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Abstract

We investigate a version of the classic Colonel Blotto game in which individual battles may

have different values. Two players allocate a fixed budget across battlefields and each

battlefield is won by the player who allocates the most to that battlefield. The winner of the

game is the player who wins the battlefields with highest total value. We focus on the case

where there is one large and several small battlefields, such that a player wins if he wins the

large and any one small battlefield, or all the small battlefields. We compute the mixed

strategy equilibrium for these games and compare this with choices from a laboratory

experiment. The equilibrium predicts that the large battlefield receives more than a

proportional share of the resources of the players, and that most of the time resources should

be spread over more battlefields than are needed to win the game. We find support for the

main qualitative features of the equilibrium. In particular, strategies that spread resources

widely are played frequently, and the large battlefield receives more than a proportional share

in the treatment where the asymmetry between battlefields is stronger.
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1. INTRODUCTION

We investigate theoretically and experimentally a multiple battlefield conflict in which

battlefields may have different values. As in the classic Colonel Blotto game, two players

compete to win battlefields by allocating a fixed amount of resources across them. A

battlefield is won by the player who spends the most on it, and the winner of the game is the

player winning the battlefields with highest total value. In terms of the classification in

Kovenock and Roberson (2012) we study a multiple battlefield conflict with auction contest

success function (CSF), budget-constrained use-it-or-lose-it costs, and a weighted majority

objective since for the overall win a player needs to win a majority of battlefields, weighted

by their values.

It is perhaps obvious that a player should favor more important battlefields relative to

less important ones. But by how much? If a large battlefield is worth twice as much as a

small battlefield, should it command twice as many resources? Should a player concentrate

the resources on the minimal set of battlefields necessary for the overall win or should he

spread resources over all battlefields? And do human subjects behave in the way predicted by

equilibrium?

Little is known about this type of games, either theoretically or empirically.

Theoretically, if players are symmetric each player has the same equilibrium probability of

winning the contest. Further, except for trivial cases (e.g. where the value of one battlefield is

greater than the combined value of all other battlefields) any equilibrium of the game must

involve mixed strategies, as in the classic Colonel Blotto game. Beyond this we know of only

limited results due to Young (1978). He interprets this contest as a game between lobbyists

with opposing interests, competing to bribe voters that may differ in the number of votes they

control. The lobbyists aim to win a majority of votes. Young considers the case where there is

one large and several small voters, such that a lobbyist wins if he gets the support of the large

and any one of the small voters, or of all the small voters. Young discusses two games,

differing in the number of voters, and reports that equilibrium expenditure is

disproportionately skewed towards the large voter.

Our experimental treatments are based on the games discussed by Young. In the

experiment, two subjects compete for objects and receive points for objects won. An object is

won by the player spending most on it, and some objects are worth more points than others.
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The winner of the game is the subject obtaining most points. Although this is a simple game

to describe, it is not clear whether subject behavior will conform well to theoretical

predictions. On the one hand it is extremely unlikely that behavior will match precisely the

equilibrium: identifying the equilibrium is computationally challenging and presumably

beyond the ability of experimental subjects (indeed, we use numerical methods to pin down

the equilibrium). On the other hand, even simpler versions of Colonel Blotto are notoriously

difficult to solve, and yet, as we discuss in the next section, experiments with these have

found behavior to be qualitatively in line with key features of equilibrium.

We use numerical methods to completely describe equilibrium strategies for our

experimental setting. We find that there is a unique mixed strategy equilibrium, under the

restriction that the small battlefields are treated symmetrically. As well as predicting that the

large battlefield receives on average more than a proportional share of the resources of the

players, the equilibrium also predicts that players almost always spread their budget over

more objects than are needed to win the contest.

The equilibrium mixed strategy is complicated and play in the experiment does not

match it in detail. In all treatments we can identify strategies that, if pitted against our

subjects’ strategies, would win more often than not. With more battlefields the game is more

complicated, firstly because there are more possible strategies, and secondly because some

simple strategies are more exploitable. Nevertheless, the degree of exploitability of actual

play is roughly the same across treatments, indicating that even though the game with a larger

number of battlefields is more complicated, the behavior of subjects is as close to

equilibrium, at least by this measure.

Even though play does not match the equilibrium in detail, we find evidence for some

of the equilibrium predictions. Strategies that spread resources over more battlefields than is

necessary to win the contest are played often and their frequency increases over time in all

treatments. In the game with more battlefields where the asymmetry between small and large

battlefields is more pronounced, the large battlefield receives on average more than a

proportional share of the total resources.

In the next section we review the related literature on Colonel Blotto games. Section 3

describes our game and its theoretical properties. Section 4 describes our experimental design

and procedures. Results are presented in Section 5 and Section 6 concludes.
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2. RELATED LITERATURE

The Colonel Blotto game was introduced in Borel (1921), where he considers three identical

battlefields, an auction contest success function, budget-constrained use-it-or-lose-it costs and

a majoritarian objective. Later studies introduced the term “Colonel Blotto” and adopted an

additive objective (i.e. players maximize the total value of battlefields won). For this latter

formulation of the game, Roberson (2006) shows that when all battlefields are identical a

player’s marginal distribution of her expenditure on a battlefield must be uniform in any

equilibrium; Hart (2008) extended this analysis to the case of a discrete budget. Thomas

(2013) extends the analysis to the case of asymmetric battlefields and shows that uniform

marginals, where the mean expenditure on a battlefield is proportional to its value, are a

sufficient condition for equilibrium.

Young (1978) extended the original majoritarian objective model of Borel (1921) to

the case of asymmetric battlefields. He studies vote-buying games in which players with

opposite interests allocate their budgets across voters. He considers two games, both

involving one large voter and several identical small voters, where a player needs to secure

the votes of the large voter and one small voter, or the votes of all small voters, to win. In

both games the large voter is predicted to receive a share of the budget above its proportion

of the votes. This vote-buying game is equivalent to a Colonel Blotto game with asymmetric

battlefields.

A small number of studies have recently examined variants of the Colonel Blotto

game experimentally.5 Avrahami and Kareev (2009) focus on contests between players with

differing strengths. In their contests the two players have different budgets, and they find that

subject behavior is sensitive to the relative budgets in the way predicted by equilibrium. They

conclude: “the results indicate that naive players can behave, intuitively, in a way that

approximates the sophisticated game-theoretic solution.” Chowdhury et al. (2013) also study

a game between asymmetric players, and compare the auction CSF with a lottery CSF. They

find that the probabilities of winning for players 1 and 2 are as predicted by the equilibrium,

and the bidding strategies differ across treatments in the direction predicted. They note some

interesting deviations from equilibrium, but overall conclude “ … it took only one hour for

5 Dechenaux et al. (2012) survey the experimental literature on contests more generally.
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subjects who were unfamiliar with this game to exhibit behavior consistent with

equilibrium”.6 In both of these studies battlefields are symmetric and players have an additive

objective. In contrast, our experiment studies a game with a majoritarian objective and

asymmetric battlefields.

Mago and Sheremeta (2012) study a setting with a majoritarian objective and an

auction CSF, but with linear costs. Thus, in their experiment subjects have to decide how

much of their budget to allocate to the contest, as well as how to allocate resources across

battlefields. They find that subjects make higher aggregate bids than predicted, which is not

possible in our setting.

