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Abstract: A country’s urban silhouettes prophesy its future climate policy, or so this
paper argues. The more its city silhouettes are skewed to the periphery, the more likely a
country is to implement the carbon tax. This is why the effect of a country’s urban form
on greenhouse gas emissions – a bone of contention in the recent literature – cannot be
separated from that country’s choice of carbon tax. From this paper’s perspective, a coun-
try with greater city silhouette skews may emit less greenhouse gases not so much because
its cities are more compact but because it places a higher price on carbon consumption.
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1 Introduction

Some countries take climate change more serious than others. At least this is what a
casual glance at the gasoline tax, itself not a trivial tool in the panoply of climate pol-
icy instruments, suggests. Currently the gasoline tax stands at $4.19 per gallon in the
Netherlands, $3.80 in France, or $3.54 in Italy. At the same time this tax comes down to
$1.20 in New Zealand, $0.96 in Canada or only even $0.49 in the US. These simple figures
(all taken from Knittel (2012), earlier yet related figures are found in Pucher (1988)) do
provide some motivation for this paper’s premise. This premise is that there are stark
differences in carbon taxation across countries, and that these differences are not easily
explained by differences in income, differences in climate change exposure (documented in
Desmet/Rossi-Hansberg (2012)), or differences in carbon-based resources. Even less can
carbon tax variation be put down to countries’ common incentive to free-ride.

Understanding carbon taxes (or any other climate policy equivalent to it) could benefit,
so this paper argues, from studying city silhouettes. The intuition underlying this idea
unfolds in five small consecutive steps: (i) A carbon tax raises the cost of carbon intensive
commutes. (ii) More expensive commutes have urban residents compete more for living
in the city center. (iii) Growing city center rents capture landlords’ imagination. And
so (iv) where tenants will always resent the tax, (v) landlords may actually support it
. . . provided that housing is more plentiful at the city center than at the periphery. – In
our words, the more a country’s city silhouettes are skewed towards the periphery, the
more likely that country is to implement the carbon tax. Literally, Europe puts in greater
efforts into tackling greenhouse gas emissions than the US not because Europeans are
more environmentally aware but because European silhouettes are more strongly skewed.

Our understanding of carbon taxes can do without assuming different beliefs. Hep-
burn/Stern (2008, p. 260), for instance, have suggested that “significant proportions of
citizens in both Britain and America still do not believe that the world is warming owing
to human activity”. Our understanding of carbon taxes could also offer a hiatus in the
controversy over whether international climate policy negotiations are ridden by strate-
gic behavior. Carraro/Siniscalco (1998), for example, have argued that a stable grand
coalition of carbon taxing countries does not exist. In a sense here we deemphasize the
role of strategic behavior, much as pointing to climate policy’s potential ancillary benefits
(Altemeyer-Bartscher/Markandiya/Rübbelke (2011)) deemphasizes it. Suppose that, in
the extreme, only city silhouettes mattered. Then national efforts would be as much set
in stone as the buildings those silhouettes are composed of, and certainly not susceptible
to strategic behavior.

Our urban contour based explanation has support for the carbon tax come from the
electorate’s important subset of landlord voters (a majority of the electorate in most
countries). We show that landlords may support the tax never mind the fact that they,
too, must confront those higher travel to work costs induced by the carbon tax. In the
context of a Ricardian city we identify an (easily verifiable) condition as to when the
representative city’s landlord class benefit from the carbon tax. This condition involves
that city’s “silhouette”, introduced as a relative of both the city’s density profile and its
skyline as perceived by a not-too distant observer. The landlord class will benefit from the
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Figure 1: Two Distributions of Daily Commuting Time (in min.)

carbon tax if (and only if) the representative city silhouette is skewed towards the periphery.
This statement is independent of how landlords and tenants are assigned to city rings. It
effectively pins a country’s climate policy down to the skewness of its representative city
silhouette.

All of this promises to uncover a latent connection between a country’s urban form and the
political economy of its climate policy. But how general is this result? Most importantly,
not all landlords benefit from the carbon tax. While properties close to the city center
increase in value properties close to the urban boundary decrease in value, as the plight of
commuting between these peripheral plots and the city center intensifies. The carbon tax
in fact makes worse off landlords owning properties close to the city’s pre-tax periphery. It
might not be sensible to assume that landlords act collectively. However, even if landlords
do not act collectively we continue to find that the city silhouette has a powerful role
in predicting the strength of the political support for the carbon tax. In essence we
observe that: The city silhouette’s skew also bounds from below the number of landlord
beneficiaries. The greater the representative city’s skew, the more confident can we be of
individual landlord voters’ support being strong.

Cities are rarely representative. Cities differ in size, income, etc. If only we recognize the
national commuting distribution as the city silhouette’s federal sibling, silhouettes continue
to matter to the political economy of climate policy even in a system of heterogeneous
cities. We show that: In a heterogenous urban system, the landlord class’ attitude towards
the carbon tax is predicted by both the national commuting time distribution’s skew and the
aggregate share of tenants in the overall population. A country with (i) greater commuting
distribution skew and/or (ii) a larger national tenant share sets a higher carbon tax.
Despite all that city level heterogeneity, national climate policy may be read off simple
national aggregates. The reader permitting, we put this idea to a quick and rough “test”.
Figure 1 shows the histograms of commuting time for “Europe” (i.e. the 34 countries
participating in the European Survey of Working Conditions 2010) and the US (data from
the American Community Survey 2011). Here “Europe”’s commuting distribution surely
looks more skewed, while tenant shares are similar.2

2Tenant shares are 0.29 for the EU-29 (Eurostat) and 0.33 for the US (US Census Bureau). Appendix
B’s Part (iii) has more detailed information on the commuting data that enter Figure 1.
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Brueckner (2005), Glaeser/Kahn (2010), Glaeser (2011), Kim/Brownstone (2013) and de
Lara et al. (2013) all have recently suggested that more “compact”, i.e. more densely pop-
ulated, cities emit less greenhouse gases (GHG). This view also resonates with environmen-
talists (e.g. Lopate (2004)) and architects or urban planners (e.g. Roaf/Crichton/Nichol
(2009)). In contrast, Gaigné et al. (2012) argue that more compact cities may drive up
GHG emissions in the transport sector should greater compactness come along with un-
favorable adjustments in city sizes, and Borck (2014) argues that less compactness may
reduce GHG emissions in the residential sector should less compactness be brought about
by tighter building height restrictions. Somewhat surprisingly, all papers party to this
important controversy treat the carbon tax as being orthogonal to urban form. Yet from
this paper’s perspective, urban form’s effect on GHG emissions cannot be separated from
the carbon tax. An analysis of urban form’s impact on GHG emissions must account
for urban form’s simultaneous impact on the politics of the carbon tax. Countries with
more compact cities may emit less GHG not so much because they are more compact but
because they place a higher premium on carbon consumption.

If the silhouette skew is important we must ask why city silhouette skews differ across
countries. Intuitively, features of the natural terrain play a role here, as must institutions
such as the city’s historical zoning record. Anything forcing individuals to reside further
away from the city center contributes to reducing the city’s skew. Building height re-
strictions prevent property development near the CBD. Green building ordinances have
a similar effect, by putting up the cost of remaking the city generally. Building height
restrictions, low emission construction standards and similar types of green zoning are
at cross-purposes with both (i) cities’ transformation into greener form and (ii) voters’
support for the carbon tax. This observation’s first part conforms with earlier work on
zoning, emissions and climate change (e.g. Bertaud (2004), Glaeser (2011)) and thus is
not, unlike the other italicized results in this introduction, new.

Our focus on the existing international variation of current climate policies should not
distract from the fact that none of these policies stand up to the optimal policy response
(IPCC (2013), Nordhaus (2013)). Yet even if our focus is not normative, our analysis
nonetheless may provide a small step towards understanding the institutions that give rise
to policies that align better with the optimal policy. The emerging pattern of urbaniza-
tion in the world’s two most populous countries, India and China, has frequently been
emphasized in this context. These two countries’ silhouettes are now in their formative
years. For many years to come their ultimate form will not just determine commuting
distances there (Glaeser (2011)), but will also shape, so this paper argues, carbon tax
choices there. From this paper’s perspective, both silhouette skew and tenant share – and
their underlying determinants – deserve climate policy analysts’ attention.

There is a large body of literature relating the cost of commuting to urban form (e.g.
Glaeser/Kahn (2004), Brueckner (2005), Bento/Franco/Kaffine (2006)). This literature’s
interest is in the important effect of the cost of commuting on urban form. I.e., cheaper
petrol facilitates the decentralization of population. At the same time this literature
generally shuts out the possibility of cities’ urban form looping back into the carbon tax.
Ultimately causality runs both ways between urban form and carbon tax. In this paper
the carbon tax affects urban form not just because urban residents frequently flock to
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more central parts of their cities in response (as in, say, de Lara et al. (2013)) – but also
because large cities contract. So even with an endogenous distribution of city sizes, in our
setup it is true that: Not only do individual cities compactify in response to the carbon
tax; the urban system compactifies, too.

