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Abstract

This note is concerned with estimating censored quantile regressions (CQR).
As its major contribution, a' new algorithm, called BRCENS, is developed as an
adaption of the Barrodale-Roberts algorithm for the standard quantile regression
problem. In a subsequent simulation study, BRCENS performs well in compari-
son with the iterative linear programming algorithm (ILPA) suggested recently by
Buchinsky. In the theoretical analysis, this note generalizes the asymptotic theory
for estimating CQR to the case with observation specific censoring points and with
fairly arbitrary non-stationarity and dependency in the data. Building on the in-
terpolation property of the coefficient estimate, the ILPA is shown to suffer from
some theoretical inconsistencies.

Keywords: Censored Quantile Regression, Consistency, Asymptotic Normality, In-
terpolation Property, Algorithms. • . •
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1 Introduction

While censored quantile regressions (CQR) have been recognized as an interesting
robust, estimation approach for the censored regression problem, their application
in applied research seems to have been limited by the lack of an efficient algorithm.
Also censored quantile regressions have mostly been considered in the case with
a common censoring point for all observations.' In this note, the consistency and
asymptotic normality of the CQR estimator is established in a time series setup
without the assumption of fixed censoring points and with fairly arbitrary forms of
heteroskedasticity and autocorrelation of the data. Building on a theoretical charac-
terization of the censored quantile regression estimate, the new algorithm BRCENS
for estimating censored quantile regressions is developed and it is contrasted with
the iterative linear programming algorithm (ILPA) suggested recently by Buchinsky
(1994). In light of the theoretical results, ILPA is shown to exhibit some theoret-
ical inconsistencies. The limited set of simulation results is quite encouraging for
recommending the use of BRCENS.

Barrodale and Roberts (1973) and (1974) developed an efficient algorithm (BRA)
for the problem of least absolute deviation (median) regression. Quantile regressions
were introduced by Koenker and Bassett (1978). A simple modification of BRA al-
lows for estimating general quantile regressions, as indicated in Koenker and d'Orey
(1987). Powell (1984) and (1986) extended the concept of quantile regressions to
the censored regression problem with fixed censoring points for all observations.
He established that CQR estimation leads to a consistent and asymptotically nor-
mal estimator even with a restricted form of heteroskedasticity. Womersley (1986)
provided a theoretical characterization of the estimate in the censored median re-
gression problem and he proposed a finite direct descent method to calculate the
estimator. Dielman (1992) showed that simplex based algorithms, which are modi-
fied versions of the BRA, appear ,to be most efficient for median regression problems.
Buchinsky (1994) suggested a new algorithm for the CQR problem, ILPA, and used
it to analyze the U.S. wage structure, to my knowledge the first empirical applic-
tion of CQR. The algorithm BRCENS, developed in this note, was first applied in
Fitzenberger et al. (1994) to study the German wage structure.

This paper proceeds as follows. Section 2 establishes the asymptotic theory of
the censored quantile regression estimator in a time series setup without the as-
sumption of fixed censoring points and with fairly arbitrary forms of heteroskedas-
ticity and autocorrelation of the data. In addition, a theoretical characterization
of the estimate is provided. Section 3 develops the new algorithm BRCENS and
describes ILPA. Two theoretical inconsistencies of IPLA are shown and a modi-
fied algorithm is suggested, called modified iterative linear programming algorithm,
MILPA. Section 4 describes a small simulation study which contrasts the relative
performance of BRCENS, ILPA, and MILPA. Section 5 concludes. The appendix
provides the proof of the asymptotic results in section 2 and a description of the
formal implementation .of BRCENS.



2 Theoretical Results

This section discusses theoretical aspects of estimating CQRs. In section 2.1 de-
scribes the CQR estimation problem and consistency and asymptotic normality
of the censored quantile regression estimator (CQRE) are established for a more
general setup than previously considered in the literature. Section 2.2 presents a
characterization of the CQRE with respect to the interpolation of data points by
the estimated regression hyperplane.

2.1 Asymptotic Theory

This section describes the method of estimating CQRs and a new asymptotic re-
sult is established which allows for fairly arbitrary forms of heteroskedasticity and
autocorrelation in the data and for observation specific censoring points.

Before describing the method of CQRs, the following notation is introduced.
Within a linear regression context, let the dependent variable be the T x 1 vector,
y = (yi,..., yr)-, the design- matrix be the T x k matrix X = (XI,...,XT)', with
%t = {%n, •••,Xtk), the T x 1 vector of observation specific censoring values be yc =
(yc\,..., ycj), the T x 1 vector of disturbances be e = (ej,..., ej-)' and the k x 1
parameter vector be f30, for t = 1,2, ...,T and T = 1,2,... . Let the 6 weighted sign
function sgng(et) be defined as ;

sgng(et) = 61{tt > 0) - (1 - 0)1 {tt < 0)

with 9 £ (0,1) and I(.) denotes the indicator function.
Quantile Regressions were introduced by Koenker and Bassett (1978). Powell

(1984) and (1986) proposed the method of censored least absolute deviation (me-
dian) regressions and CQRs, respectively, as a robust estimation approach for the
censored regression model. The CQR estimation problem is to minimize for a given
9 over j3 the piecewise linear function defined by

— 1 T

(1) . PT G argmin — ^ S9ne(yt - min[x't(3,yct)) (yt - min[x'tf3,yct])

With the assumption of a common censoring point, yc^ = yc2 = ... = ycx, for all
observations, Powell established that unlike the standard Tobit maximum likelihood'
estimator, the CQRE provides an estimator which is consistent and asymptotically
normally distributed without an assumption that the errors are normally distributed
or homoskedastic. The following theorem extends upon Powell's results in two
respects. First, observation specific censoring points are allowed for and second,
it is established that The CQRE is consistent and asymptotically normal for fairly
arbitrary non-stationarity and dependency in the data.

