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Abstract

Loss-averse bidders face different sensations as the price clock proceeds in single-unit ascending

or descending auctions. We investigate equilibrium bidding behavior of bidders with independent

private values and reference-dependent preferences, applying the Kőszegi and Rabin (2006) model.

Bidders’ stochastic reference points are endogenous, and are determined by their strategy and

their beliefs about the other bidders. Utility functions reflect that bidders anticipate changes in

their reference point due to updated beliefs, e.g. about the own winning probability, during the

course of the auction. An optimal bidding strategy can be reduced to a series of optimal binary

decisions at each price, i.e., approve or quit in the English Auction (EA) and wait or bid in the

Dutch Auction (DA). We solve for personal equilibrium (PE) profiles, which contain for each

bidder a bidding strategy that is optimal given the others’ bidding strategies and the reference

point induced by the own and others’ strategies. There exists a range of belief-free PE profiles in

the EA and a range of symmetric PE profiles in the DA under different existence conditions. If

symmetric PE profiles exist in both auctions, the expected revenue in the DA is higher than in

the EA. The difference is mainly driven by the aversion to losing the item in the DA.

Keywords: Reference-dependent preferences, endogenous reference point, English auction,

Dutch auction, loss aversion
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1. Introduction

Bidders who participate in an English auction or in a Dutch auction face different auction

processes that go along with quite different sensations. In an English auction, a bidder who desires

the auctioned good asks himself at any announced auction price whether he prefers to approve

the price or whether he is ready to quit. When he quits, he might be disappointed that he did not

get the good, but in quitting he accepts not getting the item. In the Dutch auction, however, this

bidder knows at any auction price at which he does not bid that another bidder might snatch the

good away. Thus, the mechanics behind sensations of losing the good are different from auction

to auction. Similarly, sensations of gaining the good or of gaining or losing money are evoked

in different ways in these auctions. Loss-averse bidders might adjust bids to such sensations and

these adjustments might follow quite different rules in the auctions. English auctions and Dutch

auctions generate the same expected revenue with risk-neutral symmetric bidders when bidders

have independent private values. How does this change when bidders are loss-averse? How do

different processes affect a loss-averse bidder and the expected revenue?

We analyze the single-unit English clock auction (EA) and the Dutch auction (DA). Bidders

have independent private values and they are risk-neutral. The bidders have reference-dependent

preferences and their reference point is endogenously determined by their planned bid. The basic

preference model that we apply is the endogenous reference point model of Kőszegi and Rabin

(2006, 2007) and their criterion (unacclimating) personal equilibrium for optimal decision making.

A bid has to be optimal given the reference-point, and the reference-point has to be induced by this

bid. A planned bid induces beliefs about winning the auction, which in turn induce expectations

about gains or losses. Bidders may be loss-averse with respect to the auctioned good and money.

The methodological innovations of our analysis stem from three features of the model. First,

we adapt the endogenous reference-point formulation of Kőszegi and Rabin (2007) to our dynamic

mechanisms. The bidders are Bayesians that use all the probabilistic information they have

correctly. Given their planned bid and their beliefs about the other bidders, they perfectly

anticipate their future updating of these beliefs.1 When the auction proceeds, the beliefs about

1Due to the differences in settings, our approach differs from another dynamic approach with loss-averse decision
makers by Kőszegi and Rabin (2009), who analyze optimal decisions on multi-period consumption plans by a
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winning the auction will change. The probability of winning with a certain bid decreases during

the course of an English auction and increases during the course of a Dutch auction. This in

turn impacts the gain-loss utility of loss-averse bidders, and our bidders condition their sensation

about potential gains and losses on the upcoming bidding stages being reached. This updating

is reflected in their utility functions.

Second, the analysis takes the auction process into account and incorporates a simple but

plausible decision process, which is ignored (and can be ignored) in the usual analysis with gain-

loss-neutral bidders. We call this process binary bidding. At each price in the auction, the

bidder faces a binary decision (to quit or approve in the EA and to wait or to bid in the DA)

and has to choose the better option. Rather than imposing less cognition by focusing on binary

decisions, we show that the optimal decision of a Bayesian bidder about a planned bid that he will

follow through can be reduced to a sequence of such binary decisions given that his planned bid

induces his reference point. That is because the bidder’s utility function incorporates his correct

anticipation about the future, given the current information. For gain-loss-neutral bidders, the

binary decisions are in the EA obviously in line with their optimal bidding limit and in the DA

the information that can be gained does not impact his expected utility.

Third, we solve for equilibria for a dynamic game and therefore need to adjust or introduce

definitions for optimal individual decisions (personal equilibrium) and mutual best responses

(personal equilibrium profiles).

In an EA, a bidder can at every stage decide whether to approve the auction price or to quit

the auction. While he cannot control at what price he wins, he can perfectly control at what

price he gives up any chance of winning the auction and gives up the good. In this auction, losses

in the money dimension and gains in the good dimension will play a major role. In a DA, the

bidder decides at any auction price whether to wait or to bid. He can control at what price he

wins the auction but he cannot control at what price he loses the auction and the good. In this

auction, gains in money and losses in the goods dimension are predominant.

A bid is a PE if it is optimal given the reference point that it induces and given beliefs about

the others’ bids. At any earlier auction price, the bidder prefers to approve in the EA or to wait

decision maker that faces changes in wealth.
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in the DA. If the auction price actually reaches the bid, the bidder is indifferent between his two

options, but any further approving or waiting would make him worse off. In both auctions, for

given beliefs about the others’ bids, loss-averse bidders usually have more than one PE. That is, a

bidder who has a bid in mind and is willing to follow this bid through would, for the same beliefs

about others, also be willing to follow another bid through if he had that other bid in mind (as

a reference bid). We find that a bidder’s PE form a continuous interval. In the EA, the PE and

the interval of PE depend on a bidder’s valuation and his gain-loss parameters. In the DA, PE

additionally depend on the beliefs about the opponents bids. PE in the EA and the DA exist for

different but overlapping gain-loss parameter regions.

Deriving PE profiles, which require that beliefs are consistent with the opponents’ bidding

functions, we also find intervals. In the EA, any profile of PE is a PE profile. In the DA, we need

to assume symmetric bidders and find symmetric PE profiles, which again form an interval.

A bidder who takes the additional step to compare his PE may find it hard to selecting from

his PE. The PE that provides the highest expected utility before the auction starts will usually

not be the best throughout the auction, and the bidder anticipates this. While at the beginning

bidding late may seem attractive, once some time has passed bidding earlier may be better. Also,

once a bidder has reached his bid, a later bid may on the way to its final decision look better

for some time but then provide negative utility for some period. Thus, if there is no PE that

provides the highest utility until it is reached and that does not evoke any regret once it is reached,

then any comparison must neglect some relevant features of bids. Only in the EA for a bidder

who is gain-loss-neutral with respect to money we find such a best PE, called preferred personal

equilibrium (compare Kőszegi and Rabin, 2007, for the term).

If PE in both auctions exist, the expected revenue in the highest symmetric PE profile in the

EA is not higher than the expected revenue in the lowest symmetric PE in the DA.

Related papers that analyze auctions when bidders have reference-dependent preferences and

when reference points are endogenous are by Lange and Ratan (2010), Eisenhuth (2010), and

Belica and Ehrhart (2013). They all focus on static auctions and the first two papers also apply

the choice-acclimating equilibrium (Kőszegi and Rabin, 2007) that we consider less appropriate

for our setting. Reference-dependent preferences with endogenous reference points are applied to

other games for example by Herweg et al. (200) and Rosato (2014). Investigations on equilibria in

5



games when players have endogenous reference points are provided by Shalev (2000) and Belica

and Ehrhart (2013). Rosenkranz and Schmitz (2007) and Shunda (2009) analyze reference-

dependent bidders in auctions when reference points are exogenously given.

in Section 2 we present the model, including the utility functions and definitions of solution

concepts. We analyze the English and the Dutch auction sequentially in Section 3. For both

auctions, we first analyze individual decisions taking the distribution of others’ bids (the winning

probability) as given, and then proceed to interactive decision making, that is, to equilibria of the

auction games. A comparison of auction revenues is given in Section 4.4. Section 5 concludes.

2. The Model

2.1. Reference-Dependent Utility

We build upon the gain-loss utility model of Kőszegi and Rabin (2006). Decision makers

evaluate gains and losses in different consumption spaces separately. In our model, we have two

consumption spaces, the good g and money m. A decision maker’s expected utility is given by

U(Xc|Xr) =

∫ ∫
u(c|r)dR(r)dC(c), (1)

where the random variables Xc and Xr with distribution functions C and R represent the stochas-

tic consumption and reference outcomes, respectively. The utility u(c|r) = u((cg, cm)|(rg, rm))

from consumption levels cg of the good and cm of money, when the respective reference levels are

rg and rm is

u(c|r) =
∑
k∈g,m

wk(ck) + µk(wk(ck)− wk(rk)).

We assume risk-neutral, gain-loss averse decision makers with consumption utility functions

wk(ck) and gain-loss utility function µk(wk(ck)− wk(rk)) for k ∈ {g,m} of the following form:

wm(cg) = cg v

wk(cm) = cm
and µk(x) =

 γkx if x > 0

λkx if x ≤ 0
with λk ≥ γk ≥ 0
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for the gain parameter λk and the loss parameter γk.
2 The consumption utility function wk(ck)

gives the utility from enjoying consumption level ck. In the auction, cg can take the levels 0 if

the bidder does not win, or 1 if he wins, and v is the decision maker’s consumption value for the

good. The consumption level cm is his payment for the good, that is, cm = −p if he pays p.3

The gain-loss utility µk(wk(ck) − wk(rk)) is added to the consumption utility. It increases the

utility u(c|r) if the consumption level is above the reference level, wk(ck) > wk(rk), such that the

decision maker experiences a gain relative to the reference point, but it decreases u(c|r) if the

consumption level is below the reference level, wk(ck) < wk(rk), such that he experiences a loss

relative to the reference point. The assumptions on the parameters λk and γk ensure that a loss

of size x looms larger than a gain of the same size x.

We will give specific forms of the utility function U(·|·) for our auction setting after having

introduced the game.

2.2. The Bidders, Auctions, Bids, and Reference Points

In the auction game n bidders participate, a bidder’s strategy is his bid b or his bidding

function β(·) : R+ → R+, and his utility is represented by the utility function U(·|·). We analyze

an independent private values model. Each bidder’s value v for the good is independently drawn

from a distribution F with density f and full support on [0, v̄). We call the bidders symmetric, if

their values are drawn from the same distribution F and if their parameters λk and γk, k ∈ {g,m}

are the same.4

The auctions are dynamic clock auctions with a continuous price clock. In the English Auction

(EA), a bidder faces a sequence of binary choice problems: At every auction price p, the bidder

has to decide either to accept p and stay in the auction – to approve – or to drop out of the auction

– to quit. Once a bidder has quit the auction he may not return to the auction. The auction

2Note the difference to the notation used in most of the related papers (e.g. Kőszegi and Rabin, 2006), where
µ(x) = ηx for x > 0 and µ(x) = ηλx for x ≤ 0 with η > 0 and λ > 1, such that η corresponds to our gain parameter
γk for all k and ηλ corresponds to our loss parameter λk for all k. Our notation is closer to that of Lange and
Ratan (2010) who assume γk = 0.

3Money is the numeraire and bidders are risk-neutral in money. Bidders do not possess any unit of the item
before the auction, i.e. their initial endowment of the item is zero (compare, e.g. Lange and Ratan, 2010). For
risk-neutral bidders, adding positive endowments does not make a difference in our analyses.

4We will assume symmetric bidders in the analysis of the DA and for comparisons between auctions.
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stops when one of two remaining bidders quits. The other bidder then becomes the winner of the

auction and has to pay the price at which the auction stopped.

The decision to approve p is part of a plan to stay in the auction until the auction price

reaches a upper bidding limit b > p. We call this plan to approve all prices up to b in the EA

the bid b. The bid b induces a random variable A(p, b), which depends on the current price p

and which maps the stochastic outcome from the bid b to the consumption utilities from winning

the good at prices between p and b and not winning the good, if the price exceeds b. A(p, p)

represents the consumption utility zero from the certain outcome not to win the auction when

quitting at p when the auction has reached p.

When deciding about approving or quitting, the bidder takes his stochastic reference point R

into account. R is a random variable that represents the consequences of a decision. A decision

is a bid b, and the distribution over possible consumption utilities, which changes in p, is A(p, b).

Therefore, R = A(p, b).

We denote by U(A(p, b)|A(p, b̂)) the loss-averse bidder’s utility from the bid b, when the EA

reaches the price p and his reference point is induced by the plan to bid b̂.

In the Dutch Auction (DA), like in the EA, the bidders face binary choice problems at every

price p. However, in contrast to the EA, the auction price p continuously decreases. At every

price p, each bidder has to decide to bid or to wait. Once a bidder bids, he wins the auction, the

auction stops, and he has to pay the price at which the auction stops. Waiting at p is part of a

plan to wait until a price b < p, which we call the bid b in the DA. The bid b induces a random

variable W (p, b), which depends on the current price p and which which maps the stochastic

outcome from the bid b to the consumption utilities from winning the good at the price b or

not winning the good, if another bidder bids between p and b. W (p, p) represents the certain

consumption utility v − p from the certain outcome of winning the auction with the bid p when

the auction has reached p. A stochastic reference point R in the DA equals W (p, b).

We denote by U(W (p, b)|W (p, b̂)) the loss-averse bidder’s utility from the bid b, when the DA

reaches the price p and his reference point is induced by the plan to bid b̂.
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2.3. Beliefs

For our analysis, a bidder’s beliefs about the bid of his strongest competitor are relevant. We

introduce different notation for the EA and the DA, because updating of the beliefs differs in the

two auctions due to the inverse price dynamics.

In the EA, let H(b) denote the belief that the strongest opponent bids less than b, that is, the

subjective probability of winning the auction with the bid b, before the auction starts. Denote the

corresponding density by h(·). The auction starts at p = 0, where H(0) = 0. H(b|p) denotes the

conditional subjective probability of winning with the bid b when the auction is at price level p.

Thus, H(b|p) = 0 for all b ≤ p. We assume that a bidder cannot observe other bidders’ dropping

out of the auction.5 Hence, the conditional probability is calculated as

H(b|p) =
H(b)−H(p)

1−H(p)
, (2)

which implies H(p|p) = 0. This updating from H(·) = H(·|0) to H(·|p) truncates the probability

function H(·) at p from below and shifts the probability mass to prices larger than p. We assume

that H with density h is a continuous distribution with full support on [0, y] for y > 0.6 The

conditional density is
∂H(b|p)
∂b

= h(b|p) =
h(b)

1−H(p)
> 0

and it holds that

∂H(b|p)
∂p

=
−h(p)(1−H(p))− (H(b)−H(p))(−h(p))

(1−H(p))2
= −h(p|p)(1−H(b))

1−H(p)
< 0.

In the DA, before the auction starts, a bidder’s belief that the highest bid of the others is

below b is given by G(b), the subjective probability of winning the auction with the bid b. Denote

5If, to the contrary, bidders could observe others’ quitting, then the updating would need to take this information
into account. H(b|p) would then not account for the fact that at least one more bidder is still in the auction and
will bid more than p but it would account for the true number of bidders that is still in the auction and that, thus,
will bid more than p. In our private values model a bidder knows his value and thus cannot infer information about
the value from the others bids. However, his belief about winning is different, if for example he observes all but
one opponent quitting very early compared to no observation of quitting. Because our analysis shows that bids
will be independent of beliefs (but dependent on the own parameter values and the own value for the good), the
results would not change if bidders could observe when opponents quit.

6For example, with symmetric bidders and symmetric monotonic bidding functions this holds true.
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the corresponding density by g(·). When the auction procedure starts at the sufficiently high

price p̄ we have G(p̄) = 1. The conditional probability G(b|p) of winning with the bid b when the

auction is at price level p ≥ b is

G(b|p) =
G(b)

G(p)
, (3)

which implies G(p|p) = 1. This updating from G(·) = G(·|p̄) to G(·|p) truncates the probability

function G(·) at p from above and shifts the probability mass to prices smaller than p. As we did

for H, we assume that G, with density g is a continuous distribution with full support on [0, y]

with y > 0. The conditional density is

∂G(b|p)
∂b

= g(b|p) =
g(b)

G(p)
> 0

and it holds that
∂G(b|p)
∂p

= −G(b)g(p)

G(p)2
= −G(b|p)g(p|p) < 0.

