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In this paper we measure knowledge spillovers arising from venture-capital

�nanced companies on the patenting activities of other companies and com-

pare them to spillovers from established �rms. We develop a novel measure to

to identify the appropriate spillover pool based on backward citations which

re�ect channels for learning between �rms. Using panel data of U.S. �rms

we show that venture capital investment in start-ups generates signi�cant

spillovers on the patent quantity and quality of other �rms. Counterfactual

estimates suggest that these spillovers are larger than those generated by

corporate R&D. We address potential concerns about causality with an in-

strumental variable strategy using changes in federal and state tax incentives

as instrument for R&D and past fund raising as instrument for venture capital

investment.
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1. Introduction

Governments around the world are eager to stimulate the venture capital industry through

public policy: venture capital funds are tax free in France and the UK, the Canadian

government directly acts as a venture capitalist through the Business Development Bank

of Canada and the European Union provides �nancing for venture capital funds with the

help of the European Investment Fund. One possible reason for government intervention

is that VC �nanced start-ups contribute to innovation: Between 1983 and 1992, venture

capital �nanced R&D accounted for 8% of industrial innovation in the US, while the

ratio of venture capital to R&D was only 3% (Kortum and Lerner, 2000). Innovation in

itself is not a market failure, yet a large body of literature showed that corporate R&D

exhibits large positive spillovers and consequently the observed investment in R&D is

lower than the social optimal amount (Bloom, Schankerman, and Van Reenen, 2013).

There are at least three reasons to doubt, that spillovers of venture capital are similarly

large than the spillovers of corporate R&D and therefore deserve a preferential treatment

by the government: First, venture capital is used for all kind of investments such as adver-

tising and not only for investment in research. Second, the aim venture capital �nanced

start-ups is to bring a particular product to the market and therefore their research might

be more narrow in focus than the research of corporate R&D. Third, Bloom, Schanker-

man, and Van Reenen (2013) �nd that small �rms generate few spillovers, as they tend

to operate more in technology niches. As venture capital backed start-ups are naturally

small this might point to a limited potential for spillovers.

In this paper we measure knowledge spillovers of venture capital-backed start-up com-

panies and compare their relative size to knowledge spillovers to the external e�ects of

corporate R&D. We �nd that VC-�nanced �rms generate positive spillovers on other

�rms' quantity and quality of patents. Counterfactual simulation suggest that per dol-

lar of investment knowledge spillovers from venture capital are signi�cantly larger than

spillovers from conventional R&D. Descriptive evidence points to two potential reasons:

First, research of venture capital �nanced start-ups is particularly innovative measured

by the number of cites and the generality of the resulting patents. Second, start-ups do

not commercialize technological niche products, but in contrast are central in technology

space.

For this study, we follow a large literature assuming that higher spillovers increase the

productivity of every dollar invested in innovation. The reason is that knowledge �spills�

over and thus learning between companies occurs. If we observe that venture capital-

�nanced R&D results in larger spillovers, i.e. leads to a larger increase in research output
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of a given company for a given investment than conventional R&D does, then we can

conclude that the external e�ect of start-ups is larger than that of established companies.

The innovation output of a company can be readily measured by the quantity and quality

of patents and the input can be gauged by the size of the R&D stock or the total amount

of venture capital received of a company. The problem is, however, that there is no direct

measure for the size of spillovers.

To measure spillovers, the crucial challenge is to identify the �spillover pool�, compa-

nies from which a particular company might learn and therefore spillovers could originate.

However, as knowledge �ows are in general unobserved, identifying this spillover pool has

proven to be challenging. One often used approach is to include companies that are close

in physical space, the idea being that knowledge is communicated via personal contacts,

giving rise to local spillovers. Another approach originated by Ja�e (1986) is to include

in the spillover pool companies which use the same technologies measured by the tech-

nology classes of the their patents and which therefore are close in technology space.

The rationale is that companies which work for example on �robots� (technology class

901) learn most from other companies working on robots. Bloom, Schankerman, and

Van Reenen (2013) extended this concept by also including companies which work in

�similar� technologies and call this new measure Mahalanobis distance. Two technolo-

gies are similar if companies often hold patents of the two corresponding patent classes

together in their patent portfolio. For example patents about robotics and arti�cial

intelligence are complementary and therefore collocated in companies.

While both approaches to de�ne the spillover pool, geographical distance and techno-

logical distance, are intuitively appealing, they are based on an a priori reasoning about

the learning process and not on direct evidence of knowledge �ows. This conceptually

weakness was �rst recognized by Ja�e, Trajtenberg, and Henderson (1993). They showed

that patents cite more often patents of companies which are geographically closer than of

companies that are at a larger distance. In the innovation literature backward citations

between patents are an accepted direct - albeit noisy - measure of knowledge �ows.1

Thus, this observation vindicates the use of geographical distance to de�ne the spillover

pool. In this paper, we suggest to go one step further and to use the direct information

on knowledge �ows embodied in the backward citations to de�ne the spillover pool of a

company. For example, suppose patents about robotics often cite patents about informa-

tion processing but not vice versa. Then the spillover pool of robotics companies should

include companies in semiconductors and information processing but not the other way

1Ja�e, Trajtenberg, and Fogarty (2000) showed with a survey that if a patent cites another there was
indeed a direct interaction between the inventors in 60% of all cases.
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round.

To implement this idea, we develop in the spirit of Bloom, Schankerman, and Van Reenen

(2013) a weighing matrix based on the citation propensities between di�erent technology

classes to modify the technological distance measure of Ja�e (1986). The advantage of

this �citation-augmented� distance measure is two-fold. (i) It allows to capture knowl-

edge �ows between companies that are not necessarily close in technology space, but that

have a (backward citation) proven record of learning from each other. Thus, it accommo-

dates the insight that important sources of knowledge spillovers lie outside the industry

in which a �rm operates. (ii) In contrast to the Ja�e- and the Mahalanobis-measure, it

allows spillover �ows between companies to be asymmetric (as backward citations be-

tween two technology classes can be asymmetric) while by construction the technology

distance never is. We think this measure to be both a more general and a more realistic

speci�cation of knowledge �ows among �rms that are certainly anything but symmetric.

Our data come from two sources, Compustat and VentureXpert. Compustat contains

balance sheet data for all U.S. publicly listed companies. VentureXpert is a prime source

for venture capital investment and fund-raising data. We select all companies which

patented at least once in the period from 1990 to 2005. Patent data are from the NBER

U.S. Patent Citations Data File and from data �les of Lai, Amour, Yu, Sun, Torvik, and

Fleming (2011) for which we create a name match per hand to the venture capital data.

For the Compustat Data, the NBER provides a unique identi�er to match the balance

sheet data with patent counts and cites.