We briefly address three further strands of the literature this paper connects to also.
Evidently this paper fits into the vast literature on the redistributional side effects of public
good provision. Typically there some decisive subset of society has government provide a
public good even as this makes that subset’s complement worse off. Then the paper also
accords well with the literature on commuting subsidies. Much as a climate tax raises
urban travel costs do commuting subsidies reduce it (Brueckner (2005), Borck/Wrede
(2005)). At the same time this literature does not embed its discussion of tax or subsidy
into a context of negative externalities. In a context of GHG emissions, discussing a tax is
not simply the reverse of discussing a subsidy. Finally this paper is also preceded by the
aggregate land rent literature following Arnott/Stiglitz (1982). That literature’s focus is
on how aggregate rents and commuting costs relate to each other. Our focus instead is on
how rental incomes and commuting costs shape landlord incentives.

The paper comes in eight sections. Section 2 offers a three paragraph starter. Section 3
introduces a representative city’s silhouette in a standard closed-city framework. It is also
there that we make more precise the concepts of “compactness”, “contour”, “silhouette”
and “density” strewn across this introduction. Section 4 shifts attention away from the
landlord class, and towards individual landlords. Section 5 replaces the representative city
framework with an urban system awash with heterogeneous cities. Section 6 allows for
urban system-wide housing stock adjustment, and for environmental benefits to win over
tenants, too. Section 7 considers further extensions, while section 8 concludes.

2 A Night Time Silhouette

We illustrate the paper’s theme by way of a simple linear-city example. Consider three
“rings” around the central business district (CBD), and at ever greater distances to it.
Let introducing a carbon tax raise the cost of commuting from ring 1 to the CBD by 0
Euro, from ring 2 to the CBD by 2 Euro, and from ring 3 to the CBD by 4 Euro. Once
adjustments have taken place, rent in ring 1 must have risen by 4 Euro, and rent in ring
2 must have risen by 2 Euro, while rent in ring 3 will not have changed at all. Following
Ricardo, these changes just offset the extra commuting cost advantages rings 1 and 2 enjoy
vis-à-vis ring 3. Now consider six units of (equally sized) housing. Three of these units
are to be found in ring 1, two in ring 2, and one unit of housing is peripheral, in ring 3.
Finally, let one half of society, also referred to as its three landlords, own all six units of
housing.

We quickly assess the costs/benefits attached to different allocations of homeowners and
tenants. One such allocation is ({1, 3}, {1, 2}, {1, 2}), where the interpretation of, say,
{1, 3}, is that a landlord residing in ring 1 herself has her tenant live in ring 3. In this allo-
cation, the landlord wound up in the first match {1, 3} clearly loses nothing in commuting
costs but also gains nothing in rent. Landlords party to either the second or third match
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{1, 2} do not suffer from extra commuting costs yet gain 2 in rent. Adding up yields a net
aggregate landlord gain of 4. This gain, we note first, never depends on how landlords and
tenants are distributed across the housing stock. For example, a different landlord-tenant
allocation, of ({2, 3}, {1, 2}, {1, 1}), yields an identical net aggregate landlord gain of 4.
Moreover, as we emphasize second, this gain may even be read off the city’s physical form:

Suppose the three units of housing in ring 1 were stacked on top of each other, composing
a building of three stories. Likewise, the two units of housing in ring 2 could form a two
storey house while the single unit of housing in ring 3 is the city’s “bungalow”. Then from
a distance an observer would not just make out the urban silhouette lit up against the
night time sky but would also immediately recognize this silhouette to be skewed towards
the periphery. Intuitively it is this skew to the periphery that underlies the landlord
class gain’s being positive. Were this silhouette skewed towards the center then landlords’
aggregate net benefit would be negative. To see this one simply replays our little example
with the roles of CBD and periphery reversed.

3 Silhouette Skewness and the Carbon Tax

We introduce our basic model of silhouette skewness. At its core we position a circular
monocentric city. This city extends from the CBD out to its boundary r̃. Think of the
city as being split into n rings spaced equally far apart from each other. If distance from
the CBD is r, the first of these rings extends from the CBD to r̃/n, the second from r̃/n

to 2r̃/n, and so forth. The number of housing units supplied by ring i is si. A fraction θ
of the overall urban housing s supplied, s =

∑n
i=1 si, are tenant-occupied; the remaining

fraction 1−θ are inhabited by these tenants’ landlords. The number s is even. All residents
commute to the city center, where they earn the wage ω. For a resident in ring i, round
trip commuting costs are tri, with ri the distance from the CBD to the midpoint between
ring i’s outer and inner annulus. Every resident consumes one unit of housing. There is
no agricultural hinterland.

Even more specifically, for now we also assume: (i) landlords are resident, not absentee,
(ii) the city is representative of every of the urban system’s (many) cities, (iii) the wage is
given, (iv) within-ring-travel is costless, and (v) all housing is inherited from the past and
fixed. In fact, for now we even assume that (vi) the landlord class pursue its aggregate
interest, (vii) the landlord class are decisive, (viii) no one cares about the climate, and (ix)
tax revenues are not refunded. Revenues are spent on national public goods that enter
household utility in additive fashion, and are suppressed notation wise. The first eight
of our nine assumptions we will relax gradually, in the order in which they appear here.
We never relax assumption (ix). One might argue that environmental tax revenues are
always unlikely to be refunded to the tax payer (directly). Or one might simply consider
assumption (ix) to be the model’s hinge.

Our representative city is closed (e.g. Mohring (1961), Wheaton (1974), Brueckner (1987)).
Any shock rippling through our cities below will occur in every one of them alike, simul-
taneously. Tenants’ competition for the best location within the city implies that income
remaining once commuting cost and rent q(r) are deducted must always be the same,
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irrespective of tenants’ location. Comparing any intra-urban plot with the last peripheral
plot occupied thus yields the fundamental q(r) + tr = tr̃ + q(r̃). Throwing in q(r̃) = 0
(peripheral residents do not need to compete, given the abundance of land just one step
beyond the urban fringe) joint with the assumption that all residents are perfectly mobile
makes urban rent follow the Ricardian q(r) = t(r̃ − r). Rent in r reflects nothing but
commuting cost savings from living in r rather than out in r̃. Tenants face an urban
cost-of-living equal to q(r) + tr, or tr̃. This urban cost-of-living is the same at every city
location.

It is instructive to start out with every landlord owning two properties: one property to
live in, and another one to let. (I.e., so θ = 0.5 for now.) Consider a landlord who resides
in ring i yet rents out her or his extra property in ring j. This is a “match” {i, j}. For the
landlord involved in such a match, utility is aij = ω − tri + qj . Dropping the fixed wage
for convenience, the full n × n matrix of landlord utilities connected to residing in i and
renting out in j is a “valuation matrix”, denoted A,

A = t

 −r1 + (r̃ − r1) . . . −r1 + (r̃ − rn)
...

...
−rn + (r̃ − r1) . . . −rn + (r̃ − rn)

 , (1)

and featuring symmetry, given that aij = aji for all i and j. Now consider some arbitrary
assignment of landlords and tenants to city rings, i.e. an intra city spatial allocation. Since
q(r) = t(r̃− r) in spatial equilibrium, tenants never have an incentive to relocate. We now
add that the same is true for resident landlords. Neither will a landlord want to rent out
her or his own dwelling to become tenant elsewhere.3 Nor will a landlord want to exchange
his location with her or his tenant, in view of A’s symmetry. Any allocation conforming
with spatial equilibrium and the pre-existing distribution of housing units (s1, . . . , sn) is
a locational equilibrium.

A’s counter diagonal (comprising all the elements on the diagonal stretching from the
bottom left corner to the top right hand corner) consists of zeros only, because ri +
rn+1−i = r̃.4 Matches for which row index i and column index j sum to n + 1 represent
those perfect hedges for which the landlord’s rental income is always just offset by her
or his travel cost. In contrast, entries above (below) the counterdiagonal of A are always
strictly positive (negative). Now, to A corresponds quite naturally a second matrix B of
identical dimensions collecting the frequencies with which the various matches occur. In
this “match matrix” the entry bij simply represents the number of times the match {i, j}
applies. The aggregate surplus accruing to the landlord class wl may then be computed
as

wl = ι′ (B ◦ A) ι , (2)

where ◦ is the entry wise (or Hadamard) product while ι is a commensurate (i.e. n × 1)
vector of ones.

In applications we are unlikely to be informed about the precise structure of landlord-
tenant matches. Fortunately, these – unobservable – matches are intimately related to the

3A landlord moving out of his owner-occupied dwelling in ring i to become tenant in j gains tri + q(ri)
in income yet also expends an extra, and equal sized, tr(qj) + qj .

4This can easily be checked after noting that ri = [(i/2) + (i− 1)/2] r̃/n.
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– observable – structure of housing units they are housed by. Let li andmi denote landlords
and tenants in ring i, respectively. Then −t

∑n
i=1 liri captures (the negative of) landlords’

aggregate costs of commuting. At the same time, t
∑n
i=1 mi(r̃ − ri) captures landlords’

aggregate rental income. Intuitively, these very two aggregates add up to landlord class
welfare, so wl simply becomes −t

∑n
i=1 siri + tsr̃/2 or, alternatively, the first expression

in (3). Proposition 1 restates this expression in its various “apparitions”, also relating
it to the two well-known concepts of aggregate land rent ALR = t

∑n
i=1 si(r̃ − ri) and

aggregate commuting costs ATC = t
∑n
i=1 siri. The proposition’s formal proof, delegated

to the Appendix A as most of the paper’s proofs, departs from the definition of landlord
class welfare in (2).