Theorem 1: (Asymptotic. Theory of CQRE)
Suppose for some 9 £ (0,1)

(i) y* = x'tf30 + et and yt ='min[y*,yct].



(ii) (a) {x't,et,yct}t=i,...j is a strong-mixing sequence of size —2r/(r — 2) where
. r > 2.

(b) The {tt}'s have some distribution on ( — 00 x ... x 00) and let their joint '
distribution function be absolutely continuous on the cartesian product
of the intervals Bt^ = {et : —d < et < d) for all t=l,... ,T and some
d>0. '

(c) Let Ft = cr(...,xt_i, xt,..., yct-i, yct) be the cr-algebra generated by the
sequence of x^s and yc^'s until t, and let the distribution of et conditional
on Ft have a density .ft(et) = ft(tt \ Ft) for —d < et < d, where ft(ct) is
a.s. Lipschitz continuous in et uniformly in t with a Lipschitz constant
0 < Lo < 00. There exist fi and fu such that 0 < fi < ft(et) < fu < co

- a.s. for —d < et < d and all t=l,.. . ,T.

(iii) (a) E {sgne(tt) | Ft} = 0 a.s. for.all t=l,.. . ,T.

(b) Jj = Var{y=J2t^ xtl(x't(3o < yet) sgng(et)} is uniformly positive definite
inT .

(iv) (a) E I xti \r < S for all t=l,. . . ,T, i=l,...,k and some S,r', and r/ such that
0 < 8 < 00, r' = mai(3 + r], r) and 77 > 0.

(b) My = E{j Y^t=\ I{x'tflo < yet — C) xtx't} is uniformly positive definite in
T for ( > 0.

(c) LT = E{-^J2t=i ft(O) I(x'tPo < yct)xtx't} is uniformly positive definite in
T.

(d) Gt{z,f3,p) = E{I(\ x'tP - yCt \<\\ xt || z) || xt \\p} is o(z) for z near
zero, ft near (30 , and p=0,l,2, uniformly in t, i.e. Gt(z,ft,p) < K\ z if
0 < z < (0 and || ft — ft0 ||< {0 for some Kj and {0-

(v) B is a compact set in $tk and ftQ 6B.

Then a.) ftT 6 argmin ^ ]Tf=i sgne(yt - min[x'tft, yct]) (yt - min[x'tft,yct]) -> ftQ

fteB
a.s. for T —> 00.

^ D

b.) Dj1'2 Vf{ftT - ft0) ~> N(0Jk), where £>T = L^JTLJ1 and 7fc is the
i; x fc identity matrix.

The proof of theorem 1 can be found in Appendix 1. The result is related to re-
cent work on the asymptotic behavior of standard quantile regression estimators
with non-stationary error terms in Portnoy (1991), Weiss (1991), and Fitzenberger
(1993). The treatment here is closely related to Powell (1984), (1986) and Fitzen-
berger (1993).

The CQRE is not necessarily unique. Theorem 1 establishes for every sequence
of minimizers given by equation 1, ftx, that the consistency and asymptotic nor-
mality results hold.



The following short discussion is concerned with the role of certain regular-
ity conditions. Condition (iii)(a) states that the conditional ^-quantile of et is
zero, which in addition to condition (iv)(b) guaranties consistency of the. CQRE.
In analogy to Fitzenberger (1993) for the case of standard quantile regressions,
this assumption allows only for a form of heteroskedasticity, which leaves the 8-
quantile unchanged. The approach differs from Portnoy (1991), who uses a less re-
strictive assumption and identifies an asymptotic bias of the coefficient estimator.2

Strong mixing of the data and condition (iii) basically imply asymptotic normality
of J2t=i Xtl(x'tfto < yct)sgng(et). The extension of JHuber's (1967) Lemma 3 to the
setup in this note allows for. asymptotically interchanging T~1/<2 Ylt=i xtl{x'tfto <
yct)sgne{et) and T ^ E ^ i E{xtl(x'tftr < yct)sgne{et - x't(ftr - ft0))}. The latter
expression is differentiate in the coefficient estimate and its Jacobian at ft0 equals
the matrix —Lj. In order to prove consistency, it is necessary that the regression is
"asymptotically identified", condition (iv)(b), by the set of uncensored points. For
asymptotic normality, the conditional quantile function min[x'tft,yct] of yt must be
well behaved when ft is close to fto- Thus, condition (iv)(d) rules out sequences of
values (xt,yct) -with x'tfto = yct with positive frequency. Conditions (iv)(b) and (d)
are adapted versions of conditions R.I and R.2 in Powell (1984) to the setup in this
note.

2.2 Interpolation Property

This section provides a characterization of the CQRE analogous to the characteri-
zation of the standard quantile regression estimator in Koenker and Bassett (1978),
theorem 3.1. This' characterization provides the basis for the algorithm BRCENS
developed in section 3.1.

Since the minimization problem described in equation 1 does not necessarily
have a unique solution, let the set of optimizers BT of the distance function Qr{ft)
be defined by

BT = argmin QT(ft) = J2s9ne(lJt - rnin[x'tft,yct}) (yt - min[x'tft,yct}).
ft .

The following Theorem, characterizing the elements of BT, can be proved. Most
of the following result for censored median regressions can be found in Womersley
(1985), Theorem 1.