Using our new distance metric we calculate for each company in Compustat and in

VentureXpert a value for the spillover measure for established companies and for venture

capital �nanced companies, respectively. In our estimation we then use the two new

spillover measures as explanatory variables for the patenting productivity of a company

along with its R&D or venture capital stock. A major challenge in the estimation proce-

dure is that a company does not randomly invest in innovation but changes its outlays

responding to its own productivity and the technological opportunities available. To see

the potential endogeneity problem, suppose a particular technology �eld experiences a

positive technological shock. Then it might be easier to produce patents in this �eld and

at the same time companies working in the same technology �eld might increase their

research and development outlays. Similarly, venture capital funds might allocate their

investment to technology �elds hit by a positive shock. Therefore the two spillover terms

might pick up the e�ect of technological progress and as a result could be spuriously

high. To address this endogeneity problem we use an instrumental variable approach

with two instrumental variables.
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We instrument R&D expenditures of established companies with the level of R&D tax

credit in a state as in Bloom, Schankerman, and Van Reenen (2013) and venture capital

investment with past fund-raising of buyout funds (Nanda and Rhodes-Kropf, 2012).

The idea is that the introduction of R&D tax credits in the di�erent U.S. states has a

direct in�uence on the level of research and development by lowering costs. At the same

time, it is unlikely that government o�cials are able to react in time to a change in the

technological frontier. Venture capital spending is instrumented with past fund-raising

of private equity buyout funds. Buyout funds and venture capital funds belong both to

the class of private equity. Institutional investors often allocate funds to private equity

without distinguishing between the two subclasses. Therefore buyout fund-raising is

correlated with venture capital fund-raising but potentially uncorrelated with the arrival

of technological opportunities of VC backed companies.

Our results show that not only established �rms, but also VC-�nanced �rms generate

signi�cantly positive spillovers on other �rms' quantity and quality of patents. We �nd

consistently strong spillovers for established �rms for all alternative de�nitions of the

spillover pool. In contrast, for VC-�nanced start-ups, the results di�er across di�erent

distance measures. If we use the information on backward citations to construct the

spillover pool, we �nd that the spillover e�ects of VC-�nanced �rms are statistically

signi�cant and positive. In contrast, using the Ja�e or the Mahalanobis measures there

are only little measurable spillover e�ects. This provides evidence in support of our

conjecture that using backward citation patterns to de�ne the spillover pools improves

the measurement of spillovers.

We also provide a back of the envelope calculation of the relative size of the spillover

e�ects. We consider two counterfactual scenarios, one in which we increase R&D spending

by 1 Million US $, and one in which we increase R&D spending by 10 percent. We �nd for

both scenarios that the external e�ect of R&D and venture capital investment is at least

10% of the social return and that the relative share of external versus private returns is

more than 50% larger for VC-�nanced �rms than for established companies. Taking the

result of our most conservative speci�cation at face value, a one million US $ increase in

R&D spending results on average in 0.01 patents for other companies while one million

US $ more venture capital investment results in 0.13 patents for other companies.

A reason for the large spillovers of venture capital might be that venture capital �-

nanced companies are central in technology space. This stands in contrast to the �ndings

of Bloom, Schankerman, and Van Reenen (2013) which �nd that small companies are in

technological niches and therefore lack the potential to strongly in�uence other compa-

nies. In addition research of venture-capital �nanced start-ups also seems to be particular
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innovative: Patents of these companies are highly cited and more general than the av-

erage. Yet, this is true even in the year in which these companies receive their �rst

investment. This points to venture capitalist choosing to fund companies with a large

spillover potential and not to investors changing the e�ectiveness or the focus of the

research undertaken.

The contribution of our paper is thus twofold. First, we develop a novel distance

measure between �rms based on patent citations instead of technology distance alone.

This allows us to better capture the knowledge �ows generated from VC-�nanced �rms

which tend to be small and hence almost by de�nition not likely to generate spillovers

if the Ja�e or Mahalanobis index is used. Second, we are the �rst to provide a direct

measurement of innovation spillovers generated by venture capital �nanced �rms and to

compare the size of these spillovers to spillovers of corporate R&D. Our results con�rm

that VC-�nanced �rms generate positive spillovers and that these spillovers are relatively

larger than those of established companies' R&D.

Our results complement the �ndings of Kortum and Lerner (2000). In their seminal

paper, Kortum and Lerner �nd that venture capital �nanced R&D is much more potent

in producing patents than R&D �nanced by established companies. However, as their

analysis is based on aggregated industry data, it does not allow to disentangle direct and

indirect e�ects of venture capital �nancing on patent production. Thus, while it shows

that VC is overall very e�ective in stimulating patent production, it does not provide

evidence on how much of this direct e�ect is due to knowledge spillovers, let alone on

how large such spillovers are in comparison to spillovers generated by conventionally

�nanced R&D. This study also contributes to the large literature measuring the private

and social returns of R&D undertaken by established companies which is summarized in

Hall, Mairesse, and Mohnen (2009). In general, this literature �nds large and positive

social returns of R&D. However, it does not yet consider any di�erential e�ects from

venture capital �nanced research.

The paper proceeds as follows: In section 2 we describe the data used and provide

summary statistics. In section 3, we lay out the empirical strategy for measuring spillovers

of R&D and venture capital. In section 4 we present our empirical results and section 5

concludes.
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2. Data and Descriptive Statistics

For our dataset we combine patent data with �rm level data of venture capital �nanced

companies and established companies in the US from 1990 to 2005. The patent data is

from the NBER containing all utility patents �led in the US with name of the applicant,

year of application, the state of application, the number of cites a patent receives and a

classi�cation according to the 3-digit US patent class. This classi�cation is determined

by the patent examiner and sorts patents into one of 400 functional groups.2 This

classi�cation gives a �ne grained view of the wide variety of patents and correspondingly

of the technological focus of the patent assignee. To complement the data at the end of

the considered time period we use the Harvard patent dataset of Lai, Amour, Yu, Sun,

Torvik, and Fleming (2011). The resulting dataset contains around 2.45 million patents

and is matched to the two �rm data sources which we discuss next.

Our �rm level data source for established companies is the US Compustat �le. This

data can be easily matched to the the NBER Patent-Citation Data File using a unique

identi�er provided by the NBER (Hall, Ja�e, and Trajtenberg, 2001). The Compus-

tat File contains yearly accounting data for US publicly listed companies with company

name, the �scal year, the state of the �rm head quarter, the four-digit SIC code, sales

and research and development expenditures. To calculate the R&D stock from R&D

expenditures we apply the perpetual inventory method with a 15% depreciation rate

(following inter alia Hall, Ja�e, and Trajtenberg 2005). Additionally, we delete all com-

panies whose data we conceive as erroneous: for example companies whose sales increase

by more than 100% or companies which produce patents with zero R&D spending. The

resulting database contains 1317 companies with 232'846 patents.

The second �rm level data source is Thomson Reuters VentureXpert which comprises

investments data in US venture capital (VC) �nanced companies. Each record contains

the name of the investee company, the investment date, a four-digit SIC code and the

estimated amount invested. The latter is our main measure for total available funds of a

company. In addition we know the investment stage of the company, i.e. if it is a seed,

an early stage, expansion or late stage investment. We delete all companies whose �rst

investment is before 1990. Analogous to the calculation of the R&D stock we calculate

the VC stock with perpetual inventory method.