To appreciate the striking simplicity of the expressions given in (3) note that the number
of potential landlord-tenant matches that could possibly be housed by the existing distri-
bution of housing units (s1, . . . sn) is bound to be very large. Yet even so wl is entirely
independent of how landlords and tenants are allocated to this given distribution, and
the same is true for tenant welfare wm (Proposition 1, Part (i)). Effectively none of the
expressions in equations (3) feature anything but consolidated ring aggregates. Intuitively,
replacing a landlord with some (and not necessarily her or his) tenant has no effect on wl.
Where before replacement it was the landlord’s commuting costs −tri that pulled down
wl, after replacement it is the tenant’s commuting costs −tri that pull down wl (by the
damage they do to the rent that could be extracted otherwise). Proposition 1’s Part (i)
generalizes the spatial invariance theme introduced in the previous section’s little example
to any finite number of city rings n and dwellings s.5

Proposition 1 (Political Economy and Urban Form)
(i) (Spatial Invariance): Both landlord and tenant welfare are invariant w.r.t. how land-
lords and tenants are allocated to the existing ring specific housing supplies, (s1, . . . , sn).
(ii) (Tenant Welfare): Tenant class welfare wm is independent of urban form, and equals
either −str̃/2 or −(ALR+ATC)/2.
(iii) (Landlord Welfare): Landlord class welfare wl is dependent on urban form, and equals
any of the following three expressions:

t
n∑
i=1

(
(r̃/2) − ri

)
si =

(
ALR − ATC

)/
2 = t

n/2∑
i=1

(
(r̃/2) − ri

)(
si − sn+1−i

)
. (3)

The practical importance of Proposition 1’s Part (i) is to free us of having to pay attention
to resident landlord and tenant location in any of the following. Proposition 1’s Part
(ii) proceeds to the issue of aggregate tenant welfare. Each tenant simply incurs those

5We briefly pursue an instructive alternative path leading up to the third expression in (3). Even if at
first appearance a very special case, let us investigate a city in which the si are decreasing in i. (Such a
city is illustrated further down, in Figure 2’s panel (a), for the case of n = 6.) We assign landlords and
tenants to rings 1 through n by making use of the two following rules: (i) First, the sn landlords to ring
n all live in ring 1, the sn−1 landlords to ring n− 1 all reside in ring 2, etc. And (ii), housing in ring i not
occupied yet by the demands of rule (i) is equally shared between remaining tenants and their respective
landlords. This special case makes for a particularly simple description of landlord welfare. First, none
of the landlords described by (i) receives any match benefit because for these landlords’ matches indices i
and j sum to n + 1. And second, all of those (si − sn+1−i)/2 landlords in rings i = 1, . . . , n/2 addressed
by rule (ii) (rather than by rule (i)) receive a utility of tr̃− 2tri each. Aggregating these landlord utilities
across the first n/2 rings yields the last expression in (3).
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familiar costs-of-living of tr̃. Next, according to the second expression in (3), landlord class
welfare wl and tenant class welfare wm may also be expressed in terms of ALR and ATC.
Specifically, landlord welfare wl may also be written as the difference (ALR − ATC)/2
even as of course ALR includes (imputed) rent payments never received, just as ATC
also includes commuting costs never incurred, by the landlord class (Part (iii)). ALR and
ATC conform with standard urban welfare accounting. For instance, ALR+ATC = Str̃,
as in Mohring (1961). More importantly, Part (ii) of Proposition (1) allows us to trace
out how this paper differs from Arnott/Stiglitz (1981): Arnott/Stiglitz (1981)’s interest
is in whether ALR monitors ATC, whereas our interest is in how the difference between
ALR and ATC traces out landlord interests.

As a first step towards a city’s “silhouette” we compute ring i’s average housing density,
di, by dividing the stock of ring i’s housing si by that same ring’s land area ai (Part
(i) of Definitions 1 below). The density profile d(r) then is the set of all ordered pairs
of commuting distances and average densities (Part (ii)). In contrast, the city silhouette
s(r) is the set of ordered pairs of commuting distances and ring housing stocks (Part
(iii)). More prosaically, in the monocentric city the city silhouette coincides with the local
distribution of commuting lengths. At first sight it is the density profile that appears to
capture best the city’s “true silhouette” as witnessed from a distance. Yet note that this
“true silhouette” in fact is architects’ perspective projection of the upper envelope of the
three-dimensional city into two-dimensional space. This projection is not generally the
same as the density profile (Part (ii)).6

Definitions 1 (City Density, Profile, Silhouette, Skew, Unbalancedness)
(i) Ring Density . . . is total housing in ring i divided by i’s area, si/ai = di.
(ii) Density Profile . . .maps distance into density, {(r1, d1), . . . , (rn, dn)} = d(r).
(iii) City Silhouette . . .maps distance into ring housing, {(r1, s1), . . . , (rn, sn)} = s(r).
(iv) City Skewness . . . is

∑n/2
i=1((r̃/2)− ri)(si − sn+1−i)/s = σ.

(v) City Unbalancedness . . . is
∑n/2
i=1(si − sn+1−i).

We take the liberty to define the city’s silhouette in a way that suits our interest in
urban form best, i.e. as in Part (iii). Now, typically density decreases as we move out
towards the city’s periphery because rent, and hence the incentive to build high, diminish
– as postulated in theory (e.g., Fujita (1989)) and as observed for many real cities (e.g.
Bunting/Filion/Priston (2002)) on Toronto, Montreal, or Ottawa-Hull, or Bertaud (2004,
Figure 4) on Barcelona, Warsaw or Bangkok. In contrast, the silhouette, being the product
of ring density with ring area, may display much richer behavior. While this product
might well decrease (e.g. de Lara et al. (2012, fig. 2) on Paris), it need not decrease
at all, and may in fact increase, as we move out, to the extent that built up land rises
faster than density falls. For instance, US cities such as Atlanta and L.A. exhibit very flat
density gradients, and density profiles for Moscow, Johannesburg and Brasilia are even
sloping upwards, and strongly so (Bertaud (2004, Figure 5)). For none of these latter
cities do we expect si to decrease in i. These cities may be more likely to display a
pattern akin to that in panels (d) or (g) in Figure 2 (discussed shortly). Building height

6Density profile and perspective projection do coincide if the observer is very far away from the city.
Density profile and silhouette do coincide in the simple case of a linear city of unit width (section 2).
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Figure 2: City Silhouette and Silhouette Skewness

restrictions may have interfered with developers’ objectives (L.A.), central land may have
disproportionately been set aside for traffic, immigration into the city center could have
been prohibited (Johannesburg), or socialist institutions may have eliminated developer
incentives altogether (Moscow).

Part (iv) of Definitions 1 introduces the silhouette skewness σ that is at the heart of this
paper. Except for the absence of s and t, this skewness coincides with landlord welfare in
(3), or wl = stσ. To see why σ is a meaningful measure of the silhouette’s skewness we
first refer to r̃/2 as “midtown”, and to si − sn+1−i as “ring difference i”. In that sense σ
sums over weighted ring differences, where the deviations of commuting distances r from
midtown commuting distance r̃/2 are the positive weights. If σ > 0 at least one ring
difference must be positive. In fact, it must be increasingly so as more and more of those
other ring differences turn negative. From the distant observer’s perspective even a single
positive ring difference suggests an overall urban skew towards the periphery.

Figure 2 explores σ further. Panels (a) and (b) have ring differences all positive; while all
ring differences in panels (c) and (d) are negative. Whenever ring housing is monotonically
increasing (decreasing) in ri then σ is unambiguously positive (negative). Ring differences
in panel (e) or (g) no longer carry a uniform sign; one of the ring differences is positive,
one zero, and one negative. Since early differences receive greater weight than later ones,
panel (e) shows a positive skew, while panel (g) exhibits a negative one. Panels (f) and (h)
illustrate two non-skewed, or symmetric, silhouettes. Finally, let “city unbalancedness”
refer to the excess of residents in the city’s interior (r less than r̃/2) over residents in the
city’s periphery (r beyond r̃/2) (Part (v)). Then panels (e) through (h) illustrate balanced
silhouettes. Panel (g) also shows why growing unbalancedness need not reinforce skew.
Migration of residents initially in the periphery towards the city’s interior may reduce
the city skewness if marginal migrants come from, as well as move to, locations close to
midtown (i.e. from the “fourth to the third bar” in the panel).

Having laid out the basic model, let federal government now introduce a carbon tax, equal
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to ∆t > 0. Now city costs-of-living tr̃ rise throughout the city, by the extent to which
commuting costs at the urban boundary r̃ do, i.e. by r̃∆t just. This is each tenant’s loss in
utility, irrespective of her or his location in space (Proposition 2, Part (i)). Differentiating
the last expression in equation (3) with respect to t also shows that per-dwelling landlord
class’ welfare change, (1/s)(dwl/dt), just equals σ. The landlord class welcome the tax if
(and only if) silhouette skew is positive (Part (ii)).7

This far we have assumed that within-ring commuting is costless. It seems more adequate,
and it also turns out more convenient, to reduce ring width ∆r further. Let a twice
differentiable housing shape function F (r), with F (r̃) = s, summarize all available housing
between the CBD and r units of distance out. We approximate the number of dwellings
in ring i, si, by F ′(ri) ≡ f(ri), in the sense that f(ri) indicates available housing in
the one-unit-width ring ri away from the CBD. Put differently, f(r) now captures the
city’s silhouette.8 Proposition 2’s Part (iii) makes immediate use of this refined silhouette,
stating that the change in the landlord class welfare, dwl/dt, may more compactly be
expressed as the integral on the r.h.s. of the first equation in (4).