2.4. Binary Bidding

In our dynamic auctions, the bidder has to decide at each price p between two options:

approve or quit in the EA and wait or bid in the DA. This implies a process of continuously

making binary decisions, which we call “binary bidding.” A bid b in the EA therefore involves a

decision to approve all prices p ≤ b and to quit at p = b. A bid b in the DA involves the decision

to wait at all prices p ≥ b and to bid at p = b. Therefore, a utility maximizing bid b in the EA

involves the preferability of approving over quitting at all prices p ≤ b and the preferability of

quitting over approving at all prices p > b. A bid b in the DA involves the preferability of waiting

over bidding at all prices p ≥ b and the preferability of bidding over waiting at all prices p < b.

The dynamics and the binary bidding process have consequences for the utility functions

U(·|·). For example, in the EA, a bidder’s utility from a bid b when his reference bid is b̂ > b, is

composed of his utility at any q along the price path between p and b̂, weighted by the marginal

subjective probabilities seen from p. That is, our utility functions are calculated by integrating

over utilities of the form given in (1).
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2.5. Utility Functions

The utility functions reflect the bidders’ anticipation of the changing expected gains and losses

relative to the reference point when the auction price develops.7 Note that gaining the good

relative to the reference point always comes with a loss of money, and losing the good relative to

the reference point always comes with a gain of money. We derive the functions U(A(p, b)|A(p, b̂))

for the EA and U(W (p, b)|W (p, b̂)) for the DA in Appendix A for a continuously increasing or

decreasing price from an approach with discrete price steps. They represent the preferences of a

gain-loss averse bidder at price level p in the auction, who anticipates the further course of the

auction and who evaluates for any q > p in the EA (q < p in the DA) the sensations of gains and

losses that might realize at q, weighted by the marginal probability h(q|p) in the EA (g(q|p) in

the DA) with that they become relevant. Consequently, the gains and losses at q are evaluated

relative to the potential outcomes of the reference bid b̂ seen from q.

The utility function U(A(p, b)|A(p, b̂)) describes a bidder’s expected utility from the bid b,

when he has the reference bid b̂ in mind and when the auction has reached the price level p in

the EA. We get the following expressions for p ≤ min{b, b̂}:8

U(A(p, b)|A(p, b̂)) =



∫ b
p v
(

1 + γg(1−H(b̂|s))
)
− s

(
1 + λm(1−H(b̂|s))

)
dH(s|p)

+
∫ b̂
b γms− λgv dH(s|p) if b ≤ b̂∫ b̂

p v
(

1 + γg(1−H(b̂|s))
)
− s

(
1 + λm(1−H(b̂|s))

)
dH(s|p)

+
∫ b
b̂ v(1 + γg)− s(1 + λm) dH(s|p) if b > b̂.

(4)

7In particular, a bidder in the EA at p knows that if q > p is reached, his probability of losing with the reference
bid b̂ will have increased from 1−H(b̂|p) to 1−H(b̂|q), thus, there will be stronger sensations of gaining the good
if it is won at q than at earlier stages. A bidder in the DA at p knows that if q < p is reached, his probability of
winning with the reference bid b̂ will have increased from G(b̂|p) to G(b̂|q), thus, there will be stronger sensations
of losing the good if an opponent bids at q than at earlier stages.

8More generally, for all p:

U(A(p, b)|A(p, b̂)) =



∫max{p,b}
p

v
(

1 + γg(1−H(b̂|s))
)
− s

(
1 + λm(1−H(b̂|s))

)
dH(s|p)

+
∫max{p,b̂}

max{p,b} γms− λgv dH(s|p) if b ≤ b̂∫max{p,b̂}
p

v
(

1 + γg(1−H(b̂|s))
)
− s

(
1 + λm(1−H(b̂|s))

)
dH(s|p)

+
∫max{p,b}

max{p,b̂} v(1 + γg)− s(1 + λm) dH(s|p) if b > b̂.
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Four important special cases for p < b can be derived from (4):

U(A(p, p)|A(p, b)) = −λgvH(b|p) + γm

∫ b

p
s dH(s|p) (5)

U(A(p, b)|A(p, b)) =

∫ b

p
v
(
1 + γg (1−H(b|s))

)
− s
(
1 + λm (1−H(b|s))

)
dH(s|p) (6)

U(A(p, p)|A(p, p)) = 0 (7)

U(A(p, b)|A(p, p)) = v(1 + γg)H(b|p)−
∫ b

p
s(1 + λm) dH(s|p) (8)

Equation (5) gives the utility from quitting now, at p, when the reference bid b is higher. The

decision provides zero consumption utility, but a sensation of losing the good with the winning

probability of b and the corresponding sensation of gaining money amounts q, p < q ≤ b with

marginal probabilities h(q|p). Quitting at p makes a sensation of winning the good impossible.

If, as in (6), bid and reference bid are identical and above p, the decision involves no sensation of

losing the good (and gaining money) because the auction is lost for sure if it does not end before

b. The bidder has the consumption utility v − q weighted by the marginal probability h(q|p) of

winning at any q, p ≤ q ≤ b. Also, at any such q and with the same weight, he has a sensation

of losing the payments and gaining the good relative to the reference point with the reference

point’s probability 1−H(b|q) of not winning the auction. Equation (7) provides the utility from

quitting now, when the reference is to quit now. Both the bid and the reference bid generate no

consumption utility for sure, and no sensation of gains or losses. In contrast, in (8), the bid b is

evaluated relative to a reference point of quitting now, at p. This generates consumption utility

v− q as well as a sensation of gaining the good and losing the payment weighted by the marginal

probability h(q|p) of winning at any q, p ≤ q ≤ b. Relative to the reference bid, which involves

not winning for sure, there are no sensations of gaining money or losing the good.9

The utility function U(W (p, b)|W (p, b̂)) describes a bidder’s expected utility from the bid b,

9One obvious difference to the second-price auction is that in our utility function (6) one additive term of a
money-loss is completely missing as compared to the second-price auction (see Lange and Ratan, 2010). In the
second-price auction, winning the auction at p comes with a sensation of losing money because the bidder assigns
positive probability to winning at lower prices. In contrast, a bidder in the EA knows that if he will win at p, the
auction will have reached the auction price p, and that he then will assign zero probability to winning at lower
prices. The price comparisons that generate the term in the second-price auction would be backward looking in
the EA and do not occur.
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when he has the reference bid b̂ in mind and when the auction has reached the price level p in

the DA.10

U(W (p, b)|W (p, b̂)) =



(v − b)G(b|p) + (λgv − γmb̂)G(b̂|p) ln(G(b|p))

+ γgv [G(b|p)−G(b̂|p)]− λm [bG(b|p)− b̂ G(b̂|p)] if b ≥ b̂

(v − b)G(b|p)− λgv G(b̂|p) [1−G(b|b̂)− ln(G(b̂|p))]

+ γmG(b̂|p) [b̂(1− ln(G(b̂|p)))− bG(b|b̂)] if b < b̂.

(9)

Expression (9) involves four special cases for p > b:

U(W (p, p)|W (p, b)) = v − p+ γgv(1−G(b|p))− λm(p− bG(b|p)) (10)

U(W (p, b)|W (p, b)) = (v − b)G(b|p) + (λgv − γmb)G(b|p) ln(G(b|p)) (11)

U(W (p, p)|W (p, p)) = v − p (12)

U(W (p, b)|W (p, p)) = (v − b)G(b|p)− λgv(1−G(b|p)) + γm(p− bG(b|p)) (13)

Of these four cases only in (10) the reference bid is lower than the assessed bid, such that

sensations of gaining the good and losing money are possible. The auction is won for sure, while

with the reference it is lost with probability 1 − G(b|p), generating the sensation of gains and

losses. In (12) the auction is won at price p for sure and in line with the reference bid. In (11)

and (13) the auction is won with probability G(b|p) with the bid b. Because the reference bids

in (11) and (13) are weakly higher than b, sensations of gaining the good do not occur. In (11),

bid and reference bid are equal and in the future. With probability G(b|p) the bidder will win

according to his reference bid but with anticipated updated probability ln(G(b|p)) an opponent

bids earlier, generating a sensation of losing the good. In (13) the reference bid wins for sure

but the assessed bid wins only with probability G(b|p), and, thus, does not win with probability

1−G(b|p). The reference bid results in v− p for sure while the assessed bid results in v− b with

probability G(b|p), such that the difference generates a sensation of losing the good and gaining

money.

10For p < max{b, b̂}, note that G(b|p) = 1 for b < p and remember that G(b̂|p)G(b|b̂) = G(b|p).
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2.6. Optimal Choices: Personal Equilibria and Preferred Personal Equilibria

The preferability of a choice depends on the reference point, which in our auctions is de-

termined by an own reference bid and beliefs about the highest bid of the others. A choice is

considered optimal, if, given the reference point, all other options provide weakly lower utility.

An optimal choice constitutes a Personal Equilibrium (PE), if the reference bid equals the chosen

bid. This idea of endogenizing the reference point was introduced by Kőszegi and Rabin (2006)

and Kőszegi and Rabin (2007). There may be several PE, each a best choice given the reference

point that it induces. Because these PE may differ in the expected utility that they provide,

Kőszegi and Rabin (2006) propose to refine to Preferred Personal Equilibria (PPE): decision

makers choose a PE that provides the highest utility. This requires an additional level of ratio-

nality. Choice need not only be optimal given a reference point but they also need to maximize

utility over all such optimal choices. During the course of an auction, different PE may maximize

the utility, thus, it is not obvious how to apply the idea of a PPE. We define a PPE in a strict

sense as a PE that maximizes expected utility throughout the auction and that may not cause

regret when a decision became irreversible (having quit in the EA or having bid in the DA).

An alternative approach on individual choices when reference points are endogenous by

Kőszegi and Rabin (2007) is the choice-acclimating equilibrium (CPE). This concept does not

require that a choice is optimal given the reference point. It chooses the decision that maximizes

utility over pairs of choice and reference point when choice and reference point are equal. Thus,

in this concept, choice and reference point are considered equally flexible, while the PE captures

the idea of an optimal decision given a reference point when the reference point is less flexible.

In particular, the PE avoids that a choice is called optimal just because it induces a reference

point that is favorable for any decision. However, in a PE that is not an CPE, the decision maker

does not achieve his maximum utility. For a further discussion and comparison of the PE and the

CPE, see Belica and Ehrhart (2013). Given the continuing binary comparisons that a bidder’s

decision has to survive during the course of an auction, we consider the PE, which has a fixed

reference point, and its refinements more suitable for our analysis.

We need to define PE for the EA and the DA separately, due to the inverse price dynamics

of the auctions.
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Definition 1 (Personal Equilibrium (PE)). Given a value v and the beliefs H(·) or G(·), b∗

is a Personal Equilibrium (PE)

• in the EA if U(A(p, b∗)|A(p, b∗)) ≥ U(A(p, b)|A(p, b∗)) for all b and p ≤ min{b∗, b},

• in the DA if U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, b)|W (p, b∗)) for all b and p ≥ max{b∗, b}.

That is, in the EA, taking the plan to approve all prices up to b∗ as given, at each price p ≤ b∗

no other bidding limit b appears more attractive than b∗ to the bidder. In the DA, taking the

plan to wait until b∗ as given, there is at each price p > b∗ no other plan b that appears more

attractive than b∗ to the bidder.

What bid does a bidder choose if he compares PE across reference points? That is, what is

the PPE? A PPE should be consistent in the sense that a player follows one bid through (i.e. the

PPE is a PE). Given his beliefs about the others, a PPE is a bidder’s best PE throughout the

auction (i.e. for all p). Again, we need to define PPE for the EA and the DA separately, due to

the inverse price dynamics of the auctions.

Definition 2 (Preferred Personal Equilibrium (PPE)). Given a value v and the beliefs

H(·) or G(·), b∗∗ is a Preferred Personal Equilibrium (PPE)

• in the EA, if b∗∗ is a PE and if

(1) for all PE b 6= b∗∗: U(A(p, b∗∗)|A(p, b∗∗)) ≥ U(A(p, b)|A(p, b)) for all p ≤ min{b, b∗∗}

(2a) for all PE b < b∗∗: U(A(p, b∗∗)|A(p, b∗∗)) ≥ U(A(b, b)|A(b, b)) for all b < p ≤ b∗∗

(2b) for all PE b > b∗∗: U(A(b∗∗, b∗∗)|A(b∗∗, b∗∗)) ≥ U(A(p, b)|A(p, b)) for all b∗∗ < p ≤ b

• in the DA, if b∗∗ is a PE and if

(1) for all PE b 6= b∗∗: U(W (p, b∗∗)|W (p, b∗∗)) ≥ U(W (p, b)|W (p, b)) for all p ≥ max{b, b∗∗}

(2a) for all PE b < b∗∗: U(W (b∗∗, b∗∗)|W (b∗∗, b∗∗)) ≥ U(W (p, b)|W (p, b)) for all b ≤ p < b∗∗

(2b) for all PE b > b∗∗: U(W (p, b∗∗)|W (p, b∗∗)) ≥ U(W (b, b)|W (b, b)) for all b∗∗ ≤ p < b

The difficulty in defining the PPE stems from the dynamics of the auction. At different p, different

PE may seem best. A player who anticipates the future knows that the best PE at p might not

be his best choice later on, that is, he knows that he will not follow this PE through but he will
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prefer to switch to another PE. Thus, a PE that maximizes utility over all PE at every p, i.e. a

PPE, might not exist.

2.7. Mutual Best Responses: Personal Equilibrium Profiles

We now switch from the point of view of an individual bidder, who holds arbitrary beliefs

about the others, to strategic interaction, where beliefs are required to be derived from strategies

and value distributions F , and where we need to specify complete bidding functions βi(vi) for all

i ∈ N . In what follows, whenever we consider one representative bidder we skip the index i.

Assumption 1. For any v and H(·) there exists a p > max
{
v

1+γg
1+λm

, v
1+λg+γg

1+λm+γm

}
such that H(·)

has full support on [0, p].

The assumption on values, v ∈ [0, v̄), implies Assumption 1, and Assumption 1 simplifies our

analysis and presentation. With these assumptions, a bidder assigns positive probability to any

bid and, in particular, he is never sure about having the highest value and he never beliefs to

submit the highest bid with certainty.

In the analysis of the DA, more details on beliefs will be relevant.

Assumption 2. For any v and G(·) there exists a p̄ such that G(p̄) = 1.

Throughout the analysis of PE profiles in the DA we assume a symmetric model and solve for

symmetric bidding equilibria. Let F̄ (·) and f̄(·) denote the distribution and density of the other

n − 1 bidders’ highest value, i.e. F̄ (x) = F (x)n−1 and f̄(·) = (n − 1)f(x)F (x)n−2. We assume

that F̄ : [0, v̄)→ [0, 1] is continuous and strictly increasing on [0, v̄). This is for example the case

if the cdf of the values, F , is continuous and strictly increasing on [0, v̄).

Throughout the analysis of the DA, we will use the following monotonicity assumption to

characterize PE of a single bidder and to derive symmetric PE profiles.

Assumption 3. The strategy profile is such that, for any bidder, the function k : [0, p̄] → R+

with k(p) := p+ G(p)
g(p) is weakly increasing and continuous.

Lemma 4 in Appendix C justifies Assumption 3 for symmetric PE profiles by showing that

k(p) = p+ G(p)
g(p) is increasing and continuous for a bidder, if the n− 1 other bidders bid according
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to β(v) = aβ̂(v) with a > 0 and

β̂(v) :=

∫ v
0 sf̄(s)ds

F̄ (v)
= v −

∫ v
0 F̄ (s)ds

F̄ (v)
.

Remember that β̂(v) is the symmetric equilibrium bidding function of the DA with loss-neutral

and risk-neutral bidders, where a bidder bids the expected highest valuation of the other bidders

conditional on this value being below his own valuation v.

Let us consider solution concepts for the auction game. What if we require that all bidders

choose PE and that beliefs are consistent with these PE? The answer are the PE profiles. Let

β−i(v−i) := (β1(v1), . . . , βi−1(vi−1), βi+1(vi+1), . . . , βn(vn)) and remember Definition 1 of PE.

Definition 3 (Personal Equilibrium Profile (PE Profile)). A profile (β1(v1), . . . , βn(vn)) is

a personal equilibrium profile (PE profile) in the EA or in the DA, if, for each i ∈ N and each

vi, and for beliefs H(·) or G(·) that are derived from β−i(v−i), βi(vi) is a PE.

We call a profile (β1(v1), . . . , βn(vn)) symmetric, if all bidders use the same bidding strategy

β(v) = β1(v1) = . . . = βn(vn)).

Note that for gain-loss neutral bidders the PE profile is equivalent to the Bayes-Nash equilib-

rium.

Definition 4 (Preferred Personal Equilibrium Profile (PPE Profile)). A profile (β1(v1), . . . , βn(vn))

of bidding functions is a preferred personal equilibrium profile (PPE profile) if (β1(v1), . . . , βn(vn))

is a PE profile and if βi(vi) is a PPE for any i and vi.

