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Monitoring stationarity and

cointegration

Martin Wagner, Dominik Wied∗

Faculty of Statistics, Technical University Dortmund

Abstract

We propose a monitoring procedure to detect a structural change from stationary to

integrated behavior. When the procedure is applied to the errors of a relationship between

integrated series it thus monitors a structural change from a cointegrating relationship to

a spurious regression. The cointegration monitoring procedure is based on residuals from

modified least squares estimation, using either Fully Modified, Dynamic or Integrated

Modified OLS. The procedure is inspired by Chu et al. (1996) in that it is based on

parameter estimation only on a pre-break “calibration” period rather than being based

on sequential estimation over the full sample. We investigate the asymptotic behavior of

the procedures under the null, for (fixed and local) alternatives and in case of parameter

changes. We also study the finite sample performance via simulations. An application to

credit default swap spreads illustrates the potential usefulness of the procedure.
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1. Introduction

It is common practice in time series econometrics to investigate the stationarity, unit root

and cointegration properties of time series and a plethora of tests for stationarity, unit

roots and cointegration is available. In relation to this practice, however, it may well be

reasonable to investigate the question whether the stationarity or cointegration behavior

of time series changes over time. In particular, a time series may change its behavior from

stationarity, or being I(0), to being integrated and a cointegrating relationship between

several time series may break down and turn into a spurious relationship.1 Examples

where one may be concerned about this type of structural change include deviations from

purchasing power parity after a period of international economic stability or nonstation-

arity of credit default swap (CDS) spreads after the onset of a financial crisis.2

Our monitoring procedure is inspired by the monitoring procedure for linear regression

models of Chu et al. (1996) in that parameter estimation, for estimating trend and –

when monitoring cointegration – slope parameters, is based solely on a “calibration”

period at the beginning of the sample that is known or assumed to be free of structural

change.3 Based on the parameter estimates, computed using only calibration period

data, the detrended observations (or the residuals of a cointegrating relationship) are

the key ingredient for the monitoring procedure. The monitoring procedure is based on

sequentially computing the differences of scaled partial sums of squared residuals over

the growing monitoring period and the calibration period.4 The detection time, defined

in the following section, serves as an immediately available estimate of the break-point.

In order to obtain nuisance parameter free limiting distributions of the test statistics

1As discussed below, the approach also allows to monitor whether the coefficients of a cointegrating
relationship change over time.

2Related issues are analyzed in tests for so-called asset price bubbles, see e.g. Phillips et al. (2011),
where a bubble is associated with a structural change towards explosive behavior. Our approach can be
applied in this context as well, as discussed later.

3This approach to monitoring, based on estimation in a pre-break sample period only, has been
extended to the multivariate linear regression case by Groen et al. (2013) and has been applied to
monitor changes in the correlation structure by Wied and Galeano (2013).

4This, of course, immediately implies consistency of the procedure against any “more explosive”
alternative, like higher order integration or explosive behavior.
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when applying the principle to monitor cointegrating relationships, parameter estimation

on the calibration sample is performed using any of the available modified least squares

estimators that lead to nuisance parameter free limiting distributions of the parameters

of the cointegrating relationship. In particular we consider here Fully Modified OLS

(FM-OLS) of Phillips and Hansen (1990), Dynamic OLS (D-OLS) of Saikkonen (1991),

Phillips and Loretan (1993) and Stock and Watson (1993) or Integrated Modified OLS

(IM-OLS) of Vogelsang and Wagner (2014).

The asymptotic properties of the monitoring procedures are derived under both the null as

well as under (fixed and local) alternatives and for the case of breaks in trend parameters.

In case of cointegration monitoring we additionally consider the asymptotic behavior

of the monitoring procedure in case of breaks in the slope parameters. Based on the

asymptotic results, the performance of the proposed methods is investigated by means of

local asymptotic power analysis. Furthermore, finite sample simulations are performed to

consider empirical size and power for a variety of scenarios. Again, in addition to studying

the power against the alternative of integrated behavior we also assess the performance

in case of parameter changes in the trend and/or slope coefficients.

We briefly illustrate our monitoring procedure using daily CDS spreads series for Austria,

Cyprus, France and Germany over the period April 3, 2009 to August 1, 2012. The null

hypothesis of no structural change from stationary to integrated behavior is rejected for

all countries and all five considered maturities. For most of the series the estimated break

date is found to be in summer or fall 2010, i.e. already almost a year before the CDS

spreads series started to be dramatically high starting in summer 2011.

The paper is organized as follows: Section 2 develops the stationarity monitoring proce-

dure and studies its asymptotic properties under the null, for fixed and local alternatives

and in case of trend breaks. In Section 3 the approach is extended to monitor cointegra-

tion and the asymptotic properties of the monitoring procedure are discussed in detail

for the above mentioned three estimation procedures for cointegrating relationships. In

addition we discuss here also the properties in case of structural change in the slope
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parameters. Section 4 provides some simulation results investigating the finite sample

properties of the proposed monitoring procedures and Section 5 contains a brief illustra-

tion of the monitoring procedure using CDS spreads data for four European countries.

Finally, Section 6 briefly summarizes and concludes. All proofs are deferred to Appendix

A and Appendix B provides some tables with critical values.

2. Model and Assumptions for Monitoring Stationarity

The starting point of our considerations is to monitor (trend-)stationarity of

yt = D′tθD + ut, (1)

for which a sample of observations for t = 1, . . . , T is available and where Dt ∈ Rp is a

deterministic trend function for which the following assumption is made.

Assumption 1. There exists a p × p matrix GD and a vector of functions, D(z), such

that

T−1G−1D
∑[sT ]

t=1
Dt →

∫ s

0

D(z)dz with

∫ s

0

D(z)D(z)′dz > 0. (2)

If e.g. Dt = (1, t, t2, ..., tp−1)′, thenGD = diag(1, T, T 2, .., T p−1) andD(z) = (1, z, z2, ..., zp−1)′.

Under the null hypothesis of trend stationarity we posit the assumption that the process

ut fulfills a functional central limit theorem (FCLT):

Assumption 2. The stationary process ut fulfills

1√
T

[sT ]∑
t=1

ut ⇒ ω1/2W (s), (3)

where [sT ], with 0 ≤ s ≤ 1, denotes the integer part of sT , W (s) denotes standard

Brownian motion and where 0 < ω <∞ is the long-run variance of ut,

ω :=
∞∑

j=−∞

E(utut−j). (4)
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In this paper we refer to a stochastic process fulfilling Assumption 2 as an I(0) process.

Requiring ω > 0 excludes over-differenced process, e.g. ut = εt − εt−1 for some white

noise process εt, has long-run variance equal to 0.

Remark 1. Note that we do not need stationarity in our I(0) definition, but only the

mentioned functional central limit result (3), with ω = limT→∞ E
(

1
T

∑T
t=1 ut

)2
. All

results hold without the extra requirement of stationarity in Assumption 2. We include

stationarity in the assumption, since we consider later monitoring of cointegration, i.e.

linear combinations of series that are stationary (in the usual definition of cointegration).

�

Under the alternative we consider the situation that there exists some time point [rT ],

with m ≤ r < 1 such that the process behaves like an I(1) process from [rT ] + 1 onwards,

i.e. that Assumption 2 is violated from [rT ] + 1 onwards in a specific way. For our paper

we define a process xt to be an I(1) process, in accordance with our I(0) definition, if

1√
T
x[sT ] ⇒ ω1/2W (s), (5)

for some 0 < ω < ∞ and W (s) again standard Brownian motion. It is clear that the

(partial) sum process of an I(0) process is an I(1) process.

Thus, our null and alternative hypotheses are in formal terms given by

H0 :
1√
T

[sT ]∑
t=1

ut ⇒ ω1/2W (s), for all 0 < s ≤ 1 (6)

H1 :
1√
T

[sT ]∑
t=[rT ]+1

ut = Op(T
1/2) and

1√
T

[sT ]∑
t=[rT ]+1

ut 6= op(T
1/2) (7)

for some 1 > r ≥ m > 0 and for all s > r

The above formulation is to be understood in the sense that also under the alternative

the process ut fulfills Assumption 2 up to [rT ] ≥ [mT ]. Thus, we want to detect a

change from I(0) to I(1) behavior under the alternative that occurs at time point [rT ]
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with m ≤ r < 1, i.e. a change that occurs only after some pre-break fraction of length

[mT ] with 0 < m < 1.

As we shall see below, we need such a pre-break sample fraction m in particular in order

to consistently estimate several quantities required to obtain a null limiting distribution

of our detector that is a function only of the included deterministic components and

standard Brownian motions and for which thus critical values can be simulated. These

quantities include, depending upon situation considered, the long-run variance ω, the

trend parameters θD and in the following section, dealing with cointegration, also slope

parameters θX corresponding to the I(1) regressors in the monitored cointegrating rela-

tionship.

Remark 2. As mentioned in the introduction, our approach is inspired by Chu et al.

(1996), albeit we frame the problem slightly differently. As is standard in the unit root

and cointegration literature we map the (full set of) observations 1, . . . , T in the interval

[0, 1], as T →∞, and thus in the limit our pre-break estimation period corresponds to the

interval [0,m], as we use observations 1, . . . , [mT ] for parameter estimation. Chu et al.

(1996) consider as their “historical” period observations 1, . . . ,m. In their asymptotic

analysis m, with m → ∞, is considered a fraction of the overall sample size T = λm.

Thus, the observations 1, . . . ,m are mapped into the interval [0, 1] and the whole set of

observations into [0, λ]. �

Considering for the moment ut to be observable and ω known suffices to discuss the

approach of the paper. In this idealized case the detector for ut is given by

Hm(s) :=
1

ω

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Si

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Si

)2
 , (8)

for m ≤ s ≤ 1 and with Si =
∑i

t=1 ut denoting the partial sums of ut.
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Under Assumption 2 it holds under the null hypothesis of no structural change that

Hm(s) ⇒ Hm(s) :=

(∫ s

m

W (z)2dz −
∫ m

0

W (z)2dz

)
, (9)

whereas the detector will diverge under the alternative (see the discussion below for

details). The detector is inspired by the KPSS stationarity test of Kwiatkowski et al.

(1992), with the (idealized) test statistic given by 1
ω

(
1
T

∑T
i=1

(
1√
T
Si

)2)
, which converges

to
∫ 1

0
W (z)2dz under the null of stationarity. In case of I(1) behavior the scaled sum

diverges and our detector exploits these differences by comparing the convergent pre-

break quantity with the potentially diverging post-break quantity.5

A related procedure is provided by Steland (2007), who bases his monitoring proce-

dure on sequential kernel-weighted variance ratios, i.e. his detector to monitor a change

from I(0) to I(1) behavior is, using our notation and for known ω, given by ŨT (s) =

T−1
∑[sT ]

i=1 S
2
iKh(i−[sT ])
ω

for some kernel function Kh(·). Kernel weighting is important in his

approach, as he also considers monitoring a change from I(1) to I(0) behavior (with a

differently scaled detector than the one given above). In addition to the different con-

struction of the detector, another difference is that Steland does not consider parameter

estimation on a calibration period and in particular neither he nor any of the other

available procedures consider monitoring of cointegrating relationships.6

We define the detection time τm(Hm(s), w(s), c), often only written as τm if the context

is clear, as

τm := min

{
[mT ] + 1 ≤ [sT ] ≤ T :

∣∣∣∣Hm(s)

w(s)

∣∣∣∣ > c

}
, (10)

5Let us note already here that in the cointegration monitoring situation our detector is similarly based
on the cointegration test statistics of Shin (1994) that extends the KPSS test from a stationarity to a
cointegration test.

6Another related procedure is discussed in Kim (2000), who considers the properly scaled ratio sums
of squared partial sums of residuals before and after the hypothesized break. Note that Steland (2007)
does not consider deterministic components. This restriction is relaxed to a certain extent in Steland
(2008), where he considers polynomial trends. This situation is also considered in Qi et al. (2013). Chen
et al. (2010) modify the approach of Steland and also use a “calibration” period at the beginning of the
sample for which it is known whether the series is I(0) or I(1). Chen et al. (2012) use the bootstrap to
detect multiple changes of persistence.
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i.e. the null hypothesis is declared rejected when the standardized detector, H
m(s)
w(s)

, exceeds

a critical value c in absolute value for the first time. In case that
∣∣∣Hm(s)
w(s)

∣∣∣ ≤ c for all

m ≤ s ≤ 1 we write τm = ∞. Consequently, the value τm can be interpreted in two

different ways. On the one hand, it tells us if the null hypothesis is rejected or not. On

the other hand, it gives information about the position of the potential break point.