Proposition 2 (City Silhouette Skew and Political Economy of Carbon Tax)
(i) Tenant class welfare wm is decreasing in the tax, independently of city skew.
(ii) Landlord class welfare wl is increasing in the tax if (and only if) the city is skewed.
(iii) More specifically, if city ring width becomes arbitrarily small then the change in
landlord class welfare in response to a one Euro tax may be approximated by

dwl/dt =
∫ r̃

0

(
r̃/2− r

)
f(r) dr = sσ = s

(
r̃/2)− ρ

)
, (4)

where ρ is average commuting cost, ρ =
∫ r̃

0 (f(r)/s)r dr = ATC/st.

In the literature “compactness” often is equated with “high density” (e.g. Riou et al.
(2012), Glaeser (2011)). Yet density is a function of CBD distance even in the simplest
of cities. If intuitively more “compactness” is meant to capture the idea of less aggregate
commuting sρ then equating “compactness” with the silhouette’s skew may be a mean-
ingful alternative. On the one hand, from the last equation in (4) ρ = r̃/2− σ. For given
“city width” r̃, average emission abatement ρ tracks (the negative of) skewness −σ, and
in a one-to-one fashion even: dρ = −dσ. It is in this sense that changes in skewness dσ
also are an indicator of changes in the city’s GHG externalities dρ (again, as long as city
width remains the same). To phrase this slightly differently, from the last equation in (4)
we also conclude that

sσ/r̃ = s/2 − sρ/r̃. (5)
7From our expression for landlord welfare, obviously, we may even suspect that the landlord class would

wish to introduce a subsidy on carbon consumption if the representative city’s skew were negative. We
do not discuss the subsidy any further. Ultimately with endogenous city size (as in section 6) a subsidy
creates extra sprawl, and hence in our setup produces no aggregate welfare gain.

8If we decompose the city’s silhouette f(r) into the product of a differentiable land function a(r) with
a differentiable housing density function d(r), f(r) = a(r)d(r), we may conveniently revisit our earlier
discussion on the relationship between silhouette and density profile. A silhouette decreasing in r amounts
to observing f ′ < 0, or a′(r)/a(r) < −d′(r)/d(r). Thus the silhouette f(r) is not decreasing in r just
because density d(r) is. Rather, the silhouette is decreasing if (and only if) available land is not growing
faster than density is shrinking.
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This alternative equation relates emissions (standardized by city width) to skewness (also
standardized by city width). Standardized skewness reveals standardized emissions. On
the other hand, skewness also predicts landlords’ interest in overcoming these emissions
(Proposition 2, Part (i))). Thus a large (standardized) skew really captures both: (i) small
global externalities joint with (ii) strong local interest in the carbon tax.

4 Skewness and Landlord Beneficiaries, . . . and Zoning

This section provides a different, yet complementary motivation for studying silhouette
skewness. Suppose landlords fail to unite as an interest group. For example, in a city
with 6 rings a landlord residing, and also renting out to a tenant, in ring 5 will clearly
lose more in extra commuting costs than she or he gains in extra rent. In contrast, a
landlord resident in ring 5 and renting out in ring 1 enjoys a net gain. If there are no
transfers from landlords who gain to landlords who lose, landlords should not be expected
to form an interest group. Support for the carbon tax would come from less than one half
of the electorate. But from how much less? While we are not able to compute landlord
beneficiaries’ exact number we nonetheless may place a lower bound on it, by inspecting
what are successive cumulative ring differences.

To illustrate the underlying principle we start with housing units in ring 1. Except for
those residents matched up with residents in ring n, all of these units are tied up in
matches with strictly positive value. In the extreme, every resident in ring n might be
linked to some resident in ring 1 (rather than to some resident in any of the remaining
rings). In the extreme, moreover, all (s1 − sn) remaining residents in ring 1 might be
be matched up with one another (rather than to residents in any of the remaining rings).
Then (s1−sn)/2 supplies a lower bound on landlords who are better off strictly. Of course,
this lower bound may be negative, in which case it is not particularly informative. But
there are many other lower bounds. For instance, ((s1 + s2) − (sn−1 + sn))/2 is another
lower bound, as in fact is any partial sum l(n′) =

∑n′
i=1(si−sn+1−i)/2, with n′ ≤ n/2. Let

us pick n′ such that l becomes greatest. This greatest lower bound involves the first as
well as the last n∗ rings in the succession of concentric rings around the CBD, and hence
l∗ =

∑n∗
i=1 (si − sn+1−i)/2 provides the minimum number we are looking for (Proposition

3, Part (i)). Reverting to Figure 2 helps illustrate these ideas. In panel (a), n∗ = 3 and
hence l∗ =

∑3
i=1(si − s7−i). In panel (e), n∗ = 1 and hence now l∗ = s1 − s6 only. We

emphasize that l∗ is computed simply by inspecting the representative city’s silhouette.9

Alternatively, let the city be divided into arbitrarily many rings of correspondingly smaller
width. Then l(r′) = [F (r′) − (s − F (r̃ − r′))]/2 gives the lower bound on landlord ben-
eficiaries if both the first r′ and last r′ rings are included. Maximizing this expression
with respect to r′ implicitly defines the optimal ring index r∗. The corresponding value
function value, l(r∗), is l∗ = [F (r∗)− (s− F (r̃ − r∗))]/2, and identifies the greatest of all
of these lower bounds (Part (ii)). The Proposition’s third part relates the city silhouette’s
skew not just to aggregate landlord welfare, but also to landlord beneficiaries’ absolute

9By analogy we may extend this idea to also assessing the greatest lower bound on the number of
landlords who are strictly worse off with the carbon tax and must be expected to oppose it, l∗∗. In panel
1(g), for instance, we would be certain that this number comes to l∗∗ = (s6 − s1)/2.
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number. This part states that, provided that the mean ring difference is positive (satisfied
in Figure 2’s panels (a), (b), (f) and (h), for instance), the adjusted skew (i.e. skew divided
by city width) bounds the number of landlord beneficiaries from below.

Proposition 3 (Silhouette Skewness and Landlord Voting)
(i) (Greatest Lower Bound) . . . on landlord beneficiaries l∗ is l∗ =

∑n∗
i=1(si − sn+1−i)/2,

where n∗ is the very n′ that maximizes
∑n′
i=1

(
si − sn+1−i

)
. Moreover,

(ii) (Greatest Lower Bound) . . . approaches l∗ = [F (r∗)− (s−F (r̃− r∗))]/2 for ring width
∆r sufficiently small. If r∗ equals neither 0 nor r̃/2 then it must satisfy

f(r∗) = f(r̃ − r∗). (6)

(iii) (Landlord Beneficiaries): If the average of distance weighted ring differences is non-
negative then it is true that

σs
/
r̃ ≤ l∗. (7)

Proposition 3’s Part (iii) is its most central part. Part (iii)’s equation (7) points to σ’s
informational content even in societies in which landlords do not act collectively. The
greater the city silhouette’s skew, the more confident can we be of landlord beneficiaries’
contribution to the overall support for the carbon tax. Phrased yet differently, while
Proposition 2 illustrates how greater skew increases an existing landlord majority’s de-
sire for the carbon tax, Proposition 3 illustrates how greater skew strengthens landlord
beneficiaries’ political clout.

So far the housing stock’s size and spatial distribution have been inherited from the past.
Real cities are shaped not just by the forces of competition between profit maximizing
developers, but also by their individual mix of landscapes that have hosted them and of
past zoning that has shaped them. In this context Proposition 4 briefly turns to building
height restrictions, such as floor-area-ratios (FAR). FAR are biased against the city’s center
because that is where buildings typically want to be taller. Suppose our housing shape
function F is indexed by δ such that a greater δ raises F at any r, i.e. Fδ(r, δ) ≥ 0, such
that a greater δ captures the effect of lifting the height constraint marginally.10

Proposition 4 (Building Height Restrictions and the Carbon Tax)
(i) A history of tighter regulation of building heights reduces both the city’s skew, σ, and
the greatest lower bound on landlord beneficiaries’ number, l∗, and hence makes us less
confident of landlord support for the carbon tax. (ii) A history of tighter regulation of
building heights also raises the greatest lower bound on opponent landlords’ number, l∗∗,
and hence has us more confident of landlord opposition against the carbon tax.

Tighter zoning in the past, or a smaller δ, translates into a smaller skew today (Proposition
4, Part (i)). When combined with Proposition 3 this implies that countries with a history
of tighter building height restrictions are less likely to introduce the carbon tax. Finally,
building height restrictions also raise the lower bound on the number of landlords in
opposition to the carbon tax, denoted l∗∗ (Part (ii)).

