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Give me strong moments and time
– Combining GMM and SMM to estimate long-run risk asset

pricing models ∗

Joachim Grammig and Eva-Maria Schaub ∗∗

February 20, 2014

Abstract

The long-run consumption risk (LRR) model is a convincing approach towards
resolving prominent asset pricing puzzles. Whilst the simulated method of mo-
ments (SMM) provides a natural framework to estimate its deep parameters,
caveats concern model solubility and weak identification. We propose a two-
step estimation strategy that combines GMM and SMM, and for which we
elicit informative moment matches from the LRR model structure. In par-
ticular, we exploit the persistent serial correlation of consumption and the
equilibrium conditions for market return and risk-free rate, as well as the
model-implied predictability of the risk-free rate. We match analytical mo-
ments when possible and simulated moments when necessary and determine
the crucial factors that are required for identification and reasonable estima-
tion precision. By means of a simulation study—the first in the context of
long-run risk modeling—we delineate the pitfalls associated with SMM esti-
mation of LRR models, and we present a blueprint for successful estimation.
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1 Introduction

Bansal and Yaron (2004) have introduced a dynamic asset pricing model (DAPM)

that aims to resolve the prominent asset pricing puzzles by accounting for three risk

factors: long-run consumption risk, short-run risk and volatility risk. Due to its far-

reaching impact on the model dynamics, the first factor is the namesake for the long-

run risk (LRR) model. While the LRR approach is theoretically appealing, empirical

tests are impeded by an intricate model structure that involves unobserved state

variables. As pointed out by Singleton (2006), the Simulated Method of Moments

(SMM) should provide a convenient framework to estimate and test complex DAPMs

like the LRR model.

We show that successful SMM estimation of LRR models must account for sev-

eral theoretical and econometric caveats, such that the identification of the model

parameters is ensured. Accordingly, the choice of moment conditions needs to be

guided by a thorough understanding of the model characteristics. For that purpose

we propose a two-step estimation strategy that exploits the persistent serial correla-

tion of consumption and the equilibrium conditions for market return and risk-free

rate, as well as the model-implied predictability of the risk-free rate. Simple first and

second moment matches lead to weak identification of the deep model parameters.

By means of a simulation study—the first in the context of long-run risk modeling—

we delineate the pitfalls associated with SMM estimation of LRR models, and we

present a blueprint for successful estimation.

LRR models have already been empirically assessed in previous studies using cal-

ibration and econometric estimation techniques. Bansal and Yaron (2004) perform

a calibration exercise to demonstrate the ability of the LRR model to explain the

equity premium. Bansal et al. (2007a) estimate a cointegrated version of the LRR

model using a vector autoregressive model with stochastic volatility (SV). However,
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the LRR model structure needs to be adjusted to the estimation technique to permit

its application. Bansal et al. (2007b) show that the LRR approach can also account

for size and value premia in the cross-section. Drechsler and Yaron (2011) calibrate

an LRR model to explain the variance premium and its relationship to investor

preferences. They introduce a Poisson-jump process, which allows for non-Gaussian

macroeconomic shocks. Bansal and Shaliastovich (2013) advocate the LRR model as

a potential solution to the bond return predictability puzzle. For that purpose, they

extend the model by an inflation process; additional complexity is introduced by two

different stochastic volatility processes which drive the real and the nominal side of

the economy. Hasseltoft (2012) also includes inflation into the LRR framework in

order to model stock and bond market jointly. Constantinides and Ghosh (2011)

make use of the fact that the latent model variables can be expressed as functions

of observables. This approach allows to use the Generalized Method of Moments

(GMM) for estimation. Ferson et al. (2013) evaluate out-of-sample forecasts pro-

duced by a cointegrated LRR model, and find its performance to be superior to the

stationary version. However, the authors impose restrictions in order to identify the

deep model parameters from their reduced-form estimation, which is sufficient for

forecasting, but not for the estimation of all structural parameters. Pakoš (2013)

generalizes the LRR model by introducing incomplete information and a cyclical

risk component in the dividend growth rate.

While the SMM approach towards estimating LRR models is natural and ap-

pealing, its concrete implementation is impeded by methodological and numerical

intricacies. These obstacles have largely been ignored—or circumvented—by the

previous literature. The silence on these issues is surprising, as it is well known

that LRR models are inherently fragile in that the permissible parameter space—

the set of parameters for which the model has a solution—has a complex topology.
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For certain economically plausible parameter values the LRR model becomes insol-

uble, a fact that needs to be accounted for in the estimation procedure. Dividends

and consumption are driven by a small but persistent latent growth component and

stochastic volatility, which exacerbates the identification of the structural parame-

ters, in particular when the data series are short. In fact, the estimation of univariate

SV processes has preoccupied excellent researchers for quite some time.1 Yet, in the

LRR model, the SV process is just one element of a complex, non-linear, structural

model. It seems to be a daunting task to estimate such a model, and we show that

it is a losing game when using an ad-hoc choice of first and second moment matches.

We demonstrate that the one-step estimation of the deep model parameters us-

ing an ad-hoc selection of moments can mislead the researcher, as weak or non-

identification is not always obvious in such a highly non-linear model. It might go

unnoticed that even sophisticated optimizers converge to one of the many local min-

ima on the rugged objective function surface. We show that identification crucially

hinges on the choice of informative moment conditions, which must be tailored to the

model. We advocate a two-step approach, in which we estimate separately the subset

of parameters associated with the macroeconomic environment and the representa-

tive investor’s preference parameters. The first step consists of a GMM estimation

using analytical moment conditions resulting from the macro sub-model, and the

second step is an SMM estimation that exploits the asset pricing implications of the

LRR model. We emphasize that the precision of the macro parameter estimates is

of utmost importance for the successful estimation of the model parameters.

A comprehensive simulation study documents the performance of our estimation

strategy. Our findings constitute a call for econometric due diligence and reality

checks when estimating the LRR model. We also point out that because the available

1Cf. e.g. Ruiz (1994), Gallant et al. (1997), Sandmann and Koopman (1998), Kim et al. (1998),
Andersen et al. (1999), and Jacquier et al. (2002).
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(macro) time series are relatively short, estimation precision for some of the model

parameters will inevitably be moderate, which emphasizes even more the need for

informative moment matches. Our two-step estimation strategy delivers credible

empirical results. The caveats and solutions presented in this study are important

for the estimation of other DAPMs as well.

The remainder of the paper is organized as follows. In Section 2 we briefly

review the theoretical basics of LRR models. Section 3 delineates our econometric

methodology. In Section 4 we present the results of a Monte Carlo simulation study

to show the suitability of our approach. We conclude in Section 5.
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2 Anatomy of the LRR model

In this section we describe the dynamics of the long-run risk model by Bansal and

Yaron (2004). We present all key equations needed for the simulation of the full

model, and hence for SMM.2

The LRR model is based on a non-linear four-equation VAR with two observable

variables, log consumption growth gt and log dividend growth gd,t, and two latent

variables, a growth component xt and a stochastic variance process σ2
t :

gt+1 = µc + xt + σtηt+1 (1)

xt+1 = ρxt + ϕeσtet+1 (2)

gd,t+1 = µd + φxt + ϕdσtut+1 (3)

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1. (4)

The i.i.d. innovations ηt, et, wt, and ut, are standard normally distributed and

contemporaneously uncorrelated random variables. The latent fundamental drivers

of the economic dynamics, xt and σ2
t , are assumed to be highly persistent, hence

the autoregressive parameters ρ and ν1 are usually chosen close to one in calibration

excercises (cf. Bansal and Yaron, 2004). For a model simulation, the trajectories of

gt, xt, gd,t, and σ2
t represent the elementary components for all other model variables.

The representative investor, who faces these macro dynamics, has recursive pref-

erences (cf. Kreps and Porteus, 1978; Epstein and Zin, 1989) as expressed by the

utility function

Ut =

[
(1− δ)C

1−γ
θ

t + δ
(
Et
(
U

(1−γ)
t+1

)) 1
θ

] θ
1−γ

, (5)

2Detailed derivations are collected in Sections A.1–A.5 of the internet appendix, http://

tinyurl.com/lrr-internet-appendix. These results appear somewhat dispersed in the liter-
ature, and we collect them in order to provide the interested reader with a complete picture.
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where θ = (1−γ)
(1− 1

ψ )
. The preference parameters δ, γ, and ψ denote subjective dis-

count factor, relative risk aversion, and the intertemporal elasticity of substitution,

respectively. The representative investor has aggregate wealth Wt and an aggre-

gate consumption Ct. Utility maximization under the budget constraint Wt+1 =

(Wt − Ct)Ra,t+1, where Ra,t denotes the gross return of the latent aggregate wealth

portfolio, yields the basic asset pricing equation for a gross asset return Ri,t:

Et [Mt+1Ri,t+1 − 1] = 0, (6)

where

Mt+1 = δθG
− θ
ψ

t+1R
−(1−θ)
a,t+1 (7)

denotes the stochastic discount factor, and Gt denotes gross consumption growth.