There are two recent papers with asymmetric battlefields and budget-constrained use-

it-or-lose-it costs, but that differ from ours in other dimensions. Avrahami et al. (2013) study

a multiple-battlefield contest with asymmetric battlefields and an auction CSF, but an

additive objective. As shown by Thomas (2013), in equilibrium each object receives a share

of expenditure proportional to its value. Duffy and Matros (2013) study a multiple-battlefield

contest setting with asymmetric battlefields and a majoritarian objective, but where the

outcome of each individual battlefield is determined using a lottery rather than an auction

CSF. An important implication of this assumption is that, unlike in our setting, their game has

a pure-strategy equilibrium rather than a mixed-strategy equilibrium. Interestingly, in the

settings considered by Young (1978), the equilibrium of the game with a lottery CSF also

predicts that the large voter receives a share of the budget that exceeds its proportion of the

votes. Both Avrahami et al. (2013) and Duffy and Matros (2013) find that treatment

differences conform to equilibrium predictions.

3. AN ASYMMETRIC BLOTTO GAME

The game we study is an asymmetric version of the classic Colonel Blotto game introduced

by Borel (1921). Two players, A and B, simultaneously allocate identical endowments E

across n battlefields. Let N = {1, …, n} denote the set of battlefields. Each battlefield has a

6 Arad and Rubinstein (2012) also study a game with an auction CSF and budget-constrained use-it-or-lose-it
costs using a round-robin tournament in which each subject’s allocation is pitted against everybody else’s. They
observe significant deviations from equilibrium and interpret the observed choices as reflecting iterated
reasoning in several dimensions. Note however, that their subjects play a one-shot game, with no opportunity for
learning.
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value which is the same for both players, but some battlefields may be worth more than

others. We denote the value of battlefield i by vi. This asymmetry across battlefields is the

fundamental difference from the classical Colonel Blotto game.

Each battlefield is won by one of the players according to an auction contest success

function. Let 0j
ix be the amount allocated to battlefield i by player j. Battlefield i is won

by player A if B
i

A
i xx  , by player B if B

i
A
i xx  , and is randomly allocated with equal

probability if B
i

A
i xx  . We will use NA to denote the set of battlefields won by A and NB to

denote the set won by B.

The winner of the game is the player who wins battlefields with the greatest total

value. That is, we consider a majoritarian objective, where A wins if and only if





BA Ni

i
Ni

i vv . We assume throughout that 



BA Ni

i
Ni

i vv for any partition of battlefields, so

that there is always a winner and a loser.

As in the classical Colonel Blotto game, we assume that players’ entire endowments

must be spent on the battlefields, i.e., 



Ni

j
i Ex , j = A, B. In the terminology of Kovenock

and Roberson (2012) the contest cost function exhibits the use-it-or-lose-it technology. From

the point of view of the players, there are only two possible outcomes of the game: either win

or lose. Thus, assuming that the utility of a win exceeds that of a loss, each player maximizes

her expected utility by maximizing her probability of winning. This has the implication that

equilibria are independent of risk attitudes.

Since players are symmetric, each player wins with probability one-half in

equilibrium. Moreover, except in trivial cases, the only equilibria of the game are in mixed

strategies. However, beyond this little is known about equilibrium.7 To address this question

7
One thing we know is that results for the additive objective game do not carry over to majoritarian objective

games. To see this suppose E = 5 and v = (2, 1, 1, 1). Consider any strategy such that the amount allocated to the
first battlefield is uniformly distributed between 0 and 4, and the amount allocated to each of the other
battlefields is uniformly distributed between 0 and 2. Such a strategy constitutes an equilibrium in the additive
case (Thomas, 2013). (An example of such a strategy is x = (4 – 4ε, 2ε, ε, 1+ ε) with probability 0.5 and x = (4 –
4ε, 2ε, 1+ ε, ε) with probability 0.5, where ε is uniformly distributed between 0 and 1.) Any such strategy can be 
bettered by a strategy that puts 3 on the first battlefield and 2 on the second. This alternative strategy wins the
second battlefield with probability 1, and the first battlefield with probability 3/4, hence it wins with probability
3/4 overall.
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we follow Young (1978) and consider two games from the class of apex games.8 In one of his

games there are four battlefields with values v = (2, 1, 1, 1), while in the other there are five

battlefields with values v = (3, 1, 1, 1, 1). Young solved these two games assuming a finitely

divisible budget (the size of which is not stated) and reported the expected amounts allocated

to the large battlefield (but not the equilibrium strategies).

To identify theoretical predictions for these games we assume each player has a

budget of 120 indivisible units. We restrict attention to “object-symmetric” strategies, i.e.,

mixed strategies that put equal weight on all possible permutations of a given allocation

across symmetric battlefields. For example, in the four battlefield case, where the first

battlefield is the large battlefield and the other three are symmetric small battlefields, one

possible object-symmetric strategy consists of playing each of (80,40,0,0), (80,0,40,0) and

(80,0,0,40) with probability one-third. Note that the equilibrium of the game with object-

symmetric strategies is also an equilibrium of the original game. Even with this restriction,

the number of available strategies is rather large.9 We then calculate equilibrium strategies

numerically using the Gambit package (McKelvey et al., 2013).

Although the strategy spaces are large, the fact that these are two-player constant-sum

games makes the problem of computing equilibria tractable. In particular, the problem of

finding a mixed strategy equilibrium (more specifically in this case a minimax strategy) can

be expressed as a linear program for which practical solution algorithms are available.

Moreover, since the set of mixed strategy Nash equilibria for two-player constant-sum games

is convex, once an equilibrium has been found it is straightforward to verify if it is unique.

Appendix A gives technical details.

In both games the equilibrium is unique, and confirms Young’s results concerning the

amounts allocated to the large battlefield. In equilibrium, the expected share of resources

devoted to the large battlefield is around 50% in the four battlefield case and 58% in the five

battlefield case. In each case the large battlefield receives a share of resources exceeding its

value as a proportion of the total value. We refer to this as the super-proportionality property

8 In an apex game with n battlefields one “large” battlefield is more important than the other (n – 1) “small”
battlefields. In particular, to win overall a player must win either all the small battlefields or the large and one
small battlefield.
9 The number of object-symmetric strategies is approximately 52,000 in the four battlefield case and 430,000 in
the five battlefield case.
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of the equilibrium. The equilibrium also allows us to see which battlefields a player targets.

Does a player concentrate resources on all the small battlefields, or on the large battlefield

and just one small battlefield? Or does a player hedge and spread the budget over all

battlefields? At first sight it seems that there is no point spending resources on more

battlefields than are needed to win. However, in equilibrium a player places positive amounts

on more battlefields than are needed to win the game with a probability exceeding 90%. We

refer to this as the hedging property of equilibrium. In the next section we describe an

experimental design to test these predictions.

4. EXPERIMENTAL DESIGN AND PROCEDURES

The experiment was conducted at the University of Nottingham with 148 subjects recruited

from a university-wide pool of undergraduate students using ORSEE (Greiner, 2004). The

experiment consisted of nine computerized sessions, with no subject participating in more

than one session. The experiment was programmed in z-tree (Fischbacher, 2007).