10We pursue a somewhat “macroeconomic” approach, neglecting the effect of changes in δ on the city
boundary here. Brueckner/Bertaud (2005), Borck (2014) and section 6 below describe how lifting the
height constraint also affects r̃.
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5 Federal Silhouette and Federal Skew

We return to our main line of investigation, following up on the interests of the land-
lord class. While initially we departed from a representative city with a given wage
any urban system displays large variation in city sizes and wages (e.g. Nitsch (2004),
Giesen/Südekum/ Zimmermann (2010)). By adding what probably is the simplest possi-
ble layer of wage determination we now allow wages and hence city sizes to differ across
space. A word on notation: Capital letters refer to the corresponding system quantities.
Now, let index j refer to cities 1, . . . , J , so that any city-specific variables can be indexed
by it. Assume any city’s CBD to be that city’s central commuting node. That is, workers
commute to the CBD in the morning, are picked up there and ferried out to a factory at
the urban fringe, only to be brought back to the CBD in the evening.11

Thus, factories do not pay rents but instead incur commuting costs tr̃ when transporting
its single worker to and fro its site. With fixed factor proportions, city j firms’ unit
cost function is ωj + qj◦ − gj , where ωj is the local wage, qj◦ = tr̃j refers to the cost of
worker transport, and gj is some city-wide productive amenity. Homogeneous output is
tradable across cities at no cost and sold at price p, and individuals are perfectly mobile
across cities. Essentially this is a Rosen/Roback-type (1982) extension if everywhere (i)
perfectly competitive factories make zero profit and (ii) tenant utilities ωj − tr̃j = u are
the same. We marry intracity equilibrium with inter-city equilibrium, as summarized by
the 2J equations

ωj = u + tr̃j and p = ωj + qj◦ − gj , (8)

reflecting household indifference and firm indifference, respectively. Jointly these equations
define local wages ωj , costs-of-living or center rents qj◦ = tr̃j and tenant utility u =
WM/M . Cities can be distinguished by their unique endowments of the public good gj .
(Any additions to this public good made possible by the carbon tax’s revenue are identical
in every city, and thus may be neglected below.)

Cities with greater amenities gj are larger because in equilibrium such cities permit firms
to pay higher wages. Hence these cities must confront their residents with higher costs-
of-living qj◦. (This could also be visualized by making use of Rosen-Roback’s famous
two-loci diagram.) We rearrange city indices such that 1 denotes the smallest, and J

the largest, city, and let n denote the number of rings in city J , i.e. n = nJ . We
briefly turn back to our initial setup with discrete ring width. To adapt our notation to
the necessities of addressing an entire urban system, lji, mji, and sji denote landlords,
tenants, and residential properties in city j’s ring i, respectively, where sji = lji + mji.
For any city j 6= J , landlords and tenants in those empty rings nj + 1, . . . , n, are zero
by definition. Further,

∑n
i=1 sji = Sj., or Sj , is city j’s population (irrespective of ring

number),
∑J
j=1 sji = S.i, or Si, is ring i’s population (irrespective of city membership),∑n

i=1
∑J
j=1mji = M is the overall number of tenants, and

∑n
i=1 Si =

∑J
j=1 Sj = S the

federation’s fixed population total.
11Alternatively we might think of all production collapsed into a single point, at the CBD, with firms

paying the CBD’s competitive rent.
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Federal landlord class welfare is the sum of landlords’ total incomes minus landlords’
aggregate travel costs, orWL = −t

∑J
j=1

∑n
i=1 ljiri+t

∑J
j=1

∑n
i=1mji(r̃j−ri)+

∑J
j=1 Ljωj .

In earlier welfare analysis (in (3)) we could neglect wages. Yet here wages must enter
welfare comparisons, being endogenous now. Likewise, earlier we had assumed landlords
to be resident, not absentee. Now we recognize this distinction as irrelevant. Given that
unit distance commuting cost t are uniform, and only ever change uniformly across cities,
landlords’ proximity to their tenants is irrelevant. Nor does wage variation create any
incentive to relocate. E.g., a landlord in city 7’s ring 3 considering to trade houses with
some tenant of his in city 2’s ring 3 would raise his wage by ω2 − ω7, if depress his rental
earnings by t(r̃7 − r̃2). By the first set of equations in (8), nothing is to be gained from
this. Now, Definitions 2 (below) collect the natural federal analogues of Definitions 1’
city concepts, such as federal density (Part (i)), federal density profile (Part (ii), federal
silhouette (Part iii)), and federal skewness (Part (iv)). We note that the federal silhouette
coincides with the national commuting distribution, and that federal skewness reduces to
representative city skewness if (and only if) θ = 0.5. Finally, Definitions 2 also introduce
the average commuting distance ρ. This is one possible indicator of GHG emissions (Part
(v)).12

Definitions 2 (Federal Density, Profile, Silhouette, Skewness, Emissions)
(i) Federal Density . . . is all cities’ ring i housing divided by ring i areas, Si/Ai = Di.
(ii) Federal Profile . . .maps distance into density, {(r1, D1), . . . , (rn, Dn)} = D(r).
(iii) Fed. Silhouette . . .maps distance into ring housing, {(r1, S.1), . . . , (rn, S.n)} = Si(r).
(iv) Federal Skewness . . . is

∑n
i=1 Si

(
θr − ri

)
/S = σ.

(v) Federal Emissions per capita . . . are
(∑n

i=1 Siri
)
/S = ρ.

Employing lji +mji = sji, exploiting that ωj − tr̃j is constant across cities, and collecting
terms, we can simplify WL considerably (Proposition 5, Part (i)). We find that the city
skew’s role in our previous analysis now is assumed by the federal skew. Remarkably,
landlord welfare continues to be invariant w.r.t. how landlords and tenants are assigned
to cities or city rings. We do not need to consult ring-specific, city specific or even ring-
and-city specific tenant shares here. Rather, we may compute federal landlord welfare WL

from aggregate figures once the share of tenants in the overall population θ, the average
city width r =

∑J
j=1 r̃jSj

/
S and the federation’s mean wage ω =

∑J
j=1 ωjSj

/
S and the

federal skew σ are known. (An example of this follows shortly.)

Let a differentiable federal housing shape function Φ(r), with Φ(r̃J) = S, summarize all
available housing between the system’s many CBDs and housing located r units of distance
out, irrespective of city location. We may approximate the number of dwellings in all one-
unit wide rings i, Si, by Φ′(ri) ≡ φ(ri). Proposition 5’s Part (ii) supplies the expression
for federal landlord class welfare as ring width gets ever smaller.

Proposition 5 (Commuting Distribution Skew and Political Economy)
(i) (“Wide Rings”): Let cities be divided into rings of identical width ∆r. Then federal
landlord class welfare is WL = tSσ + (1− θ)Sω.

12Average emissions ρ also depend on the modal split, and hence aggregate travelling distances ATC/t
are only a first step towards assessing GHG emissions.
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(a) Netherlands:
τ = 4.19, θ = 0.33
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(b) Germany:
τ = 4.10, θ = 0.47,

UK

commute$q31

D
e

n
si

ty

0 50 100 150

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

(c) UK:
τ = 3.95, θ = 0.30,
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(d) France:
τ = 3.80, θ = 0.38,
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(e) Belgium:
τ = 3.58, θ = 0.28
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(f) Italy:
τ = 3.54, θ = 0.28
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(g) Spain:
τ = 2.66, θ = 0.20
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(h) US:
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Figure 3: Country Commuting Distributions

(ii) (“Thin Rings”): Let ring width become arbitrarily small. Federal landlord welfare
approaches

WL = t

∫ r̃J

0
φ(r) (θr − r) dr + S (1− θ)ω = tS (θ r − ρ) + S (1− θ)ω, (9)

where ρ is
∫ r̃J

0 (φ(r)/S)r dr, the federation’s mean commuting distance.

Proposition’s Part (ii) also insinuates that the landlord class welfare’s short run (i.e. fixed
wage) response can be decomposed into the national commuting distribution’s skew plus
a (typically negative) term representing the joint influence of mean city width and overall
tenant share, i.e.

σ = (r
/
2 − ρ) + r(θ − (1

/
2)). (10)

Equation (10) generalizes the decomposition σ = r̃/2− ρ identified earlier (section 3). We
briefly explore the uses of decomposition (10) using available micro data on the distribution
of commuting lengths. The sample data underlying the following diagrams come from the
2010 European Survey of Working Conditions for European countries (ESWC). (Appendix
B provides more details.) Seven European histograms for commuting time (truncated at
180 minutes) are shown in Figure 3’s panels (a) through (g), with countries sorted by the
gasoline tax they charge. Since the underlying data have been collected as part of the
same survey they should by and large be comparable. The eighth panel, panel (h), merely
reproduces the US commuting distribution already shown in Figure 1’s panel (a).

Suppose Figure 3’s European countries share the same mean city width r. Then differences
in landlord incentives come down to (i) differences in the commuting distribution’s skew
and (ii) differences in the national tenant share. By visual inspection, Figure 3 appears
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Figure 4: Federal Silhouette Skew and Gasoline Tax

to confirm the idea that countries with a higher gasoline tax boast a stronger skew, a
larger tenant share, or even both. In that sense our model explains why the Netherlands,
Germany, the UK, and France (panels in the Figure’s top row) exhibit higher gasoline taxes
than Belgium, Italy, Spain and the US (bottom row). In fact, combining skew and tenants
may even help explain why: the Netherlands have a higher tax than the UK (greater skew,
more tenants), why France has a larger tax than Belgium (greater skew, more tenants),
and why Italy (home to many of the world’s most famous compact cities such as Siena or
Perugia) has a greater tax than Spain (greater skew, more tenants). Given its high tax
on gasoline, Germany’s federal skew seems surprisingly small. Nonetheless even Germany
may fit into our mold once we acknowledge its extraordinarily large share of tenants.