Bansal and Yaron (2004) explicitly model the log returns of the latent aggregate

wealth portfolio and the observable market portfolio, ra,t and rm,t, using the linear

approximations suggested by Campbell and Shiller (1988):3

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 (8)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1, (9)

where zt denotes the log price-consumption ratio and zm,t the log price-dividend

ratio. Furthermore,

κ1 =
exp(z̄)

1 + exp(z̄)
κ1,m=

exp(z̄m)

1 + exp(z̄m)
(10)

κ0 = ln(1 + exp(z̄))− κ1z̄ κ0,m= ln(1 + exp(z̄m))− κ1z̄m, (11)

3Detailed derivations of Equations (8)–(11) are given in the internet appendix in Section A.1.
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where z̄ and z̄m denote the means of zt and zm,t. Bansal and Yaron (2004) model

the latent log price-consumption ratio and the observable log price-dividend ratio as

zt = A0 + A1xt + A2σ
2
t (12)

zm,t = A0,m + A1,mxt + A2,mσ
2
t . (13)

The A-parameters in (12) and (13) have to be determined by an analytical solution

of the model, which we present in detail in the internet appendix. This amounts

to pricing the gross returns of aggregate wealth portfolio and market portfolio, Ra,t

and Rm,t, using (6). The solutions are given by:

A1 =
1− 1

ψ

1− κ1ρ
(14)

A2 =
1

2

(
θ − θ

ψ

)2
+ (θA1κ1ϕe)

2

θ(1− κ1ν1)
(15)

A0 =
1

1− κ1

[
ln δ +

(
1− 1

ψ

)
µc + κ0 + κ1A2σ

2(1− ν1) +
θ

2
(κ1A2σw)2

]
(16)

A1,m =
φ− 1

ψ

1− κ1,mρ
(17)

A2,m =
(1− θ)(1− κ1ν1)A2

(1− κ1,mν1)

+

1
2
[(− θ

ψ
+ θ − 1)2 + ((κ1,mA1,mϕe)− ((1− θ)κ1A1ϕe))

2 + ϕ2
d]

(1− κ1,mν1)
(18)

A0,m =
1

(1− κ1,m)

[
θ ln δ − θ

ψ
µc + (θ − 1)

[
κ0 + κ1A0 + κ1A2(1− ν1)σ2 − A0 + µc

]

+ κ0,m + κ1,mA2,mσ
2(1− ν1) + µd +

1

2
[(θ − 1)κ1A2 + κ1,mA2,m]2 σ2

w

]
(19)

The A-parameters given by Equations (14)–(19) depend on κ0, κ1, κ0,m, and κ1,m

from Equations (10) and (11), which in turn depend on z̄ and z̄m. As a consequence,

the κ-parameters, and hence the A-parameters, are endogenous.
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For SMM estimation, we need to generate series for zt, zm,t, ra,t, rm,t, and for

that purpose we need to solve the model, i.e. find z̄ and z̄m that determine the

endogenous κ- and A-parameters such that Equations (10)–(19) are fulfilled.

As we outline below, our estimation approach exploits the implications of the

LRR model for the log risk-free rate rf,t, and we therefore need to simulate time

series of the risk-free rate. To obtain the LRR model-implied expression for rf,t, we

price the risk-free asset using Equation (6) and obtain

rf,t = −θ ln(δ) +
θ

ψ
[µc + xt] + (1− θ)Et(ra,t+1)−

1

2
Vart(mt+1), (20)

where mt is the logarithm of the stochastic discount factor Mt and

Et(ra,t+1) = κ0 + κ1
[
A0 + A1ρxt + A2(σ

2 + ν1(σ
2
t − σ2))

]
(21)

− A0 − A1xt − A2σ
2
t + µc + xt,

Vart (mt+1) =

(
θ

ψ
+ 1− θ

)2

σ2
t + [(1− θ)κ1A1ϕe]

2 σ2
t (22)

+ [(1− θ)κ1A2]
2 σ2

w.

The derivation of (20)–(22) can be found in Section A.4 of the internet appendix.

Using these equations for the economic environment, the financial variables, and

the expressions for the endogenous parameters, the LRR model can be simulated,

given the macro parameters ξM = (µc, µd, ρ, σ, ϕe, φ, ϕd, ν1, σw)′, and the preference

parameters ξP = (δ, γ, ψ)′. The next section describes our two-step estimation ap-

proach, which combines GMM for the first-step estimation of the macro parameters

with an SMM estimation of ξP in the second step.
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3 Econometric Methodology

3.1 Matching Moments for the LRR Model: choices and caveats

Singleton (2006) suggests to estimate DAPMs like the one in the previous section

by SMM. The method is perfectly suited to deal with non-linearity, latent variables,

and endogenous parameters, those complexity-driving features of the LRR model.

Its application amounts to selecting measurable functions g(·) of the economic or

financial system variables and their model-implied expected values E [g(qt; ξ)], where

qt holds all relevant observable and latent system variables and ξ contains the model

parameters (or a subset of them). Observations for g(·) are collected in the vector

g∗t . A match of sample moments with population moments yields

GT (ξ) =

[
1

T

T∑
t=1

g∗t − E [g(qt; ξ)]

]
. (23)

SMM is applied when the expectations cannot be expressed analytically as functions

of ξ, but need to be simulated such that the moment matches now read:

GT (ξ) =

 1

T

T∑
t=1

g∗t −
1

T (T )

T (T )∑
s=1

g (qs; ξ)

 , (24)

where T and T (T ) denote the sample size and the simulated sample size, respectively.

To obtain qs for s = 1, . . . , T (T ), we need to simulate the LRR model using the

equations and results outlined in the previous section. By choosing a large size for

the simulated sample, a good approximation to population moments can be ensured.

GMM estimates, using (23), or SMM estimates, using (24), then result from

ξ̂T = argmin
ξ∈Θ

GT (ξ)′W T GT (ξ), (25)
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where W T is a symmetric and positive definite weighting matrix.

The LRR model being a complex, highly non-linear model, it is an appealing

idea to estimate it by matching some selected first and second moments. However,

the identification of the deep parameters is likely to require information that is not

or only weakly reflected in the first and second moments. Instead, the key model

characteristics need to be translated into informative moment matches.

This insight emerges from an attempt to estimate the twelve LRR parameters in

ξM and ξP simultaneously, using a set of moment matches adapted from Hasseltoft

(2012). Table 1 shows that it includes ten first and second moments, two autoco-

variances, and two moments based on the prediction relationship between past log

price-dividend ratio and future consumption growth volatility.

[Insert Table 1 about here]

The estimation is performed on simulated data of lenght T = 1000 and T = 100000,

which are generated by a parameterized LRR model with structural parameters given

in Table 6. To minimize the SMM objective we use W T = I and T (T ) = 106, and

we employ one of the most sophisticated optimization algorithms currently avail-

able, the Covariance Matrix Adaptation Evolution Strategy (CMAES) algorithm

developed by Hansen and Ostermeier (2001). To start the optimization of the SMM

objective, we use three different, but not very dissimiliar starting values. Initial set

s1 uses the true parameters, which we slightly change for initial set s2; the initial

values in set s3 are more away from the true parameters, but still economically

quite plausible. Panel A of Table 2 documents a disturbing result that raises doubts

whether the ad-hoc moment matches in Table 1 are useful to estimate the LRR

parameters. Using the different initial values the optimization algorithm terminates

at different parameter values (some vastly different), which nevertheless all fullfill

the convergence criteria. We purposefully choose quite strong convergence criteria,
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hence the CMAES algorithm does not stop prematurely, but takes its time to search

the surface of the SMM objective. Panel A of Table 3 shows that the problem lingers

even for a large sample size of T = 100000.4 The conclusion from these results is

obvious. You can obtain different (convenient) parameter estimates by choosing

different starting values. The ad-hoc moment matches that invoke the augmented

first two moments are of course valid, but they are too weak to help identify the

structural parameters, even in large samples. Using alternative weighting matrices,

such as an estimate of the efficient weighting matrix or the inverse covariance matrix

of the GMM residuals, does not solve the problem.5

[Insert Tables 2–3 about here]

Panels B of Tables 2 and 3 show that the GMM estimation strategy pursued by

Constantinides and Ghosh (2011) is prone to similar problems as the SMM esti-

mation using the ad-hoc moment matches. Here, too, the optimization algorithm

that minimizes the GMM objective converges to different values when started from

different initial values. Hence, the same question looms: can the moment matches

ensure the identification of the LRR model parameters? The alarming result of our

simulation exercise may occur for real data, too: that the optimizer stops at values

close to plausibly chosen starting values. If the neighborhood of that point happens

to be well-defined, asymptotic inference may yield favorably small standard errors

for plausible, but utterly arbitrary estimates. This caveat is aggravated by the small

sample sizes used in empirical studies.