All sessions used an identical protocol. Upon arrival, subjects were given a written set

of instructions that the experimenter read aloud.10 Subjects were then randomly paired and

played a sequence of 45 rounds of a game against the same opponent. Subjects were not told

who of the other people in the room was paired with them, but they knew that they were

playing the same subject throughout. Subjects were not allowed to communicate with one

another throughout the session. In each round a subject won either £0.50 or nothing and at the

end of the session subjects were paid their accumulated earnings from all 45 rounds.

In each round subjects were given a budget of 120 tokens and used these to bid for

‘objects’, each of which was worth a given number of points. A subject could only submit

bids that added up to 120, and had 90 seconds to submit the bids.11 A subject won an object if

he outbid his opponent on that object (or, in the case of a tie, if he won a random computer

draw). The subject that won the most points in a given round earned £0.50. At the end of each

round subjects were informed of how much they and their opponent bid for each object, who

won each object, and how much they earned.

10 Instructions for one of the treatments can be found in Appendix B.
11 If subjects timed out, the computer made a default decision allocating zero tokens to each object. Across all
sessions only 28 out of 6,660 allocation decisions resulted in a timeout.
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We ran three treatments. APEX4 and APEX5 use Young’s (1978) apex games with

four and five battlefields respectively. For these treatments Object A represented the large

battlefield. For comparison, we also ran a treatment using a (degenerate) apex game with

three symmetric battlefields (APEX3).12 For each treatment we conducted three sessions with

between 14 and 20 subjects in a session. Each session took approximately 1.5 hours and

subjects earned on average £11.25 (about $17 at the time of the experiment). Table 1

summarizes the experimental design.13

Table 1. Experimental treatments

Treatment Values of objects

Proportional
share of

expenditure
on object A

(vA/vi)

Equilibrium
share of

expenditure
on object A

Number of
pairs

Number
of

subjects

APEX3 v = (1, 1, 1) 0.33 0.33 23 46

APEX4 v = (2, 1, 1, 1) 0.40 0.50 26 52

APEX5 v = (3, 1 , 1, 1, 1) 0.43 0.58 25 50

Note that, in contrast to the theoretical analysis of a one-shot game discussed in the

previous section, in our experiment subjects play a repeated game. This motivates several

remarks. First, even though subjects play repeatedly, since a subject either wins £0.50 or

nothing in each round, equilibrium strategies are independent of risk preferences (Wooders

and Shachat, 2001). Second, use of a repeated play design requires a choice of how subjects

will be matched across plays: most experiments use either a random matching protocol in

which subjects are randomly re-matched from round to round or a fixed matching protocol

where subjects are kept in the same pairs. An advantage of the fixed pair protocol is that it

gives subjects a greater incentive to be unpredictable (Chowdhury et al., 2013). Also, keeping

subjects in the same pairs simplifies the structure of possible dependencies between decisions

12 The APEX3 game is isomorphic to the Colonel Blotto game with additive objective studied in Hart (2008).
For this game equilibrium marginal distributions are approximately uniform, with different weights placed on
odd and even allocations (see Hart, 2008).
13 At an early stage of our research we also ran some sessions with a budget of 5 indivisible units. This
permitted identification of equilibrium benchmarks without resorting to numerical methods. For completeness
we report these sessions in Appendix C.
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and in particular allows us to treat each pair as an independent observation since subjects in

one pair cannot influence or be influenced by the decisions of subjects in any other pair.

5. RESULTS

5.1 Predicted and observed distributions

We begin with an overview of our results and how they relate to equilibrium predictions.

Figure 1 displays the equilibrium and the empirical distribution of allocations for the APEX3

treatment. In equilibrium, the players use mixed strategies where the marginal distribution of

tokens on each object is approximately uniform on {0,…,80}. In contrast, there is a

pronounced bi-modality in subject choices, with subjects tending to place either very small

amounts or about half their budget on an object too often. This is similar to what is observed

in previous experiments with Colonel Blotto or related games (see Avrahami and Kareev,

2009, Chowdhury et al., 2013, and Mago and Sheremeta, 2012). Figure 1 also shows that the

distributions of bids are similar across the three objects, although subjects allocated slightly

more to Object A than to Object B than to Object C.14

Figure 1. Predicted and observed bids in APEX3

Next we turn to the treatments with asymmetric battlefields. Figure 2 displays the

equilibrium marginal distribution of bids for Object A (the large battlefield) and the

equilibrium marginal distribution of bids for one of the other objects (a small battlefield) for

the APEX4 treatment. The figure also shows the distributions actually observed in the

experiment, where for the marginal distribution on a small battlefield we pool the data from

14 Again, this echoes previous experimental findings. Chowdhury et al. (2013) also observe mild positional
order effects (see their table 3 and figure 3).
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all the small battlefields.

Figure 2. Predicted and observed bids in APEX4

Again, the observed distributions are bi-modal, and are markedly different from the

theoretical distributions. Relative to equilibrium, subjects too often place either very low

amounts or around two-thirds of their budget on the large battlefield. Analogously, a small

battlefield is often allocated an amount close to 0 or an amount close to one-third of the

budget.

Figure 3 compares the equilibrium predictions with the marginal distributions actually

observed in the APEX5 treatment. Similarly to APEX4, the observed distribution for the

large battlefield is bi-modal. Again there is a concentration of negligible bids and a second

concentration of higher bids. For this treatment the second mode is around three quarters of

the budget. Analogously, the distribution on a small battlefield is bi-modal with one mode

close to 0 and another around one-quarter of the budget.
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Figure 3. Predicted and observed bids in APEX5

In summary, for all treatments we observe bi-modal bidding patterns, suggesting

subjects sometimes give up on a battlefield and concentrate their forces on a subset of them.

The positions of the modes suggest that when concentrating on a subset of battlefields

subjects allocate budgets roughly in proportion to the value of objects within this subset.

5.2 Minimal winning and hedging strategies

Note that in order to win a round a player only needs to capture battlefields with a combined

value exceeding that of his opponent’s captured battlefields. To do this in APEX3 a player

simply needs to win two battlefields, thus subjects may find it natural to give up on one of the

battlefields and concentrate resources on just two of them. We refer to a strategy that places

zero on one battlefield as a minimal winning strategy. In contrast, a hedging strategy places a

positive amount on all three battlefields. Hedging strategies can be optimal because of the

uncertainty about the opponent’s strategy. For example, consider APEX3 and suppose one

player randomizes equally between bidding (60,60,0), (60,0,60) and (0,60,60). A best

response to this is (61,58,1) which wins with probability 2/3. Minimal winning strategies

have an equilibrium probability of around 7% in APEX3, but they are observed much more
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often than predicted (42% of submitted strategies are minimal winning).15

In APEX4 and APEX5 there are two types of minimal winning strategy. One targets

all the small battlefields, giving up on the large battlefield (e.g., the strategy (0,40,40,40) in

APEX4). The other type of minimal winning strategy targets the large and one small

battlefield, giving up on the other small battlefields (e.g. the strategy (80,40,0,0) in APEX4).

For both treatments the support of the equilibrium includes minimal winning strategies, but

according to equilibrium they should be rarely played – less than 10% of the time. Instead,

more than 90% of the time a player should use a hedging strategy, placing a positive amount

on the large and at least two small battlefields. Again, we observe that minimal winning

strategies are played much more often than is predicted by equilibrium. Minimal winning

strategies that place zero on the large voter are predicted to be used less than 1% of the time

in either treatment, but are used 13% of the time in APEX4 and 11% of the time in APEX5.

