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Give me strong moments and time
— Combining GMM and SMM to estimate long-run risk asset
pricing models *
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Abstract

The long-run consumption risk (LRR) model is a convincing approach towards
resolving prominent asset pricing puzzles. Whilst the simulated method of mo-
ments (SMM) provides a natural framework to estimate its deep parameters,
caveats concern model solubility and weak identification. We propose a two-
step estimation strategy that combines GMM and SMM, and for which we
elicit informative moment matches from the LRR model structure. In par-
ticular, we exploit the persistent serial correlation of consumption and the
equilibrium conditions for market return and risk-free rate, as well as the
model-implied predictability of the risk-free rate. We match analytical mo-
ments when possible and simulated moments when necessary and determine
the crucial factors that are required for identification and reasonable estima-
tion precision. By means of a simulation study—the first in the context of
long-run risk modeling—we delineate the pitfalls associated with SMM esti-
mation of LRR models, and we present a blueprint for successful estimation.
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1 Introduction

Bansal and Yaron (2004) have introduced a dynamic asset pricing model (DAPM)
that aims to resolve the prominent asset pricing puzzles by accounting for three risk
factors: long-run consumption risk, short-run risk and volatility risk. Due to its far-
reaching impact on the model dynamics, the first factor is the namesake for the long-
run risk (LRR) model. While the LRR approach is theoretically appealing, empirical
tests are impeded by an intricate model structure that involves unobserved state
variables. As pointed out by Singleton (2006), the Simulated Method of Moments
(SMM) should provide a convenient framework to estimate and test complex DAPMs
like the LRR model.

We show that successful SMM estimation of LRR models must account for sev-
eral theoretical and econometric caveats, such that the identification of the model
parameters is ensured. Accordingly, the choice of moment conditions needs to be
guided by a thorough understanding of the model characteristics. For that purpose
we propose a two-step estimation strategy that exploits the persistent serial correla-
tion of consumption and the equilibrium conditions for market return and risk-free
rate, as well as the model-implied predictability of the risk-free rate. Simple first and
second moment matches lead to weak identification of the deep model parameters.
By means of a simulation study—the first in the context of long-run risk modeling—
we delineate the pitfalls associated with SMM estimation of LRR models, and we
present a blueprint for successful estimation.

LRR models have already been empirically assessed in previous studies using cal-
ibration and econometric estimation techniques. Bansal and Yaron (2004) perform
a calibration exercise to demonstrate the ability of the LRR model to explain the
equity premium. Bansal et al. (2007a) estimate a cointegrated version of the LRR

model using a vector autoregressive model with stochastic volatility (SV). However,



the LRR model structure needs to be adjusted to the estimation technique to permit
its application. Bansal et al. (2007b) show that the LRR approach can also account
for size and value premia in the cross-section. Drechsler and Yaron (2011) calibrate
an LRR model to explain the variance premium and its relationship to investor
preferences. They introduce a Poisson-jump process, which allows for non-Gaussian
macroeconomic shocks. Bansal and Shaliastovich (2013) advocate the LRR model as
a potential solution to the bond return predictability puzzle. For that purpose, they
extend the model by an inflation process; additional complexity is introduced by two
different stochastic volatility processes which drive the real and the nominal side of
the economy. Hasseltoft (2012) also includes inflation into the LRR framework in
order to model stock and bond market jointly. Constantinides and Ghosh (2011)
make use of the fact that the latent model variables can be expressed as functions
of observables. This approach allows to use the Generalized Method of Moments
(GMM) for estimation. Ferson et al. (2013) evaluate out-of-sample forecasts pro-
duced by a cointegrated LRR model, and find its performance to be superior to the
stationary version. However, the authors impose restrictions in order to identify the
deep model parameters from their reduced-form estimation, which is sufficient for
forecasting, but not for the estimation of all structural parameters. Pakos (2013)
generalizes the LRR model by introducing incomplete information and a cyclical
risk component in the dividend growth rate.

While the SMM approach towards estimating LRR models is natural and ap-
pealing, its concrete implementation is impeded by methodological and numerical
intricacies. These obstacles have largely been ignored—or circumvented—by the
previous literature. The silence on these issues is surprising, as it is well known
that LRR models are inherently fragile in that the permissible parameter space—

the set of parameters for which the model has a solution—has a complex topology.



For certain economically plausible parameter values the LRR model becomes insol-
uble, a fact that needs to be accounted for in the estimation procedure. Dividends
and consumption are driven by a small but persistent latent growth component and
stochastic volatility, which exacerbates the identification of the structural parame-
ters, in particular when the data series are short. In fact, the estimation of univariate
SV processes has preoccupied excellent researchers for quite some time.! Yet, in the
LRR model, the SV process is just one element of a complex, non-linear, structural
model. It seems to be a daunting task to estimate such a model, and we show that
it is a losing game when using an ad-hoc choice of first and second moment matches.

We demonstrate that the one-step estimation of the deep model parameters us-
ing an ad-hoc selection of moments can mislead the researcher, as weak or non-
identification is not always obvious in such a highly non-linear model. It might go
unnoticed that even sophisticated optimizers converge to one of the many local min-
ima on the rugged objective function surface. We show that identification crucially
hinges on the choice of informative moment conditions, which must be tailored to the
model. We advocate a two-step approach, in which we estimate separately the subset
of parameters associated with the macroeconomic environment and the representa-
tive investor’s preference parameters. The first step consists of a GMM estimation
using analytical moment conditions resulting from the macro sub-model, and the
second step is an SMM estimation that exploits the asset pricing implications of the
LRR model. We emphasize that the precision of the macro parameter estimates is
of utmost importance for the successful estimation of the model parameters.

A comprehensive simulation study documents the performance of our estimation
strategy. Our findings constitute a call for econometric due diligence and reality

checks when estimating the LRR model. We also point out that because the available

1Cf. e.g. Ruiz (1994), Gallant et al. (1997), Sandmann and Koopman (1998), Kim et al. (1998),
Andersen et al. (1999), and Jacquier et al. (2002).



(macro) time series are relatively short, estimation precision for some of the model
parameters will inevitably be moderate, which emphasizes even more the need for
informative moment matches. Our two-step estimation strategy delivers credible
empirical results. The caveats and solutions presented in this study are important
for the estimation of other DAPMs as well.

The remainder of the paper is organized as follows. In Section 2 we briefly
review the theoretical basics of LRR models. Section 3 delineates our econometric
methodology. In Section 4 we present the results of a Monte Carlo simulation study

to show the suitability of our approach. We conclude in Section 5.



2 Anatomy of the LRR model

In this section we describe the dynamics of the long-run risk model by Bansal and
Yaron (2004). We present all key equations needed for the simulation of the full
model, and hence for SMM.?

The LRR model is based on a non-linear four-equation VAR with two observable
variables, log consumption growth g; and log dividend growth gq:, and two latent

variables, a growth component z; and a stochastic variance process o?:

Jt+1 = Pe + Tp + O4Ney1 (1)
Tip1 = PTt + POyl (2)
9dt+1 = Hd + OTs + a0 Us 41 (3)
0t =0 +v1(0f — 0%) + Ty (4)

The i.i.d. innovations n;, e;, w;, and wu;, are standard normally distributed and
contemporaneously uncorrelated random variables. The latent fundamental drivers
of the economic dynamics, x; and o2, are assumed to be highly persistent, hence
the autoregressive parameters p and v, are usually chosen close to one in calibration
excercises (cf. Bansal and Yaron, 2004). For a model simulation, the trajectories of
Gt> Tt, gat, and o represent the elementary components for all other model variables.