4How rugged the surface of the objective function is becomes obvious when using a gradient-
based quasi-Newton algorithm. Irrespective of using starting values close to or remote from the
true parameter values, the optimization algorithm only impalpably moves away from the starting
point and converges immediately, despite strict convergence criteria.

5Using the optimization algorithms available in Matlab’s (Global) Optimiziation Toolboxes,
such as the Nelder-Mead simplex, Simulated Annealing, Genetic Algorithm, and Pattern Search
produces the same problem. The CMAES algorithm is superior, as it is designed to deal with very
rugged objective functions. This is a desirable feature, but it comes at the cost of computation
time.
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The highly non-linear LRR model structure precludes an analytical check for

non-identification. However, we can provide numerical evidence. If a set of theo-

retical moments chosen for a match is to be useful for the identification of a model

parameter, it is a necessary condition that one or more moments respond to a change

in that parameter. Table 4 shows a moment sensitivity matrix for the ad-hoc first

and second moments, which displays each moment’s percentage change as a reaction

to a 50% c.p. change in one LRR model parameter.

[Insert Table 4 about here]

There is little or no sensitivity of the moments to changes in the SV parameters.

The largest change provoked by a 50% change in ν1 and σw is a 4%, or respectively,

a 3% change in the mean market excess return. Given that this is a very weak re-

action of this moment which responds to a much larger extent to many other model

parameters, it is doubtful whether the SV parameters are identified. Considering the

efforts invested in SV estimation that are documented in the related literature, this

does not come as a surprise. This raises the question whether parameter estimation

is only hampered by the presence of stochastic volatility. Repeating the optimiza-

tion with SV turned off, however, delivers the same results: global optimization is

infeasible, even with sophisticated optimizers.

We conclude that model identification and successful estimation hinges on the

choice of more informative moment matches. The next two subsections outline a

two-step estimation approach, in which we carefully exploit the properties of the

LRR model in order to be able to identify the structural parameters through infor-

mative moment matches. Since the macro dynamics in (1)–(4) do not depend on

the preference parameters, we focus on estimating the macro parameters by GMM

in the first step. Using the estimated macro parameters, the preference parameters

are estimated by SMM in the second step. It turns out that the optimization prob-

12



lems in each step become well-defined and using sophisticated optimizers becomes

unnecessary.

3.2 Analytic moment conditions

For the estimation of the parameters of the dynamic system (1)–(4) using two ob-

servable series gt and gd,t only, we need to choose moment matches that are able to

capture their characteristic features implied by the LRR model. Naturally, the first

and second moments should be matched. It turns out that they can be analytically

expressed as functions of a subset of ξM that does not contain the SV parameters.

We can then use the following moment matches for GMM:

G
(M),1
T (ξM0

) =
1

T

T∑
t=1



gt−µc
gd,t−µd

g2t−µ2c+
ϕ2eσ

2

1−ρ2
+σ2

g2d,t−µ
2
d+φ

2 ϕ
2
eσ

2

1−ρ2
+ϕ2

dσ
2

gd,tgt−µcµd+φ
ϕ2eσ

2

1−ρ2


, (26)

where ξM0
= (µc, µd, ρ, σ, ϕe, φ, ϕd)

′.

The defining feature of the LRR model is the latent growth component xt, a

small but allegedly very persistent driver of consumption and dividend growth. If

such a component is present, the observed consumption and dividend growth series

exhibit small positive serial correlations, which, however, prevail over many lags.

Figure 1 provides an illustration.

[Insert Figure 1 about here]

It seems obvious that this key model feature can only be captured by using moment

matches for auto-moments of a high lag order. We therefore consider the following

13



moment matches that involve the (cross) auto-moments of consumption and dividend

growth:

G
(M),2
T (ξM0

) =



1
T−1

∑T−1
t=1 gt+1gt−µ2c+ρ

ϕ2eσ
2

1−ρ2

...
1

T−L1

∑T−L1
t=1 gt+L1

gt−µ2c+ρL1
ϕ2eσ

2

1−ρ2

1
T−1

∑T−1
t=1 gd,t+1gd,t−µ2d+φ

2ρ
ϕ2eσ

2

1−ρ2

...
1

T−L2

∑T−L2
t=1 gd,t+L2

gd,t−µ2d+φ
2ρL2

ϕ2eσ
2

1−ρ2

1
T−1

∑T−1
t=1 gd,t+1gt−µcµd+φρ

ϕ2eσ
2

1−ρ2

...
1

T−L3

∑T−L3
t=1 gd,t+L3

gt−µcµd+φρL3
ϕ2eσ

2

1−ρ2



, (27)

where L1, L2, and L3 denote the maximum lag length for the respective (cross)

auto-moments. Bansal and Yaron’s (2004) reasoning suggests that the number of

lags should be large in order to capture the persistence of the series induced by xt.

The theoretical moments that we match in (27) are derived analytically and

written as functions of the parameters. Hence, a simulation-based estimation of ξM0

is unnecessary. We perform a standard GMM estimation by stacking G
(M),1
T (ξM0

)

and G
(M),2
T (ξM0

) and using these moment matches in the GMM objective function

in (25).

The moment conditions in (26) and (27) are valid irrespective of the SV pa-

rameter values ν1 and σw. Hence, the GMM estimation of ξM0
can be performed

regardless of whether SV prevails or not. Of course, this also implies that these

moment matches cannot identify the SV parameters. We revisit this issue in the

next section.
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3.3 Theory-based moment conditions

We now turn to the estimation of the preference parameters ξP , taking the macro

parameters ξM0
as given. There are three observable financial variables, the log mar-

ket return rm, the log risk-free rate rf , and the log price-dividend ratio zm. The LRR

model implies that they depend on the preference parameters, and hence represent

useful candidates for moment matches. The macro variables and their associated

moments cannot contribute to the identification of the preference parameters since

they do not depend on ξP .

We consider two approaches to estimate ξP . The first uses an ad-hoc moment

match of the first two moments of the three observable time series rm,t, rf,t, and

zm,t. Yet again, we suspect that those “agnostic” moment matches may not suffice to

identify the deep model parameters. In a second approach, we therefore continue to

pursue our philosophy to transfer key model characteristics into informative moment

conditions. For that purpose, we exploit asset pricing and prediction relationships

implied by the LRR model.

For both the ad-hoc and the theory-based approach we need to simulate the

population moments to be matched with the data. The moments of the observable

financial variables cannot be expressed analytically as a function of the preference

parameters, since the LRR model needs to be solved numerically for the endogenous

parameters (cf. Section 2), such that we resort to SMM.6

6The observant reader will recall that the moment conditions in (28) were shown to be insensitive
to ν1 and σw, which is why we do not try to use them for the estimation of the SV parameters.
We will resolve this issue below.
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The ad-hoc approach uses the following first and second moment matches:

G
(P,A)
T (ξM , ξP ) =

1

T

T∑
t=1



rm,t−rf,t− 1
T (T )

∑T (T )
s=1 rm,s(ξM ,ξP )−rf,s(ξM ,ξP )

(rm,t−rf,t)
2
− 1
T (T )

∑T (T )
s=1 (rm,s(ξM ,ξP )−rf,s(ξM ,ξP ))

2

rf,t− 1
T (T )

∑T (T )
s=1 rf,s(ξM ,ξP )

r2f,t−
1
T (T )

∑T (T )
s=1 r2f,s(ξM ,ξP )

zm,t− 1
T (T )

∑T (T )
s=1 zm,s(ξM ,ξP )

z2m,t−
1
T (T )

∑T (T )
s=1 z2m,s(ξM ,ξP )



. (28)

For the theory-based approach we exploit the pricing implications of the LRR model

for the excess return of the market portfolio and the risk-free rate. Using the basic

asset pricing equation (6) to price the risk-free rate yields

Et (Mt+1) = Et
(

1

Rf,t+1

)
, (29)

where Mt+1 is given in Equation (7). Applying the law of total expectation leads to

the unconditional moment constraint

E (M) = µM = E
(

1

Rf

)
. (30)

Since µM cannot be expressed analytically as a function of the parameters, we match

the mean of the simulated SDF with the sample mean of the inverse gross risk-free

rate. This entails the following moment match:

G
(P,T ),1
T (ξM , ξP ) =


1
T

∑T
t=1

1
Rf,t
−µM

µM− 1
T (T )

∑T (T )
s=1 Ms(ξM ,ξP )

. (31)
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Pricing the market excess return (Rm −Rf ) using Equation (6) implies:

Et (Rm,t+1 −Rf,t+1) = −Et [(Mt+1 − Et(Mt+1)) (Rm,t+1 −Rf,t+1)]

Et(Mt+1)
. (32)

Applying the law of total expectation yields the unconditional moment constraint

E (Rm −Rf ) = −E [(M − µM) (Rm −Rf )]

µM
, (33)

such that we can use the match of sample and simulated moment

G
(P,T ),2
T (ξM , ξP ) =

1

T

T∑
t=1

(Rm,t −Rf,t) (34)

+

1
T (T )

∑T (T )
s=1 [Rm,s(ξM , ξP )−Rf,s(ξM , ξP )] [Ms(ξM , ξP )− µM ]

µM
.