We match this investment data by company name to the patent data with the help of

algorithms from the Apache Lucene library and check the results by hand. The start-up

data set contains 1672 companies with 12'791 patents. Summary statistics for the dataset

2In theory there are 800 functional groups, yet we only observe a positive patent count in 400 of them.
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are shown in Table 1.

Table 1: Summary statistic

Established Companies

mean sd min max p10 p90
Average R&D in million dollar 42.81 127.90 0 1819 1 93
Average Sales in million dollar 1176.77 4892.96 0 125759 13 2506
Number of patents (total) 176.80 666.62 0 12383 1 371
Forward cites (total) 1965.90 8310.43 0 171352 8 3770
Generality (total) 49.83 194.34 0 3806 0 97
Years in the data 10.97 4.18 1 16 5 16
Number of companies 1317

Venture Capital-backed Companies

mean sd min max p10 p90
Total funding in million dollar 2.29 4.32 0 41 0 8
Number of patents (total) 7.65 12.54 0 136 0 20
Forward cites (total) 165.02 446.62 0 10048 0 400
Generality (total) 2.82 5.07 0 72 0 7
Years in the data 5.09 2.88 1 16 2 9
Number of companies 1672

3. Empirical Strategy

In this section we discuss �rst the measures used for innovative activity and then di�erent

ways to de�ne the spillover pool which may generate spillovers.

3.1. Using Patenting Activity to Measure Innovation

Measuring the innovative activities of companies is intrinsically di�cult. The challenge is

in particular to �nd measures that are available for all the �rms that are in the focus of the

investigation, not just for subsamples of �rms. In the innovation literature, it is generally

accepted that patenting activity of �rms is a suitable output measure. The advantage

of using patent data for our analysis is that they are available for both established as

well as for VC-�nance companies. Moreover, using patent related measures allows us to

capture not only the quantity of �rm innovation activities, but also their quality.

For our analysis, we follow the practice of Hall, Ja�e, and Trajtenberg (2001) and

use several variables to measure patenting quantity and quality: patent count, patent

cites, and generality. Patent count is a purely quantitative measure of the extent of
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innovative activity. Patent cites counts the number of citations a patent receives and thus

re�ects the quality of the innovation (Hall, Ja�e, and Trajtenberg, 2005). Furthermore, to

measure the general applicability of a patent we calculate for each patent the Her�ndahl

index across technology classes for the patents by which the patent is cited (Trajtenberg,

Henderson, and Ja�e, 1997). Thus we capture the dispersion across technology classes of

patents using the patent. The �generality� measure used in the regression is calculated as

one minus this Her�ndahl Index. One potential concern to be taken into account is that

the citing behavior might change from year to year and from technology to technology.

To account for these changes, we scale the last two measures by the average value in a

particular year and a technology class following Bernstein (2012).

3.2. De�nition of the Spillover Pool: Distance Measures

The rationale for knowledge spillovers is that a �rm may learn from other �rms. One

reason might be that scientists from both companies meet and exchange ideas, or a

�rm hires scientists previously employed by another �rm, or a �rm learns via scienti�c

publication or by reverse engineering. The canonical way to establish innovation spillover

e�ects is to identify which of the companies are most likely to generate spillovers, de�ne

them as the spillover pool and �nd an empirical association of R&D spending of the

spillover pool with outcome variables of the �rms under consideration. Obviously the

main challenge is to identify which of the companies a �rm is most likely to learn from

as learning is in general unobserved.

In the literature, the two most common approaches are based on geographical and

technological distance. The �rst of these two approaches is based on the idea that

knowledge is communicated via personal contacts. Thus, the idea is to focus on companies

that are close in physical space and hence give rise to local spillovers (Ja�e, Trajtenberg,

and Henderson, 1993). An alternative de�nition of a spillover pool has been developed

by Ja�e (1986). According to his de�nition, the spillover pool of a particular company

consists of companies that are close in the �technology space�. The rationale here is that

companies learn from other companies that are active in same technologies. The Ja�e

distance measure is the uncentered correlation between the patent share vectors

TechJaffei,j = s′isj

where si is the share of patents of company i over various technology classes standardized

by their �rm patent share dot product si = Si

(SiS′i)
1
2
.

Bloom, Schankerman, and Van Reenen (2013) extended this concept, using a Maha-
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lanobis distance metric. Their de�nition of a spillover pool is based on the idea that

companies learn not only from companies using the same technology but also from com-

panies using similar technologies. The similarity of two technologies is measured by how

often these patents embodying these two technologies are collocated in a company. To

implement this concept, Bloom, Schankerman, and Van Reenen (2013) develop the Ma-

halanobis distance measure introducing a weighing matrix ΩMal to the Ja�e distance

measure, arriving at

TechMalhanobis
i,j = s′iΩ

Malsj

The quality of these alternative de�nitions of the spillover pool depends on how well

they capture the learning of companies from other �rms. While both types of measures,

geographical distance and technological distance, are appealing in indicating a potential

for spillovers, a drawback is that they are not based on direct evidence for actual learning

to happen.

A direct measure for such learning is given instead by backward citations on patents.

Patent A cites patent B if the patent B constitutes �prior art�, i.e. a backward citation

indicates that patent A draws on the knowledge of patent B. As Ja�e, Trajtenberg, and

Fogarty (2000) show, backward cites do indeed constitute a valid measure for knowledge

�ows. According to them, around 60% of all backward cites correspond to some form

of interaction between the inventors.3 Deng (2008) estimates the economic value of the

knowledge spillover derived from a backward citation in the US semiconductor industry

in the 1980s and 1990s to be on average between $ 0.6 and 1.2 million R&D equivalent

dollars. An indication how these knowledge �ows may depend on geographical distance

is provided by Ja�e, Trajtenberg, and Henderson (1993) who show that companies are

more likely to cite other companies which are more closely in physical space. As Gri�th,

Lee, and Van Reenen (2011) show this home bias of knowledge spillovers has faller over

time, more so in traditional sectors and less so in pharmaceuticals and IT and commu-

nication technologies. However, it has not been analyzed yet to what extent companies

are more prone to cite companies which are close in technology space. To study this

question we plot in Figure 1 the cross citation patterns between relatively broad tech-

nology subcategories de�ned in Hall, Ja�e, and Trajtenberg (2001). For visualization

we use the broad technology subcategories because they are easier to interpret. Every

technology subcategory comprises several technology classes and the mapping is given in

the appendix of Hall, Ja�e, and Trajtenberg (2001).

3Nelson (2009) compares di�erent measures of technology di�ucsion such as backward citations, licens-
ing and publications. He concludes that patent citations are the most restrictive measure of di�usion
which suggests that the spillover e�ects identi�ed provide a lower bound of the true e�ects.

9



Figure 1: Cross-Citation Patterns
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Figure 1 depicts how many backward citations (in shares) patents in a technology

subcategory on the y-axis draw from patents in a technology subcategory on the x-

axis in the year 2000. Apparently, there is indeed a strong tendency of patents in a

particular technology class to cite patents from their own technology subcategory. Inter-

estingly, however, there is also a signi�cant number of citations from other technology

subcategories. One can visually see �clusters� of backward citations between similar tech-

nologies, as for example in computer hardware and software, comprising communication,

computer periphery, and information storage. Another such cluster is drugs with organic

compounds, resins, medical instruments and coating.