The representative investor, who faces these macro dynamics, has recursive pref-
erences (cf. Kreps and Porteus, 1978; Epstein and Zin, 1989) as expressed by the

utility function

U, = [(1 ~0e " +6 (B (UE)) ‘1’} = , (5)

2Detailed derivations are collected in Sections A.1-A.5 of the internet appendix, http://
tinyurl.com/lrr-internet-appendix. These results appear somewhat dispersed in the liter-
ature, and we collect them in order to provide the interested reader with a complete picture.



http://tinyurl.com/lrr-internet-appendix
http://tinyurl.com/lrr-internet-appendix

where 6 = 4=2.
(1-%)

—5- The preference parameters o, v, and ¢ denote subjective dis-
count factor, relative risk aversion, and the intertemporal elasticity of substitution,
respectively. The representative investor has aggregate wealth W; and an aggre-
gate consumption Cy. Utility maximization under the budget constraint W;,; =

(Wi — Ct) Ry 141, where R, ; denotes the gross return of the latent aggregate wealth

portfolio, yields the basic asset pricing equation for a gross asset return R, ;:
Et [Mt+1Rz‘,t+1 - 1] = 07 (6)

where

0 p—(1-0)
My =9 GtﬁRa,tﬂ (7)

denotes the stochastic discount factor, and G; denotes gross consumption growth.
Bansal and Yaron (2004) explicitly model the log returns of the latent aggregate
wealth portfolio and the observable market portfolio, r,; and 7,,, using the linear

approximations suggested by Campbell and Shiller (1988):3

Tat+1 = Ko T K12t41 — 2t + g1 (8)

Tmid1l = Kom + KlmZmitl — Zmit + Gdit1s 9)

where z; denotes the log price-consumption ratio and z,,; the log price-dividend

ratio. Furthermore,

exp(2) exp(Zy,)
S . ) . 10
= T exp(2) =T exp(z) (10)
ko =In(1 +exp(2)) — k1Z  Kom=In(1+ exp(Zn)) — K1Zm, (11)

3Detailed derivations of Equations (8)—(11) are given in the internet appendix in Section A.1.



where z and Z,, denote the means of z; and z,,;. Bansal and Yaron (2004) model

the latent log price-consumption ratio and the observable log price-dividend ratio as

Zt = A() + All‘t + AQO'tQ (12)

Zmt = A(Lm + Al,mxt + A2,m0—152' (13)

The A-parameters in (12) and (13) have to be determined by an analytical solution
of the model, which we present in detail in the internet appendix. This amounts
to pricing the gross returns of aggregate wealth portfolio and market portfolio, R,

and R,,, using (6). The solutions are given by:

A = v 14
[ (14)
2
1(0-8) +(0Amp)
Ay = = (15)
2 0(1 — /{11/1)
1 1 ) 0 ,
Ay = Ind+ (1 ——) pre + Ko+ Kr1A20°(1 — 1) + =(K1420,) (16)
1— K1 w 2
¢ — 1
Ay = —2— 1
b 1— "fl,mp ( 7)
A, = (1=0)(1 — Kkiv1) Ay
2,m (1 — ’L{‘:l,myl)
%[(_% + 6 — 1)2 + ((’Ql,mAl,m@e) - ((1 - ‘9)“1‘41‘:06))2 + ng]
+ (18)
(]_ — "il,myl)
AO,m =————|0Ind — — e + (9 — 1) Ko + lilAQ + lflAQ(l — 1/1)0' — AO + e
(1 - "il,m) %Z)
1
—+ KJO,m + Kl,mAQ,moj(l — I/1> + Md + 5 [(9 — 1)/€1A2 + HLmAQ’m]Q 0-121) (19)

The A-parameters given by Equations (14)—(19) depend on ko, k1, Kom, and Ky m,
from Equations (10) and (11), which in turn depend on z and Zz,,. As a consequence,

the k-parameters, and hence the A-parameters, are endogenous.



For SMM estimation, we need to generate series for z;, Zm, Tat, Tmye, and for
that purpose we need to solve the model, i.e. find z and Z,, that determine the
endogenous k- and A-parameters such that Equations (10)—(19) are fulfilled.

As we outline below, our estimation approach exploits the implications of the
LRR model for the log risk-free rate r¢;, and we therefore need to simulate time
series of the risk-free rate. To obtain the LRR model-implied expression for ry;, we

price the risk-free asset using Equation (6) and obtain

0 1
rre=—01In(d) + a (e +2¢] + (1 — O)E(ra441) — iVart(th), (20)

where my; is the logarithm of the stochastic discount factor M; and

Et(ra,t+l) = Ko + K1 [AO + Alp{lft + AQ(O’Q + V1(O't2 - 02))] (21)

— Ay — Ay — Ao} + pe + a4,

2
Vart (mt+1) = (g +1-— 9) O'tQ + [(1 — 0)5}1141@06]2 O't2 (22)

+ [(1 — 0)%1142]2 0-7_21)‘

The derivation of (20)—(22) can be found in Section A.4 of the internet appendix.
Using these equations for the economic environment, the financial variables, and
the expressions for the endogenous parameters, the LRR model can be simulated,
given the macro parameters &,; = (i, fla, ps O, P, D, Pa, V1, 0w) , and the preference
parameters £» = (6,7,v). The next section describes our two-step estimation ap-
proach, which combines GMM for the first-step estimation of the macro parameters

with an SMM estimation of £, in the second step.



3 Econometric Methodology

3.1 Matching Moments for the LRR Model: choices and caveats

Singleton (2006) suggests to estimate DAPMs like the one in the previous section
by SMM. The method is perfectly suited to deal with non-linearity, latent variables,
and endogenous parameters, those complexity-driving features of the LRR model.
Its application amounts to selecting measurable functions g(-) of the economic or
financial system variables and their model-implied expected values E [g(q,; &)], where
g, holds all relevant observable and latent system variables and & contains the model
parameters (or a subset of them). Observations for g(-) are collected in the vector

g;. A match of sample moments with population moments yields
1
Gr(¢) = |7 ) g/ —Elg(a: 8| (23)
t=1

SMM is applied when the expectations cannot be expressed analytically as functions

of &, but need to be simulated such that the moment matches now read:

7(T)

Grle) = | 33201 - 7y 2 9(a:9)|. (2)

s=1

where T"and T (7T") denote the sample size and the simulated sample size, respectively.
To obtain g, for s = 1,...,T(T), we need to simulate the LRR model using the
equations and results outlined in the previous section. By choosing a large size for
the simulated sample, a good approximation to population moments can be ensured.

GMM estimates, using (23), or SMM estimates, using (24), then result from

&= argmin Gr(§) Wy Gr(€), (25)
£cO



where W is a symmetric and positive definite weighting matrix.

The LRR model being a complex, highly non-linear model, it is an appealing
idea to estimate it by matching some selected first and second moments. However,
the identification of the deep parameters is likely to require information that is not
or only weakly reflected in the first and second moments. Instead, the key model
characteristics need to be translated into informative moment matches.

This insight emerges from an attempt to estimate the twelve LRR parameters in
&, and &p simultaneously, using a set of moment matches adapted from Hasseltoft
(2012). Table 1 shows that it includes ten first and second moments, two autoco-
variances, and two moments based on the prediction relationship between past log

price-dividend ratio and future consumption growth volatility.
[Insert Table 1 about here]

The estimation is performed on simulated data of lenght 7" = 1000 and 7" = 100000,
which are generated by a parameterized LRR model with structural parameters given
in Table 6. To minimize the SMM objective we use Wy = I and T(T') = 10°, and
we employ one of the most sophisticated optimization algorithms currently avail-
able, the Covariance Matrix Adaptation Evolution Strategy (CMAES) algorithm
developed by Hansen and Ostermeier (2001). To start the optimization of the SMM
objective, we use three different, but not very dissimiliar starting values. Initial set
s1 uses the true parameters, which we slightly change for initial set ss; the initial
values in set s3 are more away from the true parameters, but still economically
quite plausible. Panel A of Table 2 documents a disturbing result that raises doubts
whether the ad-hoc moment matches in Table 1 are useful to estimate the LRR
parameters. Using the different initial values the optimization algorithm terminates
at different parameter values (some vastly different), which nevertheless all fullfill

the convergence criteria. We purposefully choose quite strong convergence criteria,

10



hence the CMAES algorithm does not stop prematurely, but takes its time to search
the surface of the SMM objective. Panel A of Table 3 shows that the problem lingers
even for a large sample size of T = 100000.* The conclusion from these results is
obvious. You can obtain different (convenient) parameter estimates by choosing
different starting values. The ad-hoc moment matches that invoke the augmented
first two moments are of course valid, but they are too weak to help identify the
structural parameters, even in large samples. Using alternative weighting matrices,
such as an estimate of the efficient weighting matrix or the inverse covariance matrix

of the GMM residuals, does not solve the problem.?
[Insert Tables 2-3 about here]

Panels B of Tables 2 and 3 show that the GMM estimation strategy pursued by
Constantinides and Ghosh (2011) is prone to similar problems as the SMM esti-
mation using the ad-hoc moment matches. Here, too, the optimization algorithm
that minimizes the GMM objective converges to different values when started from
different initial values. Hence, the same question looms: can the moment matches
ensure the identification of the LRR model parameters? The alarming result of our
simulation exercise may occur for real data, too: that the optimizer stops at values
close to plausibly chosen starting values. If the neighborhood of that point happens
to be well-defined, asymptotic inference may yield favorably small standard errors
for plausible, but utterly arbitrary estimates. This caveat is aggravated by the small

sample sizes used in empirical studies.