That is, a PPE profile is a PE profile in which every bidder chooses a PPE.

3. Equilibrium Analysis

The proofs of all propositions in this section are given in Appendix B for the EA and in

Appendix C for the DA.

3.1. Example

Figure 1 illustrates how utilities develop during the auction in a symmetric setting for a bidder

with valuation v = 0.7 (and n = 2, v ∼ U [0, 1), λg = λm = 0.2, γg = γm = 0.1). We plot the
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utility from the bid β(v) and that from the alternative (to quit if p < β(v) or quitting only at p

if p > β(v) in the EA, and to bid if p > β(v) or bidding only at p if p < β(v) in the DA) under

the reference bid β(v) for different price levels (starting from zero in the EA and starting from

p̄ = 1 with G(p̄) = 1 in the DA). The dashed line with the short dashes is the utility from β(v).

The dashed line with the long dashes gives the utility from the alternative. We consider a bidder

in the earliest reached PE profile, that is, in the lowest PE profile in the English auction and in

the highest PE profile in the Dutch auction. The solid line shows that the difference between the

two utilities is always positive, that is, β(v) provides higher utility than the alternative, which of

course has to hold in any PE. Also, it needs to hold that the difference is zero at p = β(v), when

the bidder quits in the EA or bids in the DA.

In the EA, the utility from β(v) is positive and monotonically decreases to zero, which is

reached at the PE profile bid 0.64.11 The utility from the alternative is always negative, with a

maximum of zero at 0.64. His utility from winning with β(v) is absolutely and relatively to the

alternative decreasing the closer the time to quit.

In the DA, the utility from β(v) is positive and starts to increase at 0.55, the bid of a bidder

whose value is almost 1 in the symmetric PE profile. The utility from the alternative starts out

negative, becomes positive at 0.64 and increases until the PE profile bid 0.38 is reached.

Thus, in the DA in contrast to the EA the bidder’s expected utility from the bid β(v) increases

during the course of the auction. Note that the same would hold true for a loss-neutral bidder. In

the EA, the conditional probability of winning decreases in p and prices also increase, and, thus,

his expected utility decreases and vanishes when he quits. In the in the DA, the probability of

winning with β(v) increases when p decreases and the payment in case of winning is fixed. With

our parameters, in the EA, the utility of a loss-averse bidder is for all p ≤ 0.7 below that of a loss

neutral bidder (who would bid 0.7), due to the loss-utility from losing the money, which is not

overcompensated by the gain-utility from gaining the good. In the DA, a loss-averse bidder would

bid higher than a loss-neutral bidder, who would bid 0.35 both in the symmetric equilibrium with

loss-neutral bidders and as a best response to the equilibrium bids of the loss-averse bidders. The

11For PE bids above the minimum PE, the utility from β(v) would become negative for p close to β(v), but the
bidder would approve because the alternative – quitting – would provide more negative utility.
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loss-averse bidder’s utility at any p ≥ β(v) is lower than that of a loss-neutral bidder with the

same bid, because of his loss-utility from losing the good, which is not overcompensated by his

gain-utility from winning money.12 He compensates this ‘disadvantage‘ by a more aggressive,

higher bid, which increases the probability of winning, and, thus, decreases the probability of

losing the good.

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

U(A(p,β(v))|A(p,β(v))) & 
U(A(β(v),β(v))|A(β(v),β(v)))

U(A(p,p)|A(p,β(v))) & 
U(A(β(v),p)|A(β(v),β(v)))

Δ U

PE profile bid: 0.64

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 0.8 0.6 0.4 0.2 0.0

U(W(p,β(v))|W(p,β(v))) & 
U(W(β(v),β(v))|W(β(v),β(v)))

U(W(p,p)|W(p,β(v))) & 
U(W(β(v),p)|W(β(v),β(v)))

Δ U

PE profile bid: 0.38

Figure 1: A bidder’s utilities from his two options and the difference between the two in a symmetric PE profile
during the course of the auction when the price increases from zero to one in the English Auction (upper plot)
or decreases from one to zero in the Dutch Auction (lower plot) for n = 2, v ∼ U [0, 1), v = 0.7, λg = λm = 0.2,
γg = γm = 0.1.

12For a loss-neutral bidder, the equivalent to the dashed lines with the long dashes would be a horizontal line at
zero in the EA (zero utility in case of quitting) and the function 0.7− p for p ≥ 0.35 (the utility 0.7− p in case of
bidding at p) and a horizontal line at 0.35 for p ≤ 0.35 (his utility from having bid at 0.35) in the DA.
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3.2. English Auction

3.2.1. Personal Equilibria

A bid b∗ is a PE, if, taking the plan to bid up to b∗ as given, at each price p ≤ b∗ no other

bidding limit b appears more attractive to the bidder. This condition is equivalent to two intuitive

conditions that emphasize the binary bidding character.

Proposition 1. Given a value v and the beliefs H(·), b∗ is a PE in the EA if and only if

(EA1) U(A(p, b∗)|A(p, b∗)) ≥ U(A(p, p)|A(p, b∗)) for all p ≤ b∗ and

(EA2) U(A(b∗, b∗)|A(b∗, b∗)) ≥ U(A(b∗, b)|A(b∗, b∗)) for all b > b∗.

Proposition 1 is rooted in the construction of our utility function. The bidders anticipate the

course of the auction and, thus, revisions of choices are not necessary. A bid that is less attractive

when it is reached than the chosen bid seemed less attractive from the beginning, and the same

holds the other way round.

The next proposition considers a range of bids that are a PE independent of the beliefs about

the others. Thus, bids in this range may be considered dominant strategies given the respective

reference point.

Proposition 2. For a bidder with the value v in the EA,

(a) a PE exists if and only if γm(1 + γg) ≤ λg(1 + λm),

(b) for every PE b∗ it holds that

b∗ ∈
[
v

1 + γg
1 + λm

, v
1 + λg + γg

1 + λm + γm

]
,

(c) b∗ is a PE for any beliefs H(·) if and only if γm(1 + γg) ≤ λg(1 + λm) and

b∗ ∈
[
v

1 + γg
1 + λm

, v min

{
1 + λg + γg

1 + λm + γm
,

1 + λg
1 + γm

}]
,

(d) for any H(·), if b∗ is a PE, every b ∈
[
v

1+γg
1+λm

, b∗
)

is also a PE.
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Part (a) characterizes existence, part (b) defines the range of possible PE, part (c) characterizes

the interval of belief-independent PE, which always exist if any PE exists, and part (d) describes

a continuity property of the range of PE. Note that the existence condition in (a) is equivalent

to an existence condition for the interval in (b) (see (B.3)).

Conditions (EA1) and (EA2) differ with respect to the requirements on bidder’s beliefs H(·).

According to (B.2), Condition (EA2) requires b∗ to be at least v
1+γg
1+λm

= b whenever H(·) has

positive probability mass on [b, b] for some b < b. Thus, there is no PE with bids below b. In

contrast, according to (B.1), Condition (EA1) allows, for specific H(·), for b∗ above the upper

bound b̄, if b̄ =
1+λg+γg

1+λm+γm
v <

1+λg
1+γm

v and even if H(·) has positive probability mass above b̄.

Accordingly, there may exist further PE with higher bids than b̄ that depend on H(·).

Depending on his the gain-loss parameters, a bidder has only belief-free PE (if
1+γg
1+λm

≤
1+λg+γg

1+λm+γm
≤ 1+λg

1+γm
), belief-free and potentially also belief-dependent PE (if

1+γg
1+λm

≤ 1+λg
1+γm

≤
1+λg+γg

1+λm+γm
), or he has no PE (if

1+γg
1+λm

>
1+λg+γg

1+λm+γm
⇐⇒ γm(1+γg) > λg(1+λm)). Only belief-free

PE exist for example for a bidder that has the same gain-loss sensations for the good as for money

(λm = λg and γm = γg). Both belief-free and belief-dependent PE may for example occur if the

bidder is gain-loss neutral with respect to money but not with respect to the good (λm = γm = 0

and λg > γg ≥ 0). A bidder that is gain-loss neutral with respect to the good but not with

respect to money does never have a PE (λg = γg = 0 and λm ≥ γm > 0).

What bidding strategy does a bidder choose if he compares PE across reference points? That

is, what are the PPE? In general PPE might not exist, but a PPE exists if λm = 0, which implies

γm = 0, that is, the bidder is gain-loss neutral with respect to money, and which implies existence

of PE.

Proposition 3. Given a value v and the beliefs H(·), if λm = 0, a PPE exists and b∗∗ = v(1+γg)

is his unique PPE.

3.2.2. Personal Equilibrium Profiles

Now let us consider solutions to the auction game. What if we require that all bidders choose

PE and that beliefs are consistent with these PE; that is, what are the PE profiles?

Corollary 1. In the EA, if γm(1+γg) ≤ λg(1+λm), any (β1(v1), β2(v2), . . . , βn(vn)) with βi(vi) ∈[
vi

1+γg
1+λm

, vi min
{

1+λg+γg
1+λm+γm

,
1+λg
1+γm

}]
for every i ∈ N is a PE profile.
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This follows directly from Proposition 2(c). Note that these PE profiles need not be symmetric.

Also, a bidder’s bid depends only on his own parameter values and on his own value for the good.

In that sense, the PE profiles have similar properties as the Nash equilibrium in undominated

strategies with gain-loss-neutral bidders (to which the set of PE profiles reduces if all parameters

are zero).

The PPE profile follows directly from Proposition 3 if λm = 0 because the PPE is the same

for any beliefs H(·).

Corollary 2. In the EA, (β1(v1), β2(v2), . . . , βn(vn)) with βi(vi) = vi
1+γg
1+λm

for every i ∈ N is the

unique PPE profile if λm = 0.

3.3. Dutch Auction

3.3.1. Personal Equilibria

A bid b∗ is a PE if, taking the plan to wait until b∗ as given, there is at each price p > b∗

no other plan b that appears more attractive to the bidder. This condition is equivalent to two

intuitive conditions, that emphasize the binary bidding character.

Proposition 4. Given a value v and the beliefs G(·), b∗ is a PE in the DA if and only if

(DA1) U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, p)|W (p, b∗)) for all p ≥ b∗ and

(DA2) U(W (b∗, b∗)|W (b∗, b∗)) ≥ U(W (b∗, b)|W (b∗, b∗)) for all b ≤ b∗.

For a bidder with value v the question behind (DA1) is ,Should I bid now or wait until b∗ (given

my reference bid b∗)?,’ and the question behind (DA2) is ,Is bidding now at b∗ a good plan or is

it better to wait (given my reference bid b∗)?’ If we could find a range of b∗ for that the answer

to the first question is ‘yes,’ and another range of b∗ for that the answer to the second question

is ‘yes,’ then all b∗ in the intersection of the two ranges would all be PE.

In our analysis we will use the following Lemma, which uses the simplified notation

D1(p, b, b∗) := U(W (p, b∗)|W (p, b∗))− U(W (p, b)|W (p, b∗)) with p ≥ b ≥ b∗ (14)

D2(p, b, b∗) := U(W (p, b∗)|W (p, b∗))− U(W (p, b)|W (p, b∗)) with b ≤ b∗ ≤ p. (15)
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Note that (DA1) equals D1(p, p, b∗) ≥ 0 for all p ≥ b∗ and (DA2) is D2(b∗, b, b∗) ≥ 0 for all

b ≤ b∗. Thus, any condition on D1(·) and D2(·) will relate to (DA1) and (DA2), respectively.

The following Lemma gives necessary and sufficient conditions for (DA1) and (DA2) to hold.

Lemma 1. Given a value v and the beliefs G(·), b∗ is a PE

• only if ∂D1(p,b,b∗)
∂b ≥ 0 for b = p = b∗ and ∂D2(b∗,b,b∗)

∂b ≤ 0 for b = b∗

• if ∂D1(p,b,b∗)
∂b ≥ 0 for all p and b with p ≥ b ≥ b∗ and ∂D2(b∗,b,b∗)

∂b ≤ 0 for all b ≤ b∗.

Lemma 1 gives the necessary conditions for b∗ being a PE

((1 + γg + λg)v − (1 + γm + λm)b∗) g(b∗)− (1 + λm)G(b∗) ≤ 0 (16)

((1 + λg)v − (1 + γm)b∗)g(b∗)− (1 + γm)G(b∗) ≥ 0, (17)

and the sufficient conditions

((1 + γg + λgG(b∗|b)) v − (1 + λm) b− γmb∗G(b∗|b)) g(b)− (1 + λm)G(b) ≤ 0 for all p ≥ b ≥ b∗

((1 + λg)v − (1 + γm)b)g(b)− (1 + γm)G(b) ≥ 0 for all b ≤ b∗,

because

∂D1(p, b, b∗)

∂b
= −∂U(W (p, b)|W (p, b∗))

∂b

= − 1

G(p)
(((1 + γg + λgG(b∗|b)) v − (1 + λm) b− γmb∗G(b∗|b)) g(b)− (1 + λm)G(b)) ,

∂D2(b∗, b, b∗)

∂b
= −∂U(W (b∗, b)|W (b∗, b∗))

∂b
= − 1

G(b∗)
(((1 + λg)v − (1 + γm)b)g(b)− (1 + γm)G(b)) .

Proposition 5. Given a value v and the beliefs G(·), it holds that

(a) b∗ is a PE =⇒
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+γm+λm

(b)
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+λm
=⇒ b∗ is a PE

(c) if λg ≥ γm, b∗ is a PE ⇐⇒
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+γm+λm

Condition (16), which is derived from (DA1), determines the lower bound on PE while condition

(17), which is derived from (DA2), determines the upper bound. This is in line with the intuition
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on (DA1) and (DA2) given above. However, not all b∗ in this intersection of the ranges for that

(16) and (17) hold, respectively, need to be PE. While (17) is necessary and sufficient for the

upper bound, this does not hold for (16) and the lower bound. Our sufficient lower bound might

not be tight and PE b∗ with
(1+γg+λg)v−(1+λm)

G(b∗)
g(b∗)

1+λm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+γm+λm
may exist.

However, according to (c), if λg ≥ γm, this sufficient condition is also necessary.

The existence of PE depends on the gain-loss parameters.

Proposition 6. Given beliefs G(·) it holds that

(a) if (λm − γm)(1 + λg) ≥ γg(1 + γm), then a PE exists,

(b) if λm(1 + λg) < γg(1 + γm), then a PE does not exist.

For bidders that are gain-neutral in the good (γg = 0), a PE exists. For λ := λg = λm and

γ := γg = γm the sufficient condition holds at least for all λ ≥ 2γ. A PE does not exist for

example for a bidder that is gain-loss-neutral with respect to money but not gain-neutral with

respect to the good (λm = γm = 0, λg ≥ γg > 0).

Note that the conditions in Proposition 5 have to be checked for every b∗ independently,

because the boundaries depend on the bid b∗ itself. However, if a PE b∗ exists, we can immediately

conclude on other PE, and in particular on the maximum PE given the beliefs G(·).

Lemma 2. Given a value v and the beliefs G(·), if b∗ is a PE, then a unique maximum PE

b̄ =
(1+λg)v−(1+γm)

G(b̄)

g(b̄)

1+γm
≥ b∗ exists and every b ∈ [b∗, b̄] is a PE.

Corollary 3. If b∗ is a PE, then there exists exactly one interval I of PE with I = [b, b̄] and

b ≤ b∗.

Now that we solved for PE, we ask what bid a bidder chooses if he compares PE across reference

points, that is, what is the PPE of a DA? In the DA, PE that appear best throughout the auction

usually do not exist. Thus, we cannot characterize PPE. It holds that at any PE, if it is reached

by the auction price, lower PE appear less attractive.

3.3.2. Personal Equilibrium Profiles

Next we will address PE profiles (β1(v), . . . , βn(v)) with a focus on symmetric PE profiles,

β(v) := β1(v) = · · · = βn(v). A profile (β1(v), . . . , βn(v)) is a PE profile if and only if first, beliefs
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G(·) are derived from the profile and the distributions of values, and second, βi(v) is a PE for

every v and every i. Throughout this section we assume symmetric bidders.

Proposition 7. If and only if (λm− γm)(1 +λg) ≥ γg(1 + γm) there exist symmetric PE profiles

with β(v) ∈ [β(v), β̄(v)] and with the monotone interval boundaries

β(v) =
1 + γg + λg

1 + λm
β̂(v) and β̄(v) =

1 + λg
1 + γm

β̂(v).

Moreover, given v, for any β(v) ∈ [β(v), β̄(v)] there exists a symmetric PE profile in which β(v)

is chosen.

Proposition 7 mainly shows existence of a continuum of symmetric PE profiles for a range of

parameter values. Can there be other symmetric PE profiles? With respect to the upper bound

the answer is unambiguous.