Theorem 2: (Interpolation Property of CQRE's^If the design matrix X
has rank k\ every element in the set of minimizers, BT, is a convex combina-
tions of solutions in BT interpolating k' data points, i.e., V ftr £ BT 3 j solutions
ftf,i,---,ftr,j ^ BT and associated scalars A1?...,Aj with 0 < A,- < 1, i — l,...,j,

2In his analysis of standard quantile regressions with non-stationary, dependent errors, Portnoy
assumes the errors to be "close to m-dependent" and, put into the notation of this note, he only
requires that E«=i xts9ne{^t) grows at a rate between T1/2 and T3/4. With \/T asymptotic
normality, this introduces an asymptotic bias.



and E{=i ^i = 1; such t h a t ftx is a convex combina t ion of t he 0T,I-, •••-. PTJ-, i-e.,

/?r = E i = i ^iftr.i; and each /3j,, in te rpola tes at least k' d a t a ' p o i n t s such t h a t for

i = l , . . . , j 3 &'observat ions {(j/t,,-,i, z t i 2 \ i ) , . . . , {yt,i,k', xt,i,k>)} wi th

( IP) j/t,i,; = x[liftT,i for / = 1 , . . . , / : ' and the rank of (£t , ; , i . . . . . a?t.t.fc')' equals A;'.

Note that theorem 2 does not- imply that BT is a convex set as in the case of
standard quantile regressions.3 Womersley (1986), Theorem 1, establishes for the
case of censored median regressions that there exists a global optimum with the
interpolation property (IP). Womersley's approach can be easily adapted to the
CQR problem.

In the following, a heuristic argument is given for theorem 2, which forms the
basis for developing the new algorithm BRCENS in section 3.1. The argument
focuses on the directional derivative-of the distance funtion, which plays a central
role in section 3.

Since the distance function QT{P) is piecewise linear and bounded from below,
there is at least one global minimum. If the global minimum is unique, it must
be located at a kink of the distance function. In general, all global minima can be
represented as convex combinations of minima at kinks, but the set of minima, BT,
is not a convex set itself.

The directional derivative of QT{ft) for some w £ 3ftfc is given by

„ , , „ • x • V QHft + aw) - QT(ft)
HT(ft,w) — lim —L

io a

(2) = Y\I(x'tP < yct){-sgng(yt - x\ft) - I(x'tft = yt)sgne{-x'tw)}
t=i

+I(x'tP = yct){(l - 8)I(yt < yct, x[w < 0)

-9I(yt = yct,x'tw < 0)}]x'tw

This expression allows to identify the kinks of QT{P)- A vector ft represents a kink,
if the directional derivative HT(ft,w) changes for some w in an arbitrarily small
neighborhood of ft. At that point, there must be observations with x'tft = yt or
x\ft = yct. Analogous to standard quantile regressions, where kinks in the objective
imply that there must be observations with x'tft =' yt,

4 the kinks in the set of mini-
m i z e r s m u s t i n t e r p o l a t e k' o b s e r v a t i o n s {{yt,i,\,yct,i,i,xt,i,i), •••,(yt,i,k',yct,i,k',xt,i,k1)}

whereby the rank of (x<,i,i, •••,xt,i,k1)' equals k'. If no t , the re exis ted a kink and a

vector w £ 3?fc and w =fi 0 such that x'tw = 0 for all data points interpolated at that
kink. Then either (i) HT(ft,w) < 0 or HT(ft,w) > 0 or (ii) HT(ft,w) = 0. If (i)
is true, ft cannot be an optimum, and if (ii) is true, one can move in direction w
without increasing or decreasing the objective function, while all of the data points

3See Koenker and Bassett (1978), theorem 3.1.
4See Koenker and Bassett (1978).



interpolated at ft keep being interpolated. This can be continued until a point is
reached, where an additional data point is interpolated, which proves the claim.

At this stage, it remains to be shown that a solution ft cannot be optimal if it
interpolates a data point at the censoring point, while the observation itself is not
censored and the vector of regressors at that point is not in the space spanned by
'the other interpolated data points. The result can be established easily considering
the directional derivatives

HT{P - aw,w) = Tl=AHx'tP < yct){-sgng(yt - x'tft) - I{x'tft = yt)sgne{x'tw)}
+I{x'tft = yct){(l - 9)I{yt < yCt, x'tw > 0) •

-GI(yt = yct,x'tw > 0)}}x'tw
and
HT(ft +aw,w) •= J2l=1[I{x't0 < yct){-sgn9(yt - x'tft) - I(x'tft = yt)sgne{-x'tw)}

+I{x'tft = yct){(l - 9)X{yt < yct, x\w < 0)
= yct,x'tw <0)}}x'tw

where w is chosen that for all other interpolated points, x'tw = 0, and a > 0, small.5

For ft to be optimal, it is necessary that

HT(ft + aw,w)-HT(ft-aw,w)>0

but in the case considered here.

T

HT(ft + aw, w) - H'T(p- aw, w) = J2 Hx'tP = yct){I(x'tw < 0) - I(x'tw > 0)}9x'tw
t=i

which proves to be strictly negative, thus implying that ft cannot be optimal.

3 Algorithms for CQR Estimation

This section presents two algorithms for the problem of CQR estimation. The lack
of an efficient algorithm was a major obstacle for the use of CQR in applied re-
search. In section 3.1, a new algorithm, called BRCENS, is developed based on the
standard Barrodale-Roberts-Algorithm. Section 3.2 discusses the algorithm sug-
gested recently by Buchinsky (1994) and shows that it is theoretically inconsistent.
A third algorithm developed by Womersley (1986) is based on a finite direct descent
method. It is not considered in this note and to my knowledge it has not yet been
used in applied econometric research.6

5a is chosen such that (i) yt ^ x't(5 = > yt ^ x't(/3 ± aw), (ii) yct ^ x'tf3 = > yct ^ x't(P ± aw),
(iii) yct > {<)x't(3 = > yct > (<)x't(l3 ± aw), and (iv) yt > {<)x\P = > yt > {<)x't(p± aw).