4How rugged the surface of the objective function is becomes obvious when using a gradient-
based quasi-Newton algorithm. Irrespective of using starting values close to or remote from the
true parameter values, the optimization algorithm only impalpably moves away from the starting
point and converges immediately, despite strict convergence criteria.

5Using the optimization algorithms available in MATLAB’s (Global) Optimiziation Toolboxes,
such as the Nelder-Mead simplex, Simulated Annealing, Genetic Algorithm, and Pattern Search
produces the same problem. The CMAES algorithm is superior, as it is designed to deal with very
rugged objective functions. This is a desirable feature, but it comes at the cost of computation
time.

11



The highly non-linear LRR model structure precludes an analytical check for
non-identification. However, we can provide numerical evidence. If a set of theo-
retical moments chosen for a match is to be useful for the identification of a model
parameter, it is a necessary condition that one or more moments respond to a change
in that parameter. Table 4 shows a moment sensitivity matrix for the ad-hoc first
and second moments, which displays each moment’s percentage change as a reaction

to a 50% c.p. change in one LRR model parameter.
[Insert Table 4 about here]

There is little or no sensitivity of the moments to changes in the SV parameters.
The largest change provoked by a 50% change in vy and o, is a 4%, or respectively,
a 3% change in the mean market excess return. Given that this is a very weak re-
action of this moment which responds to a much larger extent to many other model
parameters, it is doubtful whether the SV parameters are identified. Considering the
efforts invested in SV estimation that are documented in the related literature, this
does not come as a surprise. This raises the question whether parameter estimation
is only hampered by the presence of stochastic volatility. Repeating the optimiza-
tion with SV turned off, however, delivers the same results: global optimization is
infeasible, even with sophisticated optimizers.

We conclude that model identification and successful estimation hinges on the
choice of more informative moment matches. The next two subsections outline a
two-step estimation approach, in which we carefully exploit the properties of the
LRR model in order to be able to identify the structural parameters through infor-
mative moment matches. Since the macro dynamics in (1)—(4) do not depend on
the preference parameters, we focus on estimating the macro parameters by GMM
in the first step. Using the estimated macro parameters, the preference parameters

are estimated by SMM in the second step. It turns out that the optimization prob-

12



lems in each step become well-defined and using sophisticated optimizers becomes

unnecessary.

3.2 Analytic moment conditions

For the estimation of the parameters of the dynamic system (1)—(4) using two ob-
servable series g, and g4, only, we need to choose moment matches that are able to
capture their characteristic features implied by the LRR model. Naturally, the first
and second moments should be matched. It turns out that they can be analytically
expressed as functions of a subset of &,, that does not contain the SV parameters.
We can then use the following moment matches for GMM:

M gt—Hc
9d,t—Hd

2 2
M),1 1 9152_“24‘%""72
G ) = 5 D ’ , (26)

2 2
t=1 | 94, Hi+d* Tz Hego”

o207
l—p2

9d,tgt —Hteld+@

where €y, = (e, i, P, 05 Per bs pa) -

The defining feature of the LRR model is the latent growth component z;, a
small but allegedly very persistent driver of consumption and dividend growth. If
such a component is present, the observed consumption and dividend growth series

exhibit small positive serial correlations, which, however, prevail over many lags.

Figure 1 provides an illustration.
[Insert Figure 1 about here]

It seems obvious that this key model feature can only be captured by using moment

matches for auto-moments of a high lag order. We therefore consider the following

13



moment matches that involve the (cross) auto-moments of consumption and dividend

growth:

2.2
1 T-1 2, ¢3¢0
T-1 Zt:1 9t+1gt—,uc+p1ip2

2,2
Ly $e?
2

1 T—L, R
ﬁZtﬂ Gt+L, gt—He+p s

2 2
1 T—1 2 5 pio
71 2ot=1 9d,t+19d,t— g+ pﬁ

' 2 2

1 T—Lo o 2 1.0

T_iLQthl 9d,t+L29d,t—ud+¢ p Qﬁ

2 2
1 T—1 020
T—1 i1 9d,t+1gt—ucud+¢p1fp2

Ly ¢202
1—p2

T—L
T+L3 3ot ® 9d 4 Ly Gt —Hepatdp

where Ly, Lo, and L3 denote the maximum lag length for the respective (cross)
auto-moments. Bansal and Yaron’s (2004) reasoning suggests that the number of
lags should be large in order to capture the persistence of the series induced by z;.

The theoretical moments that we match in (27) are derived analytically and
written as functions of the parameters. Hence, a simulation-based estimation of £,
is unnecessary. We perform a standard GMM estimation by stacking G(TM)’l(S My)
and G;M)’z(ﬁ M,) and using these moment matches in the GMM objective function
in (25).

The moment conditions in (26) and (27) are valid irrespective of the SV pa-
rameter values v; and o,. Hence, the GMM estimation of §,, can be performed
regardless of whether SV prevails or not. Of course, this also implies that these

moment matches cannot identify the SV parameters. We revisit this issue in the

next section.

14



3.3 Theory-based moment conditions

We now turn to the estimation of the preference parameters £ p, taking the macro
parameters &, as given. There are three observable financial variables, the log mar-
ket return r,,, the log risk-free rate ¢, and the log price-dividend ratio z,,. The LRR
model implies that they depend on the preference parameters, and hence represent
useful candidates for moment matches. The macro variables and their associated
moments cannot contribute to the identification of the preference parameters since
they do not depend on &p.

We consider two approaches to estimate £p,. The first uses an ad-hoc moment
match of the first two moments of the three observable time series r,,;, r¢;, and
Zmt. Yet again, we suspect that those “agnostic” moment matches may not suffice to
identify the deep model parameters. In a second approach, we therefore continue to
pursue our philosophy to transfer key model characteristics into informative moment
conditions. For that purpose, we exploit asset pricing and prediction relationships
implied by the LRR model.

For both the ad-hoc and the theory-based approach we need to simulate the
population moments to be matched with the data. The moments of the observable
financial variables cannot be expressed analytically as a function of the preference
parameters, since the LRR model needs to be solved numerically for the endogenous

parameters (cf. Section 2), such that we resort to SMM.°

5The observant reader will recall that the moment conditions in (28) were shown to be insensitive
to 11 and oy, which is why we do not try to use them for the estimation of the SV parameters.
We will resolve this issue below.

15



The ad-hoc approach uses the following first and second moment matches:

T(T)

Tm,t—Tf T(T)Z Tm,s(€rr-€p)—7r,s(Err€p)

T(T

(Tm,tfrf,t)2 'T(T) Z (qus(nggP)frf,s(£M7€P))2

Tft— T(T) Zs 1 rf S(gl\/lng)

(28)

1L
Gr’(TRA) (&mr€p) = Z
t=1

?’t T(T) Z?(TT s(&rrép)

T
Zm,t— T(T)Z (f zm,s(Enr:€p)

T
"277' t— T(T) Zs (f Zm 5(£M7£P)

For the theory-based approach we exploit the pricing implications of the LRR model
for the excess return of the market portfolio and the risk-free rate. Using the basic

asset pricing equation (6) to price the risk-free rate yields

Et(MtH):]Et( ! ) (29)

Ry 1

where M, is given in Equation (7). Applying the law of total expectation leads to

the unconditional moment constraint

E(M) =y =E (Ri) . (30)

Since p), cannot be expressed analytically as a function of the parameters, we match
the mean of the simulated SDF with the sample mean of the inverse gross risk-free

rate. This entails the following moment match:

1T _1
T 2i=1 Ry, MM

G €y €p) = (31)

T) ZT(T) Ms(glwvsP) .
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Pricing the market excess return (R,, — Ry) using Equation (6) implies:

E; (M1 — Ey(Mg1)) (Rigg1 — Ryq1)]

Et (Rm,t+1 - RfytJrl) == Et(Mt—l-l)

(32)

Applying the law of total expectation yields the unconditional moment constraint

E(Rm_Rf):_E[(M_MAZL(Rm_Rf)]a (33)

such that we can use the match of sample and simulated moment

T
Gg“P’T)’z(éM7 €p) = % Z (Rt — Ryy) (34)
t=1
n ﬁ 2;(7;) [Ron,s(€nrs §p) — Rys(§ars €p)] [Ms(€nrs €p) — 1]

29.%

The set of test assets could be extended by including managed portfolios as suggested
by Cochrane (1996). Given a vector of instruments available at ¢, Z;, pricing the

managed portfolio payoffs (R, +1 — Ryu11)Z; using Equation (6) implies:

E (Mo — piar) Roniir — Rpes1)Z
E[(Rmt+1 — Rpei1)Ze] = — (M MM)(MM,tH fit1) t]'

Note that in order to use these moment conditions for SMM one is limited in the
choice of instruments. Z; needs to be determined within the LRR model since the
instruments have to be simulated, too.