Proposition 8. In the DA, if a symmetric PE profile (β(v), . . . , β(v)) exists, then β(v) ≤ β̄(v).

Depending on the value of the parameter γm, that is, in how far a bidder considers not winning

the auction as gaining money, we can be more specific about low-bid equilibria. For γm = 0,

if a symmetric PE profile exists, β(v) constitutes the smallest symmetric PE profile. For this

parameter value, the necessary and sufficient conditions for a PE in Proposition 5 are identical

and the claim follows from the proof of Proposition 7.

For γm > 0, symmetric PE profiles smaller than β(v) may exist.

Lemma 3. In the DA, the smallest symmetric PE profile that can exist is constituted by the

monotonic bidding function

βmin(v) = a

∫ v
0 sf̄(s)F̄ (s)c−1 ds

F̄ (v)c
=
a

c

(
v −

∫ v
0 F̄ (s)cds

F̄ (v)c

)
with a =

1 + λg + γg
1 + λm

and c =
1 + λm + γm

1 + λm

One can show that βmin(v) constitutes a symmetric PE profile, if λg ≥ γm > 0 and vf̄(v)/F̄ (v) ≤

(1 + λm)/γm for all v > 0. Then an interval of symmetric PE profiles exists, where βmin(v)

determines the lower bound and β̄(v) determines the upper bound. This constitutes the largest
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possible interval of symmetric PE profiles.13 The symmetric PE profiles that cover the interval

can be generated by

βmin(v) = a

∫ v
0 sf̄(s)F̄ (s)c−1 ds

F̄ (v)c
with a =

1 + λg + γg
1 + λm

and c =
1 + λm + γm

1 + λm

<β(v) = a

∫ v
0 sf̄(s)F̄ (s)c−1 ds

F̄ (v)c
with a =

1 + λg + γg
1 + λm

and c ∈
(

1,
1 + λm + γm

1 + λm

)
<β(v) = a

∫ v
0 sf̄(s) ds

F̄ (v)
with a ∈

[
1 + λg + γg

1 + λm
,

1 + λg
1 + γm

]
.

Proposition 9. In the DA with λm = γm = 0, a PPE profile exists if γg = 0 and consists of

β∗(v) = (1 + λg)β̂(v).

The result is obvious, because our necessary and sufficient conditions for existence of PE in

Proposition 6 coincide and equal 0 ≥ γg, β∗(v) constitutes a symmetric PE by Proposition 7, and

the corresponding bids are the only PE of each bidder by Proposition 5.

4. Discussion

We discuss differences in the influence of the parameters on bidding in the EA and the DA

and provide intuition on the sources of these differences. For specific popular parameter regions

we specify our results. We argue that in laboratory experiments with the EA and induced values,

loss averse bidders bid v in any PE. Then, we compare the auctions’ expected revenues.

4.1. The Influence of the Gain-Loss Parameters on Bidding in the EA and in the DA

For discussing differences between the auctions we focus on the symmetric PE profiles that

we know to exist if any PE profile exists. By Proposition 2 these are for the EA the PE profiles

with

β∗(v) ∈
[
v

1 + γg
1 + λm

, v min

{
1 + λg + γg

1 + λm + γm
,

1 + λg
1 + γm

}]
,

and by Proposition 7 these are for the DA the PE profiles with

β∗(v) ∈
[

1 + γg + λg
1 + λm

β̂(v),
1 + λg
1 + γm

β̂(v)

]
.

13The proofs of the claims in this paragraph are available from the authors upon request.

26



We concentrate on the loss parameters and consider the gain parameters as potentially mitigating

the effects of the loss parameters, because a gain parameter never appears in these boundaries

without the loss parameter of the other consumption dimension. In general and quite in line with

intuition, the good-loss parameter tends to increase bids while the money-loss parameter tends

to decrease bids. The good-loss parameter appears in the upper bounds on PE profiles in both

auctions, while the money-loss parameter appears in the lower bound in the EA and in the low

PE profile bids given above for the DA. Losing the good seems a mayor concern in the DA while

losing money is more important in the EA. In the EA, the good-loss parameter appears in at most

one bound (the upper bound), while the money-loss parameter appears in the lower bound and

may appear in the upper bound. In the DA, the money-loss parameter appears only in the the

lower bound while the good-loss parameter appears in both bounds. Intuitively, in the EA the

bid determines when to give up the good, so losing the good is no major concern in this auction,

while in the DA the bid determines what to pay for sure, so losing money is less important than

someone else taking the good by bidding earlier.

In the EA, for answering the question behind (EA1), ‘Is approving until b better than quitting

now?’, both λm and λg may play a role. For a PE, the answer must be ‘yes’ while b∗ = b is in the

future and, thus, sensations of losing the good are involved with the alternative decision, whereas

sensations of losing money are evoked by the decision to approve (cp. equations (5) and (6)).

(EA1) determines the highest PE because a b exists that is high enough such that the answer

is ‘no.’ For answering the question behind (EA2), ‘Is quitting now at b better than increasing

the bid?’ only λm plays a role. When b is reached, the PE answer is ‘yes,’ the bidder quits,

and his utility is zero, whereas further approving would involve sensations of losing the good (cp.

equations (7) and (8)). (EA2) determines the lowest PE, because a sufficiently low b such that

the answer is ‘no’ exists. Thus, (EA1) limits the effect of λg while (EA2) limits the effect of λm.

In the DA, for answering the question behind (DA1), ‘Is waiting until b better than bidding

now?’, both λg and λm play a role. For a PE the answer must be ‘yes’ while b∗ = b is in the future

and, thus, sensations of losing money are involved with instead bidding now, while sensations of

losing the good come with waiting (cp. (10) and (11)). (DA1) determines the lowest PE because

a p exists that is low enough such that the answer is ‘no’ for all b. For answering the question

behind (DA2), ‘Is bidding now at b better than waiting longer?’, only λg plays a role. When b
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is reached, the PE answer is ‘yes,’ the bidder bids, and his utility is v − b, while the alternative

would involve sensations of losing the good (cp. (12) and (13)). (DA2) determines the highest

PE, because at a sufficiently high b the answer must be ‘no.’ Thus, (DA1) limits the effect of λm

while (DA2) limits the effect of λg.

Overall, the bid decreasing effect of avoiding sensations of losing money results in a range

of symmetric PE in the EA that is shifted downwards relative to the range of symmetric PE

profiles in the DA (divided by v and β(v), respectively), whose tendency towards higher bids is

predominantly driven by avoiding sensations of losing the good.

4.2. Specific Parameter Regions

For a loss-averse bidder, a loss looms larger than a gain of the same size but our parameters

λk ≥ γk ≥ 0, k ∈ {g,m} allow for gain-loss neutrality. We will discuss our results in particular

with respect to parameter regions used in the literature. Remember that in the EA, a PE

exists if and only if γm(1 + γg) ≤ λg(1 + λm) by Proposition 2, while in the DA, a PE exists if

(λm−γm)(1+λg) ≥ γg(1+γm) and a PE does not exist if λm(1+λg) < γg(1+γm) by Proposition

6. Assuming that the loss sensation for the good is not smaller than for money (λg ≥ λm) is

sufficient for a PE in the EA to exist. However, this is not sufficient for the DA, where the

existence of PE requires a loss sensation for money (λm > 0) if the bidder has a gain sensation

for the good (γg > 0).

Symmetric consumption dimensions: λg = λm and γg = γm. Strictly loss-averse bidders that

treat all consumption dimensions equally are probably most popular in the literature. The corre-

sponding parameters are λg = λm =: ηζ and γg = γm =: η, with a weight η > 0 for gain-loss utility

and a ‘coefficient of loss-aversion‘ ζ > 1 (Kőszegi and Rabin, 2006).14 For these parameter values,

PE in the EA exist and all PE are belief-free. The range of PE profile bids is β∗(v) ∈
[
v 1+η

1+ηζ , v
]
.

That is, a bidder never bids above his true value but he might want to quit below his value, if

his reference bid is below his value. In the DA, PE exist for example for all ζ ≥ 2.

Loss-averse symmetric bidders in the DA bid in symmetric PE profiles more than loss-neutral

bidders. The symmetric PE profile bids in the range β∗(v) ∈
[
β̂(v)1+η+ηζ

1+ηζ , β̂(v)1+ηζ
1+η

]
are higher

14In the literature, what we call ζ is denoted by λ (e.g. Kőszegi and Rabin, 2006).
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than β̂(v), and also the potentially existing low-bid PE profiles are higher than β̂(v).15

Gain-neutrality: γg = γm = 0. Gain-neutrality is considered by Lange and Ratan (2010). In

this case, PE in the EA exist and all PE are belief-free. The range of PE profile bids is β∗(v) ∈[
v 1

1+λm
, v

1+λg
1+λm

]
. If the bidder is more loss averse with respect to the good than with respect to

money, he might bid above his value.

In the DA, PE exist, and any bid in a symmetric PE profile lies within the range β∗(v) ∈[
β̂(v)

1+λg
1+λm

, β̂(v)(1 + λg)
]
. The bid might lie below β̂(v) if the bidder is more loss averse with

respect to money than with respect to the good. In all symmetric PE profiles, the DA bid divided

by β̂(v) is weakly higher than the EA bid divided by v.

Focus on the goods dimension: γg > λm. It has been argued that loss-aversion might evoke

“auction fever” – bidders bidding above their (initial) values v (see Ariely and Simonson, 2003;

Heyman et al., 2004; Wolf et al., 2005; Ehrhart et al., 2013, for arguments based on pseudo-

endowment effects and for experimental results with real goods or with non-standard induced

values). In our analysis, an auction fever effect arises in the EA for bidders whose sensations of

gains and losses with respect to the good are more intense than their sensations in the money

dimension. Such bidders with γg > λm bid above v in any PE of the EA (and PE in the EA

exist). In the DA, PE do not exist if γg > λm

If we further restrict consideration to λm = γm = 0, we can compare the EA and (with a

further restriction) the DA to the second-price and first-price sealed bid auctions (with results

for the sealed-bid auctions taken from Belica and Ehrhart, 2013). In the EA, the PE profile

bids are within the range [v(1 + γg), v(1 + λg)] and the PPE profile bid is v(1 + γg). The bid

v(1 + λgF̄ (v) + γg(1 − F̄ (v))) in the PE/PPE profile in the second-price auction is within the

range of PE of the EA but higher than the PPE.16 To compare the auctions to the DA, we have

to assume that in addition γg = 0 for existence of PE. Then, the unique symmetric PE profile in

15Note that in the shopping shoes example by Kőszegi and Rabin (2006), a buyer would always accept any price
below v 1+η

1+ηζ
and the buyer would never accept prices above v 1+ηζ

1+η
, which correspond to the lowest equilibrium bid

v 1+η
1+ηζ

in the EA and to the highest equilibrium bid β̂(v) 1+ηζ
1+η

in the DA.
16PE/PPE profile bids are v(1+λgF̄ (v)+γg(1− F̄ (v))) in the second-price auction and

∫ v
0 s(1+λgF̄ (v)+γg(1−F̄ (v)))

F̄ (v)

in the first-price auction. These bids are higher than the choice-acclimating personal equilibrium (CPE) bids in
both sealed-bid auctions (Belica and Ehrhart, 2013).
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the DA consists of β(v) = β̂(v)(1+λg), which is higher than the PE bids in the first-price auction.

The expected revenue from this unique symmetric PE of the DA equals that from the highest

PE profile in the EA. It exceeds the revenue from the second-price auction, which is higher than

that from the first-price auction, which in turn is higher than the lowest PE (and PPE) profile

revenue in the EA. In all auctions, in line with intuition, relative to a loss-neutral bidder, purely

good-loss-averse bidders bid higher.

These results are supported by the field experiment by Lucking-Reiley (1999), who finds a

tendency for higher prices in the DA than in the first-price auction. Comparing the EA and the

second-price auction, he finds no statistical difference, with some tendency of individuals to bid

higher on average in the EA, but heterogeneity across bidders. His results were not in line with

experimental results with induced values. We will discuss a possible reason in the next subsection.

4.3. Auction Fever Disappears in the EA in the Laboratory

In laboratory experiments with induced values the auction fever effect described in the pre-

vious section (for γg > λm) may not occur. Following Lange and Ratan (2010), in the standard

experimental design, in which participants are assigned a monetary value for the abstract object

for sale, the goods dimension does not exist and all evaluations refer to the money dimension

(where winning the good is considered winning an amount of money equal to v). If we conduct

our analysis of the EA under this assumption, auction fever disappears and the unique PE and,

thus, the unique PPE in the EA is b = v.17

Proposition 10. Consider bidders that assign the good and money the same consumption di-

mension, the “monetary rent dimension.” A bidder’s only PE and thus his unique PPE in the

EA is β∗(v) = v. All bidders choosing β∗(v) = v constitutes the unique PE profile and the unique

PPE profile.

The proof is given in Appendix B.

17Referring to the separation of consumption dimensions, Kőszegi and Rabin (2006, p. 1138) state that “In
combination with loss aversion, this separability is at the crux of many implications of reference-dependent utility,
including the endowment effect.” Similar to our finding, when focusing on a single monetary rent dimension, Lange
and Ratan (2010) show that b(v) = v is the CPE in the second-price auction for sufficiently high v and that bidders
with low v do not participate.
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Thus, for an auction fever effect, a separation of the money and the goods dimension as well

as stronger sensations in the goods dimensions are necessary. This is in line with the experimental

results by Ehrhart et al. (2013), who find truthful bidding in all their EAs with induced values, and

indications for auction fever in treatments designed to induce separated consumption dimensions

and to foster pseudo-endowment and auction fever.

4.4. Comparison of the Revenues in the English and in the Dutch Auctions

To compare the revenues in the EA and in the DA we assume symmetric bidders. Denote the

revenues in symmetric PE profiles in the EA and in the DA by REA and RDA and denote the

second order statistics of the private values by V(2:n).

Proposition 11. Let γm(1+γg) ≤ λg(1+λm) and (λm−γm)(1+λg) ≥ γg(1+γm), i.e., symmetric

PE profiles in the EA and DA exist. Compare expected revenues in symmetric PE profiles.

(a) The expected revenue in the EA is lower than the expected revenue in the DA:

maxE[REA] ≤ minE[RDA].

(b) If λm > γm = 0, then the highest expected revenue in the EA is equal to the lowest expected

revenue in the DA:

maxE[REA] =
1 + λg + γg

1 + λm
E[V(2:n)] = minE[RDA].

If λm = γm = γg = 0 ≤ λg, then the expected revenue from the EA is at least as high as

with gain-loss neutral bidders and at most as high as that from the unique symmetric PE

profile in the DA

E[V(2:n)] = minE[REA] ≤ maxE[REA] = (1 + λg)E[V(2:n)] = E[RDA]

and the revenue in the PPE of the EA is lower than that in the PPE of the DA: E[V(2:n)] ≤

(1 + λg)E[V(2:n)].

The proof is given in Appendix D. If symmetric PE profiles exist in both auctions, all PE in the

EA are belief-free and the revenues in PE in the EA are never higher than those from symmetric
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PE in the DA. Note that if λm > γm = 0 and λm ≥ γg then PE exist in both auctions, and this

is also true if λm = γm = γg = 0 ≤ λg.

5. Conclusion

The EA and the DA evoke quite different sensations of gains and losses in loss-averse bidders

during the process of the auction. The opportunity to get the good for sure by submitting a bid

in the DA seduces the bidder to earlier, higher bids. Also, sensations of winner and losers are

different in the auctions. In the EA, the losing bidders have no sensations of gain or loss due

their exit decisions, but the winner feels a loss of money and a gain of the good. In a PE, the

winner of the DA has no sensation of gain or loss, but the losers feel a loss of the good and a

gain of money. Depending on the feelings towards the auction the seller wants to raise he might

prefer the DA with a content winner or the EA with content losing bidders. These differences in

sensations predicted by the model might be exploited for experimental testing.

Interestingly, we find ranges of PE profiles. For example, a bidder in the EA with λg =

λm = 2γg = 2γm = 0.2 who values the good at 50, may bid anything between 46 and 50 in an

equilibrium of the auction, depending on what reference bid he has in mind but independent of

his beliefs about the opponents. In symmetric PE profiles of a DA with two bidders, uniformly

distributed values on [0,100], and the same gain-loss parameter values, the bidder who values the

good at 50 would bid between 26 and 27 (while a gain-loss neutral bidder would bid 25).

An auction fever effect – bidding above v – is predicted for the EA for bidders whose sensations

are primarily in the goods dimension. If the bidder in the previous example had no gain-loss

sensation in the money dimension, he would bid anything between 55 and 65. If the money

and the good consumption dimensions merge to a single monetary rent dimension, this effect

disappears and he bids 50. Thus, in laboratory experiments with induced values the effect should

disappear, which has been observed.