6I am planing to include Womersley's algorithm in the simulation study in section 4. According to
' Dielman (1992), simplex approaches which are extensions of the Barrodale-Roberts-Algorithm

appear to be most efficient for computing least absolute deviation regressions, whereas evidence
concerning direct descent methods'appears somewhat mixed. This evidence by itself justifies
the development of the new algorithm BRCENS, but I am hoping to receive the program used
in Womerley's example, Womersley (1986), section 5, in order to compare the algorithms in
practice.

6



3.1 BRCENS

This section describes the main ideas used to implement a new algorithm to estimate
CQR;s called BRCENS.7 I develop BRCENS by adapting the Barrodale-Roberts-
Algorithm (BRA) to CQR's.8

Since the quantile regression problem has a linear programming structure, it
can be solved by a simplex algorithm. Barrodale and Roberts noted that with
the special structure of the least absolute deviation (LAD) problem a standard
simplex algorithm was quite inefficient. The BRA uses a condensed form of the
simplex tableau with only T + 1 rows and k + 1 columns, where T is the number of
observations and k the number of regressors. The core of the tableau consists of the
representation of the nonbasic variables, i.e. interpolated data points or coefficients
being zero, in terms of the basis variables, i.e. data points not necessarily being
interpolated or coefficients not necessarily being zero.9 BRA significantly reduces
the number of simplex transformations by only considering transformations towards
solutions where k' observations are interpolated, where k! is the rank of the design
matrix. In addition, before performing a simplex transformation BRA bypasses
several kinks, i.e., solutions where at least k! observations are interpolated, until
the "marginal cost" reduction becomes non-positive, i.e., until the objective cannot
be reduced further. After a simplex transformation, the "marginal cost" reductions
are recalculated. BRA stops when all "marginal cost" reductions are non-positive.
If all of them are strictly negative, a unique global optimum is reached.

In light of. the interpolation property of CQRE presented in section 2.2, I keep
the same simplex setup when adapting the BRA. In what follows, the heuristics of
BRCENS are described. A short formal description of the simplex setup and my
adaption of the "marginal cost" reductions are given in the appendix. In the first
stage, BRCENS starts with the coefficient vector at zero. By subsequent simplex
iterations, as many coefficients are brought into the basis as the rank k' of the
design matrix allows for. If k' = k, the latter being the number of regressors, then
all coefficients are brought into the basis. The first stage ends with k' interpolated
data points as nonbasic variables, each one represented by a column of the tableau.
The set of nonbasic variables - data points and coefficients' - define the current
solution. In the second stage, BRCENS continues by interchanging data points in
the basis with nonbasic data points. The algorithm stops, when all "marginal cost"
reductions of all nonbasic variables are non-positive indicating that an interchange
of a nonbasic variable with any data point in the basis would not lead to a reduction
of the objective.

My modification of BRA concerns the calculation of the "marginal cost" reduc-
tions. Both for stage 1 and 2, "marginal cost" reductions have to b< ."aJculated for
each nonbasic variable. The "marginal cost" reduction for a nonbu.- • variable is
the marginal change in the objective when the variable changes fro..- ;.-::ing zero.

7Barrodale-Roberts-Algorithm for Censored Quantile Regressions.
8The BRA is suggested in Barrodale and Roberts (1973). A FORTRAN source a-^h '••> provided
in Barrodale and Roberts (1974). Koenker and D'Orey (1987) adapt the algorn.hrn to the
quantile regression case.

9For further details, cf. Barrodale-Roberts (1973)
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Since there are k nonbasic variables, this change defines a one-dimensional search
direction starting from the current solution to look for a reduction of the objective.
Thus, the "marginal cost" reduction is the negative of the directional derivative
in the search direction, presented in equation 2, times some positive scalar multi-
ple. The simplex approach allows for an efficient calculation of the "marginal cost"
reductions. BRCENS has to take account of the possibility that, first, for both
nonbasic and basis variables the current solution could interpolate the censoring
points, which implies that there is only an effect on the objective, if the search
direction is such that the predicted value on the regression hyperplane moves below
the censoring point, and that,-second, for a data point in the basis the predicted
value could lie above the censoring point, thus not implying any contribution to the
"marginal cost" reduction when moving into the search direction.

Analogous to BRA, BRGENS considers to move the nonbasic variable with the
highest "marginal cost" reduction into the basis. This defines the search direction to
find a new solution and the algorithm involves to move into that direction until the
"marginal cost" reduction becomes non-positive. 'At this new point, the objective
exhibits a local minimum along the search direction.

While moving along the search direction, the "marginal cost" reduction can
only change at points where the regression hyperplane interpolates yt or yct for some
observation in the basis not interpolated before. Then the "marginal cost" reduction
is updated accordingly until it becomes non-positive. One of the data points in the
basis for which yt is interpolated here now leaves the basis and is replaced by
the nonbasic variable defining the search direction. The arguments in section 2.2
guarantee that the data point leaving the basis never has to be a point where the
new solution interpolates the censoring point and the observation is uncensored at
the same time. The interchange of variables is performed by a standard simplex
step, which updates the representation of the nonbasic variables in terms of the basis
variables and now the "marginal cost" reductions have to be recalculated for the
nonbasic variables. The algorithm terminates when all "marginal cost" reductions
become non-positive. If they are all strictly negative, a strict local minimum of
the objective is guaranteed, analogous to the standard quantile regression case. In
contrast to the latter case, however, due to the nonconvexity of the CQR problem,
this is not necessarily a global minimum.