The properties of such a monitoring procedure hinge, by construction, upon the threshold

function 0 < w(s) < ∞ and the constant c, which itself depends upon w(s). These two

have to be chosen in order to ensure that under the null hypothesis

lim
T→∞

P(τm <∞) = lim
T→∞

P

(
sup

[mT ]+1≤[sT ]≤T

∣∣∣∣Hm(s)

w(s)

∣∣∣∣
)
> c) (11)

= P
(

sup
m≤s≤1

∣∣∣∣Hm(s)

w(s)

∣∣∣∣ > c

)
= α,

with α denoting the chosen significance level. The choice of w(s), and c, is discussed in

more detail below.

With the starting point in most applications being the observed time series yt rather than

ut, partial sums of residuals are the input in the monitoring procedure. The residuals ût,m

are given by detrended yt, with the trend parameters θD estimated from the pre-break

sample t = 1, . . . , [mT ]. Thus,

ût,m := yt −D′tθ̂D,m (12)

= ut −D′t
(
θ̂D,m − θD

)
= ut −D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui.

Under Assumptions 1 and 2 it follows immediately that

1√
T

[sT ]∑
t=1

ût,m =
1√
T
Ŝ[sT ] ⇒ ω1/2Ŵm(s), (13)
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with Ŝi =
∑i

t=1 ût,m and Ŵm(s) := W (s)−
∫ s
0
D(z)′dz

(∫ m
0
D(z)D(z)′dz

)−1 ∫ m
0
D(z)dW (z).

Given the FCLT (13) for the partial sum of the detrended observations and the continuous

mapping theorem, the asymptotic behavior of the detector based on ût,m, Ĥm(s) say,

under the null hypothesis can be established.

Lemma 1. Let yt be generated by (1) with Assumptions 1 and 2 in place and let ω̂m

denote a consistent long-run variance estimator based on ût,m, for t = 1, . . . , [mT ]. Then

it holds under the null hypothesis for T →∞ and m ≤ s ≤ 1 that

Ĥm(s) :=
1

ω̂m

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝi

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝi

)2
 (14)

⇒
∫ s

m

Ŵ 2
m(z)dz −

∫ m

0

Ŵ 2
m(z)dz =: Ĥm(s). (15)

In order to show consistency of the detector later, it is of key importance here that all

parameters, i.e. the trend slopes θD and the long-run variance ω, are estimated only

from the pre-break sample up to [mT ]. Consistent long-run variance estimation is a well

studied problem in the econometrics literature and has been established for a variety of

primitive or high level assumptions. For simplicity in this paper we merely assume that

the sufficient assumptions on ut, the kernel function and bandwidth given in Jansson

(2002) are fulfilled.7

Under the stated assumptions it can be shown that under the null hypothesis, for given

weighting function w(s), there exist critical values c = c(α,w(s)), such that the detection

time is finite with probability equal to the pre-specified level α.

Proposition 1. Let the data be generated by (1) with Assumptions 1 and 2 in place

and let ω̂m denote a consistent long-run variance estimator and consider 0 < w(s) <∞.

Then, under the null hypothesis it holds that for any given 0 < α < 1 and 0 < w(s) <∞
7To be precise this means to specify more detailed assumptions on ut than just the FCLT formulated

in Assumption 2, compare Assumptions A1 and A2 in Jansson (2002). Let us note again, that any other
set of assumptions that allows for consistent long-run variance estimation also would serve our purposes.
In relation to Remark 1 it has to be noted that without the stationarity assumption one has to resort to
other conditions, since Jansson (2002) considers stationary processes.
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there exists a c = c(α,w(s)), such that

lim
T→∞

P(τm(Ĥm(s), w(s), c(α,w(s))) <∞) = α. (16)

Given the behavior under the null hypothesis the next result shows that the monitoring

procedure is consistent against both fixed and local alternatives, defined precisely below.

As fixed alternative we consider the case that ut changes behavior from I(0) to I(1) at

some point after [mT ], i.e. that H1 as given above holds. To understand the properties

of our procedure in more detail we also consider local alternatives of the following form

(inspired by Cappuccio and Lubian, 2005). There exists an r, with m ≤ r < 1 such that

for all t ≤ [rT ] we have ut = u0t , while for all t > [rT ] it holds that

ut = u0t +
δ

T

t∑
i=[rT ]+1

ξi, (17)

with u0t and ξt independent processes both fulfilling Assumption 2, with long-run variances

ω and ωξ, and δ > 0. I.e. under the considered local alternatives the process ut is, from

time point [rT ] + 1 onwards, the sum of an I(0) process and an independent I(1) process

divided by the sample size. The local alternatives imply that the partial sum process of

ût,m, i.e. Ŝt converges to the following expression (for details see the proofs in Appendix

A):

1√
T
Ŝ[sT ] ⇒ ω1/2Ŵm(s) + δω

1/2
ξ

∫ s

r

(Wξ(z)−Wξ(r))dz, (18)

where integrals (and sums) with the lower boundary larger than the upper are defined to

be equal to 0. Here Wξ(s) is a standard Brownian motion independent of W (s).

Proposition 2. (Consistency and Local Asymptotic Power)

Let the data be generated by (1) with Assumption 1 in place and with ut fulfilling Assump-

tion 2 until [rT ], with m ≤ r < 1. Furthermore, let ω̂m again be a consistent long-run

variance estimator and let 0 < w(s) <∞.
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(a) Let ut be an I(1) process (as specified in H1) from [rT ] + 1 onwards. Then the

monitoring procedure is consistent, i.e. for any 0 < c <∞ it holds that

lim
T→∞

P(τm(Ĥm(s), w(s), c) <∞) = 1. (19)

(b) Let ut be as specified in (17) from [rT ]+1 onwards. Then the monitoring procedure

has non-trivial local power. That means that for any 1 − α ≥ ε > 0 and the

0 < c = c(α,w(s)) < ∞ from Proposition 1 there exists a 0 < δ = δ(c, w(s)) < ∞

such that

lim
T→∞

P(τm(Ĥm(s), w(s), c(α,w(s))) <∞) ≥ 1− ε. (20)

The result underlying part (b) stems from the convergence result for Ĥm(s) under the

considered local alternatives. For s > r ≥ m it holds that:

Ĥm(s) ⇒ Ĥm(s) + 2δ
(ωξ
ω

)1/2 ∫ s

r

Ŵm(z)

(∫ z

r

(Wξ(g)−Wξ(r)) dg

)
dz +

+δ2
ωξ
ω

∫ s

r

(∫ z

r

(Wξ(g)−Wξ(r)) dg

)2

dz. (21)

This result shows that the magnitude of the additional terms depends, in addition to

δ, upon the “signal-to-noise” ratio of ωξ and ω. As expected ω enters with negative

powers, i.e. a larger error variance decreases local asymptotic power and similarly a

larger variance of the additional I(1) component increases local asymptotic power.8

Remark 3. It is clear and immediate from an inspection of the proof that the pro-

cedure is consistent not only against the I(1) alternative but also against the alterna-

tive of near-integrated processes, compare Phillips (1987). A near-integrated process

8In the local asymptotic power simulations below we set the signal-to-noise ratio without loss of
generality equal to one, since local asymptotic power depends only upon the product of δ and the
signal-to-noise ratio. Also note that it is sufficient to consider u0t and ξt independent, as asymptotic
independence between the two components can always be achieved by redefining the two quantities
correspondingly after “orthogonalization”.
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is given by ut = (1 − c
T

)ut−1 + νt, with c > 0 and νt a stationary process with finite

and positive long-run variance ω. Clearly, in case c = 0 we are back to the standard

I(1) alternative. Consistency against near-integrated alternatives follows from the func-

tional central limit theorem for near-integrated processes, i.e. 1√
T
u[rT ] ⇒ ωVc(r), with

Vc(r) =
∫ r
0
e−c(r−s)dW (s), which implies that near-integrated alternatives fulfill H1. �

The above results do not pin down the threshold function w(s), which could be specified

in many ways. A natural candidate is to choose w(s) in relation to E(Ĥm(s)). In the

special case of only an intercept (Dt = 1), we obtain

Ŵm(s) = W (s)− s

m

∫ m

0

dW (z) = W (s)− s

m
W (m). (22)

Then, with the well-known covariance structure of a standard Brownian motion one

obtains

E(Ŵ 2
m(s)) = s− 2s

m
min(s,m) +

s2

m
, (23)

from which, by changing the sequence of integration (Fubini), it follows that

E(Ĥm(s)) =

∫ s

m

E(Ŵ 2
m(z))dz −

∫ m

0

E(Ŵ 2
m(z))dz = −1

2
s2 +

1

3

s3

m
. (24)

Thus, the order of the expected value is s3, which motivates our choice w(s) = s3. In

case that the deterministic component consists of intercept and linear trend (Dt = (1, t)),

similar calculations lead to the order being s5. Thus, in the linear trend case we consider

w(s) = s5 in the simulations and application below.

For given or chosen weighting function critical values for the test procedure can be simu-

lated by approximating the functionals of Brownian motions by the corresponding func-

tions of random walks of length 1,000 generated from i.i.d. standard normal random

variables. The available critical values are based on 1,000,000 replications. The critical

values depend upon 0 < m < 1 and the specification of the deterministic component.
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Detailed critical values for a grid of m-values ranging from 0.1 to 0.9 with mesh 0.01 are

contained in Appendix B, in Table 2, for Dt = 1 with w(s) = s3, and in Table 3, for

Dt = (1, t)′ with w(s) = s5.

The monitoring procedure can also be used to instead detect breaks in the trend param-

eters θD that occur after [mT ], given that the trend parameters are also estimated only

using the observations up to this time point. Again we consider fixed and local alterna-

tives.9 In the present context local alternatives are not described by a scalar parameter,

but by ∆θ ∈ Rp and the appropriate local alternatives are given by 1√
T
G−1′D ∆θ, reflecting

the different rates of convergence of the trend parameters. E.g. for the constant term, the

rate is the usual 1√
T

, whereas for the linear trend coefficient the rate is T−3/2. It will also

be seen that non-trivial local power is related to a certain constraint on the parameter

change, see (26) below.

Proposition 3. (Behavior in Case of Trend Breaks)

Let the data be generated by (1) with Assumptions 1 and 2 in place and let ω̂m denote again

a consistent long-run variance estimator. Assume furthermore again that 0 < w(s) <∞

and 0 < c <∞.

(a) (Fixed Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,2, with θD,1 6=

θD,2, from t = [rT ] + 1 onwards, then

lim
T→∞

P(τm(Ĥm(s), w(s), c) <∞) = 1. (25)

(b) (Local Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,1 + 1√
T
G−1′D ∆θ

from t = [rT ] + 1 onwards with

∫ 1

r

D(z)′dz∆θ 6= 0, (26)

then the monitoring procedure has non-trivial local power. That means that for any

9The usage of the word alternative is sloppy here, since it is now not the stochastic component that
leads to divergence of the detector. We are confident that this will not lead to any confusion.
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1 − α ≥ ε > 0 and the 0 < c = c(α,w(s)) < ∞ from Proposition 1 there exists a

∆θ = ∆θ(c, w(s)) fulfilling (26) such that

lim
T→∞

P(τm(Ĥm(s), w(s), c(α,w(s))) <∞) ≥ 1− ε. (27)

The above condition (26) is not fulfilled only on an algebraic set. E.g. in case of Dt =

(1, t)′ it holds that
∫ 1

r
D(z)′dz =

(
1− r, 1

2
− 1

2
r2
)

and thus the set of values for which

∆θ ∈ R2 is orthogonal to this vector corresponds to a straight line in R2.