Expected revenues from symmetric PE profiles in the DA are higher than those from PE

profiles in the EA, if PE in both auctions exist. Thus, a seller who wants to maximize his revenue

and assumes that a bidder is loss-averse might prefer the DA over the EA.
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Appendix A. Deriving the Continuous Approach from the Discrete Approach

Appendix A.1. English Auction

Let t = 1, 2, 3, . . . denote the bidding periods in an EA and A(t, T ) the lottery induced by the

decision to bid from the present period t with price pt up to period T with price pT . A rational

bidder who anticipates the future evaluates his decision in period t to stay in the auction until

T taking all corresponding future lotteries A(t + 1, T ), A(t + 2, T ), A(t + 3, T ), . . . , A(T |T ) into

account. In the following, we derive the expected utility U(A(t, T )|A(t, T̂ )) from decision A(t, T )

under the reference point A(t, T̂ ). Note, decision and reference point may differ.

Let H(t) denote the probability that the bidder (who bids at least until t) will win the auction

at price pt in t.18 Hence, when the auction is in t′ ≥ 0 (and has not ended in t′), for a bidder with

bidding limit pT (T > t′), the conditional probability of winning the auction in t (T ≥ t > t′)

and the complementary probability of not winning at t are given by

H(t|t′) =
H(t)−H(t′)

1−H(t′)
and 1−H(t|t′) =

1−H(t)

1−H(t′)
. (A.1)

It is H(t|t′) = 0 for t′ ≥ t. With H(0) = 0 it is H(t|0) = H(t) for all t ≥ 1.

18We ignore the possibility of a tie, because this analysis is mainly a means to derive the functions for the
continuous case, in which such considerations do not play a role.
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All bidders i ∈ N accept at least p0. As an example for the calculations of probabilities

consider period t = 1 when all bidders are asked to accept p1 and a bidder with limit p3 (i.e. in

t = 3 he will bid for the last time). His probability of winning the auction in t = 1 at p1 is H(1),

and his probability (viewed from period t = 0) of not winning the auction in t = 1 but winning

the auction in t = 2 at p2 is

(1−H(1))H(2|1) = H(2)−H(1),

her probability of winning the auction in t = 3 at p3 and not winning the auction in t = 2 and

t = 1 is

(1−H(1))(1−H(2|1))H(3|2) = H(3)−H(2),

and his conditional probability of winning the auction in t = 3 at p3 and not winning the auction

in t = 2 after not winning the auction in t = 1 is

(1−H(2|1))H(3|2) =
H(3)−H(2)

1−H(1)
.

The expected utility U(A(t, T )|A(t, T̂ )) for t ∈ {1, 2, . . . , T} is determined recursively. In period

t < min{T, T̂} it is

U(A(t, T )|A(t, T̂ )) = H(t|t− 1) [v − pt + (1−H(T̂ |t− 1))(γgv − λmpt)]

+ (1−H(t|t− 1))U(A(t+ 1, T )|A(t+ 1, T̂ )) . (A.2)

For T ≤ T̂ , the expected utility in the last period t = T is

U(A(T, T )|A(T, T̂ )) = H(T |T − 1) [v − pT + (1−H(T̂ |T − 1))(γgv − λmpT )]

+ (1−H(T |T − 1)) [γm
∑T̂

t′=T (H(t′|T − 1)−H(t′ − 1|T − 1)) pt′

− λgv H(T̂ |T − 1)] (A.3)
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For T > T̂ , the expected utility in period t with T > t > T̂ is

U(A(t, T )|A(t, T̂ )) = H(t|t− 1) [v − pt + γgv − λmpt]

+ (1−H(t|t− 1))U(A(t+ 1, T )|A(t+ 1, T̂ )) (A.4)

while in period t = T̂ it is

U(A(T̂ , T )|A(T̂ , T̂ )) = H(T̂ |T̂ − 1) [v− pt] + (1−H(T̂ |T̂ − 1))U(A(T̂ + 1, T )|A(T̂ + 1, T̂ )) (A.5)

and in the last period t = T

U(A(T, T )|A(T, T̂ )) = H(T |T − 1) [v − pT + γgv − λmpT ] . (A.6)
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To compute the expected utility for t < T ≤ T̂ recursively, combine (A.2) and (A.3) with

(A.1) to

U(A(t, T )|A(t, T̂ )) = H(t|t− 1) [v − pt + (1−H(T̂ |t− 1))(γgv − λmpt)]

+ (1−H(t|t− 1)) ·H(t+ 1|t) · [v − pt+1 + (1−H(T̂ |t))(γgv − λmpt+1)]

+ (1−H(t|t− 1)) · (1−H(t+ 1|t)) ·H(t+ 2|t+ 1) · [v − pt+2 + (1−H(T̂ |t+ 1))(γgv − λmpt+2)]

+ . . .

+ (1−H(t|t− 1)) · . . . · (1−H(T − 2|T − 3)) ·H(T − 1|T − 2)

· [v − pT−1 + (1−H(T̂ |T − 2))(γgv − λmpT−1)]

+ (1−H(t|t− 1)) · . . . · (1−H(T − 1|T − 2)) ·H(T |T − 1)

· [v − pT + (1−H(T̂ |T − 1))(γgv − λmpT )]

+ (1−H(t|t− 1)) · . . . · (1−H(T − 1|T − 2)) · (1−H(T |T − 1))

· [γm
∑T̂

t′=T (H(t′|T − 1)−H(t′ − 1|T − 1)) pt′ − λgv H(T̂ |T − 1)]

=
1

1−H(t− 1)

(
[v − pt + (1−H(T̂ |t− 1))(γgv − λmpt)] · (H(t)−H(t− 1))

+ [v − pt+1 + (1−H(T̂ |t))(γgv − λmpt+1)] · (H(t+ 1)−H(t))

+ [v − pt+2 + (1−H(T̂ |t+ 1))(γgv − λmpt+2)] · (H(t+ 2)−H(t+ 1))

+ . . .

+ [v − pT−1 + (1−H(T̂ |T − 2))(γgv − λmpT−1)] · (H(T − 1)−H(T − 2))

+ [v − pT + (1−H(T̂ |T − 1))(γgv − λmpT )] · (H(T )−H(T − 1))

+ γm
∑T̂

t′=T ((H(t′|T − 1)−H(t′ − 1|T − 1)) pt′ · (1−H(T )))− λgv (H(T̂ |T − 1) · (1−H(T ))
)

=
T∑
i=t

(v − pi)
H(i)−H(i− 1)

1−H(t− 1)
+

T∑
i=t

(1−H(T̂ |i− 1))(γgv − λmpi)
H(i)−H(i− 1)

1−H(t− 1)

+ γm
1−H(T )

1−H(T − 1)

T̂∑
t′=T

pt′ ·
H(t′)−H(t′ − 1)

1−H(t− 1)
− λgv

H(T̂ )−H(T − 1)

1−H(t− 1)

1−H(T )

1−H(T − 1)
(A.7)
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To compute the expected utility for t < T̂ < T recursively, combine (A.2), (A.4), (A.5), and

(A.6) with (A.1) to

U(A(t, T )|A(t, T̂ )) = H(t|t− 1) [v − pt + (1−H(T̂ |t− 1))(γgv − λmpt)]

+ (1−H(t|t− 1)) ·H(t+ 1|t) · [v − pt+1 + (1−H(T̂ |t))(γgv − λmpt+1)]

+ (1−H(t|t− 1)) · (1−H(t+ 1|t)) ·H(t+ 2|t+ 1) · [v − pt+2 + (1−H(T̂ |t+ 1))(γgv − λmpt+2)]

+ . . .

+ (1−H(t|t− 1)) · . . . · (1−H(T̂ − 2|T̂ − 3)) ·H(T̂ − 1|T̂ − 2)

· [v − p
T̂−1

+ (1−H(T̂ |T̂ − 2))(γgv − λmpT̂−1
)]

+ (1−H(t|t− 1)) · . . . · (1−H(T̂ − 1|T̂ − 2)) ·H(T̂ |T̂ − 1) [v − p
T̂

]

+ (1−H(t|t− 1)) · . . . · (1−H(T̂ |T̂ − 1)) ·H(T̂ + 1|T̂ ) · [v − p
T̂+1

+ γgv − λmpT̂+1
]

+ . . .

+ (1−H(t|t− 1)) · . . . · (1−H(T − 1|T − 2)) ·H(T |T − 1) · [v − pT + γgv − λmpT ]

=
1

1−H(t− 1)

(
[v − pt + (1−H(T̂ |t− 1))(γgv − λmpt)] · (H(t)−H(t− 1))

+ [v − pt+1 + (1−H(T̂ |t))(γgv − λmpt+1)] · (H(t+ 1)−H(t))

+ [v − pt+2 + (1−H(T̂ |t+ 1))(γgv − λmpt+2)] · (H(t+ 2)−H(t+ 1))

+ . . .

+ [v − p
T̂−1

+ (1−H(T̂ |T̂ − 2))(γgv − λmpT̂−1
)] · (H(T̂ − 1)−H(T̂ − 2))

+ [v − p
T̂

] · (H(T̂ )−H(T̂ − 1))

+ [v − p
T̂+1

+ γgv − λmpT̂+1
] · (H(T̂ + 1)−H(T̂ ))

+ . . .

+ [v − pT + γgv − λmpT ] · (H(T )−H(T − 1))
)

=

T∑
i=t

(v − pi)
H(i)−H(i− 1)

1−H(t− 1)
+

T̂−1∑
i=t

(1−H(T̂ |i− 1))(γgv − λmpi)
H(i)−H(i− 1)

1−H(t− 1)

+ γgv
H(T )−H(T̂ )

1−H(t− 1)
−

T∑
i=T̂+1

λmpi
H(i)−H(i− 1)

1−H(t− 1)
(A.8)
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Now, let pt denote both the price level in period t and the period t itself and set p := pt,

b := pT with p ≤ b, and b̂ := p
T̂

. Let ∆p := pt − pt−1 for all t ≥ 1 and consider ∆p → 0. For

b ≤ b̂ (i.e. T ≤ T̂ ) we get from (A.7)

U(A(p, b)|(A(p, b̂)) = lim
∆p→0

U(A(t, T )|A(t, T̂ )) (A.9)

=

∫ b

p
v − s dH(s|p) +

∫ b

p
(γgv − λms)

(
1−H(b̂|s)

)
dH(s|p)

+ γm

∫ b̂

b
s dH(s|p)− λgv (H(b̂|p)−H(b|p))

=

∫ b

p
v
(

1 + γg(1−H(b̂|s))
)
− s

(
1 + λm(1−H(b̂|s))

)
dH(s|p)

+

∫ b̂

b
γms− λgv dH(s|p),

and for b > b̂ (i.e. T > T̂ ) we get from (A.8)

U(A(p, b)|(A(p, b̂)) = lim
∆p→0

U(A(t, T )|A(t, T̂ )) (A.10)

=

∫ b

p
v − s dH(s|p) + γgv

(∫ b̂

p
1−H(b̂|s) dH(s|p) +H(b|p)−H(b̂|p)

)

− λm

(∫ b̂

p
s (1−H(b̂|s)) dH(s|p) +

∫ b

b̂
s dH(s|p)

)

=

∫ b̂

p
v
(

1 + γg(1−H(b̂|s))
)
− s

(
1 + λm(1−H(b̂|s))

)
dH(s|p)

+

∫ b

b̂
v(1 + γg)− s(1 + λm) dH(s|p).

Appendix A.2. Dutch Auction

Let t = 1, 2, 3, . . . denote the periods in a DA and W (t, T ) the lottery induced by the decision

to wait from the present period t with price pt until period T with price pT and to bid in T .

In a Dutch auction price levels decrease over time such that pt > pt+1. A rational bidder who

anticipates the future evaluates his decision in period t to wait with bidding until T taking all

corresponding future lotteries W (t+ 1, T ),W (t+ 2, T ),W (t+ 3, T ), . . . ,W (T |T ) into account. In

the following, we derive the expected utility U(W (t, T )|W (t, T̂ )) from decision W (t, T ) under the
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reference point W (t, T̂ ). Note, decision and reference point may differ.

Let G(t) denote the probability that the highest bid is below pt, that is, that the auction does

not end before t. Thus, G(T ) is the probability that the bidder who waits until T will win the

auction (at price pT in T ).19 Hence, when the auction is in t′ < T (and bids at t′ have not yet

been evaluated), for a bidder with bidding limit pT , the conditional probability of winning the

auction in T and the complementary probability of not winning at T are given by

G(T |t′) =
G(T )

G(t′)
and 1−G(T |t′) =

G(t′)−G(T )

G(t′)
. (A.11)

It is G(t|t′) = G(t)
G(t′) for t′ < t < T but the probability to win in t for a bidder who bids in T is

zero – either he wins in T or someone else wins at t < T . With G(0) = 1 it is G(t|0) = G(t) for

all t ≥ 1.

Bidders i ∈ N participate. As an example for the calculations of probabilities consider period

t = 0 when all bidders are asked whether they bid p0, and a bidder with limit p3 (i.e. in t = 3 he

will bid). He may either win the auction at p3 or not win the auction at all. His probability of

winning the auction in T = 3 at p3 is G(3), his probability of winning the auction in T = 3 when

t = 0 has been evaluated and t = 1 is running (viewed from t = 0) is

G(1)G(3|1) = G(3)

her probability of winning the auction in T = 3 at p3 when t = 1 has been evaluated and t = 2

is running (viewed from t = 0 or t = 1) is

G(2)G(3|2) = G(3),

and his conditional probability of winning the auction in T = 3 at p3 and when t = 2 has been

19Again, we ignore the possibility of a tie, because this analysis is mainly a means to derive the functions for the
continuous case, in which such considerations do not play a role.
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evaluated and t = 3 is running (viewed from t ≤ 2) is

G(3|2) =
G(3)

G(2)
.

From bidder i’s point of view, the probability that someone else wins the item in t is (1−G(t+1|t)),

because G(t+ 1|t) is the probability that t+ 1 is reached when t has not yet been evaluated.

The expected utility U(W (t, T )|W (t, T̂ )) for t ∈ {1, 2, . . . , T} is determined recursively. In

period t < min{T − 1, T̂} is

U(W (t, T )|W (t, T̂ )) = (1−G(t+ 1|t))G(T̂ |t) [−λgv + γmpT̂ ]

+G(t+ 1|t)U(W (t+ 1, T )|W (t+ 1, T̂ )) . (A.12)

For T < T̂ , the expected utility in the last period t = T is

U(W (T, T )|W (T, T̂ )) = v − pT + (1−G(T̂ |T ))[γgv − λmpT ]−G(T̂ |T )λm(pT − pT̂ )

= v − pT + (1−G(T̂ |T ))γgv − λm(pT −G(T̂ |T )p
T̂

)

= v − pT + (1−G(T̂ |T ))γgv − λm(G(T |T )pT −G(T̂ |T )p
T̂

), (A.13)

for T = T̂ , the expected utility in the last period t = T is

U(W (T, T )|W (T, T )) = v − pT , (A.14)

For T > t ≥ T̂ the expected utility is

U(W (t, T )|W (t, T̂ )) = (1−G(t+ 1|t)) [−λgv + γmpT̂ ]. (A.15)

and in the last period t = T it is

U(W (T, T )|W (T, T̂ )) = v − pT + γm(p
T̂
− pT ). (A.16)
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To compute the expected utility for t < T < T̂ recursively, combine (A.12) and (A.13) with

(A.11) to

U(W (t, T )|W (t, T̂ )) =

(1−G(t+ 1|t))G(T̂ |t) [−λgv + γmpT̂ ]

+G(t+ 1|t) (1−G(t+ 2|t+ 1))G(T̂ |t+ 1) [−λgv + γmpT̂ ]

+G(t+ 1|t)G(t+ 2|t+ 1) (1−G(t+ 3|t+ 2))G(T̂ |t+ 2) [−λgv + γmpT̂ ]

+ . . .