Minimal winning strategies that target the large and one small battlefield are predicted to be

used 5% of the time in APEX4 and 7% of the time in APEX5, but are actually used about

19% of the time in APEX4 and 20% of the time in APEX5.

Figure 4 presents the evolution of the proportion of hedging and minimal winning

strategies over time. For APEX4 and APEX5 “MWL” denotes minimal winning strategies

that focus on the large and one small battlefield, while “MWS” denotes minimal winning

strategies that focus on the small battlefields. In all three treatments the proportion of hedging

strategies observed increases over time. Thus, there is some evidence that subjects learn from

experience to switch from using minimal winning to using hedging strategies.

Figure 4. Proportions of minimal winning and hedging strategies

15 A similar result is obtained by Mago and Sheremeta (2012) in a majoritarian contest with linear costs. In their
experiment 35% of the time subjects bid only on two out of three objects, whereas in equilibrium they should
make positive bids on all three.
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5.3 Super-proportionality

Equilibrium predicts that players spend a disproportionate amount of their budgets on the

large battlefield. If subjects’ bids on objects were proportional to object values they would

place 40% and 43% of their budgets on the large battlefield in APEX4 and APEX5

respectively, while in equilibrium expected bids are 50% and 58% of budgets. Figure 5 shows

the share of expenditure on the large battlefield (Object A) relative to its proportional share,

i.e. (xA/120) ÷ (vA/vi). The theoretical prediction is that this measure is 1 for APEX3 (where

the battlefields are symmetric) and increases with the number of battlefields. Even though

bids on the large battlefield are not as high, on average, as predicted by equilibrium, Figure 5

suggests that Object A receives more than a proportional share of the budget. For APEX3, the

battlefields are symmetric and so the small deviation from proportionality suggests a

positional order effect. For APEX4 the allocation ratio is essentially the same, and so again

the small departure from proportionality may be attributed to a positional effect rather than to

strategic considerations. Allocations are clearly super-proportional in APEX5, although even

in this case they are well below the equilibrium prediction.

Figure 5. Share of budget allocated to large battlefield relative to proportional share

Formal statistical tests are presented in Table 2, which shows the share of the budget

allocated to object A in each treatment and p-values for tests against proportionality. We use

two-sided sign-rank tests treating each pair as an independent observation.16

16 This is equivalent to a test against equilibrium for APEX3. For tests against equilibrium in APEX4 and
APEX5 all p-values are less than 0.0005.
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Table 2. Budget share allocated to Object A (large battlefield)

Treatment
Proportional
Share (%)

Equilibrium
Share (%)

Number
of pairs

All rounds Last 15 rounds
Share (%) p-value* Share (%) p-value*

APEX3 33 33 23 35 0.0177 34 0.7380

APEX4 40 50 26 42 0.3037 42 0.3740

APEX5 43 58 25 49 0.0001 47 0.0094

* p-values based on two-sided sign-rank test that mean allocation to Object A is proportional to value.

Object A has a small but significant positional advantage in APEX3, although this

advantage becomes insignificant in the later rounds. In APEX4 the share allocated to the

large battlefield is slightly, but insignificantly, higher than a proportional share. In APEX5

the share allocated to the large battlefield is significantly higher than proportional, whether

we average across all rounds or focus on later rounds. Thus, we find significant evidence of

super-proportionality in APEX5, but not in APEX4.

After using this conservative approach to test our main hypothesis, we analyze

individual allocations to the large battlefield using multivariate analysis. Following

Chowdhury et al. (2013), we estimate a separate regression for each treatment taking the

form:

itAllocA )( )1()1(3)1(2)1(10   titititi winAAllocAOppAllocAAllocA 

 
s

itiss uDt  54 )/1( ,

where AllocAit refers to the number of tokens allocated by subject i to object A in round t,

AllocAi(t–1) is the same variable lagged, OppAllocAi(t–1) is the corresponding lagged variable

for the opponent of subject i, and winAi(t–1) indicates whether i won object A in the previous

round. The regressions also include session dummies, a reciprocal time trend and individual

random effects. We exclude any observations in which a subject timed out either in the

current round or in the previous one, and in which the subject’s opponent timed out in the

previous round (observations in which the opponent timed out in the current round are not

affected). Table 3 reports the coefficients and robust standard errors from the random effects

regressions. Session dummies are insignificant and are not reported.
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Table 3. Determinants of allocation to Object A

Treatments APEX3 APEX4 APEX5

Dependent variable: AllocAit

AllocAi(t-1)
-0.037
(0.038)

-0.007
(0.048)

0.014
(0.044)

OppAllocAi(t-1)
-0.045*
(0.027)

0.034
(0.032)

-0.043
(0.035)

AllocAi(t-1)  winAi(t-1)
-0.005
(0.030)

0.014
(0.041)

0.009
(0.035)

1/t
13.848**
(6.001)

24.782***
(7.336)

27.788**
(9.977)

Constant
43.990***

(1.886)
45.724***

(2.949)
58.261***

(3.691)

# Observations 2,024 2,262 2,143

# Subjects 46 52 50
*significant at 10%, **significant at 5%, ***significant at 1%.

Chowdhury et al. (2013) find that when subjects play against randomly changing

opponents, their strategies are serially correlated. Specifically, they find that the lagged

allocation variables and the interaction variable are useful predictors of a player’s allocation

to a battlefield (the significance of the latter variable they interpret as a “hot box effect”).

They also find that the serial correlation is considerably reduced when subjects play

repeatedly against the same opponent, and the hot-box effect disappears. In our treatments we

find very little evidence of serial correlation, and no evidence of a hot-box effect. The

opponent’s lagged allocation is marginally significant only in one of the treatments. On the

other hand, the significant trend means that allocations are predictable to some extent. Note

however, that the variable 1/t models a diminishing trend, and the significant negative trend is

essentially capturing a reduction in average amount allocated to Object A in initial rounds.17

5.4 Heterogeneity

For all treatments the lobbying game is a symmetric constant-sum game and so in equilibrium

each lobbyist wins with probability 1/2 in any play. This means that a player expects to win

17 Restricting the regression to the last 15 rounds, we find that the trend variable is not significant anymore,

whereas the significance of other variables remains broadly unchanged.
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22.5 out of the 45 games. In fact, some do considerably better than this. For example, in one

of the pairs one subject won 11 rounds and the other won 34 rounds, so that the difference in

wins was 23. Figure 6 shows the observed frequencies of each possible value of the

difference in wins. For comparison the theoretical distribution is also shown.

Figure 6. Theoretical and Observed Distributions of Differences in Wins

The figure shows that fewer than expected pairs have a small difference in wins and

more than expected have a large difference in wins. Theoretically, the expected difference in

wins is 5.38, while in the data the average difference in wins is 6.84. This difference is

significant (Chi-square test p = 0.028). The obvious interpretation is that some subjects are

better than others at playing the lobbying game.

To uncover the determinants of success in our experiment we run a probit regression

of the following form:
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Here  is the c.d.f. of the standard normal distribution, and the dependent variable Winit is a

binary variable that takes value 1 if subject i won in round t and 0 otherwise. MADTempit is

the mean absolute deviation of allocations across rounds and measures the variability of a

subject’s allocation between rounds, while MADAcrit measures the variability of the
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allocation across objects in a given round.18 MWLit and MWSit are indicator variables for

subject i playing different types of minimal winning strategy. In APEX3, there is only one

type of minimal winning strategy and so we replace the MWLit and MWSit variables with a

single variable MWit . The regression includes subject level random effects. Results are

reported in Table 4.