An analogous result as given above in (21) for the case of local trend breaks is, for the

special case of Dt = 1 and for s > r ≥ m, given by:

Ĥm(s) ⇒ Ĥm(s) + 2
∆θ

ω1/2

∫ s

r

Ŵm(z)(z − r)dz +

+
∆2
θ

ω

(
s3

3
− s2r + sr2 − r3

3

)
(28)

Remark 4. In case that breaks occur in both the deterministic and stochastic component

of yt, the behavior of our detector is a corresponding combination of the behavior discussed

in Propositions 2 and 3. This implies that a rejection of the null hypothesis does not

allow one to identify the source(s) of the break. �

Remark 5. Our approach can also be employed for detecting bubbles. In the recent

literature, a bubble is often characterized as a period where the behavior of a time

series has switched from integrated to explosive behavior, compare Phillips et al. (2011).

Thus, our procedure allows to detect (the beginning of) a bubble by considering the first

difference of the series, since in case of no bubble the first differences are stationary,

whereas in case of explosive behavior also the first differences exhibit explosive behavior.

�

Remark 6. In relation to the previous remark, with bubbles typically considered to be

temporary rather than permanent phenomena, it has to be noted that our procedure

will be consistent in detecting episodes of I(1) or explosive behavior, as long as these

14



episodes have asymptotically positive length. E.g. in the case of only one period under

the alternative it has to hold that this period occurs over a sub-sample of the form

[r1T ], . . . , [r2T ] with r1 < r2. It is immediate that consistency generalizes to multiple

periods of this form. �

We close this section by looking at local asymptotic power (LAP) of the monitoring

procedure. We consider LAP as discussed in Proposition 2(b) and against local-to-zero

trend breaks as discussed in Proposition 3(b). The power curves are simulated similarly to

the critical values. Discretized versions of the corresponding limiting distributions under

the local alternatives are simulated. The limiting distribution for LAP against a unit root

process is given in (21) and the limiting distribution in case of local trend breaks is given

in (28). Again time series of length 1,000 are generated, with the number of replications

given by 10,000. For each replication the errors ut, and when considering Proposition 2(b)

the ξt, are drawn as i.i.d. standard normal random variables independent of each other.

The resulting values are then compared with the critical values and all test decisions are

performed at the 5% level. All LAP curves are drawn for a grid of 21 equidistant values

of δ, starting at zero. Throughout we consider different combinations of the calibration

period m ∈ {0.25, 0.5, 0.75} and break point r ≥ m from the same set of values.

In Figure 1 we display local asymptotic power based on Proposition 2(b). The upper two

plots consider the intercept only case and the lower two plots display the linear trend

case. LAP is lower in the linear trend case compared to the intercept case. In each of

the two sub-blocks of the figure the upper plot shows the effect of increasing r relative

to fixed m = 0.25. As expected, LAP is decreasing with increasing r, since the period

over which the integrated behavior can be detected is getting shorter and starts later.

The lower two figures each display the effect of increasing the estimation sub-sample with

increasing values of m = r. Here the effects are as expected for the intercept case, where

LAP is decreasing with increasing values of m = r. The results are different in the linear

trend case, where LAP is highest for m = r = 0.5 and lowest for m = r = 0.25.

In Figure 2 we display, based on the result in Proposition 3(b), LAP against breaks in the

15
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Figure 1: LAP for monitoring stationarity. The upper two plots display the intercept case and
the lower two plots the linear trend case. The plots show results for different combinations of
m and r.
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intercept (upper two plots) and breaks in the linear trend parameter (lower two plots).10

The structure of the plots is the same as in Figure 1 and also the findings are very similar.

The only non-expected result again occurs in the lowest plot, where LAP for different

values of m = r in case of a break in the linear trend is displayed. In this case LAP

increases with the pre-break sample fraction, which is exactly opposite to the case of a

break in the intercept.

3. Monitoring Cointegration

In this section we use the same ideas as discussed before to monitor cointegrating rela-

tionships using the following setup:

yt = D′tθD +X ′tθX + ut (29)

Xt = Xt−1 + vt, (30)

with yt ∈ R and Dt ∈ Rp as before and Xt ∈ Rk . The joint error vector ηt = (ut, v
′
t)
′

fulfills a similar assumption as ut in the previous section:

Assumption 3. The stationary process ηt fulfills

1√
T

[sT ]∑
t=1

ηt =
1√
T

[sT ]∑
t=1

 ut

vt

 ⇒ Ω1/2W (s), (31)

with W (s) = [Wu·v(s),Wv(s)
′]′ ∈ R1+k a vector of standard Brownian motions and

Ω =

 Ωuu Ωuv

Ωvu Ωvv

 :=
∞∑

j=−∞

E(ηtη
′
t−j) > 0. (32)

10Note the different ranges of the horizontal axis for the two cases, with ∆θ ∈ [0, 10] in case of an
intercept break and ∆θ ∈ [0, 100] in case of a break of the slope of the linear trend.
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Figure 2: LAP against breaks in deterministic components. The upper two plots display the
case of a break in the intercept and the lower two plots display the case of a break in the linear
trend. The plots show results for different combinations of m and r.
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For our purposes it is convenient to use

Ω1/2 =

 ω
1/2
u·v λuv

0 Ω
1/2
vv

 , (33)

where ωu·v := Ωuu − ΩuvΩ
−1
vv Ωvu and λuv := Ωuv(Ω

1/2
vv )−1.

The assumption Ωvv > 0 excludes cointegration amongst the regressors and is typically

required for the modified OLS estimation techniques available, including Fully Modified

OLS (FM-OLS) of Phillips and Hansen (1990), Dynamic OLS (D-OLS) of Saikkonen

(1991) or Integrated Modified OLS (IM-OLS) of Vogelsang and Wagner (2014). It is

well known that OLS estimation of θ = [θ′D, θ
′
X ]′ in (29) is consistent, but that in gen-

eral the limiting distribution of the OLS estimator depends on second order bias terms,

which render asymptotic standard inference based on the OLS estimates infeasible. This

problem occurs in particular when the regressors are not strictly exogenous, i.e. when

the matrix Ω is not block-diagonal.11 The mentioned modified OLS estimators lead to

limiting distributions of the parameters that are proportional to functionals of standard

Brownian motions (which depend upon Dt and the number of integrated regressors k)

also in case of endogeneity. For brevity we abstain from explaining these well-known pro-

cedures here and just consider the residuals obtained from these estimation procedures

as input in our monitoring procedure.12

We consider for illustration specifically the residuals of FM-OLS estimation

û+t,m := yt −∆X ′tΩ̂
−1
vv Ω̂vu −D′tθ̂D,m −X ′tθ̂X,m (34)

= ut − v′tΩ̂−1vv Ω̂vu −D′t
(
θ̂D,m − θD

)
−X ′t

(
θ̂X,m − θX

)
,

where θ̂D,m and θ̂X,m denote the FM-OLS coefficient estimates and Ω̂(= Ω̂m) denotes the

11In case of strict exogeneity, asymptotically valid inference can be based on the OLS estimates if serial
correlation in ut is handled appropriately using long-run variance estimates.

12Only the less well-known IM-OLS estimator is briefly discussed below.
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long-run variance estimate, all computed from the pre-break sample 1, . . . , [mT ].13

Using consistent estimates of the long-run variances, ensured again by assuming to be in

the framework covered by Jansson (2002), leads to a FCLT for the modified OLS residuals

û+t,m.

Lemma 2. Let the data be generated by (29) and (30) with Assumptions 1 and 3 in

place and let Ω̂ be a consistent long-run variance estimator (required only for FM-OLS).

Then it holds under the null hypothesis and for m ≤ s ≤ 1 for T →∞ for FM-OLS and

D-OLS that

1√
T

[sT ]∑
t=1

û+t,m ⇒ ω1/2
u·v

(
Wu.v(s)−

∫ s

0

J(z)′dz

(∫ m

0

J(z)J(z)′dz

)−1 ∫ m

0

J(z)dWu·v(z)

)
=: ω1/2

u·v Ŵu·v(s) (35)

with J(s) := [D(s)′,Wv(s)
′]′.

Clearly, the process Ŵu·v(s) depends upon Dt, the number of integrated regressors k

and the pre-break fraction m, with these dependencies neglected for notational brevity

henceforth.

Given the FCLT (35) for the partial sum process of the modified residuals, the detector

for cointegration, using either the FM-OLS or the D-OLS estimator, is defined by

Ĥm,+(s) :=
1

ω̂u·v

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝ+
i

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝ+
i

)2
 , (36)

where the scaling factor is now a consistent estimator ω̂u·v = Ω̂uu − Ω̂uvΩ̂
−1
vv Ω̂vu of the

13In case the procedure is implemented using the D-OLS estimator, the residuals are defined
(using the same notation for the residuals and coefficient estimates) as û+t,m := yt − D′tθ̂D,m −
X ′tθ̂X,m −

∑k2
j=−k1 ∆X ′t−jΘ̂j,m, or equivalently û+t,m = ut − D′t

(
θ̂D,m − θD

)
− X ′t

(
θ̂X,m − θX

)
−∑k2

j=−k1 ∆X ′t−jΘ̂j,m, with the matrices θ̂D,m, θ̂X,m and Θ̂j,m being the OLS estimates from the re-

gression yt = D′tθD +X ′tθX +
∑k2
j=−k1 ∆X ′t−jΘj + ut estimated on the sample 1, . . . , [mT ]. Whereas in

FM-OLS estimation bandwidth and kernel have to be chosen, D-OLS estimation requires choosing the
number of lags k1 and leads k2. Under appropriate assumptions concerning the asymptotic behavior of
lag/lead choices the D-OLS residuals fulfill the same FCLT as the FM-OLS residuals. Asymptotically,
therefore the usage of either estimator leads to the same monitoring procedure.
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conditional long-run variance ωu·v.

All long-run variances and covariances required in the procedure (both for modified OLS

parameter estimation as well as for scaling the detector) are based on the OLS residuals

ût,m stacked on top of the first differences of the regressors, i.e. upon η̂t = [ût,m, v
′
t]
′.

Again the OLS estimation from which the parameter estimates and long-run variance

estimates are computed uses observations t = 1, . . . , [mT ] only.

Given the definition of the detector for cointegration (36) the first result to be established

is the asymptotic distribution of the detector under the null hypothesis.

Lemma 3. Let the data be generated by (29) and (30) with Assumptions 1 and 3 in place

and let ω̂u·v denote a consistent long-run variance estimator. Then it holds under the null

hypothesis and for m ≤ s ≤ 1 for T →∞ for FM-OLS and D-OLS that

Ĥm,+(s) ⇒
∫ s

m

Ŵ 2
u·v(z)dz −

∫ m

0

Ŵ 2
u·v(z)dz =: Ĥm,+(s) (37)

Alternatively, one can also base the cointegration monitoring procedure on the residuals

of the recently proposed Integrated Modified OLS (IM-OLS) estimator of Vogelsang and

Wagner (2014). A potential advantage of the IM-OLS estimator compared to FM-OLS

and D-OLS is that for parameter estimation no kernel and bandwidth or lead and lag

choices are required. The IM regression is given by

Syt = SD′t θD + SX′t θX +X ′tγ + Sut , (38)

with Syt =
∑t

j=1 yj denoting the partial sums, and similar definitions of SDt and SXt .

We denote the corresponding OLS residuals, with estimation based upon the pre-break

sample 1, . . . , [mT ] by (using the same notation for the coefficient estimates as before)

Ŝut,m := Syt − SD′t θ̂D,m − SX′t θ̂X,m −X ′tγ̂m (39)

= Sut −X ′tγ̂m − SD′t (θ̂D,m − θD)− SX′t (θ̂X,m − θX) (40)
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Under the assumptions stated the following FCLT holds:

Lemma 4. Let the data be generated by (29) and (30) with Assumptions 1 and 3 in

place. Then it holds for T →∞ that

1√
T

[sT ]∑
t=2

∆Ŝut,m ⇒ ω1/2
u·v

(
Wu·v(s)− g(s)′

(∫ m

0

g(z)g(z)′dz

)−1 ∫ m

0

[G(m)−G(z)] dWu·v(z)

)
=: ω1/2

u·v P̃m(s), (41)

where g(s) := [
∫ s
0
D(z)′dz,

∫ s
0
Wv(z)′ds,Wv(z)′]′ and G(s) :=

∫ s
0
g(z)dz.

