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Abstract

The rare disaster hypothesis suggests that the extraordinarily high postwar
U.S. equity premium resulted because investors ex ante demanded compen-
sations for unlikely but calamitous risks that they happened not to incur.
While convincing in theory, empirical tests of the rare disaster explanation
are scarce. We estimate a disaster-including consumption-based asset pric-
ing model (CBM) using a combination of the simulated method of moments
and bootstrapping. We consider several methodological alternatives that
differ in the moment matches and the way to account for disasters in the
simulated consumption growth and return series. Whichever specification is
used, the estimated preference parameters are of an economically plausible
size, and the estimation precision is much higher than in previous studies
that use the canonical CBM. A comparable combination of plausibility and
estimation precision has not been delivered in the related literature. Our
results thus provide empirical support for the rare disaster hypothesis, and
help restore the nexus between real economy and financial markets implied
by the consumption-based asset pricing paradigm.
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1 Introduction

It serves as a paradigm in asset pricing theory that positive expected excess re-

turns result as a form of risk compensation. Since the empirical equity premium –

the average excess return of equity over the risk-free rate – has been very high for

postwar U.S. stocks, there seems to be a considerable amount of risk to be com-

pensated for. The methodological lynchpin of the pertinent literature is Hansen

and Singleton’s (1982) consumption-based asset pricing model (CBM). Assuming

additive power utility, it implies the asset pricing equation for a gross return Rt+1

Et [β (Ct+1
Ct

)
−γ
Rt+1] = 1, (1.1)

where β denotes the subjective discount factor capturing time preference, γ con-

stant relative risk aversion (CRRA), and Ct consumption in period t.

As evinced by Mehra and Prescott (1985), the canonical CBM cannot explain

the high equity premium at plausible values of relative risk aversion, which led to

the widespread belief that the model is strong in theory, but weak in application.1

It was first noted by Rietz (1988) that the reason for the apparent failure of the

CBM may be rare but extreme contractions in consumption. The rationale is

that investors demand a compensation for the risk of sharp downturns in their

consumption that may occur with a very small probability. This compensation is

reflected in high expected returns for assets whose payoffs covary positively with

consumption. In a sample without such contractions, average returns of those

1 Cochrane (1996) uses Hansen’s (1982) Generalized Method of Moments (GMM) to estimate
the parameters of Equation (1.1) and obtains γ̂ = 241, which implies an implausibly high risk
aversion. Mehra and Prescott (1985), and Rietz (1988) consider a range for γ between one to
ten to be plausible, while Cochrane (2005) suggests one to five.
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assets can be high. Barro (2006) draws on Rietz’s (1988) approach and provides

a model that permits a calibration of equity premia. He uses information about

disastrous contractions in GDP, assumes plausible values of relative risk aversion

and time preference, and shows that the calibrated equity premia are in the range

of their empirically observed counterparts. The seminal contributions by Rietz

and Barro have laid the foundation for a growing literature. However, empirical

tests of the rare disaster hypothesis are sparse. Whilst calibrations like Barro’s

are useful, the question remains, how asset pricing models that account for rare

disasters – and in particular the CBM – perform when econometric techniques are

applied to estimate the model parameters.

The empirical analysis of asset pricing models that account for the possibility

of rare disasters is hampered because extreme consumption contractions are rare

by definition. How can the estimation of a disaster-including CBM be accom-

plished without observing any sharp downturns in the first place? We tackle this

epistemological problem by pursuing an econometric approach that is inspired by

Cochrane’s (2005, p. 461) remark:

“We had no banking panics, and no depressions; no civil wars, no con-

stitutional crises; we did not lose the Cold War, no missiles were fired

over Berlin, Cuba, Korea, or Vietnam. If any of these things had hap-

pened, we might well have seen a calamitous decline in stock values,

and I would not be writing about the equity premium puzzle.”

In line with this view, we conjecture that the extremely high risk aversion

estimates result from a sample selection effect, i.e. the consumption and return

data that the U.S. economy produced during the past 65 years represent one lucky
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itinerary of the histories that could have been.2 If this is true, then the apparent

empirical deficiencies of the CBM emerge because the available data do not rep-

resent the possible – disaster-including – scenarios that investors anticipated. If

disastrous contractions in consumption were possible but did not occur, then we

have to account for them by traveling (metaphorically) the roads that the U.S.

postwar economy did not take. We have to consider histories, in which there were

banking panics and depressions, worlds, in which the U.S. did lose the Cold War, in

short, alternative histories in which we would not write about the equity premium

puzzle.