Furthermore, we would like to make sure that the unconditional Sharpe-Ratio of

the market portfolio,

E (Rm - Rf)
VE [(Br = Ry)?] = [E(Ro — Ry))?

: (35)
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as a key statistic for the risk-return trade-off implied by the LRR model, is matched.
Since the means of market excess return and the risk-free rate appear already in the
moment matches in (31) and (34), the only remaining moment to be matched is
the expected value of the squared market excess return. Hence, we use the second

moment of the market excess return to match the market volatility, viz:

T
G(PT) 3(£M7 EP 1 Z — Rf,t)2 (36)
t:l
1 T(T)
— m Z (Rm,s(£M7€P) - Rf,s(€M7€P))2
s=1

Campbell and Shiller (1988) point out that there is a prediction relation implied
by the linear approximations in (8) and (9), namely that the log price-dividend
ratio predicts future discount rates.” This predictive relationship can be exploited
by matching the slope parameter of a regression of the risk-free rate on past values
of the log price-dividend ratio®, which entails matching the first and the second

moment of z,,,, too:

I T [Rf 11— 71 21 Ry, f+1]th 1
th 1<th thzl zm,t)2
7T ) 1ZT(T) 1[Zm,s<5]uw§P)*H1,zm]Rf,s+1(&Mvsp)
M2,zm—u%z7n
PT).4 LST i,
G (€ €p) = 7 B NG

1 T 2
T Zt:l Zm,t T H2,z2m

T(T)
H1,zm — 7—<T) 28 (1 zm,s (€€ p)

T(T)
H2,2m — T(T) Zs (1 Zm s(€M7£P)

TA simulation exercise shows that the predictive power of Zm,t for Ry ;41 is indeed strong: the
R? of a one-step predictive regression is 95%. The simulation is again based on the parameter
values given in Table 6 and a sample size of 10% observations.

8Note that a predictive relationship between price-dividend ratio and future excess returns is
not a feature of the LRR model. Hence, z,,; cannot be used as an instrument for the construction
of a managed portfolio or in a predictive regression.
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Stacking the components (31), (34), (36), and (37) yields a moment match of six

theory-motivated moments, which will be used in the objective function in (25).?
[Insert Table 5 about here]

The moment sensitivity analysis in Table 5, shows which of the six moment matches
provides information about which parameter values. All simulated moments react
strongly to a 10% change in the subjective discount factor §. For both v and 7
there is one moment condition that reacts sizeably to a parameter change, whereas
all other moments do not. Most information about v is contained in the moment
condition (33), which captures the LRR model’s pricing implication for the market
excess return. This is reflected in a 10% change in the simulated moment in (34) in
response to a 10% change in . The other simulated moments only respond weakly.
The identification of ¢ is mainly provided by the slope parameter of the predictive
regression of R;1 on 2, The corresponding simulated moment reacts to a 10%
change in v by an increase of 14%, while the other moments only respond by 4%
or less. This “prediction moment” is not sensitive to a change in v, which helps to
disentangle risk aversion and intertemporal elasticity of substitution.

The analytic moment conditions discussed in Section 3.2 can only be used to
identify and estimate the unconditional variance o2, but not the SV parameters
v, and o,. The estimation of a latent volatility process has been the topic of a
developed econometric literature. The methodological caveats discussed there are
aggravated in the LRR model, in which stochastic consumption volatility is just
one ingredient of a non-linear multiple-equation model. We have also seen that the
ad-hoc moment conditions in (28) are not useful to identify the SV parameters, and

we do not claim that our theory-based moment conditions do a better job. These

9As in the application of Parker and Julliard (2005), it has to be ensured that the auxiliary
parameters pas, f41,z,,, and po . in (31) and (37) are exactly matched. This can be achieved by
inserting the simulated means into the respective moment conditions.
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moment conditions are based on unconditional moment constraints and stochastic
volatility is about changing conditional variances. Furthermore, the available data
series will be relatively short and thus not informative about the dynamics of the
latent consumption volatility process. Alternative approaches to identify v, and o,
like exploiting the autocorrelation in the squared market returns or fourth moments
of returns, are also not informative enough.

Instead of looking for more sophisticated ways to estimate the SV parameters,
we try to simplify the problem. Table 4 shows that even large changes in v; and
0, merely have a small impact on the unconditional equity premium. Hence, if the
primary interest is not the estimation of the SV parameters and the evolution of the
conditional risk premium but the estimation of the preference parameters and the
model-implied risk premium, an alternative estimation strategy could “concentrate
out” the SV parameters. In a simulation of the model in the course of SMM estima-
tion, the stochastic volatility o? is replaced by its unconditional forecast, namely o2,
which is estimated in the first step. We conjecture that the unconditional moments
of the simulated financial variables (and the measurable functions of them used for
moment matching) would not be greatly affected when o? is replaced by its uncon-

ditional forecast o2

. It may be the case that this strategy reduces efficiency, but
on the other hand it may also provide more robust results, as the SV parameters
may be poorly identified by weak moment conditions and/or a small sample size. In
Section 4.3 we assess the feasibility of our estimation strategy in a simulation study.
By comparing the estimation results assuming that the SV parameters are known

and the estimation results based on the strategy that concentrates out vy and oy,

we can quantify the loss in efficiency.
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The suggested two-step estimation strategy implies that standard asymptotic
inference for é p cannot be applied due to the use of the macro parameter estimates

é M,- We recommend using a parametric bootstrap instead.

3.4 Computational caveats

The LRR anatomy outlined in Section 2 implies that for every iteration in the
optimization process the endogenous parameters have to be computed anew. This
is achieved by solving for the mean of z; and z,,;, such that the squared difference
between the respective mean hypothesized by the solver and the resulting model-
implied mean is equal to zero. Hence, the endogenous parameters are implied by

the roots of two functions.
[Insert Figure 2 about here]

The reason why this affects SMM estimation is illustrated in Figure 2, which shows
a plot of these two functions. Using the parameter values in Table 6 yields the roots
zZ* = 6.24 and z}, = 5.49 (cf. upper panels of Figure 2). The lower panel shows
that a change of these parameters within a plausible range may yield an unsolvable
model: for example, changing the value of the risk aversion parameter from v = 10
to v = 4 and the mean of dividend growth from gy = 0.0015 to pg = 0.0035, leaving
all other parameters unchanged, implies that one of the two functions does not have
a root. Hence, the endogenous parameters could not be computed in the course of
SMM estimation. Model insolubility is not limited to implausible parameter values
and the permissible range of values for each parameter changes with the values in
the remaining parameters. This inherent “fragility” of the LRR model exacerbates
parameter estimation.

A practical way to account for such a problem would be a penalty term that

keeps the optimizer away from those unfavorable parameter combinations. However,
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this leads to a discontinuity in the surface of the objective function, which might
pose a challenge to any optimizer, in particular for gradient-based methods, which
are widely used in applied econometrics. We therefore recommend to use a robust

optimization algorithm, such as the Nelder Mead simplex.
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4 Simulation study

4.1 General setup

We evaluate our methodological approach in an extensive simulation study. For that
purpose, we generate data by simulating series of varying length T for g, g4, 7m, ¢,
and z,, as implied by the LRR model. The values of the true macro parameters
&,, and preference parameters € p are those calibrated by Bansal and Yaron (2004).

They are listed in Table 6.
[Insert Table 6 about here]

The length of the simulated series varies between T = 1000, T" = 2000, T" = 5000,
and T" = 100000. Assuming a monthly sampling frequency, T" = 1000 is equivalent
to about 83 years, which is a reasonable size for a real-world application. The longer
series should illustrate the behavior of the estimates for a growing sample size, and
T = 100000 serves as a reality check of the estimation method, since the parameter
estimates should be precise and unbiased. Parameter estimation is performed on the
simulated data as described in the previous sections. To ensure logical consistency
of the parameter estimates, we restrict ¢, (%, and ¢4 to positive values. p, fi., and
ftg have to take on values between 0 and 1.