Of course r is not the same across countries. Here we may try to roughly estimate European
countries’ average city width tr, by averaging over regional maximum commuting lengths
(as briefly explained in Appendix B, Part (iv)). Appendix B’s table has the resulting
data on federal skewness σ underlying Figure 4. There we show a scatter plot of gasoline
tax t against the skew of the federal commuting distribution σ, again for those European
countries that feature in both Knittel’s (2012) Table 1 and ESWC 2010. The regression
line indicates a positive correlation between these two variables. Similarly, skewness may
also be important when comparing European countries with the US, rather than with each
other – as discussed in the context of Figure 1.13

6 Tenant Support for the Carbon Tax

This section at last allows for malleable housing, and hence assumes a long run perspec-
tive. Let q(r, t) be a complete list of rents (q1(r, t), . . . , qJ(r, t)). We let a(r) capture

13A rigorous empirical analysis is postponed to a future paper (also see the discussion in section7).
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all land available at distance r from all cities’ CBDs, a(r). And we let g(q(r, t)) cap-
ture construction on each unit of this land, as arising from profit maximizing developers’
decisions (Brueckner (1987)). Then aggregate available housing in all rings r units of
distance away from cities’ CBDs and one unit wide is approximately equal to the product
φ(r, t) = a(r)g(q(r, t)). This product effectively explains the federation’s silhouette.

Proposition 6 assesses the various effects of a marginal increase in the commuting cost
parameter t. First, and as before, tenant utility u must fall (Part (i)). Intuitively, utility
cannot but fall because if it were to rise (or only to remain at its initial level) costs-of-
living tr̃j would have to fall throughout the urban system, implying that aggregate housing
supply would necessarily fall short of aggregate demand. Imparting this information to the
first two sets of equations in (8) implies that wages fall and costs-of-living rise (Proposition
6, Part (ii)). Rent in city j is qj(r) = t(r̃j − r), given intra-city spatial equilibrium.
Differentiating rent with respect to t and equating that derivative with zero implies the
following cutoff r̂j :

r̂j = r̃j + t
dr̃j
dt

= d(tr̃j)
dt

= dqj◦
dt

= r̂ (11)

This cutoff r̂j is identical for all cities, and hence simply is r̂. Now, for distances beyond
r̂ rents fall and housing contracts, while for distances below r̂ rents and housing supply
increase. Moreover, initially small cities grow, while intially large cities contract (Part
(iii)).14 Consequently emissions respond to the carbon tax, too. Fundamentally, the
urban system becomes greener, by emitting less GHG (Part (iv)).

If individuals’ concern also is with global GHG emissions, or S
∑K
l=1 ρl, where l is the

country index and K is the total number of (equally sized) countries in the world, then we
might add a disutility term −v(S

∑K
l=1 ρl), with v′, v′′ > 0. Now introducing the carbon

tax holds out the promise of reducing federal GHG emissions. For given GHG emissions
elsewhere, now not only landlords will vote for the carbon tax. A share of society’s tenants
will vote for it, too (Part (v)). Emission mitigation provides an important additional source
of voter support for the carbon tax. This is especially true if not all landlords espouse the
tax.

Proposition 6 (Carbon Tax, Greener Cities, Tenant Carbon Tax Support)
(i) (Tenant Welfare): Tenant class welfare WM is decreasing in t.
(ii) (Local Prices): Wages ωj are decreasing, while costs-of-living tr̃j are increasing, in t.
(iii) (Federal Compactification): Cities initially smaller than r̂ expand, while cities larger
than r̂ initially contract. And building height is increasing (decreasing) in t at all inhabited
distances short of (beyond) r̂.
(iv) (Urban Greenness): Emissions ρ are decreasing in t.
(v) (Tenant Support for the Carbon Tax): Suppose individuals worry about climate change,
and that this worry is uniformly distributed across them. Now the carbon tax attracts a
fraction of climate change averse tenants, too.

For completeness, let the landlord class be free in its choice of carbon tax now. Where
14Formally, the cutoff r̂ need not be smaller than r̃j . Equation (11) tells us that for growing cities

(dr̃j/dt > 0) cutoff r̂j is further out than the initial urban boundary r̃j , and the opposite is true for
contracting cities.
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landlord class welfare is St(θr − ρ) + (1 − θ)Sω − (1 − θ)v(S
∑K
l=1 ρl), setting welfare’s

derivative with respect to t equal to zero defines the government’s optimal choice. Now
consider the landlord-weighted average of both sides of the first equation in (11). This is
dr/dt = (r̂ − r)/t. Substituting the expression on the r.h.s. for dr/dt in the first order
condition, employing r̂ = dqj◦/dt = −dωj/dt and simplifying the resulting equation yields

−
(
(1− θ)v′ + t

) dρ
dt

+ (1− 2θ) dω
dt
− ρ = 0. (12)

The optimal carbon tax strikes the balance between these natural, model-induced benefits
and costs.15 On the one hand, the condition’s first term represents both the environmental
and reduced-commuting-distances marginal gains, recalling dρ/dt < 0 (Proposition 6, Part
(iv)). On the other hand, the second and third term summon the greater marginal cost
induced by a loss in wages and more expensive commuting, given that dω/dt < 0 (Part
(ii)).

7 Discussion

The paper generalizes its basic model into various directions, but further modifications may
of course be thought of. This section provides a short overview over possible extensions.

Polycentric Cities: Throughout we have assumed that cities are monocentric. Yet real
cities are polycentric. Following Brueckner (2011), such cities might also be framed as
unions of smaller monocentric ones. Then of course it is the skewness of each of these
smaller cities that matters, rather than the skewness of their union. Besides, note that
this paper may even help explain why cities become polycentric. Recall from Proposition 1
that landlord class welfare equals stσ in the basic model. Now consider a slightly modified
representative city with (i) a negative skew (e.g., as in Figure 2’s panels (c), (d), and (g))
and (ii) a ring road circling along the city boundary and costless to travel.

Sprawl: Suppose landlords pushed a city’s shops from their initial location at the CBD
to the city’s “other end”, somewhere along the ring road. This amounts to replacing each
distance ri in our expression for landlord welfare wl =

∑n
i=1((r̃/2) − ri)si by r̃ − ri. As

the new welfare w′l the landlord class obtain the negative of the initial one, w′l = −wl.
So cities with negative skew (landlord class welfare) initially “suddenly” achieve positive
skew (landlord class welfare), “simply” by turning the initial pattern of commutes on its
head. This approach may help explain why some cities encourage large shopping center
developments at their gates, or decentralization of tertiary employment more generally,
while others do not (Glaeser/Kahn (2004), Wheaton (2004)).

Owner-Occupiers: One might argue that owner-occupiers deserve a separate treatment in
the model. Owner-occupiers are likely to be against the carbon tax (even though subletting
part of their property may help some of them offset the extra commuting costs). Typically

15Except for the analysis of a variation in θ, comparative statics on this condition are not straightforward,
however. And while the analysis of a change in θ is straightforward, this analysis not only must rely on
the traditional ad-hoc assumption that Wtt < 0 but also only produces an ambiguous sign, given that Wtθ

may either be positive or negative.
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owning a flat in a condominium comes along with greater transaction costs than owning a
semi-detached house. We expect housing tenure to decrease with density. Thus in a typical
city owner-occupiers may coincide with the peripheral housing stock. Then to assess the
interests of the landlord class proper we may refer to the skewness of a modified silhouette,
being the silhouette that is obtained once the distribution of commuting distances is
truncated by owner-occupiers’ commuting distances.

Tax Refund: In the basic model, a tax of one Euro generates tax revenues equal to the
aggregate travelling distance, or sρ. If these revenues were channeled back lump sum,
then the landlord class’s welfare change would become a weighted average of silhouette
skew and tax revenues, equal to s((r̃/2) − ρ) + (sρ)/2 or s(r̃ − ρ)/2. At the same time,
the tenant class’ welfare change becomes s(ρ − r̃)/2, or just the opposite of the landlord
class’ welfare change. Refunding the carbon tax makes landlords and tenants pursue
diametrically opposed policies, and weakens the link between urban form and carbon tax.

Non-Linear Travel Costs: In our basic model, commuting costs are linear. Let us replace
tri by h(ri) and tr̃ by h(r̃), with h some increasing function of t. Then our derivation of
wl in (3) goes through virtually unchanged. Landlord welfare in the non-linear transport
cost case becomes wl =

∑n
i=1(h(r̃)/2 − h(ri))si. So while corresponding ring population

figures si and sn+1−i this far receive equal weight in the expression for landlord welfare,
with non-linear commuting cost this would no longer is the case. We suspect the principles
of subsequent analysis to remain unchanged, if not more difficult to expound.

Open Cities: Many cities embark on climate policies of their own (Millard-Ball (2012)), and
some of their policies have a direct impact on commuting also, such as implementing bus
and bicycle lanes. These cities are open, instead of closed, as they must take into account
the effect their policies have on their mobile population. College towns are frequently
thought to be particularly “green”. From this paper’s perspective, this is not because
these towns’ inhabitants are particularly “progressive” but because these towns are full of
tenants. A high local share of tenants tempts landlords to drive rents up, by raising the
costs of commuting.

Empirical Analysis: Testing this paper’s silhouette skew/climate policy-nexus seems de-
sirable. Yet the silhouette skew’s covariates will require us to go a great deal further than
we went here, as will mutual causation. For example, strong silhouette skews may expose
buildings more to accelerating winds (Roaf/Crichton/Nichol (2009)), a society’s carbon
tax choice is likely to feed back into its silhouettes, etc. At the same time, exploiting the
strong existing variation in local commuting policies (again: Millard-Ball (2012)) offers
one way out. Variation in local climate policies, silhouettes, and tenant-landlord splits
call for testing this paper’s model in a sample of open cities.