The set of test assets could be extended by including managed portfolios as suggested

by Cochrane (1996). Given a vector of instruments available at t, Zt, pricing the

managed portfolio payoffs (Rm,t+1 −Rf,t+1)Zt using Equation (6) implies:

E [(Rm,t+1 −Rf,t+1)Zt] = −E [(Mt+1 − µM)(Rm,t+1 −Rf,t+1)Zt]

µM
.

Note that in order to use these moment conditions for SMM one is limited in the

choice of instruments. Zt needs to be determined within the LRR model since the

instruments have to be simulated, too.

Furthermore, we would like to make sure that the unconditional Sharpe-Ratio of

the market portfolio,

E (Rm −Rf )√
E
[
(Rm −Rf )

2]− [E (Rm −Rf )]
2
, (35)
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as a key statistic for the risk-return trade-off implied by the LRR model, is matched.

Since the means of market excess return and the risk-free rate appear already in the

moment matches in (31) and (34), the only remaining moment to be matched is

the expected value of the squared market excess return. Hence, we use the second

moment of the market excess return to match the market volatility, viz:

G
(P,T ),3
T (ξM , ξP ) =

1

T

T∑
t=1

(Rm,t −Rf,t)
2 (36)

− 1

T (T )

T (T )∑
s=1

(Rm,s(ξM , ξP )−Rf,s(ξM , ξP ))2 .

Campbell and Shiller (1988) point out that there is a prediction relation implied

by the linear approximations in (8) and (9), namely that the log price-dividend

ratio predicts future discount rates.7 This predictive relationship can be exploited

by matching the slope parameter of a regression of the risk-free rate on past values

of the log price-dividend ratio8, which entails matching the first and the second

moment of zm,t, too:

G
(P,T ),4
T (ξM , ξP ) =



1
T−1

∑T−1
t=1 [Rf,t+1−

1
T−1

∑T−1
t=1 Rf,t+1]zm,t

1
T

∑T
t=1(zm,t− 1

T

∑T
t=1 zm,t)

2

−
1

T (T )−1

∑T (T )−1
s=1 [zm,s(ξM,ξP )−µ1,zm ]Rf,s+1(ξM,ξP )

µ2,zm−µ
2
1,zm

1
T

∑T
t=1 zm,t−µ1,zm

1
T

∑T
t=1 z

2
m,t−µ2,zm

µ1,zm− 1
T (T )

∑T (T )
s=1 zm,s(ξM ,ξP )

µ2,zm− 1
T (T )

∑T (T )
s=1 z2m,s(ξM ,ξP )



. (37)

7A simulation exercise shows that the predictive power of zm,t for Rf,t+1 is indeed strong: the
R2 of a one-step predictive regression is 95%. The simulation is again based on the parameter
values given in Table 6 and a sample size of 106 observations.

8Note that a predictive relationship between price-dividend ratio and future excess returns is
not a feature of the LRR model. Hence, zm,t cannot be used as an instrument for the construction
of a managed portfolio or in a predictive regression.

18



Stacking the components (31), (34), (36), and (37) yields a moment match of six

theory-motivated moments, which will be used in the objective function in (25).9

[Insert Table 5 about here]

The moment sensitivity analysis in Table 5, shows which of the six moment matches

provides information about which parameter values. All simulated moments react

strongly to a 10% change in the subjective discount factor δ. For both γ and ψ

there is one moment condition that reacts sizeably to a parameter change, whereas

all other moments do not. Most information about γ is contained in the moment

condition (33), which captures the LRR model’s pricing implication for the market

excess return. This is reflected in a 10% change in the simulated moment in (34) in

response to a 10% change in γ. The other simulated moments only respond weakly.

The identification of ψ is mainly provided by the slope parameter of the predictive

regression of Rf,t+1 on zm,t. The corresponding simulated moment reacts to a 10%

change in ψ by an increase of 14%, while the other moments only respond by 4%

or less. This “prediction moment” is not sensitive to a change in γ, which helps to

disentangle risk aversion and intertemporal elasticity of substitution.

The analytic moment conditions discussed in Section 3.2 can only be used to

identify and estimate the unconditional variance σ2, but not the SV parameters

ν1 and σw. The estimation of a latent volatility process has been the topic of a

developed econometric literature. The methodological caveats discussed there are

aggravated in the LRR model, in which stochastic consumption volatility is just

one ingredient of a non-linear multiple-equation model. We have also seen that the

ad-hoc moment conditions in (28) are not useful to identify the SV parameters, and

we do not claim that our theory-based moment conditions do a better job. These

9As in the application of Parker and Julliard (2005), it has to be ensured that the auxiliary
parameters µM , µ1,zm , and µ2,zm in (31) and (37) are exactly matched. This can be achieved by
inserting the simulated means into the respective moment conditions.
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moment conditions are based on unconditional moment constraints and stochastic

volatility is about changing conditional variances. Furthermore, the available data

series will be relatively short and thus not informative about the dynamics of the

latent consumption volatility process. Alternative approaches to identify ν1 and σw,

like exploiting the autocorrelation in the squared market returns or fourth moments

of returns, are also not informative enough.

Instead of looking for more sophisticated ways to estimate the SV parameters,

we try to simplify the problem. Table 4 shows that even large changes in ν1 and

σw merely have a small impact on the unconditional equity premium. Hence, if the

primary interest is not the estimation of the SV parameters and the evolution of the

conditional risk premium but the estimation of the preference parameters and the

model-implied risk premium, an alternative estimation strategy could “concentrate

out” the SV parameters. In a simulation of the model in the course of SMM estima-

tion, the stochastic volatility σ2
t is replaced by its unconditional forecast, namely σ2,

which is estimated in the first step. We conjecture that the unconditional moments

of the simulated financial variables (and the measurable functions of them used for

moment matching) would not be greatly affected when σ2
t is replaced by its uncon-

ditional forecast σ2. It may be the case that this strategy reduces efficiency, but

on the other hand it may also provide more robust results, as the SV parameters

may be poorly identified by weak moment conditions and/or a small sample size. In

Section 4.3 we assess the feasibility of our estimation strategy in a simulation study.

By comparing the estimation results assuming that the SV parameters are known

and the estimation results based on the strategy that concentrates out ν1 and σw,

we can quantify the loss in efficiency.
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The suggested two-step estimation strategy implies that standard asymptotic

inference for ξ̂P cannot be applied due to the use of the macro parameter estimates

ξ̂M0
. We recommend using a parametric bootstrap instead.

3.4 Computational caveats

The LRR anatomy outlined in Section 2 implies that for every iteration in the

optimization process the endogenous parameters have to be computed anew. This

is achieved by solving for the mean of zt and zm,t, such that the squared difference

between the respective mean hypothesized by the solver and the resulting model-

implied mean is equal to zero. Hence, the endogenous parameters are implied by

the roots of two functions.

[Insert Figure 2 about here]

The reason why this affects SMM estimation is illustrated in Figure 2, which shows

a plot of these two functions. Using the parameter values in Table 6 yields the roots

z̄∗ = 6.24 and z̄∗m = 5.49 (cf. upper panels of Figure 2). The lower panel shows

that a change of these parameters within a plausible range may yield an unsolvable

model: for example, changing the value of the risk aversion parameter from γ = 10

to γ = 4 and the mean of dividend growth from µd = 0.0015 to µd = 0.0035, leaving

all other parameters unchanged, implies that one of the two functions does not have

a root. Hence, the endogenous parameters could not be computed in the course of

SMM estimation. Model insolubility is not limited to implausible parameter values

and the permissible range of values for each parameter changes with the values in

the remaining parameters. This inherent “fragility” of the LRR model exacerbates

parameter estimation.

A practical way to account for such a problem would be a penalty term that

keeps the optimizer away from those unfavorable parameter combinations. However,
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this leads to a discontinuity in the surface of the objective function, which might

pose a challenge to any optimizer, in particular for gradient-based methods, which

are widely used in applied econometrics. We therefore recommend to use a robust

optimization algorithm, such as the Nelder Mead simplex.
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4 Simulation study

4.1 General setup

We evaluate our methodological approach in an extensive simulation study. For that

purpose, we generate data by simulating series of varying length T for g, gd, rm, rf ,

and zm as implied by the LRR model. The values of the true macro parameters

ξM and preference parameters ξP are those calibrated by Bansal and Yaron (2004).

They are listed in Table 6.

[Insert Table 6 about here]

The length of the simulated series varies between T = 1000, T = 2000, T = 5000,

and T = 100000. Assuming a monthly sampling frequency, T = 1000 is equivalent

to about 83 years, which is a reasonable size for a real-world application. The longer

series should illustrate the behavior of the estimates for a growing sample size, and

T = 100000 serves as a reality check of the estimation method, since the parameter

estimates should be precise and unbiased. Parameter estimation is performed on the

simulated data as described in the previous sections. To ensure logical consistency

of the parameter estimates, we restrict ϕ̂e, φ̂, and ϕ̂d to positive values. ρ̂, µ̂c, and

µ̂d have to take on values between 0 and 1.