3.2 ILPA and MILPA
This section is concerned with the iterative linear programming algorithm (ILPA)
used in Buchinsky (1994) who estimates CQR's in order to study the structure of
wages in the United States. Further an extension of ILPA, the modified iterative
linear programming algorithm (MILPA), is suggested. ILPA is based on iterating a
sequence of standard quantile regressions. Unfortunately, this simple algorithm is
based on two ideas, which prove to be inconsistent from a theoretical perspective.
Nevertheless, the algorithm has a lot of intuitive appeal, and MILPA is suggested to
provide a remedy against one of the problems. Before going into details, it should
be emphasized that the issue is not caused by the fact, that Buchinsky treats only

8



Figure 1: Example for which Censored Median Regression Interpolates a Censoring
Point0

Estimated
Regression Line

(a) See main text for further explanations.

the case of a fixed censoring point for all observations.
To begin with, a description of the ILPA follows.10 ILPA starts with some

initial coefficient estimate fto and a counter j — 1. The following iterative steps are
• continued until convergence is achieved:

Step 1: For the j t h iteration, determine the set Mj of observations with x'tftj < yct.
If j'• — 1 or Mj y£ Mj-i then continue with step 2, otherwise terminate and
take ftr = Pj-i as the CQRE.

Step 2: Calculate ft2 as the standard quantile regression estimate for the set of
observations Mj by means of the BRA.11 Set j := j + 1 and repeat step 1.

Buchinsky states that ILPA is not guaranteed to converge, but he claims that once
convergence is achieved the coefficient estimate represents a local minimum of the
problem.

ILPA is based on the following two ideas. First, for an optimal solution ftj
of the CQR problem, the set of observations for which the predicted value lies on
or above the censoring point, i.e. X\PT > yct, could have been excluded from the
estimation. My analysis in section 2.2 establishes that this claim is only true for
observations with X\PT > yct, since the directional derivative, defined in equation
2, depends also on data points with X[PT — yct, albeit in a "one-sided" way. The
following simple example provides a case where the estimated regression hyperplane"
interpolates a censored data point. For a censored median regression, 8 = 0.5, with

10Cf. Buchinsky (1994), p. 412.
uFor 6 ^ 0.5, by means of the modification of BRA in Koenker and d'Orey (1987).



Figure 2: QT(P) in Example for which a Fixpoint of ILPA is not a Local Minimizer"

QHP)

-i

(a) See main text for further explanations.

only one regressor, k = 1, take a sample of just two observations, T = 2, with
(yi,yci,xn) = (0,1,-1) and (j/2,2/c2, ^12) = (1,1,2). The data are depicted in
figure 1 and the estimator in this case is PT = 1/2. The estimated censored median
regression interpolates.the censored data point 2, which ILPA could not take account
of. In fact, ILPA does not converge in this case, whatever the starting estimate.

The second idea which ILPA is based on is the claim that, when convergence is
reached, the coefficient estimate represents a local minimum of the CQR prob-
lem. This represents a second theoretical inconsistency which is illustrated by
the following counterexample. For a censored median regression, 6 = 0.5, with
only one regressor, k =. 1, take a sample of just two observations, T = 2, with
(^i,yci,xn) = ( -1 ,1 , -1 ) and (y2fyc2,x12) = (-1/2,1,1/J2). If ILPA starts with
Po = —1, convergence is achieved after two iterations with PQ = P\ = $2, thus show-
ing that ftQ = —1 is a fixed point, which is not a local minimum of the problem.
Figure 2 depicts the distance function, QT{P), for the example.

ILPA can be slightly modified such that it allows for the case that the regression
interpolates a censored data point. I call this modification the modified iterative
linear programming algorithm (MILPA), which coincides with ILPA except that
in step 1 "<" is replaced by "<" when defining the set Mj. A problem with
MILPA is, of course, that it takes account of the directional derivative in "both
directions" from a censoring point. Despite the issues discussed here, ILPA and
MILPA have some intuitive appeal, especially when all observations have a common
censoring point. It is likely that they converge properly in samples with a moderate
degree of censoring where the optimal regression lies below the censoring points
for all observations, since in that case, there are no observations interpolated at
the censoring points, i.e., such points do not influence the directional derivative.

10



This intuition is confirmed by the results of the subsequent simulation study, which
compares ILPA and MILPA with the algorithm BRCENS developed in section 3.1.

4 Simulation Study

This section presents the results of a small scale simulation study comparing the
performance of the three algorithms BRCENS, ILPA, arid MILPA described in
section 3. For various data generating processes, I analyze first, how often each
algorithm converges, second, how often it reaches the true optimum of the problem,
and third, conditional on convergence, how is the relative performance for each pair
of the three algorithms.

For the simulation study, 200 random samples are drawn for each of the following
data generating processes (DGP). Each random sample consists of T = 100 obser-
vations. The estimation problem is to estimate a censored median regression as a
function of one regressor allowing for an intercept, i.e. k = 2. The following DGP's,,
(A) to (L), differ by the assumptions on how the samples of (yt,yct,

 xt2)t=\,...,ioo are
generated.

(A) xt2 ~ -W(0,1) , tt ~ i V ( 0 , 1 ) , yct = Const and y t = min(yct, et).

(B) xt2 = —10.0 -f 0.2*, et ~ N(0,1), yct = Const and y t = min(yct, tt).

(C) xt2 ~ N(0,l),tt ~ 7V(0,1), yct = Const and yt = min(yct, 0.5 + 0.5xt2-\-£t)-

(D) xt2 - -10.0 + 0.2*, tt ~ N(0,l), yct = Const and yt = min(yct. 0.5 + 0.5xt2 +

(E) xt2 ~ iV(0, l ) , tt ~ iV(0,1), yct ~ N(Const, 1) and yt = min(yct,tt).

(F) xn = - 1 0 . 0 + 0.2*, tt ~ N(0,1), yct ~ N(Const, 1) and yt = min(yct, tt).

(G) xt2 ~ N(0.1), et ~ N(0,l), yct ~ N(Const,l) and yt = min(yct,0.5

0.5xt2 + e*)-

(H) xt2 = -10.0 + 0.2*, tt ~ N(0,1), yct ~ N(Const, 1) and yt = min(y'ct, 0.5
0.5xt2 + et).