8 Conclusions

The paper’s premise is that the existing variation in greenhouse gas mitigation policies is
not well explained by pointing to inter-country differences in income, in climate change
exposure, or in carbon resource endowments. We offer an alternative explanation of why
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climate policies vary. In the paper’s model, a country’s carbon taxation increases in
its city silhouettes’ skew. Subsequent extensions to this theme do not turn over this
silhouette-skewness/climate-policy-nexus. Put differently, the interests of the landlord
class manifest themselves in the country’s urban form. From an environmental perspective,
this observation may further our understanding of climate policies’ determinants. From
an urban perspective, this observation may further our understanding of whether a city’s
form informs us about its inhabitants’ preferences – a theme that has traditionally been
urban historians’ domain.
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Appendix A

Proof of Proposition 1: (Political Economy and Urban Form)
(iii) (Landlord Class Welfare) Note first that A may be decomposed into the simple sum
of two even more strongly patterned matrices:

A =

 −tr1 . . . −tr1
...

...
−trn . . . −trn

 +

 t(r̃ − r1) . . . t(r̃ − rn)
...

...
t(r̃ − r1) . . . t(r̃ − rn)

 (13)

where the first (commuting costs) matrix is labeled A1 and the second (rents) matrix is
referred to as A2. The value of this decomposition lies in representing A as the sum of
two matrices that either have identical rows (in the case of A1) or identical columns (as
with A2).

With this decomposition we may alternatively rewrite landlords’ welfare (2) as

wl = ι′
(
B ◦A

)
ι = ι′

(
B ◦ (A1 +A2)

)
ι

= ι′
(
B ◦A1 + B ◦A2

)
ι

= ι′
(
B ◦A1

)
ι + ι′

(
B ◦A2

)
ι. (14)

Here the third equality makes use of the distributive law for Hadamard products and the
fourth equality conforms to the standard rules of conventional matrix multiplication.

We analyze the sum on the r.h.s. of the last equality in two steps. First consider the
second term here. In it the expression ι′ (B ◦A2) is nothing but a 1× n vector exhibiting
t(r̃ − r1) ·

∑
i bi1 in column 1, t(r̃ − r2) ·

∑
i bi2 in column 2, t(r̃ − r3) ·

∑
i bi3 in column

3, etc. Yet these products in turn reduce to t(r̃ − r1)m1, t(r̃ − r2)m2, t(r̃ − r3)m3 etc.
respectively because the sum of all entries in column i of B just represents total tenants
in ring i, by definition of B. We conclude that the second term on the last line of (14) is

ι′
(
B ◦A2

)
ι =

n∑
i=1

t(r̃ − ri)mi. (15)

We can trace through a similar argument when analyzing the first term on the r.h.s. of
the last equality in (14). There the expression (B ◦ A1) ι is nothing but the n × 1 vector
containing (−tr1) ·

∑
j b1j in row 1, (−tr2) ·

∑
j b2j in row 2, (−tr3) ·

∑
j b3j in row 3 etc.

These latter sums may be rewritten as (−tr1)l1, (−tr2)l2, (−tr3)l3, etc. Thus we have
shown that

ι′
(
B ◦A1

)
ι =

n∑
i=1

(−tri) li, (16)

We join equations (14), (15) and (16), and simplify. This yields the first expression in
equation (3). �

Proof of Proposition 3: (Silhouette Skew and Political Economy)
(i) (Greatest Lower Bound): From the main text we recall that all entries on (above,
below) A’s counterdiagonal are equal to (greater than, smaller than) zero, with A defined
as in (1).
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Now, if s1−sn > 0 read on, else head for the next paragraph. It is conceivable (if unlikely)
that all residents in ring n are matched up with some resident in ring 1. There are at most
s1 − sn matches for which a1n = an1 = 0. All remaining matches possess strictly positive
value. So (s1 − sn)/2 is one first lower bound.

If s1 + s2 − (sn + sn−1) > 0 read on, else proceed to the third paragraph. Note that
a1n = an1, a2,n−1 = an−1,2 and a2n = an2 all are non-positive. It is possible (if unlikely)
that all residents in rings n − 1 and n are matched with residents in rings 1 and 2. So
(s1 + s2 − (sn + sn−1))/2 is another lower bound.

Next consult (s1 +s2 +s3− (sn+sn−1 +sn−2))/2, etc. Proceeding in this way we compute
cumulative ring differences whenever they are positive. We ultimately end up with a set
of n/2 positive lower bounds at best. From this set of lower bounds we pick the one that
is greatest, representing the cumulative sum of ring differences from 1 out to n∗. �

(ii) (Greatest Lower Bound): Let 0 = r0 < r1 < . . . < rn′−1 < rn′ = r′ represent a
partition of [0, r′]. We approximate the sum

∑n′
i=1(si − sn+1−i) by setting

n′∑
i=1

(
si − sn+1−i

)
≈

n′∑
i=1

(
f(r̂i)− f(r̂n+1−i)

)
∆r,

where r̂i is from the open interval (ri−1, ri). Then we let ring width ∆r converge to zero.
This has this latter expression tend to [F (r′)− (s−F (r̃− r′))], or [F (r)− (s−F (r̃− r))]
after dropping the prime.

To identify the greatest from all these lower bounds we maximize [F (r)− (s− F (r̃ − r))]
with respect to r ∈ [0, r̃/2]. This requires the optimal r′, labeled r∗, to satisfy:

f(r∗) = f(r̃ − r∗),

if r∗ is contained in (0, r̃/2). Substituting r∗ back into the maximand gives the greatest
lower bound, equal to l∗(r) = [F (r∗)− (s− F (r̃ − r∗))]/2. �

(iii) (Landlord Beneficiaries): Let 0 = r0 < r1 < . . . < rn−1 < rn = r̃ represent a partition
of [0, r̃]. We depart from the last expression in (3), an expression we approximate by the
following Riemann sum:

t
n∑
i=1

f(r̂i)
(
r̃/2− r̂i

)
∆r (17)

where r̂i is from the open interval (ri−1, ri). Since f(r)(r̃/2 − r) is continuous in r, the
resulting sequence of Riemann sums converges to

wl = t

∫ r̃

0
f(r) (r̃/2− r) dr = tsσ, (18)

as we let ∆r tend to 0. Now let us rewrite sσ as in

sσ =
∫ r̃/2

0
f(r)

(
r̃/2− r

)
dr +

∫ r̃

r̃/2
f(r)

(
r̃/2− r

)
dr

= . . . +
∫ −r̃
−r̃/2

f(−r)
(
r̃/2 + r

)
dr (reflection)

= . . . +
∫ 0

r̃/2
f(−(r − r̃)

(
− r̃/2 + r

)
dr (translation)

= . . . −
∫ r̃/2

0
f(r̃ − r)

(
r̃/2− r

)
dr =

∫ r̃/2

0

(
f(r)− f(r̃ − r)

) (
r̃/2− r

)
dr,
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where the second equality follows from reflecting the second term in the sum on the r.h.s.
across the vertical axis, while the third equality follows from translating the second term
in the sum on the r.h.s. by r̃ to the right. The last equality represents sσ as the weighted
sum of those ring differences (f(r) − f(r̃ − r)) prominent in the text. Breaking up this
last expression for sσ further gives

sσ = (r̃/2)
∫ r̃/2

0

(
f(r) − f(r̃ − r)

)
dr −

∫ r̃/2

0

(
f(r) − f(r̃ − r)

)
r dr

= (r̃/2)
(
F (r̃/2)− (s− F (r̃/2))

)
−
∫ r̃/2

0

(
f(r) − f(r̃ − r)

)
r dr (19)

≤ r̃ l∗.

After all, by the property of r∗ being optimal,

(r̃/2)
(
F (r̃/2)− (s− F (r̃/2))

)
≤ (r̃/2)

(
F (r∗)− (s− F (r∗))

)
= r̃l∗.

So the first term in brackets on the r.hs. of (19) falls short of r̃l∗. On the other hand,
the second term in brackets, representing a distance-weighted average of ring differences,
is positive by the Proposition’s assumption. We conclude that sσ ≤ r̃l∗. �

Proof of Proposition 4 (Building Height Restrictions and Silhouette Skew):
(i) We first turn to σ. We state σ as

σ = s (r̃/2)
(
F (r̃/2, δ)/s

)
− s

∫ r̃

0

(
f(r, δ)/s

)
r dr.

This casts F/s as the c.d.f. of r, and f/s as its p.d.f. Less stringent zoning is reflected by
an increase in δ. Now, by the Proposition’s assumption an increase in δ makes F increase
at any point r, i.e. F (r, δ′′) > F (r, δ′) for all δ′′ > δ′ and r ∈ (0, r̃). Effectively we are
assuming stochastic dominance on the part of F/s.

On the one hand, this implies that the first term on the r.h.s. of (20) is increasing in δ.
On the other hand, this implies that the second term on the r.h.s. of (20) is decreasing
in δ (because with stochastic dominance the mean of r is). Combining these observations
implies that σ is increasing in the “non-zoning-parameter” δ.

We next turn to l∗. We first restate l∗ as l∗ = [F (r∗, δ) − (s − F (r̃ − r∗, δ))]/2, where r∗
satisfies

f(r∗, δ) = f(r̃ − r∗, δ), (20)

from (6). By the envelope theorem, the marginal effect of δ on l∗ is given by

∂l∗(r∗, δ)
∂δ

= Fδ(r∗, δ) + Fδ(r̃ − r∗, δ).