Table 4. Determinants of winning

Treatments APEX3 APEX4 APEX5

Dependent variable: Winit

AllocAit
-0.002**
(0.001)

-0.003*
(0.001)

0.002
(0.002)

MADTempit
0.005***
(0.002)

0.009***
(0.002)

0.020***
(0.002)

MADAcrit
0.007

(0.005)
0.007

(0.005)
-0.009
(0.009)

MWit
-0.138**
(0.066)

MWLit
0.115

(0.076)
0.106

(0.082)

MWSit
-0.166*
(0.097)

-0.005
(0.112)

Constant
-0.189*
(0.137)

-0.279***
(0.092)

-0.367***
(0.104)

# Observations 2,024 2,254 2,124

# Subjects 46 52 50
* significant at 10%, ** significant at 5%, *** significant at 1%.

Consistent with Chowdhury et al. (2013) we find that MADTempit is highly

significant, hence unpredictability of the allocation is one of the main determinants of

success; also consistent with their results, the variability of the allocation across objects does

not have a significant effect on the probability of winning. In APEX3, subjects tend to place

too much of their budgets on Object A, and to play minimal winning strategies too often.

18 If yijt is the allocation of subject i to object j at time t and n is the number of objects in the treatment,

nyyMADTemp
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Against this actual distribution of play subjects who placed less on Object A and used

minimal winning strategies less often were more likely to win. The picture in APEX4 and

APEX5 is a little different. Recall that, relative to equilibrium, subjects play minimal winning

strategies too frequently and place too little of their budgets on Object A. Thus, one might

expect that minimal winning strategies will win less often and strategies placing more on

Object A will win more often in these treatments. In fact this is not always the case. In

APEX4 minimal winning strategies that focus on the small battlefields are less likely to win,

but strategies (not necessarily minimal winning) that place more on Object A are also less

likely to win (both effects are marginally significant). In APEX5 we do not observe any

significant effect of the use of minimal winning strategies or the amount placed on Object A

on the probability of winning. These results for APEX4 and APEX5 may simply reflect that

given the out-of-equilibrium behavior of subjects, strategies that are closer to equilibrium in

terms of these specific metrics do not necessarily do better than strategies that are further

away. In the next section we look more closely at which strategies perform best against the

empirical distribution.

5.5 A measure of deviation from equilibrium: Exploitability

To measure how far observed play is from equilibrium we take advantage of the fact that

equilibrium mixed strategies restrict an opponent’s probability of winning to one-half. Any

mixed strategy that can be beaten with probability exceeding one-half cannot be an

equilibrium strategy. Intuitively, the greater the expected payoff one can obtain against a

mixed strategy, the further that strategy is from equilibrium play. Thus, to measure the extent

to which a strategy deviates from equilibrium we take the expected payoff from the best

response to this strategy. Table 5 displays this measure of exploitability, for some selected

strategies. We consider a “uniform” strategy and a “minimal winning” strategy. The uniform

strategy is a mixed strategy that induces a uniform marginal distribution of tokens on each

battlefield, with the expected allocation to a battlefield being proportional to its valuation. For

APEX3 the minimal winning strategy randomizes equally between (60,60,0), (60,0,60) and

(0,60,60); for APEX4 it randomizes equally between (80,40,0,0), (80,0,40,0), (80,0,0,40), and

(0,40,40,40); for APEX5 it randomizes equally between (90,30,0,0,0), (90,0,30,0,0),



20

(90,0,0,30,0), (90,0,0,0,30), and (0,30,30,30,30).19 Finally we report the exploitability of (and

below it the best response to) a mixed strategy defined over allocations used in the

experiment, where the probability of each allocation is equal to its empirical relative

frequency.

Table 5. Exploitability of strategies

Uniform Minimal
Winning

Rounds
1-15

Rounds
16-30

Rounds
31-45

All Rounds

APEX3
0.500 0.667 0.681

2-56-62

0.670

71-6-43

0.664

7-71-42

0.664

8-71-41

APEX4
0.750 0.750 0.707

6-42-41-31

0.696

76-1-1-42

0.673

71-2-2-45

0.674

71-2-2-45

APEX5
0.833 0.800 0.682

5-31-31-32-21

0.648

21-41-11-11-36

0.677

25-37-11-36-11

0.655

11-21-21-35-32

Note that as the number of battlefields increases the game gets more complex. With

more battlefields not only are there more strategies, but sub-optimal strategies are more

exploitable. While the minimal winning strategy can be beaten two-thirds of the time in

APEX3, it can be beaten 75% of the time in APEX4 and 80% of the time in APEX5. The

uniform strategy, which is an equilibrium strategy in APEX3, can also be beaten 75% of the

time in APEX4, and does even worse than the minimal winning strategy in APEX5, where it

can be beaten 83% of the time.

Turning to the data from the experiment, for any treatment we can find strategies that

beat the empirical distribution more than 60% of the time. In all cases the best responses to

the empirical distribution hedge by placing at least a small amount on all battlefields, beating

the modes in the data at zero. Indeed, more generally the best responses score highly by

beating modes in the data. Note also that although subjects in APEX4 and APEX5 place too

little on the large battlefield, relative to equilibrium, the best response to the empirical

distribution sometimes involves placing a small amount on the large battlefield. This is

19 These minimal winning strategies are mixtures of particular MWS and object-symmetric MWL strategies.

Different weights on the MWS and MWL components increase the exploitability of the strategy.
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consistent with the finding from the previous section that subjects spending less on Object A

sometimes win more often. This also underscores how challenging the super-proportionality

hypothesis is in these games. Not only is it difficult to identify equilibrium strategies, but if

the data is out-of-equilibrium sophisticated subjects might exploit this by choosing

allocations that are even further from equilibrium.

Notably, we find no clear pattern in the degree of exploitability of our subjects across

treatments. Subjects are less exploitable with experience in APEX3 and APEX4 and less

exploitable in the less complex APEX3 than in the more complex APEX4, but this pattern

breaks down once we consider APEX5. Overall, we find that for all treatments the empirical

distribution can be beaten around two-thirds of the time, with very little variation across

treatments. Thus, although simple strategies are more exploitable in more complex games,

subject behavior is no more exploitable in APEX5 than APEX3, suggesting that in the game

with more battles subjects “raise their game” and find ways to protect themselves from being

exploited.

6. CONCLUDING REMARKS

As Walker and Wooders (2001) have remarked in the context of other games with mixed

strategy equilibria, games requiring unpredictable play are often easy to play, but difficult to

play well. The Colonel Blotto game provides a good example. Although it is easy to describe

to subjects, and subjects have no trouble understanding the rules, sophisticated play is very

demanding. For our simplest treatment, corresponding to the classic Colonel Blotto game, it

is perhaps obvious that a sophisticated player should not favor one battlefield, as such

favoritism can be exploited by an opponent. It is perhaps equally obvious that in the more

complex version with asymmetric battlefields a player should favor the more important

battlefield. But it is not clear by how much it should be favored. If one battlefield has a value

that is twice as much as that of another battlefield, should it get twice as many resources? The

answer crucially depends on how battlefield values contribute to final victory or defeat. For

the case we consider, where the player who captures battlefields with the greatest total value

wins, equilibrium requires players to allocate super-proportional amounts to the large

battlefield. We would argue that the precise amount to be placed (in expectation) on the large

battlefield, and the precise equilibrium strategies are far from obvious. Indeed, we obtain
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equilibrium predictions using numerical methods that are beyond the cognitive capabilities of

our subjects.