(I) x i 2 ~ N(0,1), et ~ 7V(0,1), J/Q = Const - 0.5/(1 < t < 20) - 0.25/(21 <
t < 40) + 0.25/(61 < i < 80) + 0.5/(81 < t < 100) and yt = min(yct, tt).

(J) Xt2 = -10.0 + 0.2*, tt ~ N{0,1), yct = Const-0.5I(l < t < 20) —0.25/(21 <
t < 40) + 0.25/(61 < * < 80) + 0.5/(81 < * < 100) and yt = min(yct, tt).

(K) xt2 ~ N(0, l),.tt ~ 7V(0,1), yc« = Cons* - 0.5/(1 < t < 20) - 0.25/(21 <
* < 40) + 0.25/(61 < * < 80) + 0.5/(81 < * < 100) and yt = min{yct,0.5 +
0.5xi2 + tt).

11



Table 1: Results of Simulation Study: Average Share of Censored Observations In
Random Samples For various Data Generating Processes (DGP) - In Percent"

DGP
(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)

Const = 1.0 Const
16.0
16.0
32.9
45.6
24.1
24.1
36.8
45.5
17.5
17.5
33.8
44.9

= 0.5 Const
30.9
31.0
49.1
50.5
36.2
36.2
49.5
50.6.
32.1
32,0
49.2
50.5

= 0.0
48.7
49.1
66,2
55.5
49.6
49.6
62.2

'55.7
49.8
49.8
65.6
56.2

(a) See main text for further explanations.

(L) xt2 = -10.0 + 0.2*, tt ~ N(0,1), yct = Const-0.5I{l < t < 20)-0.25/(21 <
* < 40) + 0.25/(61 < * < 80) + 0.5/(81 < * < 100) and yt = rmn(yct, 0.5 +
0.5xt2 + tt). . • . .

The shift variable Const = 1.0,0.5,0.0 is used to allow for varying degrees
of censoring. The lower is Const, the higher the average degree of censoring in
the random sample. Table 1 contains the average shares of censored observations
for the various DGP's. DPG's (A) to (D) assume a fixed censoring point for all
observations in the random samples, whereas DPG's (E) to (L) allow for observation
specific censoring points. (E) to (H) let yct being normally distributed, i.e. in a
random sample there are basically no two observations with the same censoring
point. (I) to (L) let yct take five different values with the frequency being the same.
The xi2's are either normally distributed with expected value zero and variance one,
or they take a fixed sequence of values, (—9.8, —9.6, ,9.6,9.8,10.0). The "true"
median regression assumes that both intercept and slope are either zero or 0.5.

Table 2 presents the absolute frequencies for various DGP's, that the three al-
gorithms converged, part (i), and that each of them achieves the optimum of the
objective function QT{P), Pa r t (ii). From part (i), it is evident that BRCENS always
converges, i.e. always yielded an optimal solution with the "marginal cost" reduc-
tions being strictly negative for all nonbasic variables in the final simplex tableau.
Also MILPA almost always converges, the exceptions are DPG (A) and (B) with
one and two samples, respectively, without convergence. For MILPA as well as for
ILPA, the algorithm is terminated after 20 iterations, if no convergence is achieved:
Experimental evidence showed that this is large enough to determine whether the
algorihms converged. The picture is very different for ILPA, which exhibites a lack
of convergence the higher the degree of censoring. Also the convergence rate is

12
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Table 2: Results of Simulation Study: For various Data Generating Processes
(DGP), Absolute Frequencies that (i) Algorithms Converged and (ii) Achieved
Optimum0

DGP

(A)
(B)
(C).
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)
(ii)]

DGP

(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)

0

ILPA

199
200
99
120
148
140
127
142
196
195
106
112

) Convergence Frequency A m o n g 200 Random Samples

Const =

MILPA
200
200
200
200
200
200
200
200
200
200
200
200

1.0"
BRCENS

200
200
200
200
200
200
200
200
200
200
200
200

ILPA

185
190
60
137
112
127
103
148
109
133
66
135

Const = 0.5

MILPA BRCENS
200 200
200 200
200 200
200 200

200 200
200 200

200 200
200 200
200 200

200 200
200 200
200 200

ILPA

101
100
169
118
. 94
93
86
126
71
54

. 42

115

Const = 0.0

MILPA BRCENS

199 200
198 200
200 200
200 200

200 200
200 200

200 200
200 200
200 200

200 200
200 200

200 • 200

frequency A m o n g 200 Random Samples That Optimum W a s Achieved

ILPA

198
200
81
95
126
127
108
114
192
191
81
84

Const =

MILPA
199
200
68
111
138
154
110
124
190
190
78
99

1.0
BRCENS

199
200
128
160
169
183
156
161
196
194
145
155

ILPA

174
179
36
109
92
113
77
127
92
110
47
108

Const = 0.5

MILPA BRCENS
' 175 184

179 184

43 82
106 155
115 164
145 174

100 136
117 157

94 • 157

128 160
57 99

106 155

ILPA

31
33
8
93
64
71
63
102
40
43
24
89

Const = 0.0

MILPA BRCENS
50 90
53 74

13 84
102 148
81 134

107 149
60 109

109 153
33 104
74 123

28 60
98 147

(a) See main text for further explanations.
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Table 3: Results of Simulation Study: For various Data Generating Processes
(DGP), Absolute Frequencies'that (i) Samples For Which Two Algorithms Con-
verged and that (ii) Among Samples For Which Two Algorithms Converged One
Algorithm Achieved A Solution With A Lower Value Of The Objective QT[P) a

DGP

(A)
(B) '
(C)
(D)
(E)
(F)
(G)
(H)
(I)
(J)
(K)
(L)

(i) Conver ^ence Frequency
Of Two Algorithms
BRCENS BRCENS

converged with
ILPA

185
190
•60
137
112
127
103
148
109
133
66

135

ILPA

MILPA MILPA

200
200
200
200
200
200
200
200
200
200
200
200

185
190
60

137
112
127
103
148
109
133
66

135

Const = .0.5

(")

BRCENS

ILPA
4
1
5
2

15
16
9
4

12
15
5
1

Frequency

BRCENS

That One

ILPA
achieved lower value

MILPA

14
7.