Based upon the above result, the IM-OLS based detector is defined analogously as:

Îm(s) :=
1

ω̂u·v

 1

T

[sT ]∑
i=[mT ]+1

(
1√
T
Ŝui,m

)2

− 1

T

[mT ]∑
i=1

(
1√
T
Ŝui,m

)2
 , (42)

where the scaling is, as for the other detectors, based on a consistent estimator of ωu·v.

Note that the same estimator as for FM-OLS or D-OLS, i.e. the estimator based on the

OLS residuals ût,m stacked on top of the first differences of the regressors, is used. The

asymptotic null behavior of the IM-OLS detector is given next.

Lemma 5. Let the data be generated by (29) and (30) with Assumptions 1 and 3 in place

and let ω̂u·v denote a consistent long-run variance estimator. Then it holds under the null

hypothesis and for m ≤ s ≤ 1 for T →∞ for IM-OLS that

Îm(s) ⇒
∫ s

m

P̃m(z)2dz −
∫ m

0

P̃m(z)2dz =: Im(s) (43)

As for the stationarity monitoring procedure, it can be shown that under the null hy-

pothesis for given weighting function w(s), there exist critical values c = c(α,w(s)), such

that the detection time is finite with probability equal to the pre-specified level α.

Proposition 4. Let the data be generated by (29) and (30) with Assumptions 1 and 3

in place, let long-run variance estimation be carried out consistently and consider 0 <
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w(s) <∞. Then, under the null hypothesis there exists for any given 0 < α < 1 critical

values c = c(α,w(s)), depending upon estimation method, such that

lim
T→∞

P(τm(Ĥm,+(s), w(s), c(α,w(s))) <∞) = α, (44)

in case that FM-OLS or D-OLS is used, respectively

lim
T→∞

P(τm(Îm(s), w(s), c(α,w(s))) <∞) = α, (45)

in case IM-OLS is used.

Remark 7. Note that for given weighting function w(s) the critical values are identical

for the FM-OLS and D-OLS based detectors, but are different for the IM-OLS based

detector. �

The critical values depend again also on the weighting function w(s), which we again

choose as w(s) = s3 in the intercept case Dt = 1 and w(s) = s5 in the linear trend case

Dt = (1, t)′. Critical values for these two cases are provided for both FM-OLS and D-

OLS, in Tables 4 and 5, as well as for IM-OLS, in Tables 6 and 7, in Appendix B for one

integrated regressor.14 The simulations are performed analogously to the ones described

above in Section 2 for the critical values for the stationarity monitoring procedure.

It remains to establish the behavior of the monitoring procedure under alternatives. In

fact there are now three dimensions of structural change against which the procedures

are shown to have power. First, changes in the behavior of ut, where we consider exactly

the same alternatives as above in Proposition 2. Second, again similar to before, we

consider the behavior against breaks in the parameters corresponding to the deterministic

component. Third, we now additionally consider the behavior against breaks in the slope

coefficients corresponding to the integrated regressors. For all three cases we consider

again fixed and local alternatives.

14Critical values for up to four integrated regressors are available in supplementary material. Also
computer code that implements the procedures is available upon request.
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Proposition 5. (Consistency and Local Asymptotic Power)

Let the data be generated by (29) and (30) with Assumption 1 in place and ηt fulfilling

Assumption 3 until [rT ], with m ≤ r < 1. Furthermore, assume that long-run variance

estimation is performed consistently using observations 1, . . . , [mT ] and let 0 < w(s) <

∞. Denote with F̂m(s) either Ĥm,+(s) or Îm(s).

(a) Let ut be an I(1) process (as specified in H1) from [rT ] + 1 onwards. Then the

monitoring procedures are consistent, i.e. for any 0 < c <∞ it holds that

lim
T→∞

P(τm(F̂m(s), w(s), c) <∞) = 1. (46)

(b) Let ut be as specified in (17) from [rT ]+1 onwards. Then the monitoring procedures

have non-trivial local power. That means, for any 1 − α ≥ ε > 0 and the 0 < c =

c(α,w(s)) <∞ from Proposition 4 there exists a 0 < δ = δ(c, w(s)) <∞ such that

lim
T→∞

P(τm(F̂m(s), w(s), c(α,w(s))) <∞) ≥ 1− ε. (47)

Proposition 6. (Behavior in Case of Trend Breaks)

Let the data be generated by (29) and (30) with Assumptions 1 and 3 in place. Fur-

thermore, assume that long-run variance estimation is performed consistently using ob-

servations 1, . . . , [mT ] and let 0 < w(s) < ∞. Denote with F̂m(s) either Ĥm,+(s) or

Îm(s).

(a) (Fixed Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,2, with θD,1 6=

θD,2, from t = [rT ] + 1 onwards, then

lim
T→∞

P(τm(F̂m(s), w(s), c) <∞) = 1. (48)

(b) (Local Alternative) Let θD = θD,1 for t = 1, . . . , [rT ] and θD = θD,1 + 1√
T
G−1′D ∆θ
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from t = [rT ] + 1 onwards with

∫ 1

r

D(z)′dz∆θ 6= 0, (49)

then the monitoring procedure has non-trivial local power. That means, for any

1 − α ≥ ε > 0 and the 0 < c = c(α,w(s)) < ∞ from Proposition 4 there exists a

∆θ = ∆θ(c, w(s)) fulfilling (49) such that

lim
T→∞

P(τm(F̂m(s), w(s), c(α,w(s))) <∞) ≥ 1− ε. (50)

Compared to the discussion in the previous section, there is now the additional possibility

of breaks in the slope coefficients θX , which are in a sense equivalent to changes in the

behavior of the ut. Consider for simplicity the case θX = θX,1 for t = 1, . . . , [rT ] and

θX = θX,2, with θX,1 6= θX,2, for t = [rT ] + 1, . . . , T . In this case we can write for t > [rT ]

yt = D′tθD +X ′tθX,2 + ut (51)

= D′tθD +X ′tθX,1 +X ′t(θX,2 − θX,1) + ut (52)

Clearly, this implies that in the residual process starting from [rT ] onwards an integrated

process given by X ′t(θX,2− θ̂X,1,m) is present. This component remains present as an I(1)

process also in the limit due to consistency of θ̂X,1,m → θX,1 6= θX,2. Consequently, in

case of a break in the slope parameters, the residual process is an I(1) process. There-

fore, the asymptotic behavior in case of slope breaks is similar to the case discussed in

Proposition 5. We therefore have a very similar result, where local alternatives are now

of the form θX,2 = θX,1 + 1
T

∆θ.

Proposition 7. (Behavior in Case of Slope Breaks)

Let the data be generated by (29) and (30) with Assumptions 1 and 3 in place. Fur-

thermore, assume that long-run variance estimation is performed consistently using ob-

servations 1, . . . , [mT ] and let 0 < w(s) < ∞. Denote with F̂m(s) either Ĥm,+(s) or
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Îm(s).

(a) Considering fixed alternatives of the form θX = θX,1 for t = 1, . . . , [rT ] and θX =

θX,2 for t = [rT ] + 1, . . . , T , with θX,1 6= θX,2 leads to a similar result as in part (a)

of Proposition 5.

(b) Considering local alternatives of the form θX = θX,1 for t = 1, . . . , [rT ] and θX =

θX,1 + 1
T

∆θ, with ∆θ 6= 0, for t = [rT ] + 1, . . . , T leads to a similar result as in part

(b) of Proposition 5.

Remark 8. If one considers the limiting distributions of the detectors under the various

forms of alternatives in more detail one sees that for FM-OLS and D-OLS the additional

terms related to the local alternatives involve integral terms ranging from the break

fraction r to s. This is similar to the limit results that arise when considering local

alternatives for stationarity monitoring, see again 21 or (28). In case of the IM-OLS

based detector the corresponding terms involve integrals ranging from 0 to s. This is

an effect of partial summing the observations before parameters estimation when using

IM-OLS.

Remark 9. Remarks 3 to 6 apply analogously to the cointegration monitoring procedures

as well. �

We again close this section by considering local asymptotic power which is simulated anal-

ogously to the LAP simulations in the previous section, i.e. the number of replications is

10,000 and the time series considered are of length 1,000. All random variables are i.i.d.

standard normal. The limiting distribution for LAP as discussed in Proposition 5(b)

is based on the FCLTs under local alternatives given in (59) for FM-OLS and D-OLS

and (60) for IM-OLS in Appendix A. These are the input to obtain a limiting distribution

similar to the limiting distribution given in (21) used above to study LAP when mon-

itoring stationarity. Also local asymptotic power against trend breaks (Proposition 6)

is simulated in the same way with the corresponding FCLTs given in (63) and (64) in
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Figure 3: Local asymptotic power for k = 1, . . . , 4 regressors for monitoring cointegration for
the case with intercept. The upper plot corresponds to FM-OLS & D-OLS and the lower plot
to IM-OLS. The plots show results for m = r = 0.25.

Appendix A that can be used to obtain limiting distributions similar to (28). Finally,

local asymptotic power against slope breaks (Proposition 7) is based on the FCLTs given

in (67) and (68) in Appendix A. Also for this case the FCLTs allow to establish the lim-

iting distributions of the detectors under the local alternative. Considering these results

in detail leads to exactly the same observations as in the previous section with respect to

the dependence of LAP on the signal-to-noise ratio. As an extension of this fact it turns

out that LAP against slope breaks increases with the variance of the regressors. Similarly

to the simulations in the previous section we set all signal-to-noise ratios equal to one. It

is also clear that in addition to the dependence upon the deterministic component, LAP

now also depends upon the number of integrated regressors, as illustrated in Figure 3.

As expected, LAP decreases with an increasing number of regressors. Consequently, all

other results displayed are for the case of only one integrated regressor.
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In Figure 4 we display LAP against local I(1) alternatives in case of intercept and linear

trends included in the model, where we consider again the same combinations of m and r

as in the previous section. The upper two plots correspond to FM-OLS and D-OLS and

the lower two plots correspond to IM-OLS. The results show that LAP is lower for IM-

OLS, which is as expected given the results of Vogelsang and Wagner (2014) concerning

the relative conditional efficiency of FM-OLS over IM-OLS.15 The practical usefulness

of IM-OLS stems from the lower size distortions that it implies compared to FM-OLS,

as illustrated in the following section where we consider finite sample simulations. With

respect to changing values of m and r all methods have similar LAP rankings, which

coincide with the rankings found in the previous section.

In Figure 5 we display local asymptotic power results against breaks in the intercept,

with the same structure of the figure as in Figure 4. The ordering of LAP as a function

of m = r (in the second and fourth plot) differs between FM-OLS/D-OLS and IM-OLS.

For IM-OLS LAP increases with increasing m = r, whereas for the other two methods

LAP is, as in the previous section, highest for m = r = 0.5. Also, as in the previous

section the rankings differ between the intercept and the linear trend case.

4. Finite Sample Performance (Old Version)

In this section we present some finite sample simulation results. For brevity we only

consider cointegration monitoring. We consider a simulation design similar, with respect

to endogeneity and serial correlation patterns, to Vogelsang and Wagner (2014), i.e. we

15The results are similar, with the differences smaller, in case of the model with intercept only. Ad-
ditional results, including also results for breaks in the slope parameter, are available in supplementary
material. The findings are, as expected, very similar to the ones for local I(1) alternatives.
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Figure 4: Local asymptotic power for monitoring cointegration for the case with intercept and
linear trend. The upper two plots correspond to FM-OLS & D-OLS and the lower two plots to
IM-OLS. The plots show results for different combinations of m and r.
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Figure 5: Local asymptotic power against break in intercept for monitoring cointegration for
the case with intercept. The upper two plots correspond to FM-OLS & D-OLS and the lower
two plots to IM-OLS. The plots show results for different combinations of m and r.
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consider:

yt = µ+ θt+ xtβ + ut

xt = xt−1 + vt

ut = ρ1ut−1 + εt + ρ2et

vt = et + 0.5et−1

The errors εt and et are i.i.d. standard normal random variables. The parameter ρ1

governs the extent of autocorrelation in the errors, and in case ρ1 = 1 we have a spurious

relationship. The parameter ρ2 governs the extent of endogeneity. The parameters are

set to µ = 3, θ = 1 and β = 1. We only display results here for T = 200, with 5,000

replications, and consider ρ1, ρ2 ∈ {0, 0.3, 0.6, 0.9, 0.05} and in addition ρ1 = 1 under the

alternative. The values for m and r are again taken from the set {0.25, 0.5, 0.75}. All long-

run variances are estimated using the Bartlett kernel with the bandwidth chosen according

to Andrews (1991). The lead and lag length choices required for D-OLS estimation are

performed following Kejriwal and Perron (2008). All tests are performed at a significance

level of 5%.