Figure 2 illustrate these technology clusters. As expected, almost three quarters of

the backward citations used in patents from the technology class Drugs are taken from

the technology class Drugs itself. Another 9% of its backward cites, however, are from

organic compounds. Similarly, patents in the technology class Hardware and Software

draws 60% of its backward cites from its own technology class. But more than 15% of its

backward cites are drawn from communications and another 10 % from the technology

class �Information Storage�.

Figure 3 illustrates the share of backward cites a patent in a particular technology

subcategory draws from technologies classes other than its own. This share is on average

around 30%. A particularly low share of outside citations are medical instruments that

draw only 10% of its backward cites from outside its own technology class, while in

contrast coating draws almost 50% of its backward cites from outside.

Another interesting observation to be made from Figure 1 is that the pattern of back-

ward citations is not symmetric. While patents in the agricultural technology class cites

patents from drugs, drug patents do not cite patents from agriculture.

Taken together, this evidence suggests that there are signi�cant knowledge �ows across

technology classes, although not necessarily symmetric ones; Companies learn not only

from companies which do the same thing technological wise but also from companies

which work in di�erent technology �elds.

We suggest therefore to use the information provided by backward citations and in-

corporate the citation pattern in de�ning the spillover pool. In particular, we develop

a weighing matrix based on the backward citations and use this weighing matrix to

modify the Ja�e-distance measure. The advantage of this citation-augmented distance

measure is two-fold. (i) It allows to capture knowledge �ows that occur between com-

panies that are not necessarily close in technology space, but that have a (backward

citation) proven record of learning from each other. (ii) In contrast to the Ja�e- and the

Mahalanobis-measure, it allows spillover �ows between companies to be asymmetric, as
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Figure 2: Citation patters from other technologies
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Figure 3: Share of cites from other technological subcategories

backward citations between two companies can be asymmetric while by construction the

technology distance never is.

More speci�cally, we incorporate the citation pattern in the distance metric using a

weighing matrix following Bloom, Schankerman, and Van Reenen (2013). To de�ne the

distance between technology class k and l we calculate the share of cites l draws from k,

i.e.

ωl,k =
Citesl,k∑
mCitesl,m

Then we arrange these weights in a matrix ΩCites. Note that ΩCites is asymmetric because

it traces the �ow of knowledge between technology classes.

The resulting citation-augmented distance between company i and company j is then

given by

TechCites
i,j = s′iΩ

Citessj

A simple example shows that using this citation-augmented distance measure, we can

trace knowledge �ows that the Ja�e index would fail to capture. Suppose Company

D has all its patents in the technology �Drugs� and company A has all its patents in

�Agriculture�. Then the patent share vectors are SD =

[
1

0

]
and SA =

[
0

1

]
. As
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there are no common technologies, the Ja�e distance measure would yield a value of 0,

indicating that no spillovers occur between these two companies. Suppose now that 50%

of all cites from agriculture are from drugs and 50 % from itself, while drugs only cites

itself. This leads to the following citation matrix:

WCites =

[
0.5 0.5

0 1

]

The citation-augmented distance of the agricultural company A to the drugs company

D is hence

PCites
AD = S′AW

CitesSD = 0.5.

However, D does not get any knowledge from A, so

PCites
DA = S′DW

CitesSA = 0.

Figure 4 plots the di�erent distance metrics for our sample. This plot shows that there

is independent information in our citation-augmented distance measure as compared to

both, the Ja�e and the Mahalanobis measure. For instance, while the Mahalanobis weight

only increases distance relative to the Ja�e measure our citation-augmented distance can

both increase and decrease the measure relative to the Ja�e measure.

As indicated above, the citation-augmented distance measure is markedly asymmetric.

In Figure 5 we plot the distance between companies pairwise, i.e. the distance from

company 1 to company 2 at the vertical and the distance from company 2 to company 1

at the horizontal axis for 0.5% sample of our data. The distances are of course positively

correlated, but not perfectly so.

3.3. Empirical Design

We are interested in estimating the following log-linearized Cobb-Douglas type produc-

tions function of company i at time t:
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Figure 4: Plotting di�erent distance measures against each other

Figure 5: Citation-augmented distance from and to a company
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Outcomei,t = β0 + β2 · ln

(
∑
j 6=i

TechCites
i,j ·R&Di,t−1) + 1


+ β4 · ln

(
∑
j 6=i

TechCites
i,j · V Cj,t−1) + 1


+ β5 · ln[R&Di,t−1 + 1] + β6 · ln[V Ci,t−1 + 1] + Controls+ ε (1)

where the outcome variable is either the patent count, the number of cites, the patent

originality or generality of a company. We apply the inverse hyperbolic sine transforma-

tion to the outcome variables but the results are quantitatively similar with a ln+1 trans-

formation. The second and third term is the distance weighted sum of R&D spending or

VC investment the spillover pool, respectively. We use as distance metric the citation-

augmented distance measure TechCites
i,j de�ned above for the exposition but show results

for all types of distance metrics. A major problem we have to address is that the size

of R&D and VC investment are the outcome of an optimization process of the company

and therefore endogenous. There are two sources of endogeneity which we address in

turn: unobserved heterogeneity of the company and unobserved technological progress

over time or technology classes.

Companies might di�er in their unobserved research productivity because they have

better or worse researchers or some companies might have already a patent on a particular

basis technology and thus might be the only one to exploit the cumulative nature of inno-

vations. By the cumulative nature of the innovative process, past shocks might in�uence

current expenditures for innovation and therefore variables are only pre-determined, not

strictly exogenous. Thus we resort to pre-sample mean scaling to account for �rm-�xed

e�ects. We also include in our estimation a complete set of year and industry dummies.

Unobserved technological progress might drive investment in innovation and patenting

activity. This can cause a spurious correlation between our output measures and the

spillover or investment variables. To alleviate this problem we use a two-step instrumental

variable strategy: First we predict R&D spending and venture capital funding with the

help of factors which are plausible to be exogenous to technological progress. With these

predicted values we calculate the spillover terms and then use the predicted values as

instruments in the equation (1)

To isolate exogenous variation in R&D expenditures we use local supply side shock

caused by the staggered introduction of R&D tax-credits across states in the US follow-
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ing Bloom, Schankerman, and Van Reenen (2013). These tax-credits lower the cost to

do R&D and therefore should in equilibrium increase its optimal level. The literature

surveyed in Bloom, Schankerman, and Van Reenen (2013) suggests that there is a degree

of randomness in the introduction and the level of R&D tax-credits across states and

therefore it is plausible that a change in the instrument is exogenous to technological

progress.

As instrument for venture capital spending we use fund-raising of leveraged buyout

funds one year before the investment following Nanda and Rhodes-Kropf (2012). The

supply of venture capital is greatly in�uenced by the asset allocation of institutional

investors into �private equity�, the broad category encompassing venture capital and

buyout funds. By using buyout fund-raising we capture that part of VC investments

which is due to increases in available capital unrelated to technological opportunities of

venture capital-backed start-ups.