91
71
86

' . 81
83
58
98
75
96
71

BRCENS
5
2

30
14
17
18
17
14
14
6

16
14

Better Than Other

MILPA
of objective

ILPA MILPA
than

BRCENS MILPA

2
1

12
1

15
15
20

0
15
11
27

1

8
3

39
58
42
41

• 4 1

48
42
18
38 '
57

[LPA

0
0

-• o

0
2
3
0
0
2
0

• 1

0
(a) See main text for further explanations.

smaller for the samples with observation specific censoring points relative to those
with a common censoring point for all observations. The result is not surprising, in
light of the theoretical analysis in section 3.2.

Part (ii) in table 2 is concerned with the frequencies that the global optimum is
achieved by the three algorithms. To determine the global optimum, a grid search
is performed among 401 x 401 equidistant points in the rectangle [—2,2] x [—2,2].12

If the minimizer on the grid is on the boundary of the rectangle, the sample is
dismissed and a new sample is drawn instead. An algorithm is assumed to have
achieved the optimum, if a value of the objective, is reached which is less than or
equal to the minimized value on the grid. With respect to this criterion, the results
for BRCENS are very favorable in comparison to ILPA and MILPA. The relative
performance of BRCENS is better, when the degree of censoring is higher and when
there are more observation specific censoring points. The-ranking between ILPA
and MILPA is not clear. All three algorithms perform worse with a higher degree of
censoring and with random design in constrast to fixed design, when there is higher

12Experiments with a grid of 1001 x 1001 equidistant points did not change the results reported
here.
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censoring. The latter result is true in particular for BRCENS. All three perform
quite satisfactorily with moderate degrees of censoring, especially in the case with
a common censoring point, DGP (A) and (B) and Const = 1.0.

Table 3 presents results concerning the relative performance of two algorithms
conditional on convergence, for one value of Const = 0.5.13 Since the CQR problem
is not a convex optimization problem, it often cannot be expected that a global
optimum is reached. Therefore, the relative performance of two algorithms is also
of interest. The first three columns of the table indicate how often for a pair
of algorithms both converge. For these cases, the next six columns provide the
frequencies that one algorithm obtained a better value of the objective than the
other. Clearly, ILPA and BRCENS outperform MILPA conditional on convergence,
however, the ranking between ILPA and BRCENS is not obvious. It has to be
recognized that conditional on convergence, ILPA quite often outperforms BRCENS
and that MILPA does not appear to be a completely successful modification of ILPA.

5 Conclusions

This note is concerned with estimating censored quantile regressions (CQR). It es-
tablishes a new asymptotical result allowing for observation specific censoring points
and fairly arbitrary forms of heteroskdasticity and autocorrelation. The interpola-
tions property (IP) as a characterization of the CQR estimate is derived. As the
main contribution, a new algorithm for the CQR estimation problem is developed
building on the IP. Also two theretical inconsistencies are found in the iterative
linear programming algorithm (ILPA), proposed by Buchinsky (1994). A modi-
fication of ILPA, the modified iterative linear programming algorithm (MILPA)
is suggested. The subsequent simulation study compares the performance of the
three algorithms. BRCENS performs quite well in comparison. It outperforms the
two others with respect to the frequencies that the global optimum of the problem
is reached. However, conditional on convergence of ILPA and BRCENS, there is
no clear ranking between the two algorithms. All algorithms perform the worse,
the higher the degree of censoring. Based on this simulation study, the applica-
tion of BRCENS can.be recommended, since it outperforms ILPA significantly for
problems with considerable censoring. Despite the better convergence properties,
MILPA is not a superior alternative to ILPA. Modifying BRCENS analogous to the
most efficient modifications the Barrodale-Roberts-Algorithm for median regres-
sions, as discussed in Dielman (1992), should lead in the future to a numerically
more efficient version of BRCENS.

6 Appendix

This appendix contains the proof of theorem 1 in section 2.1 and a short descrip-
tion of the simplex setup and the calculation of the "marginal cost" reduction in
13Results are also obtained for Const = 1 . 0 and 0.0, but are not reported here. They are in line

from what can be expected from the results in tables 2 and 3.

i
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the algorithm BRCENS.

Proof of Theorem 1: The proof follows Powell (1984), (1986) and Fitzenberger
(1993). I only highlight where an. adaption to the case considered in this note is
necessary. The basic asymptotic results used in this proof, i.e., the law of large
numbers, the central limit theorem and the adaption of Huber's (1967) Lemma 3,
are presented in Fitzenberger (1993), appendix 1.

a.) Consistency

Define t[ = yt — min[x'tP0,yct} and the distance function

ST(P) = h Ef=i sgne(yt - min\x'tP, yct}) (yt - min[x'tP, yct])

= fY^=i

Note

ht{(*t,x'tP,x'tPo,yct) =

Ox't(Po-P)
(1 - 8)x[(ft - ft0) - t't •

(1*-8)x't(ft - p0)
(1 - 9)(yct- x'tpo)
(1 - 9){yct - x'tp0) - e't
9(yct - x'tP) + t\
(1 - 8){x'tP - yct)
0

yt > x'tP and yt > x'tft0

yt < x'tP < yct and yt > x'tft0

yt > x'tP and yt < x'tP0 < yct

yt < x\P < yct and yt < x'tP0 < yct

for yct < x'tP and yt < x'tP0 < yct

yct < x'tP and x'tP0< yt

yt ^ x'tft and x'tfto > yct

yt < x'tft < yct and x'tft0 > yct

yct < x'tP and x'tP0 > yct

Thus, \ht\ is 0( | |
ST(P) - EST(P) -

xt ||) and analogous to Fitzenberger (1993), it follows that
> 0 a.s. uniformly in P € B. •,

