TR) and under the OMP regimes Discretion (D) and Commitment (C).

Note: The dashed line represents the daily IRFs under the regime TR. The
solid line represents the daily IRFs under the regime Discretion (D). The
dashed/dotted line represents the daily IRFs under the regime Commitment
(C). The time in quarters and the change in percent(age points) are displayed
on the horizontal and vertical axis, respectively.
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6.4 Development in the Loss Relations D/C
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Figure 8: Development and maximum of the loss relation(s) Discretion(D)/Commitment(C).

Note: The upper and middle panels depict the development of the absolute and
relative loss relations Discretion (D)/Commitment (C) with respect to h and
under variation of α2 in the case of a non-autocorrelated (ρπ = 0; left panels)
and an autocorrelated (ρπ = 0.5; right panels) cost-push shock. LD and LC

denote the loss for the OMP regimes Discretion and Commitment, respectively.
The lower panel depicts the value of h associated with the maximum in the
relative loss relation Discretion/Commitment (denoted as h̃) under variation
of α2 and ρπ. The solid line represents the loss relations/changes in h̃ for
the monetary policy reaction to the output gap for α2 = 0.05. The dashed
line represents the loss relations/changes in h̃ for the monetary policy reaction
to the output gap for α2 = 0.5. The dashed/dotted line represents the loss
relations/changes in h̃ for the monetary policy reaction to the output gap for
α2 = 1.
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Figure 9: Development of the (relative) loss relation Discretion (D)/Commitment (C) in the case
of an (non)-autocorrelated cost-push shock under variation of θ.

Note: The Figure depicts the development of the relative loss relation Discre-
tion (D)/Commitment (C) with respect to h and under variation of α2 and
θ in the case of a non-autocorrelated (ρπ = 0; left panels) and an autocorre-
lated (ρπ = 0.5; right panels) cost-push shock. LD and LC denote the loss for
the OMP regimes Discretion and Commitment, respectively. The upper panels
represent the loss relations for the monetary policy reaction to the output gap
for α2 = 0.05. The middle panels represent the loss relations for the monetary
policy reaction to the output gap for α2 = 0.5. The lower panels represent the
loss relations for the monetary policy reaction to the output gap for α2 = 1.
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Figure 10: Value of h associated with the maximum in the loss relation Discretion
(D)/Commitment (C) under variation of α2, θ and ρπ.

Note: The Figure depicts the value of h associated with the maximum in
the loss relation (h̃) Discretion (D)/Commitment (C) under variation of α2,
θ and ρπ. LD and LC denotes the loss for the OMP regimes Discretion and
Commitment, respectively. The upper panel represents the changes in h̃ for the
monetary policy reaction to the output gap for α2 = 0.05. The middle panel
represents the changes in h̃ for the monetary policy reaction to the output gap
for α2 = 0.5. The lower panel represents the changes in h̃ for the monetary
policy reaction to the output gap for α2 = 1.
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P., Martins, F., Sabbatini, R., Stahl, H., Vermeulen, P. and Vilmunen, J.

31



(2006): Sticky Prices In The Euro Area: A Summary Of New Micro-Evidence. Journal of
the European Economic Association, Vol. 4(2/3), pp. 575-584.

Assenmacher-Wesche, K. and Gerlach, S. (2008): Interpreting Euro Area Inflation
At High And Low Frequencies. European Economic Review, Vol. 52(6), pp. 964-986.

Bellman, R. (1957): Dynamic Programming. Princeton University Press, Princeton.

Bils, M. and Klenow, P.J. (2004): Some Evidence On The Importance Of Sticky
Prices. Journal of Political Economy, Vol. 112(5), pp. 947-985.

Christiano, L.J., Eichenbaum, M. and Evans, C.L. (2005): Nominal Rigidities And
The Dynamic Effects Of A Shock To Monetary Policy. Journal of Political Economy, Vol.
113(1), pp. 1-45.

Dennis, R. (2007): Optimal Policy In Rational Expectations Models: New Solution Al-
gorithms. Macroeconomics Dynamics, Vol. 11(1), pp. 31-55.

Fabiani, S., Loupias, C.S., Druant, M., Hernando, I., Kwapil, C., Landau, B.,
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Gaĺı, J., Gertler, M. and López-Salido, J.D. (2001): European Inflation Dynamics.
European Economic Review, Vol. 45(7), pp. 1237-1270.
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Gaĺı, G., Smets, F. and Wouters, R. (2012): Slow Recoveries: A Structural Inter-
pretation. NBER Working Papers No. 18085, National Bureau of Economic Research, Inc.

Hamilton, J.D. and Herrara, A.M. (2004): Comment: Oil Shocks And Aggregate
Macroeconomic Behavior: The Role Of Monetary Policy. Journal of Money, Credit, and
Banking, Vol. 36(2), pp. 265-286.

Kahn, A. King, R.G. and Wolman, A.L. (2003): Optimal Monetary Policy. Review
of Economic Studies, Vol. 70(4), pp. 825-860.

Leitemo, K. (2008): Inflation-Targeting Rules: History-Dependent Or Forward-Looking?.
Economic Letters, Vol. 100, pp. 267-270.

Oudiz, G. and Sachs, J. (1985): International Policy Coordination In Dynamic Macroe-

32



conomic Models. in: Buiter, W. and Marston, R. (Eds.) (1985): International Eco-
nomic Policy Coordination, Cambridge University Press, Cambridge (US), pp. 275-319.

Rosa, C. (2013): The High-Frequency Response Of Energy Prices To Monetary Policy:
Understanding The Empirical Evidence. Staff Report No. 598, Federal Reserve Bank of
New York.

Sacht, S. and Wohltmann, H.-W. (2013): Inflation Targeting And Welfare Analysis
In High-Frequency New-Keynesian Models. Mimeo, Department of Economics, Christian
Albrechts University Kiel, November 2013.

Sacht, S. (2014): Analysis of Various Shocks within the High-Frequency Versions of the
Baseline New-Keynesian Model. Economics Working Paper No. 2014-02, Department of
Economics, Christian Albrechts University Kiel, January 2014.

Smets, F. and Wouters, R. (2003): An Estimated Dynamic Stochastic General Equi-
librium Model Of The Euro Area. Journal of the European Economic Association, Vol.
1(5), pp. 1123-1175.

Smets, F. and Wouters, R. (2007): Shocks And Frictions In US Business Cycles: A
Bayesian DSGE Approach. American Economic Review, Vol. 97(3), pp. 586-606.
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