+G(t+ 1|t) · . . . ·G(T − 1|T − 2)(1−G(T |T − 1))G(T̂ |T − 1) [−λgv + γmpT̂ ]

+G(t+ 1|t) · . . . ·G(T − 1|T − 2)G(T |T − 1) [v − pT + (1−G(T̂ |T ))γgv − λm(pT −G(T̂ |T )p
T̂

)]

= [−λgv + γmpT̂ ] (G(T̂ )/G(t)
T−1∑
i=t

(G(i)−G(i+ 1))/G(i))

+ [v − pT + γgv(1−G(T̂ |T ))− λm(pT −G(T̂ |T )p
T̂

)]G(T )/G(t)

= [v − pT ]G(T |t) + [−λgv + γmpT̂ ]G(T̂ |t)
T−1∑
i=t

(G(i)−G(i+ 1))/G(i))

+ γgv(G(T |t)−G(T̂ |t))− λm(pTG(T |t)− p
T̂
G(T̂ |t)). (A.17)
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To compute the expected utility for t < T = T̂ recursively, combine (A.12) and (A.14) with

(A.11) to

U(W (t, T )|W (t, T )) =

(1−G(t+ 1|t))G(T |t) [−λgv + γmpT ]

+G(t+ 1|t) (1−G(t+ 2|t+ 1))G(T |t+ 1) [−λgv + γmpT ]

+G(t+ 1|t)G(t+ 2|t+ 1) (1−G(t+ 3|t+ 2))G(T |t+ 2) [−λgv + γmpT ]

+ . . .

+G(t+ 1|t) · . . . ·G(T − 1|T − 2)(1−G(T |T − 1))G(T |T − 1) [−λgv + γmpT ]

+G(t+ 1|t) · . . . ·G(T − 1|T − 2)G(T |T − 1) [v − pT ]

= [−λgv + γmpT ] (G(T )/G(t)
T−1∑
i=t

(G(i)−G(i+ 1))/G(i)) + [v − pT ]G(T )/G(t)

= [v − pT ]G(T |t) + [−λgv + γmpT ] (G(T |t)
T−1∑
i=t

(G(i)−G(i+ 1))/G(i)). (A.18)
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To compute the expected utility for t < T̂ < T recursively, combine (A.12), (A.15), and (A.16)

with (A.11) to

U(W (t, T )|W (t, T̂ )) =

(1−G(t+ 1|t))G(T̂ |t) [−λgv + γmpT̂ ]

+G(t+ 1|t) (1−G(t+ 2|t+ 1))G(T̂ |t+ 1) [−λgv + γmpT̂ ]

+G(t+ 1|t)G(t+ 2|t+ 1) (1−G(t+ 3|t+ 2))G(T̂ |t+ 2) [−λgv + γmpT̂ ]

+ . . .

+G(t+ 1|t) · . . . ·G(T̂ − 1|T̂ − 2)(1−G(T̂ |T̂ − 1))G(T̂ |T̂ − 1) [−λgv + γmpT̂ ]

+G(t+ 1|t) · . . . ·G(T̂ |T̂ − 1)(1−G(T̂ + 1|T̂ )) [−λgv + γmpT̂ ]

+G(t+ 1|t) · . . . ·G(T̂ + 1|T̂ )(1−G(T̂ + 2|T̂ + 1)) [−λgv + γmpT̂ ]

+ . . .

+G(t+ 1|t) · . . . ·G(T − 1|T − 2)(1−G(T |T − 1)) [−λgv + γmpT̂ ]

+G(t+ 1|t) · . . . ·G(T |T − 1) [v − pT + γm(p
T̂
− pT )]

= [−λgv + γmpT̂ ] [(G(T̂ )/G(t)
T̂−1∑
i=t

(G(i)−G(i+ 1))/G(i)) + (G(T̂ )−G(T ))/G(t)]

+ [v − pT + γm(p
T̂
− pT )]G(T )/G(t)

= [−λgv + γmpT̂ ] [(G(T̂ |t)
T̂−1∑
i=t

(G(i)−G(i+ 1))/G(i)) +G(T̂ |t)−G(T |t)]

+ [v − pT + γm(p
T̂
− pT )]G(T |t)

= [v − pT ]G(T |t)− λgv G(T̂ |t)[1−G(T |T̂ )−
T̂−1∑
i=t

(G(i+ 1)−G(i))/G(i))]

+ γmG(T̂ |t)[p
T̂

(1−
T̂−1∑
i=t

(G(i+ 1)−G(i))/G(i)))− pTG(T |T̂ )]. (A.19)

Now, let pt denote the price level in period t and also refer by pt to the period t itself (but

note that higher prices come with earlier periods) and set p := pt, b := pT , and b̂ := p
T̂

, with

p ≥ max{b, b̂}. Let ∆p := pt−1 − pt for all t ≥ 1 and consider ∆p→ 0.
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For b ≥ b̂ (i.e. T ≤ T̂ ) we get from (A.17) and (A.18)

U(W (p, b)|W (p, b̂)) = (v − b)G(b|p)− (λgv − γmb̂)G(b̂|p)
∫ p

b
g(s)/G(s) ds

+ γgv (G(b|p)−G(b̂|p))− λm (bG(b|p)− b̂ G(b̂|p))

= (v − b)G(b|p) + (λgv − γmb̂)G(b̂|p) ln(G(b|p))

+ γgv (G(b|p)−G(b̂|p))− λm (bG(b|p)− b̂ G(b̂|p)) (A.20)

and for b < b̂ (i.e. T > T̂ ) we get from (A.19)

U(W (p, b)|W (p, b̂)) = (v − b)G(b|p)− λgv G(b̂|p) [1−G(b|b̂)−
∫ b̂

p
g(s)/G(s) ds]

+ γmG(b̂|p) [b̂(1−
∫ b̂

p
g(s)/G(s) ds)− bG(b|b̂)]

= (v − b)G(b|p)− λgv G(b̂|p) [1−G(b|b̂)− ln(G(b̂|p))]

+ γmG(b̂|p) [b̂(1− ln(G(b̂|p)))− bG(b|b̂)]. (A.21)

Appendix B. Proofs for the English Auction

Proposition 1. Given a value v and the beliefs H(·), b∗ is a PE in the EA if and only if

(EA1) U(A(p, b∗)|A(p, b∗)) ≥ U(A(p, p)|A(p, b∗)) for all p ≤ b∗ and

(EA2) U(A(b∗, b∗)|A(b∗, b∗)) ≥ U(A(b∗, b)|A(b∗, b∗)) for all b > b∗.

Proof: Using the definition of a PE (Definition 1), we show that U(A(p, b∗)|A(p, b∗)) ≥ U(A(p, b)|A(p, b∗))

for all b and p ≤ min{b∗, b} if and only if conditions (EA1) and (EA2) are fulfilled.

if : Express U(A(p, b)|A(p, b∗)) for p ≤ min{b, b∗} as

U(A(p, b∗)|A(p, b∗))

=

 U(A(p, b)|A(p, b∗)) + (1−H(b|p))
(
U(A(b, b∗)|A(b, b∗))− U(A(b, b)|A(b, b∗))

)
if b ≤ b∗

U(A(p, b)|A(p, b∗))− (1−H(b∗|p))U(A(b∗, b)|A(b∗, b∗)) if b > b∗

using (4), (6), (5) for b ≤ b∗, and (4), (6), (8) for b > b∗, as well as (2), and replacing dH(s|x) by

h(s)/(1−H(x))ds.
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Note that 1 − H(b|p) ≥ 0 and 1 − H(b∗|p) ≥ 0. It follows that U(A(p, b∗)|A(p, b∗)) ≥

U(A(p, b)|A(p, b∗)) for all b because by (EA1) it is U(A(b, b∗)|A(b, b∗)) ≥ U(A(b, b)|A(b, b∗) for

b ≤ b∗ and by (EA2) it is U(A(b∗, b∗)|A(b∗, b∗)) = 0 ≥ U(A(b∗, b)|A(b∗, b∗)) for b > b∗.

only if :

For p = b < b∗, U(A(p, b∗)|A(p, b∗)) ≥ U(A(p, b)|A(p, b∗)) is equal to (EA1).

For p = b∗ < b, U(A(p, b∗)|A(p, b∗)) ≥ U(A(p, b)|A(p, b∗)) is equal to (EA2). �

Proposition 2. For a bidder with the value v in the EA,

(a) a PE exists if and only if γm(1 + γg) ≤ λg(1 + λm),

(b) for every PE b∗ it holds that

b∗ ∈
[
v

1 + γg
1 + λm

, v
1 + λg + γg

1 + λm + γm

]
,

(c) b∗ is a PE for any beliefs H(·) if and only if γm(1 + γg) ≤ λg(1 + λm) and

b∗ ∈
[
v

1 + γg
1 + λm

, v min

{
1 + λg + γg

1 + λm + γm
,

1 + λg
1 + γm

}]
,

(d) for any H(·), if b∗ is a PE, every b ∈
[
v

1+γg
1+λm

, b∗
)

is also a PE.

Proof: According to Proposition 1, b∗ is a PE if it fulfills the two conditions (EA1) and (EA2).

Using the utility functions (6) and (5), (EA1) becomes

U(A(p, b∗)|A(p, b∗))− U(A(p, p)|A(p, b∗))

=

∫ b∗

p
(v − s) + (γgv − λms)(1−H(b∗|s)) dH(s|p) +

∫ b∗

p
λgv − γms dH(s|p)

=

∫ b∗

p
v(1 + λg + γg(1−H(b∗|s)))− s(1 + λm(1−H(b∗|s)) + γm) dH(s|p) ≥ 0 ∀ p ≤ b∗.

(B.1)
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Using the utility functions (7) and (8), (EA2) becomes

U(A(b∗, b∗)|A(b∗, b∗))− U(A(b∗, b)|A(b∗, b∗))

=

∫ b

b∗
s(1 + λm)− v(1 + γg) dH(s|b∗) ≥ 0 ∀ b > b∗. (B.2)

For v = 0, (B.1) is violated for all b∗ > 0, and both (B.1) and (B.2) are fulfilled for b∗ = 0. So,

β(0) = 0, and in what follows we restrict attention to v > 0.

Proof of (a): We first prove that if a PE b∗ exists, then λg(1 + λm) ≥ γm(1 + γg).

Condition (B.1) can only be fulfilled if b∗ ≤ b̄ := v
1+λg+γg

1+λm+γm
since H(b∗|s) = H(b∗)−H(s)

1−H(s) → 0 for

s → b∗ and thus (1 − H(b∗|s)) → 1 for s → b∗. If, to the contrary, b∗ > b̄, the integrand in

Condition (B.1) is negative for s > b̄ and H(b∗|s) = 0, and, thus, (B.1) is violated for p close to

b∗ for any H(·) with positive probability mass on [p, b∗] (which holds by Assumption 1).

Condition (B.2) is fulfilled if and only if b∗ ≥ b := v
1+γg
1+λm

. If b∗ ≥ b, the integrand in Condition

(B.2) is positive and the condition is fulfilled. If, to the contrary, b∗ < b, the integral in Condition

(B.2) is negative for all b with b∗ < b ≤ b because the integrand is negative for all b∗ < s < b, and

the condition is violated for any H(·|b∗) with positive probability mass on [b∗, b] (which holds by

Assumption 1).

Thus, for any PE b∗ it holds that b ≤ b∗ ≤ b̄, that is,

b ≤ b̄ ⇐⇒ v
1 + γg
1 + λm

≤ v 1 + λg + γg
1 + λm + γm

⇐⇒ γm(1 + γg) ≤ λg(1 + λm). (B.3)

We now prove that if γm(1+γg) ≤ λg(1+λm) then a PE b∗ exists. As shown above, γm(1+γg) ≤

λg(1 + λm) if and only if b ≤ b̄ (see (B.3)) and Condition (B.2) requires b∗ ≥ b. It remains to

show that there exists a b ∈ [b, b̄] that fulfills Condition (B.1). By Proposition 1, this b must be

a PE.

First, we show if γg(1 + γm) ≤ λm(1 + λg), Condition (B.1) is fulfilled for all b ≤ b̄, and any

b ∈ [b, b̄] is a PE. Replace 1−H(b|s) by α ∈ (0, 1] and consider the integrand in (B.1),

v(1 + λg + γgα)− s(1 + λmα+ γm). (B.4)
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For s ≤ b̄, v > 0, and α < 1 the integrand (B.4) is non-negative because for s = b̄ = v
1+λg+γg

1+λm+γm

v(1 + λg + αγg) ≥ v
1 + λg + γg

1 + λm + γm
(1 + λmα+ γm) ⇐⇒ (1− α)λm(1 + λg) ≥ (1− α)γg(1 + γm).

Thus, Condition (B.1) is fulfilled for all b ≤ b̄. Since there is positive probability mass between

s < b̄ and b̄, it is α < 1 and (B.4) is positive, and Condition (B.1) is strictly fulfilled for all p < b

and b ≤ b̄.

Second, we show if γg(1 + γm) > λm(1 + λg), Condition (B.1) is fulfilled for all b ≤ b̂ := v
1+λg
1+γm

,

and any b ∈ [b, b̂] is a PE. Note that b̂ < b̄ if and only if γg(1 + γm) > λm(1 + λg) because

b̂ < b̄ ⇐⇒ v
1 + λg
1 + γm

< v
1 + λg + γg

1 + λm + γm
⇐⇒ γg(1 + γm) > λm(1 + λg), (B.5)

and that b̂ ≥ b because λg ≥ γg and λm ≥ γm. For s ≤ b̂ and v > 0, the integrand (B.4) is

positive because for s = b̂

v(1 + λg + αγg) > v
1 + λg
1 + γm

(1 + αλm + γm) ⇐⇒ αγg(1 + γm) > αλm(1 + λg).

Since there is positive probability mass between s < b̂ and b̂, Condition (B.1) is strictly fulfilled

for all p < b and b ≤ b̂.

Proof of (b): In the proof of (a) we have already shown that for any PE b∗ it holds that b ≤ b∗ ≤ b̄.

Proof of (c): By (a) and (b) we know that γm(1 + γg) ≤ λg(1 + λm) is necessary and sufficient

for existence and any PE must be in
[
b, b̄
]
. By the proof of (a), if γm(1 + γg) ≤ λg(1 + λm)

then min{b̄, b̂} ≥ b, Condition (B.2) is fulfilled for all candidates b∗ ≥ b, and Condition (B.1) is

fulfilled for all b∗ ∈ [b,min{b̄, b̂}] for any H(·) (if Assumption 1 applies). If b̂ < b̄, there might

be PE b∗ ∈ (b̂, b̄], because for v > 0, according to the proof of (a), the integrand (B.4) is strictly

positive for all s ≤ b̂ and might be positive for s > b̂. Thus, any potential PE b∗ ∈ (b̂, b̄] is

belief-dependent. For beliefs with sufficiently high H(s|b∗) at s > b̂ (i.e., α sufficiently small) the

integrand (B.4) might be negative for p ≤ s ≤ b∗ for p close to b∗, a contradiction. For example,

for s := b̂ + εv/(1 + γm) ≤ b̄ the integrand (B.4) is negative if α(γg(1 + γm) − λm(1 + λg)) <

ε(1 + αλm + γm), which holds for sufficiently small α and sufficiently large ε.

Proof of (d): By (c), part (d) holds true for any H(·) for any b ∈ [b,min{b̄, b̂}], and by (b) any
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PE is in [b, b̄]. It remains to show that for any H(·), if b̂ < b̄ and b∗ ∈ [b̂, b̄] is a PE, every

b ∈
[
v

1+γg
1+λm

, b∗
)

is also a PE. In the proof of (c) we argued that such a belief-dependent PE may

exist. Assume that b∗ is such a PE. For b < b∗ it is H(b|s) ≤ H(b∗|s) for all s ∈ [p, b]. The

integrands in Condition (B.1) are never smaller for b than for b∗, because for v > 0 and b < b̄

v(1 + λg + γg(1−H(b|s)))− s(1 + λm(1−H(b|s)) + γm)

≥ v(1 + λg + γg(1−H(b∗|s)))− s(1 + λm(1−H(b∗|s)) + γm) for all s ∈ [p, b]

⇐⇒ vγg(H(b∗|s))−H(b|s)) ≥ sλm(H(b∗|s))−H(b|s)) for all s ∈ [p, b]

⇐⇒ vγg ≥ sλm for all s ∈ [p, b]

⇐= vγg > b̄λm = vλm
1 + λg + γg

1 + λm + γm

⇐⇒ γg(1 + λm + γm) > λm(1 + λg + γg)

⇐⇒ γg(1 + γm) > λm(1 + λg)

⇐⇒ b̂ < b̄,

where the last equivalence holds by (B.5) and the last line is the condition of the considered case.

�

Proposition 3. Given a value v and the beliefs H(·), if λm = 0, a PPE exists and b∗∗ = v(1+γg)

is his unique PPE.