In Section 3.1 we saw that SMM estimation based on the moment conditions in

Table 1 yields unreliable results, and we have emphasized the danger of reporting

sugar-coated estimates that result from a convergence to a point near plausibly cho-

sen starting values. It is crucial to avoid that fallacy in our simulation study. Prior

to engaging in a large-scale simulation study, we have therefore carefully tested both

the analytic moment conditions and the theory-based moment matches used for the

two-step estimation procedure. For that purpose we started the GMM/SMM opti-

mization algorithms from different, also far-off, starting values on a variety of test
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data to make sure that the optimization algorithm converges to identical values.

Panels C of Tables 2 and 3 provide a numerical example and a comparison with

the estimation strategies that produced the problematic results discussed in Sec-

tion 3.1. Using the same data as for the Panel A and B estimations, our combined

GMM/SMM procedure yields the same estimates regardless of the chosen initial

values. The GMM and SMM objective functions within the two-step estimation

procedure are well-defined, and the moment matches ensure identification of the

deep parameters.

To assess the precision of the estimates, we use 400 replications for each T . To

economize computation time, we choose not to use a penalty term in the simulation

study, but instead drop replications for which the optimizer stops at an unsolvable

model. When applying the method to real data, a penalty term should be used. The

next subsection discusses the quality of the first-step GMM estimates for ξM0
, in 4.3

we present the SMM estimation results for ξP . To ensure a good approximation of

the population moments for SMM, we use T (T ) = 106.

4.2 GMM estimation of the macro parameters

For each time series length T , we perform eight GMM estimations of ξM0
, using the

identity matrix for W T and the moment matches listed in Table 7. The number of

moment conditions ranges from exact identification (7 mc) to heavy overidentifica-

tion (185 mc). Each moment set includes the first and second moment matches of

(26) and a varying number of (cross) auto-moments from (27). The maximum lag

length is L1 = L2 = L3 = 60, meaning that we account for autocovariances up to

five years, assuming a monthly frequency. As pointed out previously, identification

of the macro parameters should benefit from taking into account long lags for the

autocovariances because the drivers of the LRR macro dynamics are slow-moving
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processes. We use the Nelder-Mead simplex algorithm for optimization of the GMM

objective.

To ensure the feasibility of our study, in which we conduct 400 × 8 × 4 estima-

tions, we use one set of starting values only. The initial robustness checks make us

confident that starting value dependence is not an issue for the moment matches we

advocate. Nevertheless we choose, quite on purpose, starting values at some distance

from the true parameters.10 A poor starting point makes the problem harder for the

optimization algorithm, and hence more time-consuming, but it also prevents the

danger of reporting sugar-coated results.

Tables 8–11 report means and standard deviations of the macro parameter es-

timates computed across the 400 replications. Figures 3–9 illustrate the estimation

quality using kernel densities.

[Insert Table 7 about here]

[Insert Tables 8 through 11 about here]

[Insert Figures 3 through 9 about here]

We can see that estimation precision varies across parameters. For ρ, ϕe, and φ,

both a relatively large sample size (T > 2000) and informative moment conditions

are needed for good results (cf. Tables 9 and 10), whereas µc, σ, and ϕd are less

difficult to estimate (cf. Tables 8, 10, and 11). The finite sample simulation evidence

reported here indicates that the favorably small asymptotic standard errors reported

in empirical estimations of LRR models should be taken with a grain of salt. These

applications use a much smaller sample size.

Naturally, the precision of the parameter estimates increases with the sample

size. However, for the critical parameters ρ, ϕe, and φ, the accuracy also improves

10We use ξM0
= (0.018, 0.018, 0.881, 0.082, 0.003, 7.389, 7.389)

′
as starting values.
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with the number of moment conditions, i.e. with the maximum lag length allowed

for the autocovariances. The ability to estimate ρ precisely is crucial because the

persistent growth component xt is the defining feature of the LRR model, which

determines the dynamics of macroeconomic and financial variables. Large sample

sizes in the range of T = 5000 are unattainable in real-world applications, such

that the availability of moment conditions that prove to be informative also in small

samples is of utmost importance.

For small samples, a moderate increase of the number of moment conditions

(up to 35 mc, say) does not lead to an improvement in the parameter estimates.

This applies in particular to the critical parameters ρ, ϕe, and φ. On the other

hand, even an increase of the maximum lag length from three (113 mc) to five years

(185 mc) has a beneficial effect. The same conclusion is drawn from consulting the

kernel density plots in Figures 3–9, where four different moment sets—7 mc, 35 mc,

113 mc, and 185 mc—are compared. For the parameters which can be estimated

relatively easily, the difference between 113 mc and 185 mc is small. However, the

larger moment sets offer a considerable improvement for ρ, φ, and ϕe. These results

indicate that one should choose the largest moment set in order to obtain precise

estimates, also and in particular for small sample sizes.

In order to formally determine how many lags are informative, we propose to

select the moment set that minimizes the Bayes-Schwarz information criterion for

GMM suggested by Andrews (1999):

GMM-BIC = JT − (|c|−pb) lnT, (38)

where

JT = T GT (ξ̂M0
)
[
Âvar(GT (ξ̂M0

))
]+
GT (ξ̂M0

), (39)
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is Hansen’s (1982) J-statistic.
[
Âvar(GT (ξ̂M0

))
]+

denotes the pseudo-inverse of the

estimated asymptotic covariance matrix of GT (ξ̂M0
), |c| stands for the number of

moment conditions, and pb stands for the number of estimated parameters.

[Insert Table 12 about here]

Table 12 shows that in the vast majority of replications the GMM-BIC selects the

largest moment set (185 mc), confirming our previous finding that a high number of

lags is indeed informative, which should be exploited to enhance estimation precision.

Replications for which the optimization algorithm did not converge or produced

economically implausible results are not included in Tables 8–11 and the kernel den-

sities in Figures 3–9. We consider a result to be implausible if one of the parameter

estimates differs from the true parameter value by a factor of ten or more.

In an application using a single data set one would try to tackle those prob-

lematic data using the remedies of applied econometrics: using different (and more

favorable) starting values, probing alternative optimization algorithms and tuning

the algorithm’s parameters. However, such a “clinical” handling of the problematic

simulated data sets would hamper the feasibility of a simulation study.

[Insert Table 13 about here]

Nevertheless, the analysis of the number of problematic cases across moment matches

and sample sizes is quite informative for our purposes. Table 13 shows that the num-

ber of successful estimations tends to be smaller for shorter time series and more

parsimonious moment sets. It is not surprising that estimation problems are exac-

erbated in small samples. We want to estimate the parameters of highly persistent

latent processes. Because of the slow convergence of sample to population moments

this is a difficult endeavor. However, Table 13 shows that the problems can also be

mitigated by including more informative moment conditions. For any sample size
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T , the use of more lags for the auto-moments—that is, allegedly more informative

moment matches—increases the number of successfully estimated replications. For

example, for the parsimonious 7 mc we have to discard 152 cases for T=1000, for

185 mc only 79 are discarded. Hence, accounting for remote lags in the moment

matches does not only improve estimation precision but also increases the probabil-

ity of a successful estimation. The exclusion of the problematic replications implies

a sample selection effect that strengthens our conclusions even more. The larger mo-

ment sets facilitate the computation of estimates also for some of those problematic

replications, for which the parsimonious moment sets fail. Since the more difficult

replications will yield worse estimates, the superiority of the larger moment sets is

even understated in the kernel densities and Tables 8–11.

4.3 SMM estimation of the preference parameters

We now turn to the SMM estimation of the preference parameters ξP = (δ, γ, ψ)′.

For that purpose we compare the theory-based moment conditions that we advocate

in Section 3.3 to the ad-hoc moment matches from Equation (28). SV is present

in the simulated data, but for estimation we concentrate out the SV parameters

as described in Section 3.3. To ensure robust optimization results, we perform an

initial grid search of reasonable ranges for the three preference parameters and use

the parameter combination that minimizes the SMM objective function as starting

values for the Nelder-Mead simplex.

We contrast the results from an estimation that takes the true macro parameters

as given to those using the macro parameters estimated in the first step. Using

the true macro parameters allows to assess the quality of the moment set selected

for the second estimation step independently of the effect of potentially imprecise
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first-step estimates. The estimated macro parameters are based on the moment set

that produced the most favorable results in the first estimation step (185 mc).