We start in Figure 6 by displaying the empirical size of the monitoring procedures based

on the three modified least squares estimators with m = 0.75. In this figure the points

at the right end, where ρ1 = 1, correspond to a spurious relationship, and thus do not

display size but power against a spurious relationship prevalent over the whole sample

period. Increasing the values of ρ1, ρ2 leads to increasing size distortions. These size

distortions are throughout most pronounced for FM-OLS and least pronounced for IM-

OLS. D-OLS exhibits a performance in between the other two methods, but is in general

closer to IM-OLS than to FM-OLS.

Figure 7 displays size corrected power for the same set of ρ1 and ρ2 values as displayed

in Figure 6. Size corrected power is slightly larger for FM-OLS than for D-OLS and
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Figure 6: Empirical size for the case with intercept and linear trend with m = 0.75.
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Figure 7: Size corrected power for the case with intercept and linear trend with m = r = 0.5
and ρ1, ρ2 = 0.3.
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IM-OLS.16 This finding is well in line with the findings of Vogelsang and Wagner (2014),

who also find that FM-OLS has highest power but also the largest size distortions. The

figure also shows that power crucially depends upon the serial correlation in ut, but is

hardly affected by the parameter ρ2, i.e. by regressor endogeneity. Of course, this finding

has to be interpreted with caution as the figures displays size corrected power.

In Figure 8 we display histograms of the estimated break point for m = 0.25 and r = 0.5

(indicated by the vertical lines) in relation to the power results displayed in Figure 7.

The left column displays the results for ρ1, ρ2 = 0.3 and the right column for ρ1, ρ2 = 0.9.

Two main observations can be made: First, the break point is estimated with delay.

Second, this delay decreases for increasing ρ1, ρ2. The second observation is not in line

with expectations, given that increasing values of ρ1, ρ2 lead to deteriorating performance

of the monitoring procedures.

Finally, Figure 9 displays size corrected power against breaks in the slope parameter β

for different combinations of m and r with ρ1, ρ2 = 0.3. The parameter β is chosen

from the interval [1, 2] using a grid of mesh 0.1, with the point β = 1 corresponding to

the null hypothesis. As expected, the results are – in terms of ranking – similar to the

power results discussed before, with FM-OLS displaying the best results and D-OLS and

IM-OLS showing quite similar performance.

5. Empirical Illustration

We apply the monitoring procedure to investigate daily CDS spreads data for Austria,

Cyprus, France and Germany for maturities one, three, five, seven and ten years, see

Figure 10. Stationary or nonstationary behavior of CDS spreads during financial crisis has

been investigated e.g. by Dieckmann and Plank (2011) who find mixed evidence in this

respect. The mixed evidence may not least be driven by changing stationarity behavior

over time such that an application of our monitoring procedure appears potentially useful.

The time span chosen ranges from April 3, 2009 to August 1, 2012, giving a total of

16The points at the right end of the plots are by construction at the chosen significance level of 5%.
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Figure 8: Estimated detection times for a shift from I(0) to I(1) behavior of ut at T = 100 for
m = 0.25.
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Figure 9: Size corrected power against a break in the trend parameter for ρ1, ρ2 = 0.3
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T = 869 observations. We try to exclude the immediate consequences of the Lehman

brothers bankruptcy on September 15, 2008 and therefore take as starting date the day

after a G20 summit held in London on April 1–2, 2009 that is considered to have had

stabilizing influences on the financial markets. Our sample period ranges until August

1, 2012, which is the date when Cyprus was downgraded from investment grade BB+

to BB by Standard & Poor’s. The calibration period consists of the first 10% of the

observations, i.e. ranges from April 3, 2009 to July 31, 2009 and is indicated by the

vertical lines in Figure 10.17

Graphical inspection of the data already allows for a few important observations. First,

within each country the series corresponding to the different maturities move together

quite closely, displaying something like a term structure of CDS spreads. In this respect

it is interesting to note that for Cyprus the “term structure” is inverse after the two big

jumps occurring on July 27 and August 26, 2011.18 After these jumps the level of the

series is much larger for Cyprus than for the other three countries that also experience

upward jumps around the same time. This, of course, illustrates the well-known fact that

there are not only within-country dependencies across different maturities, but that there

is also a large amount of cross-country co-movements of CDS spreads series, compare also

Dieckmann and Plank (2011).19

The test results are displayed in Table 1 and indicate a rejection of the null hypothesis

of stationarity at the 5% significance level for all series considered. By construction,

the estimated break dates are later for lower values of α. The break dates (at the 5%

significance level) are between April 27, 2010 (France, ten years) and February 1, 2011

(Germany, one year). All these dates precede the discussed major level shifts in the CDS

17The results are very robust and do not change at all when considering m = 0.2 instead. Note that
for values of m larger than 0.2 the KPSS stationarity test leads to rejection of the null of stationarity on
the calibration sample for all countries and maturities at the 1% level. From this perspective therefore,
the choice of the calibration period appears to be in line with data properties.

18On July 27, 2001 Moody’s downgraded Cyprus to Baa1 after an explosion at a marine base.
19The strong nature of co-movements of series indicates that an extension of our monitoring procedures

to monitor also structural change in the cross-sectional co-movements of potentially (co-)integrated series,
in addition to changing (idiosyncratic) time series properties, may be relevant. Changes in the cross-
sectional dependence structure may be seen as an indicator of contagion phenomena.

35



Austria

Year

0

50

100

150

●

● ●

● ●

● ● ●

●
●

●

● ●

●
●

●
●

●
●

●

●
●

●

●
●

●
● ●

●
●

●

● ●

● ●

●

● ● ●

●

●

●

●
●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●
●

● ●

●
●

●
●

●

●
●

● ● ●

●

●

●

●

●

● ●
●

● ●

● ●

●

Cyprus

Year

0

500

1000

1500

2000

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ●

●

●

●

● ●
●

● ●
●

●
●

●

●
●

●

●

1 Year
3 Years
5 Years
7 Years
10 Years

France

Year

0

50

100

150

● ●
●

●
● ● ● ●

● ●

●

●
●

●
●

●

●
●

●

●

●

● ●

● ●

● ● ●

●

●

● ●
●

●

●

●

●
●

● ●
●

●

●

● ● ●

● ● ● ●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

Germany

Year

0

20

40

60

80

2010 2011 2012

●
●

●
●

●
● ● ●

● ●

●

●
●

●

● ● ●
●

●

●

●

●
● ●

● ●
●

●

●

●

●
●

●
●

●
●

●
● ●

●

●
●

●● ● ●

● ● ● ●

● ●

●

●

●

●

●

●
●

● ● ●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

Figure 10: Daily CDS spreads series.
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Country Maturity Test statistic τm(α = 0.1) τm(α = 0.05)
Austria 1 4317.35 09.08.2010 03.11.2010

3 4647.26 06.08.2010 22.10.2010
5 5582.71 02.07.2010 07.09.2010
7 5492.46 05.07.2010 09.09.2010
10 5643.04 28.06.2010 02.09.2010

Cyprus 1 24474.22 07.07.2010 10.09.2010
3 20564.81 16.07.2010 24.09.2010
5 18220.25 14.07.2010 21.09.2010
7 17693.05 30.06.2010 02.09.2010
10 16749.96 09.06.2010 06.08.2010

France 1 3527.84 10.09.2010 12.01.2011
3 12371.54 11.05.2010 03.06.2010
5 14299.06 21.04.2010 17.05.2010
7 15142.24 13.04.2010 07.05.2010
10 16221.89 31.03.2010 27.04.2010

Germany 1 3450.41 02.09.2010 01.02.2011
3 3905.52 18.08.2010 18.11.2010
5 7042.27 21.05.2010 29.06.2010
7 8139.72 03.05.2010 04.06.2010
10 9083.49 06.05.2010 10.06.2010

Table 1: Results of stationarity monitoring for the daily CDS spreads data for m = 0.1. The

third column displays supm≤s≤1

∣∣∣ Ĥm(s)
w(s)

∣∣∣ and the fourth and fifth columns the associated detec-

tion times τm(Ĥm(s), w(s), c(α,w)) for α = {0.1, 0.05}. Intercept and linear trend are included,
hence w(s) = s5. The null hypothesis is rejected throughout. The 10% critical value is 1252.59
and the 5% critical value is 1777.80.

series that occurred in summer 2011. It is interesting to note that for the longer maturities

the breaks are dated earlier for the big EU member states France and Germany, whereas

it is the opposite for the short maturities. An in-depth exploration of the economic or

political reasons underlying these findings and break dates is beyond the purpose of the

present paper where we merely intend to illustrate our procedure.

Remark 10. For financial data collected at higher frequencies, e.g. the considered daily

CDS spreads series, the assumption of time-constant variances under the null hypothesis

may be too restrictive. Similarly to observations made in e.g. Cavaliere and Taylor (2008),

non-constant second moments of a form that lead to functional central limit theorems

invoking time deformed Brownian motions – in this literature typically referred to as

nonstationary volatility – will lead to size distortion of our monitoring procedure, but
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will not invalidate consistency against fixed alternatives.20 To be precise, consistency of

the detection procedure hinges on the fact that the long-run variance estimators computed

over the pre-break period do not diverge in this more general setting. �

6. Summary and Conclusions (Preliminary Version)

We have proposed monitoring procedures for stationarity and cointegration that are based

on parameter estimation on a pre-break calibration period. The key ingredients of our

detectors are properly scaled squared partial sums of residuals that are compared between

the calibration and the successively increasing monitoring period. Thus, the detectors

are based on the Kwiatkowski et al. (1992) respectively Shin (1994) tests. In case of

cointegration monitoring we have investigated the properties of the monitoring procedure

when using FM-OLS, D-OLS or IM-OLS residuals. Modified least squares estimation is

necessary to correct the effects of serial correlation and endogeneity in order to obtain

nuisance parameter free limiting distributions. The procedures are shown to be consistent

against I(1) alternatives, breaks in the parameters corresponding to the deterministic

components and, in case of cointegration monitoring, breaks in the slope parameters.

The performance of the procedures has been investigated both in terms of local asymptotic

power as well as by means of finite sample simulations. LAP is lower for the IM-OLS

based procedure compared to LAP when using either FM-OLS or D-OLS. The finite

sample simulations, however, indicate that the price for the higher power of the latter

two methods is their larger biases.

A brief empirical application to CDS spreads data of four European countries indicates

the usefulness of the proposed method for the case of stationarity monitoring. The break

dates all precede the turbulent period of summer 2011 by between a year and half a year.

Several extensions of the approach are conceivable: First, it may be relevant to flip null

and alternative hypothesis, i.e. to monitor changes from I(1) to I(0) behavior. Second,

20Cavaliere and Taylor (2005) consider the asymptotic behavior of the KPSS statistic in this context
and Cavaliere and Taylor (2006) consider cointegration testing with variance breaks.
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the empirical application, with the clearly visible co-movements across maturities but also

across countries, indicates that multivariate monitoring procedures may be important for

applied research. Third, especially important for monitoring data collected at higher

frequencies, the effects of non-constant variances need to be investigated in detail.
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A. Proofs

Proof of Lemma 1:

The result follows directly from the assumptions using consistency of OLS detrending

(used already for the FCLT in (13)) and of long-run variance estimation. �

Proof of Proposition 1:

The result follows from Lemma 1 since the limit of Ĥm(s), Ĥm(s) is well defined and the

continuous mapping theorem, compare (11) with Ĥm(s) instead of Hm(s). �

Proof of Proposition 2:

(a): Start by decomposing the partial sum process, for 1 ≥ s > r ≥ m into

1√
T
Ŝ[sT ] =

1√
T
Ŝ[rT ] +

1√
T

[sT ]∑
t=[rT ]+1

ût,m. (53)

The first term above converges to ω1/2Ŵm(r) and the second term above is unbounded

under the considered alternative, since

1√
T

[sT ]∑
t=[rT ]+1

ût,m =
1√
T

[sT ]∑
t=[rT ]+1

ut −
1√
T

[sT ]∑
t=[rT ]+1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui, (54)

where the first term is Op(T ), as it converges, when scaled by T−1, towards the integral

of a Brownian motion, and the second term converges to
∫ s
r
D(z)′

(∫ m
0
D(z)D(z)′dz

)−1∫ m
0
D(z)dW (z). Consequently, for s > r, the first term in Ĥm(s) and thus Ĥm(s) diverges,

which establishes the result.