Perhaps unsurprisingly, behavior in our experiment deviates from these equilibrium

predictions. First, we observe bi-modal distributions, where subjects choose either to spend

very little or a substantial proportion of their budget on a battlefield, with too little weight

placed on intermediate allocations. This is also observed in related Colonel Blotto

experiments. Second, and related to the first point, subjects too often submit allocations that

concentrate their resources on a minimal winning set of battlefields, placing zero on other

battlefields, whereas equilibrium behavior requires hedging more than 90% of the time.

Third, in games with asymmetric battlefields subjects spend too little on the large battlefield.

An implication of these deviations is that it is possible to find strategies that beat the

empirical distribution of allocations more than 60% of the time.

On the other hand, in spite of these deviations from equilibrium, we find evidence of

strategic sophistication. For example, while simple strategies are more exploitable in games

with more battlefields, we find that the exploitability of our subjects is quite similar across

treatments. Our experiment also finds support for some of the qualitative features of

equilibrium predictions. Although our subjects play hedging strategies only around 60% of

the time, this proportion increases over the course of the session. Similarly, in games with

asymmetric battlefields, subjects place less on the large battlefield than predicted, but in

APEX5, where the asymmetry between battlefields is more pronounced, they place a more

than proportional amount on the large battlefield.
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APPENDIX A: COMPUTATIONAL TECHNIQUES

Computing an equilibrium and verifying uniqueness

The games APEX3, APEX4, and APEX5 are two-player, constant-sum, symmetric games.

As two-player, constant-sum games, a minimax strategy, and therefore a Nash equilibrium,

can be written as the solution to a linear program (Dantzig, 1951). We first develop some

generic notation. Write the pure strategies available to each player as {1, 2, ..., M}. Let uij

denote the payoff to a player, if the player chooses pure strategy i while the other player

chooses pure strategy j. Let π denote a mixed strategy, where πi indicates the probability

assigned in the mixed strategy to pure strategy i. Then, the payoff to a player of choosing

strategy i if his opponent plays a given mixed strategy π is 

M

j jiju
1

 . Two-player, constant-

sum games have a value, which we write as ω. We must therefore have that no pure strategy

for a player can give him a payoff greater than the value, that is,





M

j
jiju

1

 ,,,2,1 Mi  (1)

and that the mixed strategy is a proper distribution,

πi  ≥  0 ,,,2,1 Mi  (2)





M

j
j

1

.1 (3)

Because of the symmetry of the games APEX3, APEX4, and APEX5, and the payoff

structure, the value of the game is known in advance to be ω = 1/2.20 Therefore, finding a

minimax strategy reduces to finding a mixed strategy π which satisfies the constraints (1), (2),

and (3). This can be embedded into a linear program, where the choice of the objective

function is arbitrary. Any feasible solution is a minimax equilibrium of the game.

This formulation also permits verification of the uniqueness of the equilibrium. It is

easy to see that the set of equilibria is convex in this setting, as the set of π satisfying the

constraints (1), (2), and (3) is convex. Let Φ denote the set of equilibria. The set of equilibria 

is a singleton if and only if ii     maxmin for all strategies },,2,1{ Mi  .

20
Knowing the value in advance allows us to simplify the construction of the linear program. Dantzig’s original

construction computes the value of the game as part of its output.
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Therefore, uniqueness can be verified as follows. Pick a strategy i. Let i be the optimal

value of the linear program minπ πi subject to the constraints (1)-(3), and let i be the optimal

value of the linear program maxπ πi subject to the constraints (1)-(3). If i = i for all

},,2,1{ Mi  , then the equilibrium is unique.

The step of verifying uniqueness can be done relatively efficiently once one

equilibrium has been found, as this equilibrium is a feasible solution; the linear programming

algorithm can be started at this feasible solution. Note also that if one is interested in knowing

simply whether Φ is a singleton, it is enough to consider only the strategies i which have

value one-half at the first known equilibrium; strategies which are strictly inferior need not be

checked. The main computational challenge is in finding the first feasible solution.

Improving efficiency

Turning specifically to the games studied in this paper, with a budget of E = 120 tokens, the

strategy spaces of these games are quite large. Even restricting attention to battlefield-

symmetric strategies, APEX3 has 1261 strategies, APEX4 has 52311, and APEX5 has

430256. However, preliminary explorations with smaller budgets led us to conjecture that

equilibria in these games would have small support. We therefore used an iterative method to

identify the set of strategies.

Iteration on supports

Consider the game APEXk with a budget of E tokens. Let S be the set of pure strategy token

allocations. We construct an increasing sequence of supports, nSSS  10 , such that

Sn is the support of an equilibrium of the game. Pick some initial guess at the support of the

equilibrium, and call it SS 0 . (The correctness of the construction does not depend on the

value of the initial guess 0S ; for this approach to work efficiently, it should be small in size.)

At each step i of the algorithm, we consider the restriction of APEXk in which players

can choose only strategies in Si. This induces a well-defined two-player constant-sum game,

which can be solved for some equilibrium πi; insofar as |Si| << |S| solving the restricted game

should be much faster than solving the full game. Then, given πi, we consider all the
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strategies which were deleted from the restricted game, iSS \ , and order them in decreasing

order by their payoff relative to the candidate equilibrium πi. If there are no strategies which

attain a payoff greater than the equilibrium payoff of one-half, then the algorithm

terminates, and πi is an equilibrium of the full game with strategy set S. If not, then we

construct Si+1 by adding the top t strategies from iSS \ to those in Si, and iterating.

The number of strategies t added at every step is arbitrary; we obtained sufficiently

good performance with t = 25. The tradeoff is that if t is too small, then the algorithm will

require many iterations, and therefore many calls to the linear program solver, to find the

equilibrium, while if t is too large the algorithm will consider many strategies which are not

in the equilibrium, slowing down individual runs of the linear programming solver.

In any event, the correctness of the approach does not depend on the scheme used for

adding strategies. Because Si+1 is always a strict superset of Si, and because all the supports

are bounded above (in the sense of set inclusion) by the whole strategy set S, this iterative

process is guaranteed to terminate in a finite number of steps.

Iteration on budgets

The support iteration approach is most effective if the initial guess 0S on the support of pure

strategies used in equilibria is accurate. Working on a conjecture that the equilibrium has a

similar qualitative structure for various budget sizes, we considered a sequence of games with

token budgets E = 15; 30; 60; 120. Given an equilibrium π*(E) for the game with budget E,

we then constructed an initial guess for the support iteration for the game with budget 2E by

doubling all the token allocations as follows. A pure strategy in APEXk can be written as a

vector of token allocations k
bba 1)(  . The initial guess for the support of the equilibrium in the

game with budget 2E is then the set of allocations such that the allocation k
bba 1)2/(  is played

with positive probability in the equilibrium π*(E) of the game with budget E.