[Insert Figures 10 through 12 about here]

[Insert Table 14 about here]

Table 14 displays means and standard deviations of the SMM parameter estimates

using the true macro parameters. Figures 10–12 illustrate the estimation quality

by kernel densities. We can see that the time preference δ can be estimated most

precisely using both ad-hoc and theory-based moment matches. Parameter standard

deviations and biases are low, even for small T . By contrast, the estimation of risk

aversion γ and intertemporal elasticity of substitution ψ are more challenging. For

that purpose, the theory-based moment matches are clearly more suitable. The

superiority of the theory-motivated moment conditions is particularly pronunced

when it comes to the estimation of ψ.

Estimation quality is not hampered by concentrating out stochastic volatility.

Using the unconditional volatility instead of σ2
t when simulating moments only im-

palpably changes the results, as shown in Table 15. The variation in the parameter

estimates for ξP is even lower in most cases when the SV parameters are concen-

trated out.

[Insert Table 15 about here]

The right-hand side panel of Table 14 reports the estimation results using the

estimated macro parameters. Compared to the results based on the true macro

parameters, standard deviation and bias of the preference parameter estimates are

large, even with the best available macro parameter estimates. This result demon-

strates the vital importance of precise macro parameter estimates as an input for
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the second estimation step. The theory-based moments alone, although informative,

do not suffice to deliver good estimates of the preference parameters. For the results

reported in Table 16 we have raised the bar for the quality of the macro parameter

estimates by restricting the deviations from the true values to less than 100%, which

enhances the precision of the preference parameter estimates.

[Insert Table 16 about here]

[Insert Table 17 about here]

Again, the reported results are based on successful estimations only. The numbers

of replications for which the preference parameters could be successfully estimated

are given in Table 17. Replications were dropped if the algorithm converged to a

parameter set for which the model cannot be solved. Furthermore, if one or more

parameter exceeded the hundredfold of the true parameter value, the replication was

discarded due to economic implausibility. For the simulation studies based on the

estimated macro parameters, a successful first-stage estimation is required. Since an

estimation of the preference parameters is doomed to fail when one of the underly-

ing macro parameter estimates exceeds the tenfold of the true parameter in absolute

value, such replications were skipped on the second stage. This is particularly rel-

evant for the simulation studies with small T where the number of replications is

thereby considerably reduced.

Means and standard deviations reported in Table 14 show that the theory-

motivated moments outperform the ad-hoc moment matches, irrespective of the un-

derlying macro parameters. The theory-based moments ensure identification, they

yield smaller standard deviations when operating both on true and estimated macro

parameters and usually produce a smaller bias.

We saw that the accuracy of the estimated macro parameters ξ̂M0
is crucial for

the precise estimation of the preference parameters ξP . In order to increase the
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accuracy of ξ̂M0
, we use an efficiency-enhancing weighting for GMM estimation.

Table 18 compares the results of a GMM estimation of the macro parameters using

the identity matrix to a two-stage efficient weighting approach using the inverse

covariance matrix of the GMM residuals ut, W T =
[
V̂ar(ut)

]−1
.

[Insert Table 18 about here]

It turns out that the efficiency gains seem to be limited. Only for φ, which determines

the dynamics of dividend growth, there is a non-negligible efficiency gain. However,

φ is an important parameter that drives the macro dynamics. We therefore explore

the impact of using these presumably more efficient macro parameter estimates in

the estimation of ξP .

Table 19 displays the estimation results relying on macro estimates produced

with W T = I and the results from W T =
[
V̂ar(ut)

]−1
. Both use the theory-based

moment matches to estimate the preference parameters.

[Insert Table 19 about here]

We can see that the results particularly improve for small samples and the parame-

ters which are difficult to estimate. Standard deviations and biases get smaller for

all estimates but one. This indicates that a minor improvement in the estimation

of the macro dynamics can have a substantial impact. However, the larger improve-

ments of the macro parameters—which subsequently lead to better results for the

preference parameters—result from the well-chosen moment conditions rather than

from just applying an efficient weighting scheme. Efficient weighting is no panacea

that compensates for ill-conceived moment conditions.
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5 Conclusion

Estimating an asset pricing model that features two latent processes as fundamental

economic drivers, and a pricing kernel that depends on unobservable variables is a

demanding job for financial econometrics. The bar is raised if such a model must be

solved every time it is computed at new values of the model parameters, and if it is

not unlikely that the solution does not exist. Add as a final obstacle the fact that

the number of observations available for empirical analyses is small, and you have

collected the hurdles for empirical tests of long-run risk asset pricing models.

SMM is an estimation technique that is designed to cope with such methodolog-

ical challenges. It combines a compelling estimation philosophy—matching sample

moments and their model-implied counterparts—with computational feasibility: the

model-implied moments need not be analytically expressed as functions of the pa-

rameters, but can be approximated by sample means of simulated model series.

While SMM is thus appealing for our purpose, some empirically important ques-

tions have not been addressed, and our study aims to close that gap. Are the mo-

ments selected for matching really informative enough to identify those deep model

parameters, which describe the dynamics of latent processes and investor prefer-

ences? Non-identification may hide itself well in such a complex model structure.

We saw powerful optimizers go astray on an objective function surface with myri-

ads of local minima implied by weakly identifying moment conditions. This caveat

calls for due diligence when transferring the key model characteristics into infor-

mative moment matches. An agnostic match of some low-order moments is clearly

insufficient. And even if meaningful theory-rooted and practically useable moment

conditions can be found, what is the sample size that is required to deliver precise

estimates?
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We tackle these issues by proposing a combined GMM/SMM two-step estimation

strategy, in which we elicit moment conditions that reflect the key features of the

LRR model. We first focus on the parameters that drive the macroeconomic dynam-

ics and deal with investor preference parameters in a second step, using the first-step

estimates as input and exploiting the asset pricing equations and predictive relations

implied by the LRR framework. The question of how large the number of observa-

tions has to be for a successful estimation is addressed in an extensive simulation

study.

The theoretical moments that we use in the first estimation step can be analyt-

ically expressed as functions of the macro parameters, such that GMM estimation

becomes feasible. These moment matches are valid in the presence of stochastic

consumption volatility, but they cannot identify the SV parameters. They can,

however, identify the unconditional consumption volatility, which is required in the

second estimation step. The properties of the latent persistent growth component,

that defining feature of the LRR model, are captured by including remote lags

of (cross-) autocovariances of consumption and dividend growth. Our estimation

strategy considerably improves the ability to estimate the parameters of the latent

consumption growth component.

Given the notorious difficulties related to estimating stochastic volatility pro-

cesses, we propose to concentrate out the SV parameters in the second (SMM)

estimation step. We do not preclude that SV prevails in the data, but we replace

time-varying stochastic volatility by the first-step unconditional volatility estimate

when computing the simulated moments in the second step. Unless you are inter-

ested in conditional pricing implications, estimating the parameters of interest is

feasible without loss of precision.
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Using the theory-based moment conditions, which we propose, delivers precise

estimates for subjective discount factor, relative risk aversion and the intertemporal

elasticity of substitution also for smaller samples. Given the complexity of the LRR

asset pricing equations, this is an encouraging result. SMM lives up to the promise

of being able to deliver good estimates in a difficult setup, provided that informative

moment matches are used.

The caveat is that the estimates of the macro parameters, which are used for the

second estimation step, have to be of high quality. To achieve that quality, both

informative first-stage moment matches and relatively large sample sizes are manda-

tory. This finding adds grains of salt to empirical applications, which inevitably have

to work with small samples. It may sound like a truism, but in order estimate a

complex DAPM like the LRR model it is indispensable to have informative data

(long time series) and strong moment matches. We saw that short data series may

turn out to be uninformative, such that first-step estimation either fails or the es-

timates are very imprecise. But if data and/or estimation quality of the economic

parameters is poor, you cannot expect too much from the second-step estimation

of the preference parameters. Refraining from estimating them in the first place is

then the scientifically honest decision. Our two-step approach is therefore a reality

check for applied work.

Let us conclude. In this study we have tried to elicit the key features out of the

LRR model into meaningful and strong moment matches, and we have discussed

the benefits and limitations of our estimation strategy. We believe that subsequent

research will most fruitfully be invested in increasing the quality of the macro pa-

rameter estimates. And, yes, time has to pass.
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Tables and Figures
Table 1: Moments used for moment sensitivity analysis
The table lists the moments used in a first attempt for the estimation of the structural parameters
of the long-run risk model. Three types of moment conditions are applied. Crucial moments
describing the macroeconomic environment are matched, asset pricing properties are replicated,
and prediction relationships are exploited. The macro moments are obtained from the fundamental
processes which drive the economy. The formulas for the asset pricing moments emerge as a result
of the linear approximations derived on the basis of the macroeconomic environment. ξt+1, the
residual of an AR(1) process for log consumption growth, is obtained by regressing gt+1 on gt.