(b): Straightforward calculations similar to the one above establish for 1 ≥ s > r ≥ m

that
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1√
T

[sT ]∑
t=1

ût,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui (55)

=
1√
T

[sT ]∑
t=1

u0t +
1√
T

[sT ]∑
t=1

δ

T

[sT ]∑
i=[rT ]+1

ξi −
1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diu
0
i

⇒ ω1/2Ŵm(s) + δω
1/2
ξ

∫ s

r

(Wξ(z)−Wξ(r))dz.

This shows that the partial sum process can be made arbitrarily large (with arbitrarily

large probability) by choosing δ large enough. This in turn makes the probability of a

finite τm arbitrarily large. �

Proof of Proposition 3:

(a): Again the starting point is the partial sum process of the OLS residuals. Consider

again 1 ≥ s > r ≥ m:

1√
T

[sT ]∑
t=1

ût,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui −
1√
T

[sT ]∑
t=[rT ]+1

D′t(θD,1 − θD,2).

The first two terms above converge to ω1/2Ŵm(s) and the third term diverges due to

Assumption 1.21

(b): When considering local alternatives, the partial sum process is as follows (for 1 ≥

s > r ≥ m):

21To be precise, divergence occurs for all trend functions such that
√
TGD diverges.
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1√
T

[sT ]∑
t=1

ût,m =
1√
T

[sT ]∑
t=1

ut

− 1√
T

[sT ]∑
t=1

D′t

[mT ]∑
i=1

DiD
′
i

−1 [mT ]∑
i=1

Diui

+
1

T

[sT ]∑
t=[rT ]+1

D′tG
−1′
D ∆θ.

(56)

Under the stated assumptions the limit is given by

1√
T

[sT ]∑
t=1

ût,m ⇒ ω1/2Ŵm(s) +

∫ s

r

D(z)′dz∆θ, (57)

from which the result follows. �

Proof of Lemmata 2, 3, 4 and 5:

These lemmata all follow immediately from the convergence properties of the underlying

estimation methods in conjunction with consistent long-run variance estimation and the

continuous mapping theorem. �

Proof of Proposition 4:

The argument is similar to the argument used in Proposition 1 and follows from the

FCLT provided in Vogelsang and Wagner (2014, Lemma 2). �

Proof of Proposition 5:

(a): Again, the limiting behavior of the partial sum process of the residuals is the key

to the result, where we have to now distinguish between two cases, FM-OLS and D-OLS

estimation on the one hand and IM-OLS estimation on the other. Again we outline the

arguments here for the FM-OLS estimator, noting that the limit process is similar for

D-OLS estimation, and the IM-OLS estimator.

44



For FM-OLS, the partial sum process of the residuals is given by (again for 1 ≥ s > r ≥

m):

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[rT ]∑
t=1

û+t,m +
1√
T

[sT ]∑
t=[rT ]+1

û+t,m (58)

=
1√
T

[rT ]∑
t=1

û+t,m +
1√
T

[sT ]∑
t=[rT ]+1

ut −
1√
T

[sT ]∑
t=[rT ]+1

v′tΩ̂
−1
vv Ω̂vu −

− 1√
T

[sT ]∑
t=[rT ]+1

D′t

(
θ̂D,m − θD

)
− 1√

T

[sT ]∑
t=[rT ]+1

X ′t

(
θ̂X,m − θX

)
.

The first term above converges to ω
1/2
u·v Ŵu·v(r), according to Lemma 2 and the second

term diverges since for the sample period considered ut is an I(1) process. The remaining

three terms converge in distribution. Thus, the partial sum process is in this case Op(T ).

The argument is analogous for the IM-OLS partial sum process, i.e. for Ŝut,m, with

Lemma 4 replacing Lemma 2.

(b): Also for this result similar arguments as in Proposition 2 apply. In particular it

follows now for FM-OLS that (for 1 ≥ s > r ≥ m):

1√
T

[sT ]∑
t=1

û+t,m ⇒ ωu·vŴu·v(s) + δω
1/2
ξ

∫ s

r

(Wξ(z)−Wξ(r))dr. (59)

Thus, the same argument as in Proposition 2 applies. For IM-OLS the result is of the

same type and given by

1√
T
Ŝu[sT ],m ⇒ ω1/2

u·v P̃m(s) + δω
1/2
ξ

∫ s

r

(Wξ(z)−Wξ(r))dr. (60)

The results follow, since the identical second term can be again made arbitrarily large by

choice of δ for both cases. �

Proof of Proposition 6:

The arguments are similar to the arguments in Proposition 3, with the only difference
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being the exact form of the terms, due to the presence of integrated regressors Xt. For

brevity we again just look at the FM-OLS expressions and note again that the result for

D-OLS coincides asymptotically.

(a): Under the fixed alternative, the partial sum process of the FM-OLS residuals, again

for 1 ≥ s > r ≥ m, can be written as:

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv Ω̂vu

− 1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD,1

)
− 1√

T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX

)
− 1√

T

[sT ]∑
t=[rT ]+1

D′t (θD,1 − θD,2) .

(61)

From this expression it is seen that the result is similar to the result in Proposition 3,

since the last term diverges and all other terms together converge to ω
1/2
u·v Ŵu·v(s).

(b): Also here the result is analogous, with the only difference being that under local

alternatives the last term in (61) changes, as in part (b) of Proposition 3, and is instead

given by

1

T

[sT ]∑
t=[rT ]+1

D′tG
−1′
D ∆θ ⇒

∫ s

r

D(z)′dz∆θ (62)

This shows the result as under the considered local alternatives it holds that

1√
T

[sT ]∑
t=1

u+t,m ⇒ ω1/2
u·vWu·v(s) +

∫ s

r

D(z)′dz∆θ. (63)

The arguments are analogous for IM-OLS with the corresponding limit of the residual

process given by

1√
T
Ŝu[sT ],m ⇒ ω1/2

u·v P̃m(s) +

∫ s

0

D(z)′dz∆θ. (64)
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Note that for the IM-OLS result the integral in the second term is over the interval [0, s]

rather than over [r, s]. This stems from the partial summing of the regressors in the IM

regression, see also the proof of Proposition 7 where this effect is displayed in more detail

for the case of slope breaks. �

Proof of Proposition 7:

The proof is analogous to the proof of Proposition 5 with the changes following from the

discussion before Proposition 7.

(a): For FM-OLS we get for 1 ≥ s > r ≥ m:

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv Ω̂vu

− 1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD,1

)
− 1√

T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX

)
− 1√

T

[sT ]∑
t=[rT ]+1

X ′t (θD,1 − θD,2) .

(65)

The first four terms together converge to ω
1/2
u·v Ŵu·v(s) and the last term is Op(T ).

For IM-OLS we get for 1 ≥ s > r ≥ m:

1√
T
Ŝu[sT ],m =

1√
T
Su[sT ] −

1√
T
SD′[sT ]

(
θ̂D,m − θD

)
− 1√

T
SX′[sT ]

(
θ̂X,m − θX,1

)
− 1√

T
X ′[sT ] (γ̂m − γ)− 1√

T
SX′[sT ] (θX,1 − θX,2) ,

(66)

from which it follows that the first four terms together converge to ω
1/2
u·v P̃m(s) and the

last term is Op(T ).

(b): The changes implied by the local alternatives considered are similar to the previous
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propositions and we obtain for FM-OLS for 1 ≥ s > r ≥ m:

1√
T

[sT ]∑
t=1

û+t,m =
1√
T

[sT ]∑
t=1

ut −
1√
T

[sT ]∑
t=1

v′tΩ̂
−1
vv Ω̂vu

− 1√
T

[sT ]∑
t=1

D′t

(
θ̂D,m − θD,1

)
− 1√

T

[sT ]∑
t=1

X ′t

(
θ̂X,m − θX

)
+

1

T 3/2

[sT ]∑
t=[rT ]+1

X ′t∆θ

⇒ ω1/2
u·v Ŵu·v(s) +

∫ s

r

Wv(z)′dzΩ1/2′
vv ∆θ.

(67)

The result for IM-OLS follows analogously to the result for FM-OLS from the result in

part (a) and we obtain for 1 ≥ s > r ≥ m:

1√
T
Ŝu[sT ],m ⇒ ω1/2

u·v P̃m(s) +

∫ s

0

Wv(z)′dzΩ1/2′
vv ∆θ, (68)

since under the considered local alternative the last term from (66) is given by T−3/2SX′[sT ]∆θ.
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B. Critical Values
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 8.41 11.37 14.54 18.94 0.51 0.79 1.01 1.24 1.55
0.11 7.50 10.10 12.94 16.84 0.52 0.76 0.98 1.20 1.51
0.12 6.73 9.08 11.61 15.09 0.53 0.74 0.95 1.17 1.46
0.13 6.08 8.21 10.46 13.62 0.54 0.72 0.92 1.13 1.42
0.14 5.54 7.45 9.50 12.36 0.55 0.69 0.90 1.10 1.38
0.15 5.06 6.81 8.66 11.29 0.56 0.67 0.87 1.08 1.35
0.16 4.65 6.24 7.94 10.33 0.57 0.66 0.85 1.05 1.32
0.17 4.29 5.76 7.34 9.53 0.58 0.64 0.83 1.02 1.29
0.18 3.98 5.33 6.77 8.80 0.59 0.62 0.81 1.00 1.27
0.19 3.70 4.94 6.28 8.15 0.60 0.61 0.79 0.98 1.24
0.20 3.44 4.59 5.83 7.56 0.61 0.59 0.77 0.96 1.22
0.21 3.22 4.29 5.44 7.04 0.62 0.58 0.76 0.94 1.20
0.22 3.01 4.01 5.07 6.56 0.63 0.56 0.74 0.92 1.18
0.23 2.83 3.76 4.74 6.13 0.64 0.55 0.73 0.91 1.15
0.24 2.66 3.52 4.44 5.73 0.65 0.54 0.71 0.89 1.14
0.25 2.50 3.31 4.17 5.37 0.66 0.53 0.70 0.88 1.12
0.26 2.36 3.11 3.92 5.05 0.67 0.52 0.69 0.86 1.10
0.27 2.23 2.94 3.69 4.75 0.68 0.51 0.68 0.85 1.09
0.28 2.11 2.78 3.48 4.48 0.69 0.50 0.67 0.84 1.07
0.29 2.00 2.63 3.29 4.22 0.70 0.50 0.66 0.83 1.05
0.30 1.90 2.49 3.11 3.98 0.71 0.49 0.65 0.81 1.04
0.31 1.81 2.36 2.94 3.76 0.72 0.48 0.64 0.80 1.02
0.32 1.72 2.24 2.79 3.56 0.73 0.47 0.63 0.79 1.01
0.33 1.64 2.13 2.65 3.37 0.74 0.47 0.62 0.78 1.00
0.34 1.56 2.03 2.52 3.20 0.75 0.46 0.61 0.77 0.99
0.35 1.49 1.93 2.40 3.03 0.76 0.45 0.60 0.76 0.97
0.36 1.42 1.85 2.28 2.89 0.77 0.45 0.60 0.75 0.96
0.37 1.36 1.76 2.18 2.75 0.78 0.44 0.59 0.74 0.95
0.38 1.30 1.68 2.08 2.62 0.79 0.44 0.58 0.73 0.94
0.39 1.25 1.61 1.98 2.49 0.80 0.43 0.57 0.72 0.92
0.40 1.19 1.54 1.90 2.38 0.81 0.43 0.57 0.71 0.91
0.41 1.15 1.47 1.82 2.27 0.82 0.42 0.56 0.70 0.90
0.42 1.10 1.42 1.74 2.18 0.83 0.42 0.55 0.70 0.89
0.43 1.06 1.36 1.67 2.09 0.84 0.41 0.55 0.69 0.88
0.44 1.02 1.30 1.60 2.00 0.85 0.41 0.54 0.68 0.87
0.45 0.98 1.25 1.54 1.92 0.86 0.40 0.54 0.67 0.86
0.46 0.94 1.21 1.48 1.85 0.87 0.40 0.53 0.66 0.85
0.47 0.91 1.16 1.43 1.78 0.88 0.39 0.52 0.66 0.84
0.48 0.87 1.12 1.38 1.72 0.89 0.39 0.52 0.65 0.83
0.49 0.85 1.09 1.33 1.66 0.90 0.39 0.51 0.64 0.82
0.50 0.82 1.05 1.28 1.60