4. Results

4.1. Descriptive Evidence

In our framework, spillovers change the productivity of research of a company such that,

for a given sum of R&D investment, a company produces more and/or better patents if

it receives more spillovers. In this section we take a �rst look at the data to see whether

this is indeed the case. We �rst calculate how many patents are to be expected given the

investment in R&D expenditures, the industry and the year. We then look at the residual,

i.e. the deviation from the true number of patents from the expected number of patents.

If it is indeed true that spillovers improve the research productivity, then there should

be a positive association between the spillover measures and this residual. In Figure 6

we plot the patent productivity residuals for several patent measures and the spillovers

measures which we also correct for R&D expenditure, industry and year. We �nd a

clear positive association between these residuals and spillovers from both established

companies (left side of the panel) and from venture capital �nanced companies (right

side of the panel).

4.2. Summary of the Main Results

Table 2 reports our main results for the citation-augmented distance measure. We use

three di�erent outcome measures: the total number of patents in a given year, the number

of scaled forward cites and the scaled generality of patents. We use for each dependent
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Figure 6: Research Productivity and Spillover

(a) Patent Count (b) Patent Count

(c) Forward Cites (d) Forward Cites

(e) Generality (f) Generality
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variable three di�erent estimation methods: In the �rst column we report OLS results,

then we add �rm �xed e�ects and in the third column we use IV estimation to account

for endogeneity.

All coe�cients for the OLS and the �rm-�xed e�ect regression are signi�cantly di�er-

ent from zero on conventional level. This provides prima facie evidence for technology

driven spillovers, but � as discussed above � the coe�cients might just take up the

in�uence of technological progress. If this is the case our estimated coe�cients overstate

the true e�ect. To account for this potential endogeneity, we report in the third column

for each outcome variable an estimation with instrumental variables. Except the coe�-

cient for own venture capital stock all coe�cients are signi�cantly di�erent from zero on

conventional levels and have a similar size across speci�cations.

As both the dependent and the independent variable are in logs, the estimates should be

interpreted as a change in percentage terms. Therefore, according to the IV speci�cation,

an increase in the stock of R&D of 10% results in an increase in the number of patents

of 3.21%. The same percent increase in venture capital yields 1.94% more patents. In

percentage terms spillovers are much smaller for venture capital �nanced companies than

for established companies: a 10% increase in spillovers of established companies yields

2.03% more patents whereas a 10% increase in spillovers of venture capital �nanced

companies results in 1.05% more patents. Yet, the spillover measure of venture capital

has with 45.14 a much smaller average value than the spillover measure for established

companies with 6742.07. Consequently a ten percent increase is in dollar terms much

larger for spillovers originating from R&D than for spillover originating from venture

capital.

To gauge the relative sizes of the di�erent e�ects we conduct back of envelope calcula-

tions for two di�erent counterfactual scenarios and report the results in Panel A of Table

3. In the �rst scenario we increase the amount of R&D or venture capital investment

for one year for one company and calculate given the estimated coe�cients the resulting

increase in patents for all other companies. We repeat this step for all companies and

then take the average over all resulting change in patents. In the second scenario we

do the same, except that we increase investment by 10%. Note that an average ven-

ture capital �nanced company has on average 1 million US $ per year VC investment

while on average an established companies has a yearly R&D budget of 42 Million US

$. Thus the �rst scenario constitutes in percentage terms a large increase in investment

for the VC-�nanced company and a small increase for the established company. In the

second scenario the considered dollar amounts are quite unequal for the di�erent types

of companies. For further details of this calculation please refer to the Appendix A.
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A one million US dollar increase in R&D investment yields around 0.07 more patents in

an established company while it results in around 0.36 additional patents for a venture

capital �nanced company. In other companies (measured according to our citation-

augmented distance measure), the increase is 0.01 for an established company and 0.42

for a venture capital �nanced company. On average 14% of all patent production is an

external e�ect if an established company invests while it is more than 54% if a venture

capital �nanced company invests. In the second scenario the numbers for established

companies are much higher (and so is investment) and the share of external patent

production increases to 43% for established companies.

In these calculations, the estimated impact of venture capital might be too large be-

cause we only consider companies which patented at least once. Thus we neglect all

investment of companies which did not result in at least one patent. Yet, we also do

not know if these companies were trying to patent at all. To ameliorate this problem we

calculate a correction factor by industry and year. The correction factor is the total sum

of VC investment in our sample divided by the total sum VC investment in the database.

Then we divide the total investment by this factor. Thus we arti�cially increase invest-

ment in industries which are unsuccessful in patenting, arriving at a lower bound for the

e�ect of VC spillovers. We recalculate all the coe�cients of the main result tables and

then use these coe�cients to calculate for the two counterfactual scenarios. We report

the results in Panel B of Table 3.

The spillover e�ects are much smaller in this speci�cation but still quite large: An

increase in million US$ venture capital investment results in 0.13 patents for other com-

panies while the same increase in R&D results only 0.01 patents. The social return of

venture capital investment is around 7.75 times the social return of R&D investment.

This estimate is larger than the estimates found in the literature: Kortum and Lerner

(2000) and Popov and Roosenboom (2012) �nd both that the social return of venture

capital investment is around three times larger in terms of patents than the social return

of R&D.

4.3. Robustness: Alternative de�nitions of the spillover pool and di�erent

outcome variables

As discussed in section 3, there are two alternative ways to construct the spillover pool

by using the Ja�e and the Mahalanobis distance measure and we results using these

measures are reported in Table 4. The only di�erence as compared to the results of the

citation-augmented distance measure is that the coe�cient for venture capital spillovers

is markedly smaller and not signi�cantly di�erent from zero on conventional levels. All
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Table 2: Coe�cient estimates using the citation-augmented distance

Patent Count Cites Generality
OLS FE IV OLS FE IV OLS FE IV

ln(Spillover Est.) 27.8∗∗∗ 21.0∗∗∗ 20.3∗∗∗ 27.2∗∗∗ 20.9∗∗∗ 21.0∗∗∗ 30.2∗∗∗ 22.9∗∗∗ 22.8∗∗∗

(3.08) (2.69) (2.81) (2.95) (2.63) (2.78) (3.44) (3.02) (3.20)
ln(Spillover VC) 8.6∗∗∗ 8.1∗∗∗ 10.5∗∗∗ 7.9∗∗∗ 7.2∗∗∗ 9.4∗∗∗ 8.9∗∗∗ 8.7∗∗∗ 9.7∗∗∗

(2.05) (1.88) (3.10) (2.21) (2.08) (3.54) (2.45) (2.30) (3.55)
ln(R&D Stock) 48.4∗∗∗ 39.4∗∗∗ 32.1∗∗∗ 47.3∗∗∗ 37.1∗∗∗ 24.8∗∗∗ 49.0∗∗∗ 39.7∗∗∗ 31.4∗∗∗