Macro moments

Mean of log consumption growth E(gt)

Mean of log dividend growth E(gd,t)

Mean of squared log consumption growth E(g2t )

Mean of squared log dividend growth E(g2d,t)

Mean of the product of log consumption growth with its first lag E(gt gt+1)

Mean of the product of log consumption growth with its second lag E(gt gt+2)

Asset Pricing moments

Mean excess return of the market portfolio (in logs) E(rm,t − rf,t)
Mean log risk-free rate E(rf,t)

Mean log price-dividend ratio E(zm,t)

Mean squared excess return of the market portfolio (in logs) E[(rm,t − rf,t)2]

Mean squared log risk-free rate E[r2f,t]

Mean squared log price-dividend ratio E[z2m,t]

Prediction moments

Mean squared residual of AR(1) for log consumption growth E(ξ2t+1)

Mean product of squared residual and log price-dividend ratio E(ξ2t+1 zm,t)
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Table 5: Moment sensitivity to parameters for theory-based moments
This table holds the moment sensitivity matrix for the theory-based moments using the simulated
part of the moment match. The moments are computed from a simulated dataset with a sample
size of 106 observations, based on the parameters from Table 6. The moment sensitivity in this
table is computed as the relative change of a moment when one given parameter c.p. decreases by
10%. Each column of the table displays the sensitivity of all moments to a change of that size in
the parameter given in the column header.

δ γ ψ

E(M) -0.10 -0.00 -0.00

−Cov(Rm−Rf ,M)
E(M) -0.97 -0.10 -0.04

E
[
(Rm −Rf )2

]
-0.32 0.01 -0.03

Cov(Rf,t+1,zm,t)
Var(zm) 4.28 -0.01 0.14

E(zm) -0.60 0.02 -0.00

E(z2m) -0.84 0.04 -0.00

Table 6: True parameter values
This table holds the parameter values calibrated by Bansal and Yaron (2004). These values are
used as true parameter values for the simulation of the LRR model.

µc 0.0015 σ 0.0078

µd 0.0015 φ 3.0

ρ 0.9790 ϕd 4.5

ϕe 0.0440 δ 0.998

ν1 0.9870 γ 10.0

σw 2.3 ·10−6 ψ 1.5
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Table 7: Moment conditions used for GMM estimation of macro parameters
For GMM estimation of ξM0

, the basic set of first and second moment conditions in (26) is always
included. The maximum lag lengths of the (cross) auto-moments in (27) vary according to the
scheme below.

moment set L1 L2 L3

7 mc 2 0 0

15 mc 5 5 0

20 mc 5 5 5

35 mc 10 10 10

87 mc 36 36 10

113 mc 36 36 36

149 mc 48 48 48

185 mc 60 60 60
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Table 12: Moment matches selected by GMM-BIC
This table evaluates the performance of the different moment sets by comparing the GMM-BIC.
We count the number of replications in which a given moment set minimizes the BIC criterion for
each T . Replications with implausible parameter estimates, failed computation of the GMM-BIC,
or for which the optimization algorithm did not converge, were dropped. We consider an estimate
implausible if it is ten times bigger than the true parameter value. Furthermore, a replication is
discarded if the J-statistic lies above the 99.999% quantile of the respective χ2-distribution, which
leads to an implausibly high value of the GMM-BIC. The table shows that the highest number of
moment conditions minimizes the information criterion in the majority of the cases. Hence, we
find that we should include a high number of lags for autocorrelations and cross-correlations.

7mc 15mc 20mc 35mc 87mc 113mc 149mc 185mc

T=1000 0 1 5 12 11 13 31 255

T=2000 0 1 2 6 1 12 25 308

T=5000 0 1 0 0 0 3 24 364

T=100000 0 0 0 0 0 0 0 400

Table 13: Successful estimations for the macro parameters
This table gives the number of successful estimations for each simulation study of the macro sub-
model. The total number of replications is 400. Results of a replication are dropped if a parameter
estimate is larger than ten times the true value or if the algorithm did not converge.

7mc 15mc 20mc 35mc 87mc 113mc 149mc 185mc

T=1000 248 227 257 281 317 326 325 321

T=2000 325 267 317 324 355 363 358 365

T=5000 375 341 360 369 392 393 394 389

T=100000 397 394 397 399 400 399 399 400
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Table 14: Means and standard deviations of the SMM estimates δ̂, γ̂, and ψ̂
This table displays the results for the preference parameters obtained from two different moment
sets, the ad-hoc chosen moments and the theory-based moments. For both moment sets the esti-
mation was performed once based on the true macro parameters and once based on the estimated
macro parameters from the first stage. The table shows that the precision of the estimates tremen-
dously depends on the quality of the macro parameters.

true macro parameters estimated macro parameters

ad-hoc theory-based ad-hoc theory-based

δ=0.9980

T=1000 0.9981 0.9980 0.9955 0.9965

(0.0008) (0.0006) (0.0047) (0.0021)

T=2000 0.9980 0.9980 0.9966 0.9972

(0.0006) (0.0004) (0.0027) (0.0019)

T=5000 0.9979 0.9980 0.9979 0.9978

(0.0004) (0.0003) (0.0011) (0.0007)

T=100000 0.9979 0.9980 0.9980 0.9980

(0.0002) (0.0001) (0.0005) (0.0002)

γ=10

T=1000 10.5409 10.3399 34.4836 26.5381

(1.4146) (1.1108) (82.5210) (28.4748)

T=2000 10.3125 10.2983 19.5936 16.4719

(1.0566) (0.7999) (38.9336) (14.8120)

T=5000 10.2542 10.3380 11.7276 12.7821

(0.7275) (0.5097) (6.9328) (5.7417)

T=100000 10.1376 10.3287 10.3326 10.3929

(0.3114) (0.1112) (0.6271) (0.6996)

ψ=1.5

T=1000 1.8402 1.5171 4.0093 3.1949

(1.7972) (0.0542) (9.5282) (3.6131)

T=2000 1.9827 1.5149 3.3048 2.5063

(4.9717) (0.0256) (5.4362) (1.8937)

T=5000 1.7570 1.5154 3.2752 1.9462

(1.3764) (0.0428) (7.4588) (1.5177)

T=100000 1.7964 1.5129 1.7586 1.5279

(2.2075) (0.0017) (0.9212) (0.1533)
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Table 15: Means and standard deviations of ξ̂P with SV concentrated out or
using true ν1 and σw
This table shows that it does not make a difference whether we concentrate out ν1 and σw or
use their true values when we estimate the preference parameters. The simulated data have SV
present. The estimation is based on the theory-motivated moment conditions and the true macro
parameters.

SV concentrated out true values for ν1, σw

δ=0.9980

T=1000 0.9980 0.9982

(0.0006) (0.0008)

T=2000 0.9980 0.9983

(0.0004) (0.0007)

T=5000 0.9980 0.9984

(0.0003) (0.0005)

T=100000 0.9980 0.9983

(0.0001) (0.0001)

γ=10

T=1000 10.3399 10.3238

(1.1108) (1.3043)

T=2000 10.2983 10.4376

(0.7999) (1.0647)

T=5000 10.3380 10.6081

(0.5097) (0.7407)

T=100000 10.3287 10.5481

(0.1112) (0.1607)

ψ=1.5

T=1000 1.5171 1.5260

(0.0542) (0.0923)

T=2000 1.5149 1.5195

(0.0256) (0.0591)

T=5000 1.5154 1.5125

(0.0428) (0.0141)

T=100000 1.5129 1.5140

(0.0017) (0.0022)
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Table 16: Means and standard deviations of the SMM estimates δ̂, γ̂, and ψ̂
using precise first-step estimates ξ̂M0

This table displays the results for the preference parameters obtained from two different moment
sets, the ad-hoc chosen moments and the theory-based moments. For both moment sets the
estimation of the preference parameters is only performed for reasonably precisely estimated macro
parameters ξ̂M0

from the first stage. The benchmark is that the estimates ϕ̂e, φ̂, and ϕ̂d do not
deviate by more than 100% from their true values. The table shows that the precision of the
estimates is enhanced by ensuring the quality of the macro parameters, compared to the results
based on estimated macro parameters displayed in Table 14.

ad-hoc theory-based

δ=0.9980

T=1000 0.9963 0.9969

(0.0024) (0.0018)

T=2000 0.9967 0.9972

(0.0026) (0.0014)

T=5000 0.9979 0.9978

(0.0011) (0.0006)

T=100000 0.9980 0.9980

(0.0005) (0.0002)

γ=10

T=1000 14.5026 17.6116

(12.1657) (17.3300)

T=2000 15.2075 13.7967

(33.0646) (10.7466)

T=5000 11.2477 12.2792

(3.3315) (4.1390)

T=100000 10.3326 10.3929

(0.6271) (0.6996)

ψ=1.5

T=1000 3.1976 2.3595

(9.1846) (3.4152)

T=2000 3.0002 1.9782

(4.7453) (1.0916)

T=5000 3.3112 1.7258

(7.5025) (0.6467)

T=100000 1.7586 1.5279

(0.9212) (0.1533)
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Table 17: Successful second-step SMM estimations for the preference param-
eters
This table gives the number of successfully estimated replications for each simulation study of the
asset pricing model. The maximum possible number of successful estimations for ξP when the
estimated macro parameters are used is limited by the respective number of successfully estimated
replications from the macro model, given in the last column of Table 13. In addition, results are
dropped if the resulting preference parameter estimates are larger than the hundredfold of their
true values or if the algorithm did not converge.

true macro parameters estimated macro parameters

ad-hoc theory-based ad-hoc theory-based

T=1000 382 333 159 240

T=2000 392 368 177 281

T=5000 393 382 226 329

T=100000 392 399 396 392
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Table 18: Means and standard deviations of first-step GMM estimates using
identity matrix and “efficient” weighting scheme
The results from a two-stage version of the GMM efficient weighting are compared to first-stage
GMM using the identity matrix. The“efficient”weighting matrix is obtained as the inverse variance
matrix of the GMM residuals from a first-stage GMM estimation. We use the 185 mc described in
Table 7.