This latter derivative is strictly positive. Hence the greatest lower bound l∗ is increasing
in δ. �

(ii) Consider landlords who are made strictly worse off by the carbon tax. Following an
argument similar to that pursued in Proposition 3’s Parts (i) and (ii) the greatest lower
bound on landlord opponents against the carbon tax, denoted l∗∗, is found by maximizing
[s−F (r̃−r, δ)−F (r, δ))]/2 with respect to r. Let r∗∗ denote the corresponding maximizer.
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Then l∗∗ is given by [s− F (r̃ − r∗∗, δ)− F (r∗∗, δ))]/2, where r∗∗ ∈ (0, r̃/2) satisfies

(f(r∗∗, δ) = f(r̃ − r∗∗, δ). (21)

By the envelope theorem, the marginal effect of δ on l∗∗ is given by

∂l∗∗(r∗∗, δ)
∂δ

= −Fδ(r̃ − r∗∗, δ) − Fδ(r∗∗, δ).

This derivative is strictly negative. Hence the greatest lower bound on the number of
landlord opponents to the carbon tax, l∗∗, is decreasing in δ. �

Proof of Proposition 5: (Commuting Distribution Skew, Political Economy)
(i) (“Wide Rings”): WL can be written as follows:

WL = t
J∑
j=1

n∑
i=1

mji(r̃j − ri) − t
J∑
j=1

n∑
i=1

ljiri +
J∑
j=1

n∑
i=1

ljiωj

= t
J∑
j=1

n∑
i=1

sjir̃j − t
J∑
j=1

n∑
i=1

sjiri +
n∑
j=1

Lj (ωj − tr̃j).

= t
J∑
j=1

r̃j

n∑
i=1

sji − t
n∑
i=1

ri

J∑
j=1

sji +
(
ω − tr̃

) n∑
j=1

Lj

= t
J∑
j=1

r̃jSj − t
n∑
i=1

riSi + L
(
ω − tr

)

= t Sr − t
n∑
i=1

riSi + (1− θ)S
(
ω − tr

)

= t
n∑
i=1

Si θr − t
n∑
i=1

Si ri + (1− θ)S ω

= t
n∑
i=1

Si
(
θr − ri

)
+ (1− θ)S ω (22)

We comment on the third equation in (22). This exploits the spatial equilibrium feature
of ωj− tr̃j being equal to u, by the first equation in (8), and hence being independent of j.
Thus it must also equal its federal mean, ω − tr̃, alternatively expressed as the difference
between federal mean wage and average maximum travel cost, ω − tr. �

(ii) (“Thin Rings”): Let 0 = r0 < r1 . . . rn−1 < rn = r̃J represent a partition of [0, r̃J ]. We
depart from the first term of the last expression in (22) (the second term in this expression
being a constant), an expression we approximate by the following Riemann sum:

t
n∑
i=1

φ(r̂i)
(
θr − r̂i

)
∆r (23)

where r̂i is taken from the open interval (ri−1, ri). Note that φ(r)(θr− r) is continuous in
r. Hence, if we let ∆r tend to 0 the resulting sequence of Riemann sums converges to

WL = t

∫ r̃J

0
φ(r) (θr − r) dr .� (24)
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Proof of Proposition 6: (Carbon Tax, Greener Cities, Tenant Support)
(i) (Tenant Welfare): Suppose first that u remains constant. Then wages ωj or costs-of-
living tr̃j do not change either, given that both these concepts are tied to their initial
levels by the first two sets of equations in (8) for as long as tenant utility u is given. Yet
if costs-of-living do not change rents throughout every city must fall in response to the
tax (except for at the center), implying a reduction in the economy’s aggregate housing
supply. Alternatively, suppose that u increases in response to the tax increase. Then
costs-of-living would even have to fall, again implying a fall in rents throughout the city.
We conclude that tenant utility must fall. �

(ii) (Compensating Differentials): Differentiating the two equations of (8) with respect to
t gives dqj◦/dt = −(1/2)(du/dt). Next, differentiating qj(r) = t(r̃j − r) with respect to t,
rearranging and inserting the previous derivative gives

dr̃j
dt

= − 1
2t
du

dt
− r̃j

t
. (25)

Taking the derivative of federal land market equilibrium
∫ r̃J

0 φ(q(r, t))dr = S, making use
of Leibniz’ rule, and making appropriate substitutions for dqj/dt and dr̃j/dt, yields

φ(r̃J)
(
− 1

2t
du

dt
− r̃J

t

)
+
∫ r̃J

0

dφ

dq

(
− 1

2
du

dt
− r

)
dr = 0. (26)

Rearranging the last equation can be used to solve for du/dt, which we already know
to be strictly negative (Part (i)). Backsubstituting this solution further into dqj◦/dt =
−(1/2)(du/dt) yields the change in center rent, so dqj◦/dt > 0. Finally, the wage change
is given by dωj/dt = −dqj◦/dt < 0. �

(iii) (Compactification): According to (11), dr̃j/dt > 0 for all cities for which r̃j < r̂. The
reverse is true for all cities for which r̃j > r̂. We conclude that cities initially smaller than
r̂ grow, while cities initially larger than r̂ contract. Further, as discussed in the main text,

dφ(t)
dq

dq

dt
≷ 0 iff r ≶ r̂.

Every city’s silhouette increases at distances short of r̂, yet decreases at distances beyond
r̂. �

(iv) (Urban Greenness): The marginal change in the aggregate commuting distance is

S
dρ

dt
=

∫ r̃J

0

(dφ
dt

)
r dr + φ(r̃J) r̃J

(dr̃J
dt

)
<

∫ r̂

0

(dφ
dt

)
r̂ dr +

∫ r̃J

r̂

(dφ
dt

)
r̂ dr + φ(r̃J) r̃J

(dr̃J
dt

)
<

∫ r̂

0

(dφ
dt

)
r̂ dr +

∫ r̃J

r̂

(dφ
dt

)
r̂ dr + φ(r̃J) r̂

(dr̃J
dt

)
= r̂

(∫ r̃J

0

(dφ
dt

)
dr + φ(r̃J)

(dr̃J
dt

)
︸ ︷︷ ︸

0

)
= 0. (27)

As to the first inequality in (27), note that the cutoff r̂ (defined in equation (11)) puts a
larger (smaller) weight on the positive (negative) integrand in the first (second) integral

27



than does the original r. Hence the sum of the resulting two integrals must strictly be
larger. Moreover, replacing r̃J by the smaller r̂ further reduces the weight of the last,
negative, term. As to the second inequality in (27), note that (11) also implies that

(r̂ − r̃J)
(dr̃J
dt

)
= t

(dr̃J
dt

)2
> 0.

But then r̃J(dr̃J/dt) < r̂(dr̃J/dt) also. This explains the second inequality in (27). The
last equality in (27), finally, exploits the fact that the derivative of aggregate housing
supply with respect to t must, in the face of unyielding aggregate demand, be zero. �

Appendix B:

The paper’s small data set is:

Country t θ ρ r σ σ/r

Spain 2.66 0.20 36.0 66.9 -22.6 -0.34
Hungary 2.68 0.10 46.2 91.2 -37.1 -0.41
Austria 2.77 0.43 33.6 66.3 -5.1 -0.08
Luxembourg 2.90 0.32 36.0 66.6 -14.7 -0.22
Czech Republic 3.04 0.21 40.2 75.9 -24.2 -0.32
Slovakia 3.23 0.10 35.2 63.5 -28.9 -0.45
Sweden 3.24 0.29 43.2 91.4 -16.7 -0.18
Ireland 3.41 0.27 42.1 95.3 -16.3 -0.17
Italy 3.54 0.28 30.6 60.4 -13.7 -0.23
Belgium 3.58 0.28 43.3 88.6 -18.5 -0.21
Denmark 3.58 0.33 42.8 77.1 -17.4 -0.23
Portugal 3.65 0.25 24.9 52.2 -11.8 -0.23
France 3.80 0.38 38.4 77.1 -9.1 -0.12
Greece 3.82 0.23 32.0 71.7 -15.5 -0.21
Norway 3.87 0.17 33.5 66.2 -22.3 -0.33
Finland 3.93 0.26 41.2 74.6 -21.8 -0.29
UK 3.95 0.30 43.3 88.4 -16.7 -0.19
Germany 4.10 0.47 42.8 77.1 -6.6 -0.09
Netherlands 4.19 0.33 45.0 94.9 -13.6 -0.14
US 0.49 0.33 47.0 – – –

Variables t, θ, ρ, r, σ are retrieved, or computed, as follows: (i) t: 2010 gasoline taxes
from Knittel (2012, Table 1), given in $ per gallon. (ii) θ: 2010 US tenant share (1-
homeownership rate): US Census Bureau, European countries’ shares: Eurostat. (iii) Eu-
ropean commuting data are on those 19 countries that feature both in Knittel (2012) and
the European Survey on Working Conditions 2010 (ESWC) (variable q31). US commut-
ing data are from the American Community Survey 2011 (ACS) (variable TRANTIME).
Commuting times (in min.) are two way for the ESWC and one way for ACS, so US
transit times must be multiplied with 2.16 Then tρ simply is mean commuting time. (iv)
Commuting data in (iii) also underlie tr: We compute, for each country and each NUTS
2-region j, commuting length at the 90%-percentile as our estimate of tr̃j . Then we cal-
culate tr as the weighted average of the regional city width estimates, with sample region
inhabitant numbers as weights.

16Ultimately we should consider earlier years for commuting times.
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