Table 2: Critical values for stationarity monitoring for the intercept case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 1252.59 1777.80 2327.20 3066.19 0.51 2.36 3.32 4.33 5.73
0.11 916.45 1300.66 1702.68 2242.99 0.52 2.13 2.99 3.90 5.15
0.12 685.24 977.06 1277.92 1684.26 0.53 1.92 2.70 3.52 4.64
0.13 526.01 748.01 978.33 1292.92 0.54 1.74 2.43 3.18 4.19
0.14 409.41 580.95 760.56 1003.24 0.55 1.58 2.20 2.86 3.78
0.15 323.20 459.38 599.14 792.11 0.56 1.43 1.99 2.59 3.42
0.16 259.06 366.74 480.88 634.05 0.57 1.30 1.79 2.33 3.08
0.17 209.66 297.55 388.27 512.91 0.58 1.18 1.62 2.11 2.77
0.18 171.47 243.49 318.84 421.52 0.59 1.07 1.47 1.90 2.50
0.19 141.61 200.86 263.26 347.20 0.60 0.98 1.32 1.71 2.25
0.20 117.97 167.16 218.50 287.23 0.61 0.89 1.20 1.55 2.04
0.21 99.05 140.26 183.14 241.95 0.62 0.81 1.09 1.40 1.83
0.22 83.56 118.52 155.38 204.50 0.63 0.74 0.99 1.26 1.66
0.23 71.00 100.76 131.56 173.22 0.64 0.68 0.90 1.14 1.49
0.24 60.64 85.92 112.21 148.82 0.65 0.63 0.82 1.03 1.34
0.25 51.96 73.73 96.37 126.62 0.66 0.58 0.75 0.94 1.21
0.26 44.71 63.46 82.84 109.29 0.67 0.53 0.68 0.85 1.09
0.27 38.77 55.02 71.90 94.71 0.68 0.49 0.63 0.77 0.98
0.28 33.62 47.80 62.36 82.22 0.69 0.46 0.58 0.71 0.89
0.29 29.32 41.64 54.36 71.81 0.70 0.42 0.53 0.65 0.81
0.30 25.61 36.39 47.56 62.62 0.71 0.40 0.49 0.60 0.74
0.31 22.45 31.85 41.67 54.92 0.72 0.37 0.46 0.55 0.68
0.32 19.74 27.97 36.70 48.32 0.73 0.35 0.43 0.51 0.63
0.33 17.42 24.64 32.24 42.61 0.74 0.32 0.40 0.48 0.58
0.34 15.36 21.83 28.51 37.57 0.75 0.30 0.38 0.45 0.55
0.35 13.60 19.30 25.22 33.24 0.76 0.29 0.35 0.42 0.51
0.36 12.09 17.13 22.40 29.55 0.77 0.27 0.34 0.40 0.49
0.37 10.73 15.21 19.88 26.23 0.78 0.26 0.32 0.38 0.46
0.38 9.57 13.54 17.68 23.33 0.79 0.25 0.30 0.36 0.44
0.39 8.53 12.07 15.79 20.76 0.80 0.23 0.29 0.35 0.42
0.40 7.61 10.77 14.08 18.56 0.81 0.22 0.28 0.33 0.41
0.41 6.80 9.61 12.57 16.63 0.82 0.22 0.27 0.32 0.39
0.42 6.09 8.61 11.25 14.92 0.83 0.21 0.26 0.31 0.38
0.43 5.46 7.75 10.09 13.32 0.84 0.20 0.25 0.30 0.36
0.44 4.91 6.96 9.06 11.96 0.85 0.19 0.24 0.29 0.35
0.45 4.41 6.24 8.13 10.71 0.86 0.19 0.23 0.28 0.34
0.46 3.97 5.61 7.33 9.67 0.87 0.18 0.22 0.27 0.33
0.47 3.57 5.05 6.61 8.73 0.88 0.17 0.22 0.26 0.32
0.48 3.21 4.55 5.96 7.87 0.89 0.17 0.21 0.25 0.31
0.49 2.90 4.10 5.36 7.04 0.90 0.16 0.20 0.24 0.30
0.50 2.61 3.70 4.81 6.34

Table 3: Critical values for stationarity monitoring for the intercept and linear trend case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 155.37 296.84 502.54 902.43 0.51 1.33 2.14 3.25 5.25
0.11 124.53 238.91 403.91 723.99 0.52 1.22 1.96 2.97 4.76
0.12 101.35 193.34 330.54 589.85 0.53 1.13 1.79 2.70 4.31
0.13 83.57 159.61 269.82 483.63 0.54 1.05 1.63 2.45 3.90
0.14 69.99 133.19 224.75 401.60 0.55 0.97 1.50 2.23 3.53
0.15 58.93 111.90 188.55 333.77 0.56 0.91 1.37 2.03 3.19
0.16 50.22 94.76 160.22 283.59 0.57 0.84 1.26 1.84 2.87
0.17 42.90 81.12 136.42 240.58 0.58 0.79 1.16 1.67 2.62
0.18 36.94 69.60 117.13 207.64 0.59 0.73 1.07 1.53 2.35
0.19 32.13 60.17 101.28 178.28 0.60 0.69 0.99 1.40 2.14
0.20 28.06 52.42 87.90 154.94 0.61 0.64 0.92 1.28 1.93
0.21 24.62 45.98 76.70 134.76 0.62 0.61 0.86 1.18 1.74
0.22 21.67 40.30 67.25 118.09 0.63 0.57 0.80 1.08 1.59
0.23 19.16 35.53 59.29 103.42 0.64 0.54 0.75 1.00 1.45
0.24 17.00 31.43 51.89 90.86 0.65 0.51 0.70 0.93 1.33
0.25 15.13 27.87 46.01 79.96 0.66 0.48 0.66 0.87 1.21
0.26 13.49 24.75 40.78 70.51 0.67 0.46 0.62 0.81 1.12
0.27 12.10 22.17 36.50 63.01 0.68 0.43 0.59 0.77 1.05
0.28 10.87 19.82 32.65 56.42 0.69 0.41 0.56 0.72 0.97
0.29 9.78 17.75 29.23 50.12 0.70 0.40 0.53 0.69 0.92
0.30 8.81 15.99 26.18 44.75 0.71 0.38 0.51 0.66 0.87
0.31 7.98 14.39 23.45 40.20 0.72 0.36 0.49 0.63 0.83
0.32 7.21 12.98 21.05 36.15 0.73 0.35 0.47 0.61 0.80
0.33 6.51 11.68 18.94 32.28 0.74 0.34 0.46 0.58 0.77
0.34 5.91 10.55 17.09 29.00 0.75 0.33 0.44 0.57 0.75
0.35 5.37 9.54 15.39 26.04 0.76 0.32 0.43 0.55 0.73
0.36 4.88 8.65 13.87 23.28 0.77 0.31 0.42 0.54 0.71
0.37 4.45 7.83 12.57 21.05 0.78 0.31 0.41 0.53 0.70
0.38 4.06 7.08 11.37 19.04 0.79 0.30 0.40 0.52 0.69
0.39 3.70 6.45 10.30 17.28 0.80 0.29 0.40 0.51 0.68
0.40 3.38 5.85 9.31 15.62 0.81 0.29 0.39 0.51 0.67
0.41 3.10 5.33 8.44 14.15 0.82 0.29 0.39 0.50 0.66
0.42 2.82 4.85 7.69 12.79 0.83 0.28 0.38 0.49 0.65
0.43 2.59 4.42 6.96 11.56 0.84 0.28 0.38 0.49 0.64
0.44 2.38 4.03 6.33 10.47 0.85 0.27 0.37 0.48 0.64
0.45 2.18 3.67 5.74 9.50 0.86 0.27 0.37 0.48 0.63
0.46 2.00 3.36 5.22 8.63 0.87 0.27 0.36 0.47 0.62
0.47 1.84 3.06 4.75 7.78 0.88 0.27 0.36 0.46 0.62
0.48 1.70 2.80 4.33 7.06 0.89 0.26 0.36 0.46 0.61
0.49 1.56 2.55 3.93 6.38 0.90 0.26 0.35 0.45 0.60
0.50 1.44 2.34 3.57 5.80

Table 4: Critical values for FM-OLS & D-OLS with one regressor for the intercept case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 3205.88 5325.61 8212.84 13425.47 0.51 4.42 6.85 9.95 15.33
0.11 2338.95 3866.29 5982.86 9753.77 0.52 3.93 6.10 8.85 13.59
0.12 1741.12 2875.63 4417.46 7231.43 0.53 3.51 5.44 7.88 12.07
0.13 1320.81 2181.13 3363.93 5486.46 0.54 3.14 4.85 6.99 10.67
0.14 1023.54 1683.19 2581.31 4222.53 0.55 2.81 4.32 6.21 9.50
0.15 803.93 1323.84 2030.97 3293.20 0.56 2.50 3.83 5.50 8.43
0.16 638.34 1048.89 1610.98 2613.38 0.57 2.23 3.42 4.90 7.44
0.17 514.48 845.20 1296.56 2104.27 0.58 1.99 3.05 4.36 6.58
0.18 417.80 687.25 1054.12 1711.22 0.59 1.78 2.72 3.88 5.83
0.19 343.32 562.83 860.87 1399.28 0.60 1.59 2.43 3.44 5.15
0.20 283.73 464.96 709.89 1149.95 0.61 1.42 2.15 3.05 4.57
0.21 236.56 386.21 591.37 954.52 0.62 1.26 1.91 2.71 4.06
0.22 198.19 323.69 494.83 800.37 0.63 1.12 1.69 2.39 3.56
0.23 167.04 272.48 416.71 676.20 0.64 1.00 1.50 2.11 3.15
0.24 141.49 230.35 351.74 568.17 0.65 0.89 1.33 1.87 2.78
0.25 120.65 195.58 297.08 481.41 0.66 0.79 1.18 1.66 2.45
0.26 102.92 166.91 253.84 409.60 0.67 0.71 1.04 1.46 2.15
0.27 88.33 142.87 217.42 349.75 0.68 0.63 0.92 1.29 1.89
0.28 76.20 123.56 186.78 300.96 0.69 0.56 0.81 1.13 1.66
0.29 65.95 106.60 161.16 259.16 0.70 0.51 0.72 0.99 1.45
0.30 57.22 92.54 139.93 223.76 0.71 0.46 0.64 0.87 1.26
0.31 49.82 80.61 121.45 194.05 0.72 0.41 0.57 0.76 1.10
0.32 43.65 70.07 105.78 168.11 0.73 0.37 0.51 0.67 0.95
0.33 38.07 61.16 91.95 146.09 0.74 0.34 0.45 0.59 0.82
0.34 33.36 53.51 80.53 128.04 0.75 0.31 0.41 0.52 0.72
0.35 29.27 46.81 70.38 111.98 0.76 0.28 0.37 0.47 0.63
0.36 25.70 41.15 61.75 98.46 0.77 0.26 0.33 0.42 0.55
0.37 22.72 36.37 54.33 86.55 0.78 0.24 0.31 0.38 0.49
0.38 20.04 32.00 47.60 75.75 0.79 0.23 0.28 0.35 0.44
0.39 17.75 28.28 42.28 66.64 0.80 0.21 0.26 0.32 0.40
0.40 15.70 25.03 37.47 58.94 0.81 0.20 0.25 0.30 0.37
0.41 13.92 22.13 32.91 51.92 0.82 0.19 0.23 0.28 0.35
0.42 12.37 19.60 29.07 45.88 0.83 0.18 0.22 0.26 0.33
0.43 11.01 17.40 25.75 40.46 0.84 0.17 0.21 0.25 0.31
0.44 9.82 15.47 22.79 35.75 0.85 0.16 0.20 0.24 0.30
0.45 8.74 13.72 20.29 31.72 0.86 0.16 0.19 0.23 0.29
0.46 7.77 12.19 17.92 28.27 0.87 0.15 0.19 0.22 0.28
0.47 6.92 10.86 15.93 24.84 0.88 0.14 0.18 0.22 0.27
0.48 6.20 9.68 14.21 22.00 0.89 0.14 0.17 0.21 0.26
0.49 5.54 8.63 12.61 19.58 0.90 0.14 0.17 0.20 0.25
0.50 4.95 7.67 11.22 17.35