W T = I W T =
[
V̂ar(ut)

]−1
W T = I W T =

[
V̂ar(ut)

]−1
µc=0.0015 µd=0.0015

T=1000 0.001566 0.001431 0.002017 0.001924
(0.000520) (0.000569) (0.001467) (0.001532)

T=2000 0.001524 0.001465 0.001665 0.001628
(0.000367) (0.000382) (0.001149) (0.001195)

T=5000 0.001522 0.001490 0.001589 0.001557
(0.000238) (0.000243) (0.000830) (0.000858)

T=100000 0.001496 0.001490 0.001482 0.001475
(0.000059) (0.000095) (0.000192) (0.000215)

ρ=0.9790 ϕe=0.0440

T=1000 0.914304 0.926508 0.056177 0.058211
(0.170581) (0.172008) (0.047299) (0.049801)

T=2000 0.954707 0.961988 0.053195 0.048828
(0.087877) (0.096559) (0.044524) (0.029814)

T=5000 0.972734 0.976753 0.047415 0.045632
(0.027517) (0.009447) (0.028952) (0.010915)

T=100000 0.978726 0.978759 0.044204 0.044211
(0.002683) (0.001637) (0.004015) (0.001899)

σ=0.0078 φ=3.0

T=1000 0.007778 0.006866 4.118246 3.279867
(0.000404) (0.000396) (3.976272) (2.524031)

T=2000 0.007781 0.007327 3.357487 3.065498
(0.000384) (0.000264) (1.942996) (1.493208)

T=5000 0.007815 0.007612 3.111128 2.964123
(0.000179) (0.000172) (0.759768) (0.604832)

T=100000 0.007802 0.007791 3.010695 2.997759
(0.000042) (0.000041) (0.142076) (0.184094)

ϕd=4.5

T=1000 4.489017 4.749044
(0.168620) (0.224397)

T=2000 4.516286 4.627509
(0.332658) (0.135163)

T=5000 4.495031 4.549365
(0.073611) (0.072046)

T=100000 4.498434 4.501541
(0.016911) (0.016699)
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Table 19: Means and standard deviations of the preference parameter esti-
mates using an efficient weighting matrix estimate in the estimation of the
macro parameters
This table displays the results from the preference parameters, estimated based on two different
underlying sets of estimated macro parameters: in the left column, the macro parameters are es-
timated via a first-stage GMM approach, in the right column the macro parameters are estimated
using a two-stage efficient weighting matrix. The moment set used for the estimation of the pref-
erence parameters is the theory-motivated moment set. The table shows that a higher precision
of a relevant macro parameter estimate helps to improve the results of the asset pricing model
estimation.

W T = I W T =
[
V̂ar(ut)

]−1
W T = I W T =

[
V̂ar(ut)

]−1
δ=0.9980 γ=10

T=1000 0.9965 0.9970 26.5381 19.8183

(0.0021) (0.0024) (28.4748) (23.9993)

T=2000 0.9972 0.9974 16.4719 14.5322

(0.0019) (0.0013) (14.8120) (14.4060)

T=5000 0.9978 0.9978 12.7821 12.0499

(0.0007) (0.0007) (5.7417) (4.7351)

T=100000 0.9980 0.9980 10.3929 10.3809

(0.0002) (0.0001) (0.6996) (0.6776)

ψ=1.5

T=1000 3.1949 2.8801

(3.6131) (2.9754)

T=2000 2.5063 2.1048

(1.8937) (1.4821)

T=5000 1.9462 1.7309

(1.5177) (0.6011)

T=100000 1.5279 1.5248

(0.1533) (0.0976)
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Figure 1: Autocorrelograms of simulated consumption and dividend growth
These autocorrelograms illustrate the persistence of the growth processes defining the macroecon-
omy. The graphs are based on a model simulation based on the parameter values used by Bansal
and Yaron (2004) listed in Table 6 and a sample size of 106 observations. The abscissa spans a
time interval of 10 years, the half-life of both autocorrelations is about three years.

log consumption growth log dividend growth
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Figure 2: (Non-) existence of the solution for the endogenous LRR model pa-
rameters
Finding the roots of the squared deviations between hypothetical and model-implied mean is re-
quired to solve for the endogenous parameters. If the deviation functions do not both have a root
the model cannot be solved. These cases need to be prevented in simulations of the model.

root for z̄ for γ = 10, µd = 0.0015 root for z̄m for γ = 10, µd = 0.0015

root for z̄ for γ = 4, µd = 0.0035 root for z̄m for γ = 4, µd = 0.0035
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Figure 3: Kernel densities for µ̂c
The figure displays the kernel densities for µ̂c resulting from different moment sets. In order to
account for the boundedness of the parameters, we use beta kernels for the parameters between
0 and 1. The vertical lines indicate the position of the true parameter. The information for the
estimate µ̂c is mainly contained in E(gt), which is matched in all moment sets. Therefore, the
estimation precision of µ̂c varies little across moment sets.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 4: Kernel densities for µ̂d
The figure displays the kernel densities for µ̂d resulting from different moment sets. In order to
account for the boundedness of the parameters, we use beta kernels for the parameters between
0 and 1. The vertical lines indicate the position of the true parameter. The information for the
estimate µ̂d is mainly contained in E(gd,t), which is matched in all moment sets. Therefore, the
estimation precision of µ̂d varies little across moment sets.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 5: Kernel densities for ρ̂
The figure displays the kernel densities for ρ̂ resulting from different moment sets. In order to
account for the boundedness of the parameters, we use beta kernels for the parameters between 0
and 1. The vertical lines indicate the position of the true parameter. It stands out that the large
moment sets are clearly superior to the smaller moment sets, hence, matching autocovariances for
long lags enhances the precision of ρ̂.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 6: Kernel densities for ϕ̂e
The figure displays the kernel densities for ϕ̂e resulting from different moment sets. The vertical
lines indicate the position of the true parameter. It stands out that the large moment sets are clearly
superior to the smaller moment sets, hence, matching autocovariances for long lags enhances the
precision of ϕ̂e.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 7: Kernel densities for σ̂
The figure displays the kernel densities for σ̂ resulting from different moment sets. The vertical
lines indicate the position of the true parameter. The information for the estimate of the uncondi-
tional variance σ̂ is mainly contained in E(g2t ) and E(g2d,t), which are matched in all moment sets.
Therefore, the estimation precision of σ̂ varies little across moment sets.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 8: Kernel densities for φ̂
The figure displays the kernel densities for φ̂ resulting from different moment sets. The vertical lines
indicate the position of the true parameter. It stands out that the large moment sets are clearly
superior to the smaller moment sets, hence, matching autocovariances for long lags enhances the
precision of φ̂.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 9: Kernel densities for ϕ̂d
The figure displays the kernel densities for ϕ̂d resulting from different moment sets. The vertical
lines indicate the position of the true parameter. Only E(g2d,t), which is matched in all moment
sets, contains information for the estimate ϕ̂d. Therefore, the estimation precision of ϕ̂d varies
little across moment sets.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 10: Kernel densities for δ̂
The figure displays the kernel densities for δ̂ resulting from different moment sets, using the true
macro parameters. The vertical lines indicate the position of the true parameter. The theory-
motivated moments are superior to the ad-hoc moments when it comes to estimating the subjective
discount factor δ.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 11: Kernel densities for γ̂
The figure displays the kernel densities for γ̂ resulting from different moment sets, using the true
macro parameters. The vertical lines indicate the position of the true parameter. The theory-
motivated moments are superior to the ad-hoc moments when it comes to estimating the risk
aversion γ.

T = 1000 T = 2000

T = 5000 T = 100000
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Figure 12: Kernel densities for ψ̂
The figure displays the kernel densities for ψ̂ resulting from different moment sets, using the true
macro parameters. The vertical lines indicate the position of the true parameter. The theory-
motivated moments are clearly superior to the ad-hoc moments when it comes to estimating the
intertemporal elasticity of substitution ψ. When using the ad-hoc moments, ψ only seems to be
weakly identified.

T = 1000 T = 2000

T = 5000 T = 100000
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