Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/257459 
Year of Publication: 
2020
Citation: 
[Journal:] Games [ISSN:] 2073-4336 [Volume:] 11 [Issue:] 4 [Article No.:] 41 [Publisher:] MDPI [Place:] Basel [Year:] 2020 [Pages:] 1-31
Publisher: 
MDPI, Basel
Abstract: 
Cooperation in social dilemmas plays a pivotal role in the formation of systems at all levels of complexity, from replicating molecules to multi-cellular organisms to human and animal societies. In spite of its ubiquity, the origin and stability of cooperation pose an evolutionary conundrum, since cooperation, though beneficial to others, is costly to the individual cooperator. Thus natural selection would be expected to favor selfish behavior in which individuals reap the benefits of cooperation without bearing the costs of cooperating themselves. Many proximate mechanisms have been proposed to account for the origin and maintenance of cooperation, including kin selection, direct reciprocity, indirect reciprocity, and evolution in structured populations. Despite the apparent diversity of these approaches they all share a unified underlying logic: namely, each mechanism results in assortative interactions in which individuals using the same strategy interact with a higher probability than they would at random. Here we study the evolution of cooperation in both discrete strategy and continuous strategy social dilemmas with assortative interactions. For the sake of tractability, assortativity is modeled by an individual interacting with another of the same type with probability r and interacting with a random individual in the population with probability 1-r, where r is a parameter that characterizes the degree of assortativity in the system. For discrete strategy social dilemmas we use both a generalization of replicator dynamics and individual-based simulations to elucidate the donation, snowdrift, and sculling games with assortative interactions, and determine the analogs of Hamilton's rule, which govern the evolution of cooperation in these games. For continuous strategy social dilemmas we employ both a generalization of deterministic adaptive dynamics and individual-based simulations to study the donation, snowdrift, and tragedy of the commons games, and determine the effect of assortativity on the emergence and stability of cooperation.
Subjects: 
adaptive dynamics
coordination game
evolutionary game theory
hawk-dove game
prisoners dilemma
replicator dynamics
tragedy of the commons
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.