Using this approach, we verified that the main qualitative properties of the

equilibrium referenced in the main body of the paper regarding the marginal distributions of

token allocations on each contest and the prevalence of supermajority strategies also hold

with other budget sizes. We also found that the equilibrium is unique for most - but not all -

choices of the budget E.
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APPENDIX B: INSTRUCTIONS

General rules

Welcome! This session is part of an experiment in the economics of decision making. If you
follow the instructions carefully and make good decisions, you can earn a considerable
amount of money.

In this session you will be competing with one other person, randomly selected from the
people in this room, over the course of forty-five rounds. Throughout the session your
competitor will be the same but you will not learn whom of the people in this room you are
competing with. The amount of money you earn will depend on your decisions and your
competitor’s decisions.

It is important that you do not talk to any of the other people in the room until the session is
over. If you have any questions raise your hand and a monitor will come to your desk to
answer it.

Description of a round

Each of the forty-five rounds is identical. At the beginning of each round your computer
screen will look like the one below.

You have 120 tokens. You must use these to bid on 4 objects labelled A, B, C and D. You get
points for winning objects – object A is worth 2 points and the other objects are worth 1 point
each. For each object you can bid any whole number of tokens (including zero), but the total
bid for all objects must add up to 120 tokens. You bid by entering numbers in the boxes, and
then clicking on the “Submit” button. If the bids you submit do not add up to 120 the
computer will indicate by how many tokens the bid needs to be corrected. If you do not
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submit a valid bid within 90 seconds the computer will bid for you and will place zero tokens
on each object.

When everyone in the room has submitted their bids, the computer will compare your bids
with those of your opponent. Your computer screen will look like the one below (the bids in
the figure have been chosen for illustrative purposes only):

You win an object if you bid more for it than your opponent. (If you and your opponent bid
the same amount the computer will randomly decide whether you or your opponent wins the
object, with you and your opponent having an equal chance of winning the object. In this case
the computer screen will indicate with an asterisk that the object was awarded randomly).
The winner of the round is the person who gets the most points.

The winner of the round earns 50 pence, the other person earns zero.

Ending the Session

At the end of the session you will be paid the amount you have earned from all forty-five
rounds. You will be paid in private and in cash.

Now, please complete the quiz. If you have any questions, please raise your hand. The
session will continue when everybody in the room has completed the quiz correctly.



28

Quiz

1. Suppose your bids and your competitor’s bids were as follows:

Object Points Your Bid Opponent’s Bid

A 2 30 60

B 1 30 60

C 1 30 0

D 1 30 0

How many points would you receive? ________ .

How many points would your opponent receive? ________.

What would your earnings from this round be (in pence)? ________.

What would your opponent’s earnings from this round be (in pence)? ________.

2. Suppose your bids and your competitor’s bids were as follows:

Object Points Your Bid Opponent’s Bid

A 2 30 10

B 1 30 30

C 1 30 40

D 1 30 40

Who wins object A? Me / My Opponent / Randomly Determined (Circle One)

Who wins object B? Me / My Opponent / Randomly Determined (Circle One)

For the remaining questions suppose the computer awards object B to your opponent:

How many points would you receive? ________.

How many points would your opponent receive? ________.

What would your earnings from this round be (in pence)? ________.

What would your opponent’s earnings from this round be (in pence)? ________.
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APPENDIX C: COARSE BUDGET TREATMENTS

We also run experiments using a coarse budget of 5 indivisible units. The motivation for the

coarse budget is that there are relatively few strategies and this makes the game much easier

to analyze (and perhaps to play). Having a coarser budget has little effect on the equilibrium

expected expenditures on objects. Experimental results show that object A's share of

expenditure is higher than proportional in both asymmetric battlefield treatments and is very

close to the equilibrium share in the APEX5 treatment. Section C.1 contains the equilibrium

prediction for all three apex games with a coarse budget. Section C.2 contains the

experimental results.

C.1 Equilibrium predictions for the coarse budget

The game APEX3

We restrict attention to object-symmetric strategies. There are 5 possible object-symmetric

strategies in this game, and the following table gives player 1’s expected payoff in the

normal-form game with these five strategies (for example, “410” represents the object-

symmetric mixed strategy that puts equal probability on each of the pure strategies (4,1,0),

(4,0,1), (1,4,0), (0,4,1), (1,0,4), (0,1,4)). Recall that, because there are only two possible

outcomes (winning and losing), risk attitudes are irrelevant under expected utility theory and

a player’s payoff can be identified with the probability of winning. Recall also that any

equilibrium of this game is also an equilibrium of the original game.

500 410 320 311 221
500 0.5 1/3 1/3 0 0
410 2/3 0.5 0.5 1/3 1/6
320 2/3 0.5 0.5 0.5 2/3
311 1 2/3 0.5 0.5 1/3
221 1 5/6 1/3 2/3 0.5

There is a continuum of equilibria in the game, described by strategy combinations

(1 320 + (1 – 1) 311, 2 320 + (1 – 2) 311) for 1/2  1, 2  1. This includes a “pure”

strategy equilibrium (320, 320), but recall that 320 is actually a particular mixed strategy.

Note also that 320 is the only strategy in the normal form game above that survives the

iterated elimination of weakly dominated strategies.
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The game APEX4

There are 16 object-symmetric strategies. The table below is the resulting normal form game

(entries in the table correspond to the probability that the row player wins).

5000 4100 3200 3110 2300 2210 2111 1400 1310 1220 1211 0500 0410 0320 0311 0221

5000 0.5 3/4 3/4 0.5 3/4 0.5 0 3/4 0.5 0.5 0 3/4 0.5 0.5 0 0

4100 1/4 0.5 11/12 5/6 11/12 3/4 0.5 11/12 3/4 2/3 1/3 11/12 3/4 2/3 1/3 1/6

3200 1/4 1/12 0.5 0.5 11/12 11/12 1 11/12 5/6 5/6 5/6 11/12 5/6 3/4 2/3 2/3

3110 0.5 1/6 0.5 0.5 1 11/12 3/4 1 11/12 5/6 7/12 1 11/12 5/6 7/12 1/3

2300 1/4 1/12 1/12 0 0.5 0.5 0.5 11/12 11/12 1 1 11/12 5/6 11/12 5/6 1

2210 0.5 1/4 1/12 1/12 0.5 0.5 0.5 1 23/24 11/12 11/12 1 23/24 7/8 5/6 3/4

2111 1 0.5 0 1/4 0.5 0.5 0.5 1 1 1 3/4 1 1 1 3/4 0.5

1400 1/4 1/12 1/12 0 1/12 0 0 0.5 0.5 0.5 0.5 11/12 11/12 1 1 1

1310 0.5 1/4 1/6 1/12 1/12 1/24 0 0.5 0.5 0.5 0.5 1 23/24 47/48 11/12 1

1220 0.5 1/3 1/6 1/6 0 1/12 0 0.5 0.5 0.5 0.5 1 1 11/12 1 11/12

1211 1 2/3 1/6 5/12 0 1/12 1/4 0.5 0.5 0.5 0.5 1 1 1 11/12 5/6

0500 1/4 1/12 1/12 0 1/12 0 0 1/12 0 0 0 0.5 0.5 0.5 0.5 0.5

0410 0.5 1/4 1/6 1/12 1/6 1/24 0 1/12 1/24 0 0 0.5 0.5 0.5 0.5 0.5

0320 0.5 1/3 1/4 1/6 1/12 1/8 0 0 1/48 1/12 0 0.5 0.5 0.5 0.5 0.5

0311 1 2/3 1/3 5/12 1/6 1/6 1/4 0 1/12 0 1/12 0.5 0.5 0.5 0.5 0.5

0221 1 5/6 1/3 2/3 0 1/4 0.5 0 0 1/12 1/6 0.5 0.5 0.5 0.5 0.5

Using the Gambit software (McKelvey et al., 2013) we found a unique equilibrium of

the normal-form game above, with probabilities 30/77 on 4100, 12/77 on 3200, 8/77 on 2111,

24/77 on 1211 and 3/77 on 0221. In this equilibrium, the expected share of the total budget

allocated to the large object is 0.51
55
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 . The expected

share of each small object is 0.16
55

9

55

28
1

3

1









 . Note that the equilibrium places positive

probability on the hedging strategies 2111 and 1211.