In Section 3.1 we saw that SMM estimation based on the moment conditions in
Table 1 yields unreliable results, and we have emphasized the danger of reporting
sugar-coated estimates that result from a convergence to a point near plausibly cho-
sen starting values. It is crucial to avoid that fallacy in our simulation study. Prior
to engaging in a large-scale simulation study, we have therefore carefully tested both
the analytic moment conditions and the theory-based moment matches used for the
two-step estimation procedure. For that purpose we started the GMM/SMM opti-

mization algorithms from different, also far-off, starting values on a variety of test
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data to make sure that the optimization algorithm converges to identical values.
Panels C of Tables 2 and 3 provide a numerical example and a comparison with
the estimation strategies that produced the problematic results discussed in Sec-
tion 3.1. Using the same data as for the Panel A and B estimations, our combined
GMM/SMM procedure yields the same estimates regardless of the chosen initial
values. The GMM and SMM objective functions within the two-step estimation
procedure are well-defined, and the moment matches ensure identification of the
deep parameters.

To assess the precision of the estimates, we use 400 replications for each T'. To
economize computation time, we choose not to use a penalty term in the simulation
study, but instead drop replications for which the optimizer stops at an unsolvable
model. When applying the method to real data, a penalty term should be used. The
next subsection discusses the quality of the first-step GMM estimates for £, , in 4.3
we present the SMM estimation results for £,. To ensure a good approximation of

the population moments for SMM, we use T (T') = 10°.

4.2 GMM estimation of the macro parameters

For each time series length T', we perform eight GMM estimations of &, , using the
identity matrix for W and the moment matches listed in Table 7. The number of
moment conditions ranges from exact identification (7 mc) to heavy overidentifica-
tion (185 mc). Each moment set includes the first and second moment matches of
(26) and a varying number of (cross) auto-moments from (27). The maximum lag
length is Ly = Ly = L3 = 60, meaning that we account for autocovariances up to
five years, assuming a monthly frequency. As pointed out previously, identification
of the macro parameters should benefit from taking into account long lags for the

autocovariances because the drivers of the LRR macro dynamics are slow-moving
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processes. We use the Nelder-Mead simplex algorithm for optimization of the GMM
objective.

To ensure the feasibility of our study, in which we conduct 400 x 8 x 4 estima-
tions, we use one set of starting values only. The initial robustness checks make us
confident that starting value dependence is not an issue for the moment matches we
advocate. Nevertheless we choose, quite on purpose, starting values at some distance
from the true parameters.'® A poor starting point makes the problem harder for the
optimization algorithm, and hence more time-consuming, but it also prevents the
danger of reporting sugar-coated results.

Tables 8-11 report means and standard deviations of the macro parameter es-
timates computed across the 400 replications. Figures 3-9 illustrate the estimation

quality using kernel densities.

[Insert Table 7 about here]
[Insert Tables 8 through 11 about here]
[Insert Figures 3 through 9 about here]

We can see that estimation precision varies across parameters. For p, ¢., and ¢,
both a relatively large sample size (T' > 2000) and informative moment conditions
are needed for good results (cf. Tables 9 and 10), whereas p., o, and @4 are less
difficult to estimate (cf. Tables 8, 10, and 11). The finite sample simulation evidence
reported here indicates that the favorably small asymptotic standard errors reported
in empirical estimations of LRR models should be taken with a grain of salt. These
applications use a much smaller sample size.

Naturally, the precision of the parameter estimates increases with the sample

size. However, for the critical parameters p, ., and ¢, the accuracy also improves

10We use Eny = (0.018,0.018,0.881,0.082,0.003, 7.389, 7.389)' as starting values.
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with the number of moment conditions, i.e. with the maximum lag length allowed
for the autocovariances. The ability to estimate p precisely is crucial because the
persistent growth component z; is the defining feature of the LRR model, which
determines the dynamics of macroeconomic and financial variables. Large sample
sizes in the range of T' = 5000 are unattainable in real-world applications, such
that the availability of moment conditions that prove to be informative also in small
samples is of utmost importance.

For small samples, a moderate increase of the number of moment conditions
(up to 35 mc, say) does not lead to an improvement in the parameter estimates.
This applies in particular to the critical parameters p, ., and ¢. On the other
hand, even an increase of the maximum lag length from three (113 mc) to five years
(185 mc) has a beneficial effect. The same conclusion is drawn from consulting the
kernel density plots in Figures 3-9, where four different moment sets—7 mc, 35 mc,
113 mc, and 185 mc—are compared. For the parameters which can be estimated
relatively easily, the difference between 113 mc and 185 mc is small. However, the
larger moment sets offer a considerable improvement for p, ¢, and .. These results
indicate that one should choose the largest moment set in order to obtain precise
estimates, also and in particular for small sample sizes.

In order to formally determine how many lags are informative, we propose to

select the moment set that minimizes the Bayes-Schwarz information criterion for

GMM suggested by Andrews (1999):

GMM-BIC = Jp — (|¢|—py) In T, (38)
where
Jr =T Gr(y,) [Avar(Gr(éyy,)] Gru,). (39)
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— . +
is Hansen’s (1982) J-statistic. [Avar(GT(E M,))| denotes the pseudo-inverse of the
estimated asymptotic covariance matrix of Gy (€ M), || stands for the number of

moment conditions, and p, stands for the number of estimated parameters.
[Insert Table 12 about here]

Table 12 shows that in the vast majority of replications the GMM-BIC selects the
largest moment set (185 mc), confirming our previous finding that a high number of
lags is indeed informative, which should be exploited to enhance estimation precision.

Replications for which the optimization algorithm did not converge or produced
economically implausible results are not included in Tables 8-11 and the kernel den-
sities in Figures 3-9. We consider a result to be implausible if one of the parameter
estimates differs from the true parameter value by a factor of ten or more.

In an application using a single data set one would try to tackle those prob-
lematic data using the remedies of applied econometrics: using different (and more
favorable) starting values, probing alternative optimization algorithms and tuning
the algorithm’s parameters. However, such a “clinical” handling of the problematic

simulated data sets would hamper the feasibility of a simulation study.
[Insert Table 13 about here]

Nevertheless, the analysis of the number of problematic cases across moment matches
and sample sizes is quite informative for our purposes. Table 13 shows that the num-
ber of successful estimations tends to be smaller for shorter time series and more
parsimonious moment sets. It is not surprising that estimation problems are exac-
erbated in small samples. We want to estimate the parameters of highly persistent
latent processes. Because of the slow convergence of sample to population moments
this is a difficult endeavor. However, Table 13 shows that the problems can also be

mitigated by including more informative moment conditions. For any sample size
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T, the use of more lags for the auto-moments—that is, allegedly more informative
moment matches—increases the number of successfully estimated replications. For
example, for the parsimonious 7 mc we have to discard 152 cases for T=1000, for
185 mc only 79 are discarded. Hence, accounting for remote lags in the moment
matches does not only improve estimation precision but also increases the probabil-
ity of a successful estimation. The exclusion of the problematic replications implies
a sample selection effect that strengthens our conclusions even more. The larger mo-
ment sets facilitate the computation of estimates also for some of those problematic
replications, for which the parsimonious moment sets fail. Since the more difficult
replications will yield worse estimates, the superiority of the larger moment sets is

even understated in the kernel densities and Tables 8-11.

4.3 SMM estimation of the preference parameters
We now turn to the SMM estimation of the preference parameters £€p = (8,7, ).
For that purpose we compare the theory-based moment conditions that we advocate
in Section 3.3 to the ad-hoc moment matches from Equation (28). SV is present
in the simulated data, but for estimation we concentrate out the SV parameters
as described in Section 3.3. To ensure robust optimization results, we perform an
initial grid search of reasonable ranges for the three preference parameters and use
the parameter combination that minimizes the SMM objective function as starting
values for the Nelder-Mead simplex.

We contrast the results from an estimation that takes the true macro parameters
as given to those using the macro parameters estimated in the first step. Using

the true macro parameters allows to assess the quality of the moment set selected

for the second estimation step independently of the effect of potentially imprecise
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first-step estimates. The estimated macro parameters are based on the moment set

that produced the most favorable results in the first estimation step (185 mc).

[Insert Figures 10 through 12 about here]
[Insert Table 14 about here]

Table 14 displays means and standard deviations of the SMM parameter estimates
using the true macro parameters. Figures 10-12 illustrate the estimation quality
by kernel densities. We can see that the time preference § can be estimated most
precisely using both ad-hoc and theory-based moment matches. Parameter standard
deviations and biases are low, even for small 7. By contrast, the estimation of risk
aversion v and intertemporal elasticity of substitution 1 are more challenging. For
that purpose, the theory-based moment matches are clearly more suitable. The
superiority of the theory-motivated moment conditions is particularly pronunced
when it comes to the estimation of ).