(1.38) (1.58) (5.77) (1.46) (1.54) (6.64) (1.48) (1.57) (5.97)
ln(VC Stock) 13.1∗∗∗ 9.2∗∗∗ 19.4 14.7∗∗∗ 11.3∗∗∗ 33.7∗∗ 13.5∗∗∗ 9.5∗∗∗ 41.0∗∗∗

(1.26) (1.32) (12.92) (1.52) (1.56) (13.77) (1.60) (1.65) (13.63)
ln(Sale+1) 12.2∗∗∗ 7.9∗∗∗ 13.2∗∗∗ 11.7∗∗∗ 8.1∗∗∗ 17.1∗∗∗ 11.3∗∗∗ 7.6∗∗∗ 14.2∗∗∗

(1.24) (1.19) (4.20) (1.35) (1.27) (4.86) (1.36) (1.31) (4.46)
Pre-sample FE 40.7∗∗∗ 42.1∗∗∗ 42.4∗∗∗ 44.5∗∗∗ 41.2∗∗∗ 42.2∗∗∗

(1.92) (2.28) (1.66) (2.13) (1.81) (2.12)

F-Value . . 28.48 . . 28.45 . . 28.54
R2 0.53 0.57 0.57 0.46 0.51 0.50 0.47 0.50 0.49
N 22071 22071 22071 22071 22071 22071 22071 22071 22071

Note: All standard errors are clustered on the industry-year level. ***, **, * indicate statistical

signicance at the 1%, 5%, and 10% level, respectively. To increase the readability of the table we

multiply each estimate by 100.
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Table 3: Counterfactual increase in patents

Panel A: As-is VC spending

Scenario 1: Increase spending by 1 Million Dollar

External Return Private Return Social Return Share

Established 0.01 0.07 0.08 0.14
VC 0.42 0.36 0.78 0.54

Scenario 2: Increase spending by 10% of current investment

External Return Private Return Social Return Share

Established 0.28 0.37 0.65 0.43
VC 0.21 0.09 0.30 0.69

Panel B: Adjusted VC spending

Scenario 1: Increase spending by 1 Million Dollar

External Return Private Return Social Return Share

Established 0.01 0.03 0.04 0.29
VC 0.13 0.30 0.43 0.31

Scenario 2: Increase spending by 10% of current investment

External Return Private Return Social Return Share

Established 0.33 0.17 0.50 0.65
VC 0.20 0.05 0.25 0.78

22



other coe�cient estimates are very similar in size and signi�cance as compared to the

results reported in Table 2. Apparently, including the information on cross citations

to de�ne the spillover pool improves the measureability of spillovers for venture capital

�nanced companies.

In Table 5 we report other outcome variables. The �rst column reports the estimates

for the originality of the patents of a company. The originality of a patent is one minus

the Her�ndahl-index over the shares in di�erent patent classes from which the patents

cites. In column two and three, we use the probability that a patent has more cites than

the median and the 99% quintile in one year and patent class as outcome variable. In

the last three column we report the unscaled version of all the outcome variables used

in the main speci�cation. All resulting estimates are consistent with our results in the

main speci�cation.

4.4. What makes venture capital-�nanced companies di�erent?

We measure higher spillovers from VC �nanced start-ups than from regularly �nanced

R&D. There might be two possible reasons for this: The VC investment process itself

might cause the start-ups to exhibit large spillovers, a treatment e�ect. This means VC

fund manager have a way to improve the research of their investee companies. Second,

venture capitalist might choose to invest in start-ups which have high spillovers ex-ante, a

selection e�ect. For example VC backed start-ups might commercialize new technologies

with large growth potential, but also a lot of risk.

In this section we present tentative evidence that VC backed start-ups are already very

innovative ex-ante and central in the technology space. This points to an selections e�ect,

as venture capitalist only can in�uence a company after investment and at the time of

�rst investment the general technology position is already �xed. This is consistent with

the �ndings in the literature that venture capital is invested in innovative �rms (Caselli,

Gatti, and Perrini, 2009; Hellmann and Puri, 2000; Engel and Keilbach, 2007). Yet, the

IV results in table 2 imply that an exogenous increase in VC �nancing leads to more

spillover, establishing a causal e�ect of venture capital �nancing. This might imply a

selection e�ect on the extensive margin: In the absence of VC funding these companies

would not have received funding at all and no patents would have existed.

4.4.1. VC �nanced companies are more central

In table 6 we divide all companies in quantiles according to the total number of patents

they have in our sample. Then we take the average of the distance to all other companies
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Table 4: Coe�cient estimates using alternative de�nitions of the spillover pool

Ja�e Distance

Patent Count Cites Generality
OLS FE IV OLS FE IV OLS FE IV

ln(Spillover Est. (Ja�e)) 32.8∗∗∗ 24.6∗∗∗ 26.8∗∗∗ 31.1∗∗∗ 23.4∗∗∗ 27.4∗∗∗ 36.0∗∗∗ 27.2∗∗∗ 31.2∗∗∗

(2.25) (2.24) (2.68) (2.32) (2.29) (2.81) (2.62) (2.57) (3.17)
ln(Spillover VC (Ja�e)) -0.4 0.8 1.3 -0.4 0.8 -0.1 -1.2 0.4 -1.2

(1.49) (1.42) (2.57) (1.58) (1.53) (2.79) (1.78) (1.72) (2.89)
ln(R&D Stock) 49.1∗∗∗ 40.0∗∗∗ 28.1∗∗∗ 48.0∗∗∗ 37.7∗∗∗ 22.8∗∗∗ 49.8∗∗∗ 40.5∗∗∗ 28.5∗∗∗

(1.37) (1.57) (6.61) (1.44) (1.52) (7.18) (1.46) (1.55) (6.57)
ln(VC Stock) 13.4∗∗∗ 9.4∗∗∗ -1.1 15.0∗∗∗ 11.5∗∗∗ 16.1 13.9∗∗∗ 9.8∗∗∗ 20.9

(1.23) (1.29) (15.39) (1.49) (1.54) (16.51) (1.57) (1.62) (16.39)
ln(Sale+1) 11.8∗∗∗ 7.6∗∗∗ 15.6∗∗∗ 11.4∗∗∗ 7.8∗∗∗ 18.3∗∗∗ 10.9∗∗∗ 7.2∗∗∗ 15.9∗∗∗

(1.28) (1.23) (4.73) (1.38) (1.31) (5.26) (1.40) (1.35) (4.85)
Pre-sample FE 40.6∗∗∗ 43.6∗∗∗ 42.3∗∗∗ 45.2∗∗∗ 41.0∗∗∗ 43.3∗∗∗

(1.92) (2.49) (1.67) (2.33) (1.80) (2.34)

F-Value . . 25.01 . . 25.11 . . 25.06
R2 0.53 0.57 0.57 0.46 0.51 0.51 0.46 0.50 0.50
N 22071 22071 22071 22071 22071 22071 22071 22071 22071

Note: All standard errors are clustered on the industry-year level. ***, **, * indicate statistical

signicance at the 1%, 5%, and 10% level, respectively. To increase the readability of the table we

multiply each estimate by 100.