The game APEX5

Again we restrict attention to object-symmetric strategies. We also discard some strategies

that look implausible (obtained equilibria are later checked against invasion by those

strategies). We discarded strategy 14000 and strategies that allocate the budget to a losing

subset of small objects, leaving 12 object-symmetric strategies:
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50000 41000 32000 31100 23000 22100 21110 13100 12200 12110 11111 02111

50000 0.5 7/8 7/8 3/4 7/8 3/4 0.5 3/4 3/4 0.5 0 0

41000 1/8 0.5 31/32 15/16 31/32 29/32 13/16 29/32 7/8 3/4 0.5 3/8

32000 1/8 1/32 0.5 0.5 31/32 31/32 1 15/16 15/16 15/16 1 7/8

31100 1/4 1/16 0.5 0.5 1 47/48 15/16 47/48 23/24 43/48 3/4 5/8

23000 1/8 1/32 1/32 0 0.5 0.5 0.5 31/32 1 1 1 1

22100 1/4 3/32 1/32 1/48 0.5 0.5 0.5 95/96 47/48 47/48 1 15/16

21110 0.5 3/16 0 1/16 0.5 0.5 0.5 1 1 31/32 7/8 25/32

13100 1/4 3/32 1/16 1/48 1/32 1/96 0 0.5 0.5 0.5 0.5 1

12200 1/4 1/8 1/16 1/24 0 1/48 0 0.5 0.5 0.5 0.5 1

12110 0.5 1/4 1/16 5/48 0 1/48 1/32 0.5 0.5 0.5 0.5 31/32

11111 1 0.5 0 1/4 0 0 1/8 0.5 0.5 0.5 0.5 7/8

02111 1 5/8 1/8 3/8 0 1/16 7/32 0 0 1/32 1/8 0.5

Using the Gambit software, we found a continuum of equilibria described by strategy

combinations (1 41000 + (1 – 1) 11111, 2 41000 + (1 – 2) 11111) for 16/29  1, 2  4/7.

The expected share allocated to the large object is between 77/145 ≈ 0.53 and 19/35 ≈ 0.54.  

C.2 Experimental results for the coarse budget

The coarse budget experiment had one APEX3 session, one APEX4 session, and two APEX5

sessions. Instructions are identical to the 120 token budget treatment (see Appendix B),

except for references to the number of tokens. Table C1 summarizes the experimental design

and the average share of budget allocated to Object A in the experiment.

Table C1. Experimental treatments

Treatment
Number
of pairs

Values of objects vA/vi

Equilibrium
share of

expenditure
on Object A

Observed
share of

expenditure
on Object A

APEX3 8 v = (1, 1, 1) 0.33 0.33 0.35

APEX4 10 v = (2, 1, 1, 1) 0.40 0.51 0.45

APEX5 15 v = (3, 1 , 1, 1, 1) 0.43 0.53-0.54 0.57
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Observed allocations in APEX3

The frequencies of strategy types, averaged over all 45 rounds, are shown in Table C2 below.

With a slight abuse of notation, we use 320 to denote both the object-symmetric strategy in

which each of the six possible permutations has equal probability (in the equilibrium

analysis), and the strategy type, i.e. the set of permutations not necessarily with the same

frequency (in the analysis of the data). Note that the equilibrium strategy type 320 has the

highest proportion in all pairs. However, most pairs played non-equilibrium strategies more

than 20% of the time. Across all pairs 35% of tokens were allocated to Object A. However,

the positional advantage of Object A is statistically insignificant (sign-rank test two-sided p-

value = 0.4833).

Table C2. Observed allocations in APEX3

Type\Pair 1 2 3 4 5 6 7 8 All

500 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

410 0.00 0.22 0.02 0.32 0.01 0.07 0.26 0.00 0.11

320 0.56 0.68 0.77 0.52 0.67 0.69 0.43 0.72 0.63

311 0.08 0.02 0.01 0.08 0.19 0.20 0.06 0.19 0.10

221 0.37 0.08 0.20 0.08 0.13 0.04 0.24 0.09 0.15

Observed allocations in APEX4

Table C3 compares the frequencies of strategy types with equilibrium in APEX4, pooling

across pairs. Behavior is quite far from equilibrium. The only two hedging strategies

predicted in equilibrium are 2111 (with 10% probability) and 1211 (with 31% probability).

These are observed only 4 and 5% of the time respectively in the experiment. Although we

observed hedging strategies quite frequently (e.g. 3110 was observed 10% of the time), they

are not played as frequently as in equilibrium, and they are not the hedging strategies that

should be played in equilibrium. Across all pairs, 45% of the budget is allocated to Object A.
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This is significantly higher than proportional (sign-rank test two-sided p-value = 0.0217), but

also significantly lower than the equilibrium prediction (sign-rank test two-sided p-value =

0.0050).

Table C3. Observed allocations in APEX4

Strategy

Type
4100 3200 2111 1211 0221 3110 2210 1220 Other

Predicted

frequency
0.39 0.16 0.10 0.31 0.04 - - - -

Observed

frequency
0.20 0.20 0.04 0.05 0.22 0.10 0.05 0.04 0.09

Observed allocations in APEX5

Table C3 compares the frequencies of strategy types with equilibrium in APEX5, pooling

across pairs. (There is a small interval of equilibria, with varying weights on 41000 and

11111. Table C4 reports the midpoint). As in APEX4, the proportion of hedging strategies

observed is lower than predicted, 34% overall, and these often correspond to strategies that

should not be played in equilibrium. Across all pairs, 57% of the budget is allocated to Object

A. This is significantly higher than proportional (sign-rank test two-sided p-value = 0.0007),

and we cannot reject the hypothesis that the share is different from 19/35 (the upper bound of

the equilibrium prediction) (sign-rank test two-sided p-value = 0.1728).

Table C4. Observed allocations in APEX5

Strategy

Type
41000 11111 50000 02111 31100 32000 21110 Other

Predicted

frequency
0.56 0.44 - - - - - -

Observed

frequency
0.27 0.10 0.17 0.12 0.12 0.07 0.07 0.08
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Summary

Overall the results for the coarse budget are qualitatively similar to the results with the fine

budget. Over all rounds, object A is allocated a slightly more than proportional share in

APEX4 and a clearly super-proportional share in APEX5; hedging is frequently observed

though not as frequently as equilibrium theory would predict. The main difference between

the coarse budget and the fine budget experiments is that, with the coarse budget, the

observed share for the large object in APEX4 is significantly higher than proportional and the

observed share in APEX5 is substantially closer to equilibrium.
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