Estimation quality is not hampered by concentrating out stochastic volatility.
Using the unconditional volatility instead of o7 when simulating moments only im-
palpably changes the results, as shown in Table 15. The variation in the parameter
estimates for &£ is even lower in most cases when the SV parameters are concen-

trated out.
[Insert Table 15 about here]

The right-hand side panel of Table 14 reports the estimation results using the
estimated macro parameters. Compared to the results based on the true macro
parameters, standard deviation and bias of the preference parameter estimates are
large, even with the best available macro parameter estimates. This result demon-

strates the vital importance of precise macro parameter estimates as an input for
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the second estimation step. The theory-based moments alone, although informative,
do not suffice to deliver good estimates of the preference parameters. For the results
reported in Table 16 we have raised the bar for the quality of the macro parameter
estimates by restricting the deviations from the true values to less than 100%, which

enhances the precision of the preference parameter estimates.
[Insert Table 16 about here]

[Insert Table 17 about here]

Again, the reported results are based on successful estimations only. The numbers
of replications for which the preference parameters could be successfully estimated
are given in Table 17. Replications were dropped if the algorithm converged to a
parameter set for which the model cannot be solved. Furthermore, if one or more
parameter exceeded the hundredfold of the true parameter value, the replication was
discarded due to economic implausibility. For the simulation studies based on the
estimated macro parameters, a successful first-stage estimation is required. Since an
estimation of the preference parameters is doomed to fail when one of the underly-
ing macro parameter estimates exceeds the tenfold of the true parameter in absolute
value, such replications were skipped on the second stage. This is particularly rel-
evant for the simulation studies with small 7" where the number of replications is
thereby considerably reduced.

Means and standard deviations reported in Table 14 show that the theory-
motivated moments outperform the ad-hoc moment matches, irrespective of the un-
derlying macro parameters. The theory-based moments ensure identification, they
yield smaller standard deviations when operating both on true and estimated macro
parameters and usually produce a smaller bias.

We saw that the accuracy of the estimated macro parameters é 1, 18 crucial for

the precise estimation of the preference parameters £5. In order to increase the
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accuracy of & M, We use an efficiency-enhancing weighting for GMM estimation.
Table 18 compares the results of a GMM estimation of the macro parameters using
the identity matrix to a two-stage efficient weighting approach using the inverse

_ -1
covariance matrix of the GMM residuals u;, W = [Var(ut)} )
[Insert Table 18 about here]

It turns out that the efficiency gains seem to be limited. Only for ¢, which determines
the dynamics of dividend growth, there is a non-negligible efficiency gain. However,
¢ is an important parameter that drives the macro dynamics. We therefore explore
the impact of using these presumably more efficient macro parameter estimates in
the estimation of &p.

Table 19 displays the estimation results relying on macro estimates produced
with W = I and the results from W = [\//a}(ut)} 71. Both use the theory-based

moment matches to estimate the preference parameters.
[Insert Table 19 about here]

We can see that the results particularly improve for small samples and the parame-
ters which are difficult to estimate. Standard deviations and biases get smaller for
all estimates but one. This indicates that a minor improvement in the estimation
of the macro dynamics can have a substantial impact. However, the larger improve-
ments of the macro parameters—which subsequently lead to better results for the
preference parameters—result from the well-chosen moment conditions rather than
from just applying an efficient weighting scheme. Efficient weighting is no panacea

that compensates for ill-conceived moment conditions.
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5 Conclusion

Estimating an asset pricing model that features two latent processes as fundamental
economic drivers, and a pricing kernel that depends on unobservable variables is a
demanding job for financial econometrics. The bar is raised if such a model must be
solved every time it is computed at new values of the model parameters, and if it is
not unlikely that the solution does not exist. Add as a final obstacle the fact that
the number of observations available for empirical analyses is small, and you have
collected the hurdles for empirical tests of long-run risk asset pricing models.

SMM is an estimation technique that is designed to cope with such methodolog-
ical challenges. It combines a compelling estimation philosophy—matching sample
moments and their model-implied counterparts—with computational feasibility: the
model-implied moments need not be analytically expressed as functions of the pa-
rameters, but can be approximated by sample means of simulated model series.

While SMM is thus appealing for our purpose, some empirically important ques-
tions have not been addressed, and our study aims to close that gap. Are the mo-
ments selected for matching really informative enough to identify those deep model
parameters, which describe the dynamics of latent processes and investor prefer-
ences? Non-identification may hide itself well in such a complex model structure.
We saw powerful optimizers go astray on an objective function surface with myri-
ads of local minima implied by weakly identifying moment conditions. This caveat
calls for due diligence when transferring the key model characteristics into infor-
mative moment matches. An agnostic match of some low-order moments is clearly
insufficient. And even if meaningful theory-rooted and practically useable moment
conditions can be found, what is the sample size that is required to deliver precise

estimates?
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We tackle these issues by proposing a combined GMM /SMM two-step estimation
strategy, in which we elicit moment conditions that reflect the key features of the
LRR model. We first focus on the parameters that drive the macroeconomic dynam-
ics and deal with investor preference parameters in a second step, using the first-step
estimates as input and exploiting the asset pricing equations and predictive relations
implied by the LRR framework. The question of how large the number of observa-
tions has to be for a successful estimation is addressed in an extensive simulation
study.

The theoretical moments that we use in the first estimation step can be analyt-
ically expressed as functions of the macro parameters, such that GMM estimation
becomes feasible. These moment matches are valid in the presence of stochastic
consumption volatility, but they cannot identify the SV parameters. They can,
however, identify the unconditional consumption volatility, which is required in the
second estimation step. The properties of the latent persistent growth component,
that defining feature of the LRR model, are captured by including remote lags
of (cross-) autocovariances of consumption and dividend growth. Our estimation
strategy considerably improves the ability to estimate the parameters of the latent
consumption growth component.

Given the notorious difficulties related to estimating stochastic volatility pro-
cesses, we propose to concentrate out the SV parameters in the second (SMM)
estimation step. We do not preclude that SV prevails in the data, but we replace
time-varying stochastic volatility by the first-step unconditional volatility estimate
when computing the simulated moments in the second step. Unless you are inter-
ested in conditional pricing implications, estimating the parameters of interest is

feasible without loss of precision.
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Using the theory-based moment conditions, which we propose, delivers precise
estimates for subjective discount factor, relative risk aversion and the intertemporal
elasticity of substitution also for smaller samples. Given the complexity of the LRR
asset pricing equations, this is an encouraging result. SMM lives up to the promise
of being able to deliver good estimates in a difficult setup, provided that informative
moment matches are used.

The caveat is that the estimates of the macro parameters, which are used for the
second estimation step, have to be of high quality. To achieve that quality, both
informative first-stage moment matches and relatively large sample sizes are manda-
tory. This finding adds grains of salt to empirical applications, which inevitably have
to work with small samples. It may sound like a truism, but in order estimate a
complex DAPM like the LRR model it is indispensable to have informative data
(long time series) and strong moment matches. We saw that short data series may
turn out to be uninformative, such that first-step estimation either fails or the es-
timates are very imprecise. But if data and/or estimation quality of the economic
parameters is poor, you cannot expect too much from the second-step estimation
of the preference parameters. Refraining from estimating them in the first place is
then the scientifically honest decision. Our two-step approach is therefore a reality
check for applied work.

Let us conclude. In this study we have tried to elicit the key features out of the
LRR model into meaningful and strong moment matches, and we have discussed
the benefits and limitations of our estimation strategy. We believe that subsequent
research will most fruitfully be invested in increasing the quality of the macro pa-

rameter estimates. And, yes, time has to pass.
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Tables and Figures

Table 1: Moments used for moment sensitivity analysis

The table lists the moments used in a first attempt for the estimation of the structural parameters
of the long-run risk model. Three types of moment conditions are applied. Crucial moments
describing the macroeconomic environment are matched, asset pricing properties are replicated,
and prediction relationships are exploited. The macro moments are obtained from the fundamental
processes which drive the economy. The formulas for the asset pricing moments emerge as a result
of the linear approximations derived on the basis of the macroeconomic environment. &;;1, the
residual of an AR(1) process for log consumption growth, is obtained by regressing g1 on g:.

Macro moments

Mean of log consumption growth E(g:)
Mean of log dividend growth E(ga.t)
Mean of squared log consumption growth E(g?)
Mean of squared log dividend growth E(ggyt)
Mean of the product of log consumption growth with its first lag E(g: ge+1)
Mean of the product of log consumption growth with its second lag E(gt gi2)

Asset Pricing moments

Mean excess return of the market portfolio (in logs) E(rms —75t)
Mean log risk-free rate E(ry.)