Mahalanobis Distance

Patent Count Cites Generality
OLS FE IV OLS FE IV OLS FE IV

ln(Spillover Est. (Mal)) 45.7∗∗∗ 33.7∗∗∗ 36.1∗∗∗ 43.5∗∗∗ 32.3∗∗∗ 35.6∗∗∗ 51.1∗∗∗ 38.0∗∗∗ 41.9∗∗∗

(3.46) (3.54) (4.09) (3.50) (3.56) (4.16) (3.93) (3.96) (4.69)
ln(Spillover VC (Mal)) -1.1 1.3 0.5 -0.9 1.3 -0.3 -2.5 0.5 -2.3

(2.39) (2.34) (3.63) (2.50) (2.47) (3.99) (2.81) (2.75) (4.16)
ln(R&D Stock) 48.5∗∗∗ 39.7∗∗∗ 34.6∗∗∗ 47.4∗∗∗ 37.3∗∗∗ 28.7∗∗∗ 49.1∗∗∗ 40.1∗∗∗ 34.0∗∗∗

(1.35) (1.56) (5.91) (1.41) (1.52) (6.58) (1.43) (1.54) (5.90)
ln(VC Stock) 12.7∗∗∗ 9.0∗∗∗ 5.6 14.4∗∗∗ 11.1∗∗∗ 22.2 13.2∗∗∗ 9.3∗∗∗ 26.8∗∗

(1.20) (1.26) (12.89) (1.48) (1.53) (13.89) (1.55) (1.60) (13.55)
ln(Sale+1) 10.7∗∗∗ 6.9∗∗∗ 10.3∗∗ 10.3∗∗∗ 7.1∗∗∗ 13.3∗∗∗ 9.6∗∗∗ 6.5∗∗∗ 11.1∗∗

(1.26) (1.21) (4.29) (1.36) (1.29) (4.87) (1.37) (1.33) (4.43)
Pre-sample FE 39.7∗∗∗ 40.9∗∗∗ 41.7∗∗∗ 43.3∗∗∗ 40.0∗∗∗ 40.9∗∗∗

(1.94) (2.38) (1.70) (2.21) (1.81) (2.20)

F-Value . . 29.47 . . 29.34 . . 29.63
R2 0.54 0.57 0.57 0.47 0.51 0.51 0.47 0.50 0.50
N 22071 22071 22071 22071 22071 22071 22071 22071 22071

Note: All standard errors are clustered on the industry-year level. ***, **, * indicate statistical

signicance at the 1%, 5%, and 10% level, respectively. To increase the readability of the table we

multiply each estimate by 100.
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Table 5: Other outcomes

Other Scaled Outcomes Unscaled

Orignality Forward Cites Forward Cites Forward Cites Gen. Orig.

>median >99%

ln(Spillover Est.) 23.5∗∗∗ 19.1∗∗∗ 2.6∗∗∗ 36.7∗∗∗ 11.8∗∗∗ 15.1∗∗∗

(3.21) (2.59) (0.57) (4.97) (1.79) (2.28)
ln(Spillover VC) 10.2∗∗∗ 10.3∗∗∗ 2.9∗∗∗ 16.7∗∗ 9.5∗∗∗ 10.1∗∗∗

(3.62) (3.15) (0.76) (6.50) (2.35) (2.53)
ln(R&D Stock) 35.0∗∗∗ 32.2∗∗∗ 0.3 67.8∗∗∗ 13.0∗∗∗ 21.6∗∗∗

(6.29) (5.64) (1.56) (11.39) (3.89) (4.65)
ln(VC Stock) 25.9∗ 24.2∗∗ -8.7∗∗∗ 123.8∗∗∗ 40.2∗∗∗ -0.9

(14.38) (11.05) (2.79) (22.37) (10.99) (10.53)
Pre-sample FE 41.4∗∗∗ 2.6∗∗∗ 23.7∗∗∗ 0.1∗∗∗ 36.2∗∗∗ 37.5∗∗∗

(2.21) (0.18) (1.79) (0.01) (2.02) (1.90)

F-Value 28.17 27.87 29.22 28.30 28.54 28.17
R2 0.54 0.53 0.28 0.38 0.53 0.58
N 22071 22071 22071 22071 22071 22071

for each company and then take the median within each quantile. Companies with

more patents are in the spillover pool of more other companies because their position

is technologically more diverse. Conditioned on the number of patents venture capital

backed start-ups are much more central than established companies: For example an

established company with 4 patents has a proximity of 1.75 to all other companies while

the proximity of a similar sized VC �nanced company is 2.52. Only the largest established

companies are closer to other companies than the largest VC �nanced companies, however

the latter have only 5% of the established companies patents. This central position

can only be rationalized with treatment e�ect if the investor would be able to change

the technological position of the investee company, i.e. the patent classes in which a

company patents. Kaplan, Sensoy, and Stroemberg (2009) points out that business plans

of successful companies are stable over time, what might imply that the position in

technology space is so too.

4.4.2. VC �nanced companies do better research (but it becomes worse over time)

In table 7 and �gure ?? we show the characteristics of patents of established companies

and venture backed start-ups. The patents of VC backed start-ups we split into a sample

of innovation before and after the �rst investment. Venture capital backed start-ups are

receive more cites, cite more other patents, are more general and more original than

patents of established companies. Compared to established companies, VC companies
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Table 6: Median Distance

Quintile Patent Count Employment (Thsd) Proximity (Ja�e) Proximity (Cites)

Established 1 4 0.26 1.74 1.75
Established 2 15 0.47 2.17 2.19
Established 3 54 1.04 2.45 2.45
Established 4 440 6.99 3.06 3.34
Venture Capital 1 1 0.00 2.18 1.93
Venture Capital 2 4 0.00 2.57 2.52
Venture Capital 3 9 0.00 3.22 2.77
Venture Capital 4 22 0.00 3.51 3.12

patent in areas which are more active (measured by the number of other patents applied

for in this class). Also patents of venture capital �nanced start-ups are more likely to

be in the upper tail of the distribution of each patent characteristics according to Table

8. In this table we calculate the probability that the patents of established and venture

capital �nanced start-ups are at or above the 99% quintile in this characteristic, i.e. if

they are outlier. If all patents of each group would be equally likely to be an outlier,

the average propensity should be one. However, for VC �nanced companies it is above

1.9% while it is below 1% for established companies. So it appears that research done in

venture capital backed start-ups is more innovative and used in diverse technology �elds

from a lot of other patents.

After the �rst investment the patent of start-ups are on average less cited and less

general while the number patents does not decrease (Figure 7 and Figure 8). This age

e�ect is stable after controlling for application year and patent class as shown in Table

9. The high quality research before the �rst investment cannot be due to a treatment

e�ect of the venture capital investor but can only come from a selection e�ect. Yet,

this does not establish that there is no treatment e�ect at all as we do not observe the

research performance of companies after the �rst investment if there would have not been

an venture capital investor involved.