Proof: If λm = 0, a PE exists without further restrictions because the condition for existence in

Proposition 2(a) becomes 0 ≤ λg. Because b∗∗ is the smallest PE, Condition (2a) of Definition

2 does not apply. Conditions (1) and (2b) hold, that is, for all PE b > b∗∗ for all p ≤ b∗∗ it is

U(A(p, b∗∗)|A(p, b∗∗)) > U(A(p, b)|A(p, b)) and for all b∗∗ < p ≤ b it is 0 ≥ U(A(p, b)|A(p, b)). For

all p ≤ b∗∗,

U(A(p, b∗∗)|A(p, b∗∗)) =

∫ b∗∗

p
v
(
1 + γg (1−H(b∗∗|s))

)
− sdH(s|p)

>

∫ b∗∗

p
v
(
1 + γg (1−H(b|s))

)
− s dH(s|p) +

∫ b

b∗∗
v
(
1 + γg (1−H(b|s))

)
− s dH(s|p)

= U(A(p, b)|A(p, b)),
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because H(b∗∗|s) < H(b|s) and v
(
1+γg (1−H(b|s))

)
−b∗∗ < 0, and, using the same relationships,

for all b∗∗ < p ≤ b

U(A(b∗∗, b∗∗)|A(b∗∗, b∗∗)) = 0 ≥
∫ b

p
v
(
1 + γg (1−H(b|s))

)
− s dH(s|p) = U(A(p, b)|A(p, b)).

For any other PE, Condition (1) is violated. Thus, b∗∗ is the unique PPE. �

Proposition 10. Consider bidders that assign the good and money the same consumption di-

mension, the “monetary rent dimension.” A bidder’s only PE and thus his unique PPE in the

EA is β∗(v) = v. All bidders choosing β∗(v) = v constitutes the unique PE profile and the unique

PPE profile.

Proof: Consider a bidder that assigns the good and money the same consumption dimension,

the “monetary rent dimension” with parameters λ and γ. His utility U(A(p, b)|A(p, b′)) is, if

(1) b ≤ b′, and (a) b′ < v, (b) b ≤ v ≤ b′, (c) v < b


(a)
∫ b

0
(v − s)[1 + γ(1−H(b′|s))]dH(s|p)− λ

∫ b′
b

(v − s)dH(s|p)

(b)
∫ b

0
(v − s)[1 + γ(1−H(b′|s))]dH(s|p)− λ

∫ v
b

(v − s)dH(s|p) + γ
∫ b′
v

(s− v)dH(s|p)

(c)
∫ v

0
(v − s)[1 + γ(1−H(b′|s))]dH(s|p)−

∫ b
v

(s− v)[1 + λ(1−H(b′|s))]dH(s|p) + γ
∫ b′
b

(s− v)dH(s|p),

and if (2) b > b′, and (a) b < v, (b) b′ ≤ v ≤ b, (c) v < b′


(a)
∫ b′

0
(v − s)[1 + γ(1−H(b′|s))]dH(s|p) +

∫ b
b′

(v − s)(1 + γ)dH(s|p)

(b)
∫ b′

0
(v − s)[1 + γ(1−H(b′|s))]dH(s|p) +

∫ v
b′

(v − s)(1 + γ)dH(s|p)−
∫ b
v

(s− v)(1 + λ)dH(s|p)

(c)
∫ v

0
(v − s)[1 + γ(1−H(b′|s))]dH(s|p)−

∫ b′
v

(s− v)[1 + λ(1−H(b′|s))]dH(s|p)−
∫ b
b′

(s− v)(1 + λ)dH(s|p).

Then, b′ = v is a PE because U(A(p, b′)|A(p, b′)) ≥ U(A(p, b)|A(p, b′)) for all b and p ((1b) and (2b)),

b′ < v is not a PE because U(A(p, b′)|A(p, b′)) < U(A(p, b)|A(p, b′)) for b = v for all p ≤ b′ ((1a) and (2b)),

and b′ > v is not a PE because U(A(p, b′)|A(p, b′)) < U(A(p, b)|A(p, b′)) for b = v for all p ≤ b ((1c) and

(1b)). Thus, b′ = v is the only PE and thus the unique PPE in the EA, and β∗(v) = v constitutes the

unique PE profile and the unique PPE profile. �
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Appendix C. Proofs for the Dutch Auction

Lemma 4. If the n − 1 other bidders bid according to β(v) = aβ̂(v) with a > 0, then k(p) = p + G(p)
g(p) is

increasing and continuous for the considered bidder.

Proof: Note that β(·) is a continuous and strictly monotonic increasing and, thus, invertible function,

because the cdf F has full support on [0, v̄).

Since β(x) = aβ̂(x) = a
∫ x
0
sf̄(s) ds

F̄ (x)
is continuous and strictly monotonic increasing and β(0) = 0, we

can represent every p by an x via p = β(x). It holds that p′ > p if and only if x′ > x, and that

β′(x) =
axf̄(x)F̄ (x)− a

∫ x
0
sf̄(s) dsf̄(x)

F̄ (x)2
=

(ax− β(x))f̄(x)

F̄ (x)
. (C.1)

If all others use β(v), it is k(p) = p + G(p)
g(p) = p + F̄ (β−1(p))

f̄(β−1(p))
dβ−1(p)

dp

. Using p = β(x) we get k̃(x) :=

β(x) + G(β(x))
g(β(x)) = β(x) + β′(x) F̄ (x)

f̄(x)
= ax where the last equality follows from Equation (C.1). Since k̃(x)

is monotone in x, k(p) is monotone in p. Since k̃(x) is continuous, and F̄ and β are continuous functions,

k(p) is continuous. �

Proposition 4. Given a value v and the beliefs G(·), b∗ is a PE in the DA if and only if

(DA1) U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, p)|W (p, b∗)) for all p ≥ b∗ and

(DA2) U(W (b∗, b∗)|W (b∗, b∗)) ≥ U(W (b∗, b)|W (b∗, b∗)) for all b ≤ b∗.

Proof: Using the definition of a PE (Definition 1), we show that U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, b)|W (p, b∗))

for all b and p ≥ max{b∗, b} if and only if conditions (DA1) and (DA2) are fulfilled.

if : Express U(W (p, b)|W (p, b∗)) for p ≥ max{b, b∗} as

U(W (p, b∗)|W (p, b∗))

=

U(W (p, b)|W (p, b∗)) +G(b|p)
(
U(W (b, b∗)|W (b, b∗))− U(W (b, b)|W (b, b∗))

)
if b ≥ b∗

U(W (p, b)|W (p, b∗)) +G(b∗|p)
(
U(W (b∗, b∗)|W (b∗, b∗))− U(W (b∗, b)|W (b∗, b∗))

)
if b < b∗

using (9) and (11), and (10) and (12) for b ≤ b∗ and (13) for b > b∗, as well as G(b|p)G(b∗|b) = G(b∗|p)

and ln(G((b∗|b))) = ln(G((b∗|p)))− ln(G((b|p))).

It follows that U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, b)|W (p, b∗)) for all b because by (DA1) it is U(W (b, b∗)|W (b, b∗)) ≥

U(W (b, b)|W (b, b∗)) for b ≥ b∗ and by (DA2) it is U(W (b∗, b∗)|W (b∗, b∗)) ≥ U(W (b∗, b)|W (b∗, b∗)) for

b < b∗.

only if :
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For p = b ≥ b∗, U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, b)|W (p, b∗)) is equal to (DA1).

For p = b∗ > b, U(W (p, b∗)|W (p, b∗)) ≥ U(W (p, b)|W (p, b∗)) is equal to (DA2). �

Lemma 1. Given a value v and the beliefs G(·), b∗ is a PE

• only if ∂D1(p,b,b∗)
∂b ≥ 0 for b = p = b∗ and ∂D2(b∗,b,b∗)

∂b ≤ 0 for b = b∗

• if ∂D1(p,b,b∗)
∂b ≥ 0 for all p and b with p ≥ b ≥ b∗ and ∂D2(b∗,b,b∗)

∂b ≤ 0 for all b ≤ b∗.

Proof: At p = b = b∗, D1(p, b, b∗) = 0 and (DA1) holds. A bidder who considers to marginally shift his

bid upwards from b∗ to b must find that sticking with b∗ is better, given the reference bid b∗. Thus, D1(·)

must not decrease by the considered shift from b∗ to b. If we fix p, and D1(·) is not decreased by any

marginal upwards shift of the bid b for any p ≥ b ≥ b∗, and if this holds for all p ≥ b∗, then (DA1) holds.

Similarly, D2(b∗, b, b∗) = 0 at p = b = b∗ and (DA2) holds. A marginal shift of b downwards must not

increase the bidder’s utility. Thus, the derivative of D2(·) at b = b∗ must not be strictly positive. If D2(·)

is not decreased by any marginal downwards shift of the bid b for any b ≤ b∗, then (DA2) holds. �

Proposition 5. Given a value v and the beliefs G(·), it holds that

(a) b∗ is a PE =⇒
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+γm+λm

(b)
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+λm
=⇒ b∗ is a PE

(c) if λg ≥ γm, b∗ is a PE ⇐⇒
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
≥ b∗ ≥

(1+γg+λg)v−(1+λm)
G(b∗)
g(b∗)

1+γm+λm

Proof: Part (a) follows directly from Lemma 1. The left and right inequalities have to hold if b∗ is a PE

because the inequalities equal conditions (17) and (16), which are necessary conditions for a PE.

To prove part (b) we will first show that, given beliefsG(·), (DA1) is fulfilled for all b∗ ≥
(1+γg+λg)v−(1+λm)

G(b∗)
g(b∗)

1+λm
.

Then we will show that (DA2) is fulfilled for all b∗ ≤
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
.

(DA1) holds for b∗ = b̂∗ :=
(1+γg+λg)v−(1+λm)

G(b̂∗)
g(b̂∗)

1+λm
, which has the implicit form

(1 + λm)

(
b̂∗ +

G(b̂∗)

g(b̂∗)

)
− (1 + γg + λg) v = 0. (C.2)

At p ≥ b = b̂∗, D1(p, b̂∗, b̂∗) = 0. It follows that D1(p, b, b̂∗) ≥ 0 for all p ≥ b > b̂∗, because ∂D1(p,b,b̂∗)
∂b ≥ 0

for all p ≥ b > b̂∗. To see this, notice that

∂D1(p, b, b∗)

∂b
= − ((1 + γg + λgG(b∗|b)) v − (1 + λm) b− γmb∗G(b∗|b)) g(b)− (1 + λm)G(b)

G(p)
≥ 0

⇐⇒ (1 + λm)

(
b+

G(b)

g(b)

)
− (1 + γg + λgG(b∗|b)) v ≥ −γmb∗G(b∗|b). (C.3)
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The right-hand side of (C.3) is non-positive. The left-hand side of (C.3) equals zero at b = b∗ = b̂∗

because of G(b∗|b∗) = 1 and (C.2); and it is non-negative for all b > b̂∗ because b+ G(b)
g(b) increases in b by

Assumption 3, and because G(b∗|b) decreases in b.

(DA1) holds for b∗ > b̂∗. At b = b∗ the left-hand side of (C.3) equals (1+λm)
(
b+ G(b)

g(b)

)
−(1+γg+λg) v.

This term is non-negative for all b > b̂∗ because, as we know from above, it is zero at b = b̂∗ and because

b+G(b)
g(b) increases in b by Assumption 3. Thus, ∂D1(p,b,b∗)

∂b ≥ 0 for all p ≥ b > b∗. This impliesD1(p, b, b∗) ≥ 0

for all p ≥ b > b∗ because D1(p, b∗, b∗) = 0.

(DA2) holds for b∗ = b̄∗ :=
(1+λg)v−(1+γm)

G(b̄∗)
g(b̄∗)

1+γm
. At p = b = b̄∗, D2(b̄∗, b̄∗, b̄∗) = 0. It follows that

D2(b̄∗, b, b̄∗) ≥ 0 for all b < b̄∗ because ∂D2(b̄∗,b,b̄∗)
∂b ≤ 0 for all b < b̄∗. To see this, notice that

∂D2(p, b, b∗)

∂b
= − ((1 + λg)v − (1 + γm)b)g(b)− (1 + γm)G(b)

G(b∗)
≤ 0

⇐⇒ (1 + λg)v − (1 + γm)

(
b+

G(b)

g(b)

)
≥ 0. (C.4)

The left-hand side of (C.4) equals zero at b = b∗ = b̄∗ and is non-negative for all b < b̄∗ because, by

Assumption 3, b+ G(b)
g(b) decreases if b decreases.

(DA2) holds for b∗ < b̄∗. We have already shown that ∂D2(b̄∗,b,b̄∗)
∂b ≤ 0 for all b < b̄∗. Thus, it is non-

negative at b∗ and for all b < b∗. This implies D2(b∗, b, b∗) ≥ 0 for all b < b∗ because D2(b∗, b∗, b∗) = 0.

To prove part (c) we only have to show that (DA1) is fulfilled for all b∗ ≥
(1+γg+λg)v−(1+λm)

G(b∗)
g(b∗)

1+γm+λm
.

(DA1) holds for b∗ = b̂∗ :=
(1+γg+λg)v−(1+λm)

G(b̂∗)
g(b̂∗)

1+γm+λm
, which has the implicit form

(1 + λm)

(
b̂∗ +

G(b̂∗)

g(b̂∗)

)
− (1 + γg + λg) v + γmb̂

∗ = 0. (C.5)

At p ≥ b = b̂∗, D1(p, b̂∗, b̂∗) = 0. It follows that D1(p, b, b̂∗) ≥ 0 for all p ≥ b > b̂∗, because ∂D1(p,b,b̂∗)
∂b ≥ 0

for all p ≥ b > b̂∗. According to (C.3), ∂D1(p,b,b∗)
∂b ≥ 0 can also be expressed as

(1 + λm)

(
b+

G(b)

g(b)

)
− (1 + γg + λgG(b∗|b)) v + γmb

∗G(b∗|b) ≥ 0. (C.6)

The left-hand side of (C.6) equals zero at b = b∗ = b̂∗ because of G(b∗|b∗) = 1 and (C.5); and it is

non-negative for all b > b̂∗ because b + G(b)
g(b) increases in b by Assumption 3, because G(b∗|b) decreases

in b, and because γmb
∗ ≤ λgv. The latter follows from b∗ ≤ b̄∗ =

(1+λg)v−(1+γm)
G(b̄∗)
g(b̄∗)

1+γm
, which implies

(1 + γm)b∗ ≤ (1 + λg)v and γmb
∗ ≤ λgv for λg ≥ γm.

To show that (DA1) also holds for b∗ > b̂∗, we argue in the same way as in the proof of (b). �
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Proposition 6. Given beliefs G(·) it holds that

(a) if (λm − γm)(1 + λg) ≥ γg(1 + γm), then a PE exists,

(b) if λm(1 + λg) < γg(1 + γm), then a PE does not exist.

Proof: According to Proposition 5(b), a PE b∗ exists if

(1 + λg)v − (1 + γm)G(b∗)
g(b∗)

1 + γm
≥

(1 + γg + λg)v − (1 + λm)G(b∗)
g(b∗)

1 + λm

⇐⇒ 1 + λg
1 + γm

≥ 1 + γg + λg
1 + λm

⇐⇒ (λm − γm)(1 + λg) ≥ γg(1 + γm).

According to Proposition 5(a), a b that fulfills the necessary condition for a PE does not exist if

(1 + λg)v − (1 + γm)G(b)
g(b)

1 + γm
<

(1 + γg + λg)v − (1 + λm)G(b)
g(b)

1 + γm + λm

⇐=
(1 + λg)v − (1 + γm)G(b)

g(b)

1 + γm
<

(1 + γg + λg)v − (1 + γm + λm)G(b)
g(b)

1 + γm + λm

⇐⇒ 1 + λg
1 + γm

<
1 + γg + λg

1 + γm + λm

⇐⇒ λm(1 + λg) < γg(1 + γm).

�

Lemma 1. Given a value v and the beliefs G(·), if b∗ is a PE, then a unique maximum PE b̄ =
(1+λg)v−(1+γm)

G(b̄)

g(b̄)

1+γm
≥

b∗ exists and every b ∈ [b∗, b̄] is a PE.

Proof: Consider a PE b∗. By Proposition 5(a), b∗ ≤
(1+λg)v−(1+γm)

G(b∗)
g(b∗)

1+γm
, a necessary condition for

b∗ to be a PE. There exists a unique maximum bid b̄ ≥ b∗ such that b̄ =
(1+λg)v−(1+γm)

G(b̄)

g(b̄)

1+γm
because

b ≤
(1+λg)v−(1+γm)

G(b)
g(b)

1+γm
⇐⇒ b+ G(b)

g(b) ≤
1+λg
1+γm

v and the left-hand side increases in b while the right-hand

side is independent of b. For the same reason, b ≤
(1+λg)v−(1+γm)

G(b)
g(b)

1+γm
for any b ∈ [b∗, b̄], that is, any such

b fulfills the part of the sufficient condition for b to be a PE in Proposition 5(b) that relates to the upper

bound.