Mean log price-dividend ratio E(zm,t)

Mean squared excess return of the market portfolio (in logs) E[(rm,t —754)°]
Mean squared log risk-free rate E[r%t]

Mean squared log price-dividend ratio E[z2, ]

Prediction moments

Mean squared residual of AR(1) for log consumption growth E(&,)

Mean product of squared residual and log price-dividend ratio E(&211 Zm.t)
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Table 5: Moment sensitivity to parameters for theory-based moments

This table holds the moment sensitivity matrix for the theory-based moments using the simulated
part of the moment match. The moments are computed from a simulated dataset with a sample
size of 10% observations, based on the parameters from Table 6. The moment sensitivity in this
table is computed as the relative change of a moment when one given parameter c.p. decreases by
10%. Each column of the table displays the sensitivity of all moments to a change of that size in
the parameter given in the column header.

o v
E(M) -0.10 -0.00 -0.00
—Cov(Rpm—Ry,M)
=Cov (R D) -0.97 -0.10 -0.04
E [(Rm — Ry)?] 032 0.01 -0.03
Lt o] 428 -0.01 0.1
E(2m) -0.60  0.02 -0.00
E(22,) 084 0.04 -0.00

Table 6: True parameter values
This table holds the parameter values calibrated by Bansal and Yaron (2004). These values are
used as true parameter values for the simulation of the LRR model.

LLe 0.0015 o 0.0078
Lta 0.0015 ¢ 3.0
p 0.9790 Ya 4.5
0o 0.0440 §  0.998
" 0.9870 5 10.0
0w 231076 ¥ 15
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Table 7: Moment conditions used for GMM estimation of macro parameters
For GMM estimation of £, , the basic set of first and second moment conditions in (26) is always
included. The maximum lag lengths of the (cross) auto-moments in (27) vary according to the
scheme below.

moment set L4 L, Ls
7 mc

15 mc

20 mc

35 mc 10 10 10
87 mc 36 36 10
113 mc 36 36 36
149 mc 48 48 48
185 mc 60 60 60
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Table 12: Moment matches selected by GMM-BIC

This table evaluates the performance of the different moment sets by comparing the GMM-BIC.
We count the number of replications in which a given moment set minimizes the BIC criterion for
each T. Replications with implausible parameter estimates, failed computation of the GMM-BIC,
or for which the optimization algorithm did not converge, were dropped. We consider an estimate
implausible if it is ten times bigger than the true parameter value. Furthermore, a replication is
discarded if the J-statistic lies above the 99.999% quantile of the respective x2-distribution, which
leads to an implausibly high value of the GMM-BIC. The table shows that the highest number of
moment conditions minimizes the information criterion in the majority of the cases. Hence, we
find that we should include a high number of lags for autocorrelations and cross-correlations.

Tmc 15mc 20mc 35mc 87mc 113mc 149mc 185mc

T=1000 0 1 5 12 11 13 31 255
T=2000 0 1 2 6 1 12 25 308
T=5000 0 1 0 0 0 3 24 364
T=100000 0 0 0 0 0 0 0 400

Table 13: Successful estimations for the macro parameters

This table gives the number of successful estimations for each simulation study of the macro sub-
model. The total number of replications is 400. Results of a replication are dropped if a parameter
estimate is larger than ten times the true value or if the algorithm did not converge.

Tmc 15mc 20mc 35mc 87mc 113mc 149mc 185mc

T=1000 248 227 257 281 317 326 325 321
T=2000 325 267 317 324 355 363 358 365
T=5000 375 341 360 369 392 393 394 389
T=100000 397 394 397 399 400 399 399 400
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Table 14: Means and standard deviations of the SMM estimates 5, 4, and @Z;
This table displays the results for the preference parameters obtained from two different moment
sets, the ad-hoc chosen moments and the theory-based moments. For both moment sets the esti-
mation was performed once based on the true macro parameters and once based on the estimated
macro parameters from the first stage. The table shows that the precision of the estimates tremen-
dously depends on the quality of the macro parameters.

true macro parameters estimated macro parameters
ad-hoc theory-based ad-hoc theory-based
6=0.9980
T=1000 0.9981 0.9980 0.9955 0.9965
(0.0008) (0.0006) (0.0047) (0.0021)
T=2000 0.9980 0.9980 0.9966 0.9972
(0.0006) (0.0004) (0.0027) (0.0019)
T=5000 0.9979 0.9980 0.9979 0.9978
(0.0004) (0.0003) (0.0011) (0.0007)
T=100000 0.9979 0.9980 0.9980 0.9980
(0.0002) (0.0001) (0.0005) (0.0002)
~=10
T=1000 10.5409 10.3399 34.4836 26.5381
(1.4146) (1.1108) (82.5210) (28.4748)
T=2000 10.3125 10.2983 19.5936 16.4719
(1.0566) (0.7999) (38.9336) (14.8120)
T=5000 10.2542 10.3380 11.7276 12.7821
(0.7275) (0.5097) (6.9328) (5.7417)
T=100000 10.1376 10.3287 10.3326 10.3929
(0.3114) (0.1112) (0.6271) (0.6996)
Y=1.5
T=1000 1.8402 1.5171 4.0093 3.1949
(1.7972) (0.0542) (9.5282) (3.6131)
T=2000 1.9827 1.5149 3.3048 2.5063
(4.9717) (0.0256) (5.4362) (1.8937)
T=5000 1.7570 1.5154 3.2752 1.9462
(1.3764) (0.0428) (7.4588) (1.5177)
T=100000 1.7964 1.5129 1.7586 1.5279
(2.2075) (0.0017) (0.9212) (0.1533)
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Table 15: Means and standard deviations of é p with SV concentrated out or
using true v; and oy

This table shows that it does not make a difference whether we concentrate out v; and o, or
use their true values when we estimate the preference parameters. The simulated data have SV
present. The estimation is based on the theory-motivated moment conditions and the true macro
parameters.

SV concentrated out true values for vy, o,

6=0.9980
T=1000 0.9980 0.9982
(0.0006) (0.0008)
T=2000 0.9980 0.9983
(0.0004) (0.0007)
T=5000 0.9980 0.9984
(0.0003) (0.0005)
T=100000 0.9980 0.9983
(0.0001) (0.0001)
~+=10
T=1000 10.3399 10.3238
(1.1108) (1.3043)
T=2000 10.2983 10.4376
(0.7999) (1.0647)
T=5000 10.3380 10.6081
(0.5097) (0.7407)
T=100000 10.3287 10.5481
(0.1112) (0.1607)
¥»=1.5
T=1000 1.5171 1.5260
(0.0542) (0.0923)
T=2000 1.5149 1.5195
(0.0256) (0.0591)
T=5000 1.5154 1.5125
(0.0428) (0.0141)
T=100000 1.5129 1.5140
(0.0017) (0.0022)
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Table 16: Means and standard deviations of the SMM estimates 3, 4, and 1&

using precise first-step estimates éMo

This table displays the results for the preference parameters obtained from two different moment
sets, the ad-hoc chosen moments and the theory-based moments. For both moment sets the
estimation of the preference parameters is only performed for reasonably precisely estimated macro
parameters é M, from the first stage. The benchmark is that the estimates @, (13, and ¢4 do not
deviate by more than 100% from their true values. The table shows that the precision of the
estimates is enhanced by ensuring the quality of the macro parameters, compared to the results
based on estimated macro parameters displayed in Table 14.

ad-hoc theory-based

6=0.9980
T=1000 0.9963 0.9969
(0.0024) (0.0018)
T=2000 0.9967 0.9972
(0.0026) (0.0014)
T=5000 0.9979 0.9978
(0.0011) (0.0006)
T=100000 0.9980 0.9980
(0.0005) (0.0002)
~v=10
T=1000 14.5026 17.6116
(12.1657) (17.3300)
T=2000 15.2075 13.7967
(33.0646) (10.7466)
T=5000 11.2477 12.2792
(3.3315) (4.1390)
T=100000 10.3326 10.3929
(0.6271) (0.6996)
P=1.5
T=1000 3.1976 2.3595
(9.1846) (3.4152)
T=2000 3.0002 1.9782
(4.7453) (1.0916)
T=5000 3.3112 1.7258
(7.5025) (0.6467)
T=100000 1.7586 1.5279
(0.9212) (0.1533)
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Table 17: Successful second-step SMM estimations for the preference param-
eters

This table gives the number of successfully estimated replications for each simulation study of the
asset pricing model. The maximum possible number of successful estimations for £p when the
estimated macro parameters are used is limited by the respective number of successfully estimated
replications from the macro model, given in the last column of Table 13. In addition, results are
dropped if the resulting preference parameter estimates are larger than the hundredfold of their
true values or if the algorithm did not converge.

true macro parameters estimated macro parameters

ad-hoc theory-based ad-hoc theory-based

T=1000 382 333 159 240
T=2000 392 368 177 281
T=5000 393 382 226 329
T=100000 392 399 396 392
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Table 18: Means and standard deviations of first-step GMM estimates using
identity matrix and “efficient” weighting scheme

The results from a two-stage version of the GMM efficient weighting are compared to first-stage
GMM using the identity matrix. The “efficient” weighting matrix is obtained as the inverse variance
matrix of the GMM residuals from a first-stage GMM estimation. We use the 185 mc described in
Table 7.

