Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/247533 
Year of Publication: 
2019
Citation: 
[Journal:] Econometrics [ISSN:] 2225-1146 [Volume:] 7 [Issue:] 3 [Publisher:] MDPI [Place:] Basel [Year:] 2019 [Pages:] 1-28
Publisher: 
MDPI, Basel
Abstract: 
We compare the finite sample performance of a number of Bayesian and classical procedures for limited information simultaneous equations models with weak instruments by a Monte Carlo study. We consider Bayesian approaches developed by Chao and Phillips, Geweke, Kleibergen and van Dijk, and Zellner. Amongst the sampling theory methods, OLS, 2SLS, LIML, Fuller's modified LIML, and the jackknife instrumental variable estimator (JIVE) due to Angrist et al. and Blomquist and Dahlberg are also considered. Since the posterior densities and their conditionals in Chao and Phillips and Kleibergen and van Dijk are nonstandard, we use a novel "Gibbs within Metropolis-Hastings" algorithm, which only requires the availability of the conditional densities from the candidate generating density. Our results show that with very weak instruments, there is no single estimator that is superior to others in all cases. When endogeneity is weak, Zellner's MELO does the best. When the endogeneity is not weak and pw12 > 0, where p is the correlation coefficient between the structural and reduced form errors, and ?12 is the covariance between the unrestricted reduced form errors, the Bayesian method of moments (BMOM) outperforms all other estimators by a wide margin. When the endogeneity is not weak and ßp < 0 (ß being the structural parameter), the Kleibergen and van Dijk approach seems to work very well. Surprisingly, the performance of JIVE was disappointing in all our experiments.
Subjects: 
Gibbs sampler
limited information estimation
Metropolis&#x2013
Hastings algorithm
Monte Carlo method
weak instruments
JEL: 
C30
C11
C13
C15
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.