To establish consistency, it suffices to show that /30 is the identifiably unique min-
imizer of EST(P)- This can be done analogous to Powell (1984), p. 318-318, and
Fitzenberger (1993), appendix 3, by first providing a uniform lower bound of the
conditional expectation E{ht\Ft] based on condition (ii)(c), and second using con-
dition (iv)(b) when manipulating the unconditional expectation EST{P)-

b.) Asymptotic Normality

This part makes use of Lemma A.5 in Fitzenberger (1993), appendix 1, an extension
of Huber's (1967) Lemma 3, to basically interchange asymptotically the subgradient
of the non-smooth distance function, ST(P), by the gradient of the smooth limit
function, EST(P)-

Define ipl(tt,xt, P,yct) = I{x[P < yct)sgne(tt - x[(P - P0))xtl, ip(tt,xt, P,yct) =
(ip\, ...,ijjk) and \T{P) — fJ2f=-i Eip(tt,xt, P,yct). Analogous to Powell (1994) and
Fitzenberger (1993), the argument follows by the following steps:
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= op(l)

)xtx't} and

D

4) JT1/2jfEl=

The following considerations describe how to establish steps 1 to 4:

1) This follows by considering the left partials of ST(P)

a|o a
/

where e,- = (0, .,0,1,0, ..,0) has a one as the ith component. It can be shown that

HTi(P)= -T-Zf=iM£t,xt,-^Tj=i'I(x'tP < yct, x'tP = Vt) xtisgne(xti)
+ f Ef=i I{x'tP = yct){{\ - 8)I(yt < yct, xti > Q)xti

-9I(yt = yct,xti > 0)xtt}

The result follows analogous to Powell (1984), p. 320, and Fitzenberger (1993),
appendix 3, recognizing the optimality properties of PT and condition (iv)(d), which
guarantees that J2t=\ I(x'tftT — y°t) is a.s. finite.

2) and 3) It suffices to show that Ay(/3) satisfies the conditions of the extension
of Huber's (1967) Lemma 3 in Fitzenberger (1993), Lemma A.S. Then the steps
are established analogous to Powell (1984), p. 320-322, whereby in particular "E^"
has to be replaced by "£{.. . |F t}" and "/(•)" by "/<(•)"• Conditions (ii)(b),(c), and
(iv)(d) guarantee that Powell's argument can be adapted to the setup in this note.

4) This follows from the strong mixing assumption, condition (ii)(a), and condition
(iii) in light of the central limit theorem for strong mixing processes in Fitzenberger
(1993), Lemma A.4 . —

Q.E.D.

Implementation of the Algorithm BRCENS:
In the following, the setup for the condensed simplex tableau of the algorithm
BRCENS is described. Most importantly, I develop how to calculate the "marginal
cost" reductions. The presentation corresponds to Barrodale and Roberts (1973).
The CQR problem can be formulated "close" to a linear programming problem.
Define ut = max(y't — min[x'tft, yct],0), vt = —min(yt — min[x'tP,yct},0), 6,- =
max(ftt,0), and ct- = —min(fti,0), then the estimation problem in equation I can
be reformulated as
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Table 4: Condensed Simplex Tableau for the Algorithm- BRCENS

Basis
bv\
bv\

bz>T

Marginal Cost
reductions

nbi

0\ 1

0\r<2

men

nb2 ..
02,1 ••
02,2 ••

02,T ••
mcr2 ••

• nbk

0k 2

$k T

Residuals

h

h

min Y2t=i(@ut + (1 — ®)vt)

S I n A ^^_ rv~Y~^ <\ if} 1 \ '"y . \ r\ - - A™ . I O I /""* I I n i n \

and 6,-, Ci, u i ; U; > 0 for i = 1,..., T, i = 1, ...A;

The simplex iterations can be performed within a array of dimension (T+2) x (k+2)
which is displayed in table 2. bvt, t = 1,...,T, represent the basis variables and
nbi, i = 1, ---k, the nonbasic variables. Each one is one of the variables ut, vt, 6,-, or
c, for some i or t. $ = (4>i,t)i=i,...,k,t=i,...,T stores the representation of the nonbasic
variables in the current basis. The residuals columns contains 9ut or (1 — 8)vt, if
bvt is a data point, and zero otherwise. Initially the array contains the data, i.e.
bvt = ut or Vt, nbi — ̂ i o r ci, $ = X, and sgng(yt) (yt) as the tth component of the
residual column.

It remains to describe the calculation of the "marginal cost" reductions within .
this setup. For the nonbasic variable nbi, i=l,...,k, the "marginal cost" reductions
prove to be

: mcTi = E?=i <l>i,tl(bvt is a data point )[I(x',tsft < yc^))
{8I(y(t')>x'{t)ft) + (l-8)I(y{t)<x'{t)ft)
8I(yp) = x'(t)ft, bvt is some ut>, 0,,j < 0) + (1 - 9)I(yp\ = x[t)ft, bvt is some vt>, 0t?t <
+/(x'(<)/3 = yc(t)){(l - 9)I(yp) < yc^, 0^ > 0)
+8I(y{t) = yep), bvt is some ut>,<£i,t < 0) - 8I(y{t) = yc(t), bvt is some vt>, faj > 0)}]
— {8I(nbx is some ut>) + (1 — 8)I(nbi is some vt',yp) < yc(t))}

where for some basis variable bvt, if it represents a data point, this is (yp),
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