— —1
Wr=1 Wqp= [Var(ut)}

— —1
Wr=1 Wqp= [Var(ut)}

1.=0.0015 1a=0.0015
T=1000 0.001566 0.001431 0.002017 0.001924
(0.000520) (0.000569) (0.001467) (0.001532)
T=2000 0.001524 0.001465 0.001665 0.001628
(0.000367) (0.000382) (0.001149) (0.001195)
T=5000 0.001522 0.001490 0.001589 0.001557
(0.000238) (0.000243) (0.000830) (0.000858)
T=100000 0.001496 0.001490 0.001482 0.001475
(0.000059) (0.000095) (0.000192) (0.000215)
p=0.9790 p=0.0440
T=1000 0.914304 0.926508 0.056177 0.058211
(0.170581) (0.172008) (0.047299) (0.049801)
T=2000 0.954707 0.961988 0.053195 0.048828
(0.087877) (0.096559) (0.044524) (0.029814)
T=5000 0.972734 0.976753 0.047415 0.045632
(0.027517) (0.009447) (0.028952) (0.010915)
T=100000 0.978726 0.978759 0.044204 0.044211
(0.002683) (0.001637) (0.004015) (0.001899)
0=0.0078 »=3.0
T=1000 0.007778 0.006866 4.118246 3.279867
(0.000404) (0.000396) (3.976272) (2.524031)
T=2000 0.007781 0.007327 3.357487 3.065498
(0.000384) (0.000264) (1.942996) (1.493208)
T=5000 0.007815 0.007612 3.111128 2.964123
(0.000179) (0.000172) (0.759768) (0.604832)
T=100000 0.007802 0.007791 3.010695 2.997759
(0.000042) (0.000041) (0.142076) (0.184094)
wqa=4.5
T=1000 4.489017 4.749044
(0.168620) (0.224397)
T=2000 4.516286 4.627509
(0.332658) (0.135163)
T=5000 4.495031 4.549365
(0.073611) (0.072046)
T=100000 4.498434 4.501541
(0.016911) (0.016699)
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Table 19: Means and standard deviations of the preference parameter esti-
mates using an efficient weighting matrix estimate in the estimation of the
macro parameters

This table displays the results from the preference parameters, estimated based on two different
underlying sets of estimated macro parameters: in the left column, the macro parameters are es-
timated via a first-stage GMM approach, in the right column the macro parameters are estimated
using a two-stage efficient weighting matrix. The moment set used for the estimation of the pref-
erence parameters is the theory-motivated moment set. The table shows that a higher precision
of a relevant macro parameter estimate helps to improve the results of the asset pricing model
estimation.

Wr=1 Wryp= [%Tr(ut)} B Wr=1 Wryp= [\//'a\r(ut)] B
6=0.9980 ~v=10
T=1000 0.9965 0.9970 26.5381 19.8183
(0.0021) (0.0024) (28.4748) (23.9993)
T=2000 0.9972 0.9974 16.4719 14.5322
(0.0019) (0.0013) (14.8120) (14.4060)
T=5000 0.9978 0.9978 12.7821 12.0499
(0.0007) (0.0007) (5.7417) (4.7351)
T=100000  0.9980 0.9980 10.3929 10.3800
(0.0002) (0.0001) (0.6996) (0.6776)
Y=1.5
T=1000 3.1949 2.8801
(3.6131) (2.9754)
T=2000 2.5063 2.1048
(1.8937) (1.4821)
T=5000 1.9462 1.7300
(1.5177) (0.6011)
T=100000  1.5279 1.5248
(0.1533) (0.0976)
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Figure 1: Autocorrelograms of simulated consumption and dividend growth
These autocorrelograms illustrate the persistence of the growth processes defining the macroecon-
omy. The graphs are based on a model simulation based on the parameter values used by Bansal
and Yaron (2004) listed in Table 6 and a sample size of 105 observations. The abscissa spans a
time interval of 10 years, the half-life of both autocorrelations is about three years.
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Figure 2: (Non-) existence of the solution for the endogenous LRR model pa-
rameters

Finding the roots of the squared deviations between hypothetical and model-implied mean is re-
quired to solve for the endogenous parameters. If the deviation functions do not both have a root
the model cannot be solved. These cases need to be prevented in simulations of the model.
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Figure 3: Kernel densities for /i,

The figure displays the kernel densities for i, resulting from different moment sets. In order to
account for the boundedness of the parameters, we use beta kernels for the parameters between
0 and 1. The vertical lines indicate the position of the true parameter. The information for the
estimate fi. is mainly contained in E(g:), which is matched in all moment sets. Therefore, the
estimation precision of fi. varies little across moment sets.
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Figure 4: Kernel densities for /i

The figure displays the kernel densities for fig resulting from different moment sets. In order to
account for the boundedness of the parameters, we use beta kernels for the parameters between
0 and 1. The vertical lines indicate the position of the true parameter. The information for the
estimate fi4 is mainly contained in E(gg4.), which is matched in all moment sets. Therefore, the

estimation precision of fi; varies little across moment sets.
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Figure 5: Kernel densities for p

The figure displays the kernel densities for p resulting from different moment sets. In order to
account for the boundedness of the parameters, we use beta kernels for the parameters between 0
and 1. The vertical lines indicate the position of the true parameter. It stands out that the large
moment sets are clearly superior to the smaller moment sets, hence, matching autocovariances for
long lags enhances the precision of p.
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Figure 6: Kernel densities for ¢,

The figure displays the kernel densities for ¢, resulting from different moment sets. The vertical
lines indicate the position of the true parameter. It stands out that the large moment sets are clearly
superior to the smaller moment sets, hence, matching autocovariances for long lags enhances the
precision of ..

18

O o)
4+ ]
o} O 4
& € -
= =
% %)
(] ) 9
2 2
% 0
c c @
[} )
© o ¥
o™
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Ve PYe
T = 1000 T = 2000
<+ o _
o~ [ve]
ol
N
© ©
4+ 4
o o 3f
'% E ar 7mc
% % 35mc
@ O3t 113mc
E\ ?% 185mc
%) %)
c C ol
© o
© ©
ol
o ,
0.15 0.20 0.25
Ve
T = 5000 T = 100000

60



Figure 7: Kernel densities for &
The figure displays the kernel densities for ¢ resulting from different moment sets. The vertical
lines indicate the position of the true parameter. The information for the estimate of the uncondi-
tional variance ¢ is mainly contained in E(g7) and E(g] ,), which are matched in all moment sets.
Therefore, the estimation precision of ¢ varies little across moment sets.
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Figure 8: Kernel densities for qAﬁ

The figure displays the kernel densities for gZ; resulting from different moment sets. The vertical lines
indicate the position of the true parameter. It stands out that the large moment sets are clearly
superior to the smaller moment sets, hence, matching autocovariances for long lags enhances the
precision of (/B
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Figure 9: Kernel densities for ¢y

The figure displays the kernel densities for ¢4 resulting from different moment sets. The vertical
lines indicate the position of the true parameter. Only E(gg,t), which is matched in all moment
sets, contains information for the estimate ¢4. Therefore, the estimation precision of ¢4 varies
little across moment sets.
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Figure 10: Kernel densities for )

The figure displays the kernel densities for B resulting from different moment sets, using the true
macro parameters. The vertical lines indicate the position of the true parameter. The theory-
motivated moments are superior to the ad-hoc moments when it comes to estimating the subjective
discount factor 6.
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Figure 11: Kernel densities for ¥

The figure displays the kernel densities for 4 resulting from different moment sets, using the true
macro parameters. The vertical lines indicate the position of the true parameter. The theory-
motivated moments are superior to the ad-hoc moments when it comes to estimating the risk

aversion +y.
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Figure 12: Kernel densities for @Z

The figure displays the kernel densities for 1[) resulting from different moment sets, using the true
macro parameters. The vertical lines indicate the position of the true parameter. The theory-
motivated moments are clearly superior to the ad-hoc moments when it comes to estimating the
intertemporal elasticity of substitution ). When using the ad-hoc moments, 1) only seems to be

weakly identified.
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