Because b∗ is a PE, we know by Lemma 1 that ∂D2(b∗,b,b∗)
∂b ≤ 0 at b = b∗, which is by (C.4) equivalent

to (1 + λg)v − (1 + γm)
(
b∗ + G(b∗)

g(b∗)

)
≥ 0. But then (1 + λg)v − (1 + γm)

(
b+ G(b)

g(b)

)
≥ 0 for all b < b∗

because b+ G(b)
g(b) decreases if b decreases by Assumption 3. Therefore, the part of the sufficient condition

in Lemma 1 that determines the lower bound for a b to be a PE, ∂D2(b,b′,b)
∂b′ ≤ 0 for all b′ ≤ b, is fulfilled

for all b ∈ [b∗, b̄]. �
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Proposition 7. If and only if (λm − γm)(1 + λg) ≥ γg(1 + γm) there exist symmetric PE profiles with

β(v) ∈ [β(v), β̄(v)] and with the monotone interval boundaries

β(v) =
1 + γg + λg

1 + λm
β̂(v) and β̄(v) =

1 + λg
1 + γm

β̂(v).

Moreover, given v, for any β(v) ∈ [β(v), β̄(v)] there exists a symmetric PE profile in which β(v) is chosen.

Proof: The condition (λm − γm)(1 + λg) ≥ γg(1 + γm) is necessary for the existence of such an interval

of PE profiles because if it does not hold then β(v) > β̄(v).

Next we prove sufficiency. Note, (λm − γm)(1 + λg) ≥ γg(1 + γm) if and only if β(v) ≤ β̄(v).

We first show that a symmetric PE profile with β(v) fulfills (DA1), that is, the part of the sufficient

condition for existence of a PE that relates to the lower bound in Proposition 5(b), for all bidders. A

bidding function β(v) fulfills (DA1) if for all v

β(v) ≥
(1 + λg + γg)v − (1 + λm)G(β(v))

g(β(v))

1 + λm
. (C.7)

As argued in the proof of Proposition 5(b), monotonicity of k(p) = p + G(p)
g(p) (Lemma 4) assures that the

smallest β(v) for which (C.7) holds for all v is β(v) =
(1+λg+γg)v−(1+λm)

G(β(v))

g(β(v))

1+λm
. Rearranging, we get

(
(1 + λg + γg)v − (1 + λm)β(v)

)
g(β(v))− (1 + λm)G(β(v)) = 0.

Using symmetry, that is, all bidders choosing β(v), and monotonicity of β(v), we can, for any v and

b = β(v), replace G(β(v)) = G(b) = F̄ (β−1(b)) = F̄ (v) and g(β(v)) = g(b) = dG(b)
db =

dF̄ (β−1(b))

db = f̄(v)
β′(v)

where β′(v) =
dβ(v)

dv to get

(
(1 + λg + γg)v − (1 + λm)β(v)

) f̄(v)

β′(v)
− (1 + λm)F̄ (v) = 0

⇐⇒ (1 + λm)
(
f̄(v)β(v) + F̄ (v)β′(v)

)
− (1 + λg + γg)vf̄(v) = 0. (C.8)

Solving for the unique solution of the differential equation (C.8) for β(0) = 0, using

d(1 + λm)F̄ (v)β(v)

dv
= (1 + λg + γg)vf̄(v)

=⇒ (1 + λm)F̄ (v)β(v) = (1 + λg + γg)

∫ v

0

sf̄(s) ds,
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gives

β(v) =
1 + λg + γg

1 + λm

∫ v
0
sf̄(s) ds

F̄ (v)
=

1 + γg + λg
1 + λm

β̂(v).

Second, along the same lines we show that a symmetric PE profile with β̄(v) fulfills (DA2), that is, the

part of the sufficient conditions for existence of a PE in Proposition 5(b) that relates to the upper bound,

for all bidders. A bidding function β(v) fulfills (DA2) if (and only if) for all v

β(v) ≤
(1 + λg)v − (1 + γm)G(β(v))

g(β(v))

1 + γm
. (C.9)

As argued in the proof of Proposition 5(b), monotonicity of k(p) = p + G(p)
g(p) (Lemma 4) assures that the

largest β(v) for which (C.9) holds for all v is β̄(v) =
(1+λg)v−(1+γm)

G(β̄(v))

g(β̄(v))

1+γm
. Rearranging, we get

(
(1 + λg)v − (1 + γm)β̄(v)

)
g(β̄(v))− (1 + γm)G(β̄(v)) = 0.

Using symmetry and monotonicity, and replacing G(β̄(v)) = F̄ (v) and g(β̄(v)) = f̄(v)

β̄′(v)
as above, we get

(
(1 + λg)v − (1 + γm)β̄(v)

) f̄(v)

β̄′(v)
− (1 + γm)F̄ (v)) = 0

⇐⇒ (1 + γm)
(
f̄(v)β̄(v) + F̄ (v)β̄′(v)

)
− (1 + λg)vf̄(v) = 0. (C.10)

Solving for the unique solution of the differential equation (C.10) for β̄(0) = 0, using

d(1 + γm)F̄ (v)β̄(v)

dv
= (1 + λg)vf̄(v)

=⇒ (1 + γm)F̄ (v)β̄(v) = (1 + λg)

∫ v

0

sf̄(s) ds,

gives

β̄(v) =
1 + λg
1 + γm

∫ v
0
sf̄(s) ds

F̄ (v)
=

1 + λg
1 + γm

β̂(v).

Combining the two steps, we find that both β(v) and β̄(v) fulfill (DA1) and (DA2) and constitute a

symmetric PE if adopted by all bidders, because β(v) ≤ ¯β(v) for all v and because β(v) is the smallest

bidding function that, if adopted by all bidders, fulfills (DA1), and β̄(v) is the largest bidding function

that, if adopted by all bidders, fulfills (DA2).

It remains to show that [β(v), β̄(v)] is an interval of PE that constitute symmetric PE profiles.

We will prove that each member of the family of monotone bidding functions β(v) = aβ̂(v) with a ∈

[
1+λg+γg

1+λm
,

1+λg
1+γm

] constitutes a symmetric PE profile if adopted by all bidders, that is, it fulfills (DA1) and
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(DA2) with beliefs dictated by symmetry of bidding functions and distributions of values.

Consider a symmetric PE profile with β(v) = aβ̂(v). First, for any a ≥ 1+λg+γg
1+λm

, this profile

fulfills (DA1): For all p = β(x) ≥ β(v) is D1(β(x), β(x), β(v)) = U(W (β(x), β(v))|W (β(x), β(v))) −

U(W (β(x), β(x))|W (β(x), β(v))) ≥ 0 because at β(x) = β(v) it is D1(β(x), β(x), β(v)) = 0 and for all

p ≥ β(x) ≥ β(v) it is ∂D1(p,β(x),β(v))
∂x = −∂U(W (p,β(x))|W (p,β(v)))

∂x ≥ 0 for any a ≥ 1+λg+γg
1+λm

. This holds

because for x ≥ v

∂U(W (p, β(x))|W (p, β(v)))

∂x

=
∂ 1
G(p)

(
(v − β(x))F (x) + λgvF (v) ln F (x)

G(p) + γgv(F (x)− F (v))− λm(β(x)F (x)− β(v)F (v))
)

∂x

=
1

G(p)

(
(v − β(x))f(x)− β′(x)F (x) + λgvF (v)

f(x)

F (x)
+ γgvf(x)− λm(β′(x)F (x) + β(x)f(x))

)
=

1

G(p)

((
1 + λg

F (v)

F (x)
+ γg

)
vf(x)− (1 + λm) (β′(x)F (x) + β(x)f(x))

)
=
f(x)

G(p)

((
1 + λg

F (v)

F (x)
+ γg

)
v − (1 + λm)ax

)
=
f(x)

G(p)

(
(1 + λg + γg) (v − x) + λg

(
F (v)

F (x)
− 1

)
v + (1 + λg + γg − (1 + λm)a)x

)
≤ 0,

where the forth equality uses β′(x) = (ax−β(x))f(x)
F (x) (see (C.1)). The inequality in the last line holds because

the all three terms in the large parentheses are non-positive.

Second, for any a ≥ 1+λg+γg
1+λm

, this profile fulfills (DA2): For all β(x) ≤ β(v) is D2(β(v), β(x), β(v)) =

U(W (β(v), β(v))|W (β(v), β(v))) − U(W (β(v), β(x))|W (β(v), β(v))) ≥ 0 because at β(x) = β(v) it is

D2(β(v), β(x), β(v)) = 0 and for all β(x) ≤ β(v) it is ∂D2(β(v),β(x),β(v))
∂x = −∂U(W (β(v),β(x))|W (β(v),β(v)))

∂x ≤ 0

for any a ≤ 1+λg
1+γm

. This holds because for x ≤ v

∂U(W (β(v), β(x))|W (β(v), β(v)))

∂x

=
∂
(

(v − β(x))F (x)
F (v) − λgv

(
1− F (x)

F (v)

)
+ γm

(
β(v)− β(x)F (x)

F (v)

))
∂x

=
1

F (v)
((v − β(x))f(x)− β′(x)F (x) + λgvf(x)− γm(β′(x)F (x) + β(x)f(x)))

=
1

F (v)
((1 + λg)vf(x)− (1 + γm)(β′(x)F (x) + β(x)f(x)))

=
1

F (v)
(((1 + λg)v − (1 + γm)ax) f(x))

=
1

F (v)

(
((1 + λg)(v − x) + (1 + λg − (1 + γm)a)x) f(x)

)
≥ 0,
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where the forth equality uses β′(x) = (ax−β(x))f(x)
F (x) . The inequality in the last line holds because both

terms in the large parentheses are non-negative. �

Proposition 8. In the DA, if a symmetric PE profile (β(v), . . . , β(v)) exists, then β(v) ≤ β̄(v).

Proof: All bidders choosing β̄(v) constitutes the largest possible symmetric PE profile because (C.9) in

the proof of Proposition 7 is necessary and sufficient for (DA2) to be met and because in the same proof

we find that any β(v) that constitutes a symmetric PE and for which (C.9) holds must be weakly smaller

than β̄(v). �

Lemma 2. In the DA, the smallest symmetric PE profile that can exist is constituted by the monotonic

bidding function

βmin(v) = a

∫ v
0
sf̄(s)F̄ (s)c−1 ds

F̄ (v)c
=
a

c

(
v −

∫ v
0
F̄ (s)cds

F̄ (v)c

)

with a =
1 + λg + γg

1 + λm
and c =

1 + λm + γm
1 + λm

Proof: The bidding function βmin(v) is monotone because

dβmin(v)

dv
=
avf̄(v)F̄ 2c−1 − abF̄ c−1(v)f̄(v)

∫ v
0
sf̄(s)F̄ (s)c−1 ds

F̄ (v)2c

=
(av − cβmin(v))f̄(v)

F̄ (v)
=
af̄(v)

∫ v
0
F̄ (s)c−1 ds

F̄ (v)c+1
> 0.

According to Proposition 5, for a given value v and the beliefs G(·), the smallest possible PE, described

by the bidding function βmin(v), is

βmin(v) =
(1 + γg + λg)v − (1 + λm)G(βmin(v))

g(βmin(v))

1 + γm + λm
. (C.11)

Rearranging (C.11) and using symmetry (i.e., all bidders choosing βmin(v)) and monotonicity of βmin(v),

we get

(1 + γm + λm)f̄(v)βmin(v) + (1 + λm)F̄ (v)
dβmin(v)

dv
− (1 + λg + γg)vf̄(v) = 0.

Solving this differential equation for βmin(0) = 0 gives the unique solution

βmin(v) = a

∫ v
0
sf̄(s)F̄ (s)c−1 ds

F̄ (v)c
with a =

1 + λg + γg
1 + λm

and c =
1 + λm + γm

1 + λm
.

�
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Appendix D. Proof on Comparisons Between the Auctions

Proposition 9. Let γm(1 + γg) ≤ λg(1 + λm) and (λm − γm)(1 + λg) ≥ γg(1 + γm), i.e., symmetric PE

profiles in the EA and DA exist. Compare expected revenues in symmetric PE profiles.

(a) The expected revenue in the EA is lower than the expected revenue in the DA:

max E[REA] ≤ min E[RDA].

(b) If

• λm > γm = 0, then the highest expected revenue in the EA is equal to the lowest expected

revenue in the DA:

max E[REA] =
1 + λg + γg

1 + λm
E[V(2:n)] = min E[RDA].

• λm = γm = γg = 0 ≤ λg, then the expected revenue from the EA is at least as high as with

gain-loss neutral bidders but at most as high as that from the unique symmetric PE profile in

the DA

min E[REA] = E[V(2:n)] ≤ max E[REA] = (1 + λg)E[V(2:n)] = E[RDA]

and the revenue in the PPE of the EA is lower than that in the PPE of the DA: E[V(2:n)] ≤

(1 + λg)E[V(2:n)].

Proof: The condition γm(1 + γg) ≤ λg(1 + λm) is necessary and sufficient for the existence of symmetric

PE profiles in the EA, (λm − γm)(1 + λg) ≥ γg(1 + γm) is sufficient for the existence of symmetric PE

profiles in the DA (see Corollary 1 and Proposition 7), and λm(1 + λg) < γg(1 + γm) is sufficient for the

non-existence of PE in the DA (see Proposition 6).

The expected revenue from the symmetric Bayes equilibria with bidding functions β̂EA(v) = v in the

EA and β̂DA(v) =
∫ v
0
sf(s) ds

F (v) in the DA is the same and equal to E[V(2:n)].

Proof of (a): The sufficient condition for existence of a symmetric PE profile in the DA (λm−γm)(1 +

λg) ≥ γg(1 + γm) implies λm(1 + λg) ≥ γg(1 + γm). Then, in the EA, the interval
[

1+γg
1+λm

v,
1+λg+γg

1+λm+γm
v
]

covers all βEA(v) that constitute a symmetric PE (see Proposition 2 and Equation (B.5)).

The expected revenue in the EA from the maximum symmetric PE profile with βEAmax(v) = kβ̂EA(v) =

kv with k =
1+λg+γg

1+λm+γm
is max E[REA] = kE[V(2:n)]. According to Lemma 3, the smallest symmetric PE
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profile that can exist in the DA is constituted by

βDAmin(v) = k

(
v −

∫ v
0
F̄ (s)cds

F̄ (v)c

)
with c =

1 + λm + γm
1 + λm

≥ 1

and, thus, generates the expected revenue min E[RDA]. Consider the bidding function

β̃DA(v) = kβ̂DA(v) = k

(
v −

∫ v
0
F̄ (s)ds

F̄ (v)

)
.

If all bidders choose β̃DA, the expected revenue yields E[R̃DA] = kE[V(2:n)] = max E[REA]. It is βDAmin(v) ≥

β̃DA(v) for v ≥ 0 because

βDAmin(v) ≥ β̃DA(v) ⇐⇒
∫ v

0
F̄ (s)cds

F̄ (v)c
≤
∫ v

0
F̄ (s)ds

F̄ (v)

⇐=
F̄ (s)c

F̄ (v)c
≤ F̄ (s)

F̄ (v)
∀s ∈ [0, v] ⇐⇒ F̄ (s) ≤ F̄ (v) ∀s ∈ [0, v].

Therefore, min E[RDA] ≥ E[R̃DA] = max E[REA].

Proof of (b): If γm = 0, the sufficient condition for existence of a symmetric PE profile in the DA

(λm−γm)(1+λg) ≥ γg(1+γm) equals the necessary condition λm(1+λg) ≥ γg(1+γm). Then, the interval[
1+γg+λg

1+λm
β̂(v), (1 + λg) β̂(v)

]
covers all βDA(v) that constitute a symmetric PE profile by Proposition 7.

The minimum expected revenue corresponds to the lowest bids and equals
1+λg+γg

1+λm
E[V(2:n)].

If λm(1 + λg) ≥ γg(1 + γm), then, in the EA, the interval
[

1+γg
1+λm

v,
1+λg+γg

1+λm+γm
v
]

covers all βEA(v)

that constitute a symmetric PE (see Proposition 2 and Equation (B.5)). If γm = 0, the highest expected

revenue in the EA is therefore
1+λg+γg

1+λm
E[V(2:n)], which equals the minimum expected revenue in the DA.

If additionally to γm = 0 also λm = 0, then symmetric PE profiles in the DA exist only if γg = 0. The

interval that covers all βDA(v) that constitute a symmetric PE profile in the DA reduces to (1 + λg) β̂(v)

with the expected revenue (1+λg)E[V(2:n)]. The interval that covers all βEA(v) that constitute a symmetric

PE profile in the EA becomes
[

1
1+λm

v, (1 + λg) v
]

with expected revenues in
[
E[V(2:n), (1 + λg)E[V(2:n)]

]
.

The PPE profile in the EA provides the revenue E[V(2:n)] which is lower than (1+λg)E[V(2:n)], the revenue

in the PPE of the DA.

�
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