Table 5: Critical values for FM-OLS & D-OLS with one regressor for the intercept and linear
trend case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 302.01 616.19 1123.15 2164.76 0.51 2.51 4.47 7.37 13.14
0.11 241.96 493.68 892.29 1746.33 0.52 2.31 4.09 6.72 11.88
0.12 196.96 401.15 727.88 1416.39 0.53 2.12 3.73 6.11 10.80
0.13 163.30 331.04 598.38 1168.42 0.54 1.95 3.42 5.57 9.79
0.14 136.16 275.69 499.38 964.93 0.55 1.79 3.13 5.07 8.91
0.15 114.69 232.45 417.34 807.86 0.56 1.65 2.86 4.62 8.08
0.16 97.31 196.84 354.39 684.46 0.57 1.51 2.61 4.20 7.29
0.17 83.27 167.74 301.22 577.64 0.58 1.39 2.38 3.82 6.59
0.18 71.82 144.46 258.47 495.75 0.59 1.27 2.18 3.47 5.96
0.19 62.20 124.50 222.98 430.48 0.60 1.17 1.99 3.15 5.39
0.20 54.42 108.62 193.99 371.84 0.61 1.07 1.81 2.85 4.90
0.21 47.71 94.86 169.98 324.57 0.62 0.98 1.65 2.59 4.44
0.22 41.90 83.56 149.20 284.74 0.63 0.90 1.50 2.36 4.01
0.23 37.10 73.76 131.23 248.97 0.64 0.82 1.37 2.14 3.61
0.24 32.97 65.32 115.76 220.59 0.65 0.75 1.25 1.94 3.25
0.25 29.34 57.81 102.68 195.35 0.66 0.69 1.13 1.76 2.93
0.26 26.15 51.51 91.22 173.74 0.67 0.63 1.03 1.59 2.63
0.27 23.37 45.91 81.20 154.67 0.68 0.57 0.93 1.43 2.37
0.28 20.96 41.03 72.56 137.34 0.69 0.52 0.84 1.29 2.11
0.29 18.88 36.74 64.76 122.15 0.70 0.47 0.76 1.16 1.90
0.30 17.01 33.02 57.93 108.59 0.71 0.43 0.69 1.04 1.70
0.31 15.35 29.73 52.00 97.75 0.72 0.39 0.62 0.93 1.51
0.32 13.90 26.90 46.73 87.99 0.73 0.35 0.56 0.84 1.35
0.33 12.60 24.30 42.13 78.89 0.74 0.32 0.50 0.75 1.20
0.34 11.41 21.97 38.08 70.78 0.75 0.29 0.45 0.67 1.06
0.35 10.38 19.85 34.37 63.50 0.76 0.26 0.40 0.59 0.94
0.36 9.44 18.01 31.16 57.60 0.77 0.23 0.36 0.53 0.83
0.37 8.59 16.31 28.20 51.74 0.78 0.21 0.32 0.47 0.73
0.38 7.82 14.79 25.47 46.81 0.79 0.19 0.29 0.41 0.64
0.39 7.13 13.43 23.03 42.45 0.80 0.18 0.26 0.37 0.56
0.40 6.51 12.21 20.90 38.47 0.81 0.16 0.23 0.32 0.49
0.41 5.96 11.12 18.96 34.86 0.82 0.15 0.21 0.29 0.43
0.42 5.46 10.14 17.22 31.48 0.83 0.14 0.19 0.25 0.37
0.43 4.99 9.23 15.63 28.61 0.84 0.13 0.17 0.23 0.33
0.44 4.57 8.42 14.21 25.91 0.85 0.12 0.16 0.21 0.29
0.45 4.19 7.68 12.96 23.53 0.86 0.11 0.15 0.19 0.26
0.46 3.85 7.00 11.78 21.32 0.87 0.11 0.14 0.18 0.24
0.47 3.53 6.41 10.75 19.38 0.88 0.10 0.13 0.17 0.22
0.48 3.24 5.86 9.79 17.55 0.89 0.10 0.13 0.16 0.21
0.49 2.97 5.35 8.91 15.96 0.90 0.10 0.12 0.16 0.20
0.50 2.73 4.89 8.11 14.45

Table 6: Critical values for IM-OLS with one regressor for the intercept case.
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m 90% 95% 97.5% 99% m 90% 95% 97.5% 99%
0.10 5714.91 10161.34 16644.37 29142.29 0.51 7.86 12.94 20.08 33.62
0.11 4152.40 7378.48 12117.97 21252.75 0.52 7.03 11.55 17.83 29.76
0.12 3089.93 5464.02 8971.08 15675.90 0.53 6.29 10.31 15.89 26.53
0.13 2342.37 4146.13 6756.60 11835.05 0.54 5.62 9.21 14.14 23.58
0.14 1806.26 3197.50 5215.71 9125.17 0.55 5.03 8.21 12.61 20.91
0.15 1412.96 2501.02 4084.95 7165.94 0.56 4.50 7.33 11.27 18.47
0.16 1120.95 1980.70 3244.39 5689.81 0.57 4.03 6.54 10.03 16.43
0.17 902.07 1587.83 2604.16 4539.43 0.58 3.60 5.83 8.91 14.62
0.18 734.42 1290.14 2106.33 3677.08 0.59 3.21 5.21 7.94 12.98
0.19 602.14 1056.42 1729.21 2995.80 0.60 2.87 4.65 7.07 11.53
0.20 497.42 873.46 1420.37 2473.81 0.61 2.57 4.15 6.28 10.22
0.21 413.63 724.41 1179.08 2052.30 0.62 2.30 3.69 5.58 9.02
0.22 346.15 604.26 988.04 1708.32 0.63 2.06 3.29 4.94 7.94
0.23 291.81 511.02 832.81 1445.81 0.64 1.84 2.93 4.38 7.03
0.24 247.93 432.50 702.19 1222.98 0.65 1.64 2.60 3.88 6.19
0.25 210.91 367.02 596.79 1036.96 0.66 1.46 2.31 3.44 5.45
0.26 180.55 314.53 509.13 880.85 0.67 1.30 2.05 3.04 4.80
0.27 154.91 269.85 435.13 749.23 0.68 1.15 1.81 2.68 4.22
0.28 133.47 231.82 373.85 642.20 0.69 1.02 1.61 2.36 3.71
0.29 115.45 200.84 322.62 557.63 0.70 0.91 1.42 2.08 3.26
0.30 100.24 173.63 279.36 481.82 0.71 0.81 1.25 1.83 2.85
0.31 87.31 150.80 243.53 417.67 0.72 0.71 1.10 1.61 2.49
0.32 76.18 131.32 211.84 362.84 0.73 0.63 0.97 1.41 2.17
0.33 66.58 114.85 184.51 316.22 0.74 0.55 0.85 1.23 1.89
0.34 58.44 100.30 161.13 276.70 0.75 0.49 0.75 1.08 1.64
0.35 51.38 87.90 140.91 242.11 0.76 0.42 0.65 0.94 1.42
0.36 45.19 77.32 123.37 211.84 0.77 0.37 0.57 0.81 1.23
0.37 39.92 68.12 108.66 186.27 0.78 0.32 0.49 0.70 1.06
0.38 35.23 60.01 95.72 164.54 0.79 0.28 0.43 0.61 0.91
0.39 31.21 52.92 84.43 144.50 0.80 0.24 0.37 0.52 0.78
0.40 27.67 46.93 74.67 127.68 0.81 0.21 0.32 0.45 0.66
0.41 24.54 41.62 65.99 112.02 0.82 0.18 0.27 0.38 0.56
0.42 21.81 36.86 58.36 99.02 0.83 0.16 0.23 0.32 0.47
0.43 19.37 32.76 51.63 87.88 0.84 0.14 0.20 0.27 0.39
0.44 17.26 29.06 45.94 78.07 0.85 0.12 0.17 0.23 0.33
0.45 15.39 25.83 40.86 69.45 0.86 0.11 0.15 0.19 0.27
0.46 13.71 23.00 36.30 61.27 0.87 0.10 0.13 0.17 0.23
0.47 12.26 20.53 32.13 54.29 0.88 0.09 0.12 0.15 0.19
0.48 10.97 18.24 28.52 47.92 0.89 0.09 0.11 0.13 0.17
0.49 9.82 16.25 25.36 42.53 0.90 0.08 0.10 0.12 0.15
0.50 8.77 14.50 22.56 37.91

Table 7: Critical values for IM-OLS with one regressor for the intercept and linear case.
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C. Supplementary Material: Additional Results (Not for

Publication)

Country Maturity Test statistic τm(α = 0.1) τm(α = 0.05)
Austria 1 4852.94 15.02.2010 25.02.2010

3 4409.97 19.02.2010 04.03.2010
5 3099.18 01.03.2010 17.03.2010
7 2191.71 18.03.2010 20.04.2010
10 1723.25 06.04.2010 18.05.2010

Cyprus 1 14751.56 11.03.2010 01.04.2010
3 13686.61 04.03.2010 22.03.2010
5 11018.63 10.03.2010 30.03.2010
7 8978.85 16.03.2010 07.04.2010
10 6431.65 25.03.2010 23.04.2010

France 1 4792.63 18.02.2010 25.02.2010
3 7851.47 15.02.2010 19.02.2010
5 7643.47 15.02.2010 22.02.2010
7 5491.09 19.02.2010 01.03.2010
10 3960.79 26.02.2010 10.03.2010

Germany 1 3994.32 23.02.2010 02.03.2010
3 5026.07 17.02.2010 24.02.2010
5 3462.37 25.02.2010 05.03.2010
7 2345.01 08.03.2010 22.03.2010
10 1962.23 01.04.2010 26.04.2010

Table 8: Results of stationarity monitoring for the daily CDS spreads data for m = 0.2. The

third column displays supm≤s≤1

∣∣∣ Ĥm(s)
w(s)

∣∣∣ and the fourth and fifth columns the associated detec-

tion times τm(Ĥm(s), w(s), c(α,w)) for α = {0.1, 0.05}. Intercept and linear trend are included,
hence w(s) = s5. The null hypothesis is rejected throughout. The 10% critical value is 916.45
and the 5% critical value is 1300.66.
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Figure 11: Local asymptotic power for monitoring cointegration for the case with intercept.
The upper two plots correspond to FM-OLS & D-OLS and the lower two plots to IM-OLS. The
plots show results for different combinations of m and r.
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Figure 12: Local asymptotic power against break in trend parameter for monitoring cointegra-
tion for the case with intercept and linear trend. The upper two plots correspond to FM-OLS
& D-OLS and the lower two plots to IM-OLS. The plots show results for different combinations
of m and r.
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Figure 13: Local asymptotic power against break in slope parameter for monitoring cointegra-
tion for the case with intercept. The upper two plots correspond to FM-OLS & D-OLS and the
lower two plots to IM-OLS. The plots show results for different combinations of m and r.

59



● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

m=0.25,r=0.25
m=0.25,r=0.5
m=0.25,r=0.75

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

m=0.25,r=0.25
m=0.5,r=0.5
m=0.75,r=0.75

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

m=0.25,r=0.25
m=0.25,r=0.5
m=0.25,r=0.75

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

● ● ●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

delta

Lo
ca

l a
sy

mp
tot

ic 
po

we
r

●

●

●

m=0.25,r=0.25
m=0.5,r=0.5
m=0.75,r=0.75

Figure 14: Local asymptotic power against break in slope parameter for monitoring cointegra-
tion for the case with intercept and linear trend. The upper two plots correspond to FM-OLS
& D-OLS and the lower two plots to IM-OLS. The plots show results for different combinations
of m and r.
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