Taking these and the IV results together suggests, that there might be a selection

e�ect on the extensive margin: VC investors choose companies with high spillover, but

if they are not selected these companies cannot receive alternative funding. Yet the

interpretation applies strictly only for start-ups which are shifted in and out by the

additional funding measured by the instrumental variable. Companies which receive

funding at all times might be of such high quality, that they can get investment from

alternative sources. If this is the case, the spillover e�ects might be a pure selection

e�ect.
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Table 7: Mean Characteristics of Venture Capital and Established Patents

Established VC (before investment) VC (after)

Forward Cites 11.38 19.90 15.43
Scaled Forward Cites 0.931 1.585 1.296
Generality 0.288 0.365 0.297
Scaled Generality 0.216 0.278 0.227
Originality 0.399 0.420 0.434
Scaled Originality 0.287 0.305 0.313
Backward Cites 14.20 21.66 23.57
Scaled Backward Cites 1.069 1.413 1.509
Other Patents in the same class/year 1273.5 1473.4 1717.2

Total Number 686057 2978 28596

Figure 7: Patent characteristics of start-up after receiving the �rst investment
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Figure 8: Average number of patents per start-up and years since investment

Table 8: Probability of a patent to be in 99% quantile of the distribution

Established VC (before investment) VC (after investment)

Forward Cites 0.934 3.156 2.432
Scaled Forward Cites 0.932 3.526 3.017
Generality 0.983 2.418 1.397
Scaled Generality 0.951 2.955 2.448
Originality 0.948 1.948 2.629
Scaled Originality 0.945 1.948 2.810
Backward Cites 0.903 2.921 3.913
Scaled Backward Cites 0.924 2.317 3.488

Total Number 686057 2978 19322

Table 9: Correlation of start-up age and scaled patent characteristics

Forward Cites Generality Backward Cites Originality

Years since �rst investment -2.50∗∗ -0.19∗∗ 0.19 -0.18∗∗

(1.07) (0.08) (1.23) (0.08)

Patent Class FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.11 0.24 0.10 0.14
N 14510 14510 14510 14510
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5. Conclusion

In this paper we have shown that VC-�nanced �rms generate signi�cant and positive

spillovers on other �rms' patent quantity and quality. Moreover, counterfactual simula-

tions suggest that the relative share of external versus private returns is larger for VC-

�nanced �rms than for established companies. We also �nd that the Ja�e or Mahalanobis

distance measures fail to capture relevant knowledge �ows of VC-�nanced start-ups. In

comparison, a citation-augmented distance measure is better able to capture the spillover

e�ects of VC-�nanced �rms as identi�ed by the backward citation pattern.
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A. Back of the envelope estimation: Details

Calculating the economics signi�cance of the spillover e�ects on the basis of our estimates

is complex for three reasons: First, conceptually, without specifying a concrete policy

to consider it is unclear what constitutes an interesting counterfactual. For example, an

increase in investment of one million dollar is extremely large for a start-up company

while it is small for a larger �rm whose R&D spending is already over half a billion.

For this reason we take a two-pronged approach: We calculate one scenario where we

increase the investment in innovation of one company by one million dollar and then

take the average over the resulting patents for all companies. This is a comparably large

increase for venture capital �nanced companies given that the average company has 1

Million US $ spending per year but a rather small increase for an established companies

which has on average a yearly R&D budget of 42 Million US $. In the second scenario,

we increase investment by 10%, which means 4 Million US $ for the average established

company and 100'000 US $ for an average VC-�nanced company.

Second, a technical problem with calculating spillover e�ects is that one has to take

into account �rm heterogeneity because spillovers vary with the size of the company

and its position in technology space. For example, according to the �rst column in

Table 2 increasing the R&D capital stock of a company by 10% increases the number

of patents by 4.84 %. Obviously, 10% percent are quite di�erent in dollar terms for a

large and a small company. Furthermore, spillover originating from a company depend

on its position in technology space. A company which is technologically closer to other

companies has more spillovers under any counterfactual scenario. For this reason we

re-calculate for both scenarios (one million dollar or 10% more investment) the change of

all counterfactual variables for one company at a time to predict the increase in patent

production.

Third, the estimated impact of venture capital might be too large because we only

consider companies which patented at least once. Thus we neglect all investment of

companies which did not result in at least one patent. Yet, we also do not know if

these companies were trying to patent at all. To ameliorate this problem we calculate

a correction factor by industry and year. The correction factor is the total sum of VC

investment in our sample divided by the total sum VC investment in the database. Then

we divide the total investment by this factor. Thus we arti�cially increase investment in

industries which are unsuccessful in patenting, arriving at a lower bound for the e�ect of

VC spillovers. We re-calculate all the coe�cients (Table 8) of the main result tables and

then use these coe�cients to calculate for the two counterfactual scenarios.
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Table 10: Coe�cient estimates for adjusted VC spending

Outcome Patent Count Cites Generality

Method OLS FE IV OLS FE IV OLS FE IV

ln(Spillover Est.) 30.7∗∗∗ 23.3∗∗∗ 21.7∗∗∗ 29.8∗∗∗ 23.0∗∗∗ 22.5∗∗∗ 33.3∗∗∗ 25.2∗∗∗ 24.5∗∗∗

(3.31) (2.91) (3.08) (3.19) (2.86) (3.07) (3.68) (3.26) (3.51)
ln(Spillover VC Corr) 4.5∗∗ 4.6∗∗ 7.7∗∗ 4.0∗ 4.2∗∗ 6.9∗ 4.4∗ 5.1∗∗ 7.1∗∗

(2.09) (1.92) (3.14) (2.25) (2.10) (3.54) (2.48) (2.31) (3.60)
ln(R&D Stock) 49.0∗∗∗ 39.8∗∗∗ 32.5∗∗∗ 47.8∗∗∗ 37.4∗∗∗ 24.3∗∗∗ 49.6∗∗∗ 40.2∗∗∗ 30.5∗∗∗

(1.38) (1.58) (5.81) (1.46) (1.56) (6.67) (1.48) (1.59) (6.09)
ln(VC Stock) 13.3∗∗∗ 9.3∗∗∗ 25.8∗∗ 14.9∗∗∗ 11.5∗∗∗ 37.8∗∗∗ 13.7∗∗∗ 9.7∗∗∗ 44.6∗∗∗

(1.25) (1.31) (11.40) (1.50) (1.55) (11.90) (1.59) (1.64) (11.65)
ln(Sale+1) 11.9∗∗∗ 7.7∗∗∗ 13.1∗∗∗ 11.5∗∗∗ 7.9∗∗∗ 17.6∗∗∗ 11.1∗∗∗ 7.5∗∗∗ 15.0∗∗∗

(1.25) (1.20) (4.24) (1.36) (1.28) (4.89) (1.37) (1.32) (4.54)
Pre-sample FE 40.8∗∗∗ 41.9∗∗∗ 42.4∗∗∗ 44.7∗∗∗ 41.2∗∗∗ 42.5∗∗∗

(1.92) (2.28) (1.67) (2.10) (1.81) (2.07)

F-Value . . 40.15 . . 39.88 . . 40.38
R2 0.53 0.57 0.57 0.46 0.51 0.50 0.47 0.50 0.49
N 22071 22071 22071 22071 22071 22071 22071 22071 22071
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