We combine the simulated method of moments (SMM) and non-parametric

and parametric bootstrapping to facilitate such journeys within frequentist statis-

tics’ concept of repeated sampling. All our methodological alternatives rely on

simulated disaster-including consumption growth and return data. Adopting the

disaster identification scheme proposed by Barro (2006) on GDP data collected by

Angus Maddison, we identify contractions that exceed a specified threshold. We

draw shrinkage factors from a Double Power Law distribution to allow for sharp

contractions of the bootstrapped “regular” consumption growth series. Following

Barro and Jin (2011), we use the sample of identified contractions and estimate the

distributional parameters by maximum likelihood. We consider three possibilities

to simulate financial returns conditional on occurrence and size of a calamitous

consumption contraction, and we advocate two types of moment matches that

facilitate SMM-type estimation of a disaster-including CBM. In an alternative ap-

proach, which we refer to as Alternative Histories Bootstrap (a term chosen to

echo Cochrane’s quote), we apply GMM to ensembles of bootstrapped disaster-

2 By invoking the “peso problem hypothesis”, Veronesi (2004) argues in a similar direction.
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including series. Here, parameter estimates are obtained by averaging over those

“alternative histories”. All methodological variants deliver comparable, economi-

cally plausible and precise estimates of the coefficient of relative risk aversion and

the subjective discount factor. Our results thus provide empirical support for the

rare disaster hypothesis, and help restore the nexus between real economy and

financial markets implied by the consumption-based asset pricing paradigm.

Our study contributes to a growing literature on rare disaster risk in asset

pricing. Barro and Jin (2011) present a calibration of the Barro (2006) model

with Epstein-Zin preferences and Double Power Law distributed extreme con-

tractions. Aiming at a possible solution to the volatility puzzle, Wachter (2013)

extends Barro’s (2006) model by recursive preferences and time-varying disaster

probabilities. Gabaix (2012) formulates a model in which the severity of disasters

is time-varying, and challenges ten prominent puzzles in macro-finance. Backus

et al. (2011) rely on equity index options to obtain the distribution of consump-

tion growth disasters, and Gourio (2012) includes time-varying disaster risk in a

business cycle model. Julliard and Ghosh (2012) fit a non-parametric distribution

to disastrous GDP contraction data and argue that the equity premium puzzle

itself emerges as a rare event. Weitzman (2005) uses a Bayesian approach that fo-

cuses on learning about consumption volatility, which implies fat-tailed posterior

distributions of future consumption growth. The paper by Posch and Schrimpf

(2012) is closest to the present study. They consider an alternative approach to

evaluate the rare disaster hypothesis by simulating consumption and return data

of economies that are potentially hit by disasters. Based on the simulated data,

Posch and Schrimpf analyze the Euler equation errors, and estimate the CBM on
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samples conditional on no disasters. They report that the parameter estimates

obtained from such a procedure are comparably implausible to those computed

from empirical data. Our results complement theirs in that we explicitly focus on

disaster-including consumption series and the plausible estimates of relative risk

aversion and subjective discount factor that are obtained once rare disaster risk is

accounted for.

From a broader perspective, our study contributes to the literature that at-

tempts to vindicate the CBM, while retaining its core paradigm reflected in Equa-

tion (1.1). These studies only partially succeed to provide plausible and precise

estimates of the CBM preference parameters. Yogo (2006), for example, pro-

poses a structural model that differentiates between consumption of durable and

nondurable goods. The model is able to explain cross-sectional and time series

variation in expected stock returns but at a still very high level of risk aversion.

The smallest relative risk aversion estimate obtained with the unconditional ver-

sion of his model amounts to γ̂ = 191.4. The estimated subjective discount factor

is plausible (β̂ = 0.9). Savov (2011) relies on waste data as a measure of consump-

tion, fixes β = 0.95 and – using the excess market return as the single test asset –

obtains a considerably lower estimate of the parameter of risk aversion, γ̂ = 17.0.

Estimation precision is moderate (s.e.(γ̂) = 9.0). Julliard and Parker (2005) ana-

lyze the ultimate risk of consumption, which is defined as the covariance of returns

and consumption growth aggregated over the current and future periods. They

fix β = 1, and estimate γ̂ = 9.1. However, the estimate also has a relatively high

standard error (s.e.(γ̂) = 17.2). Savov’s (2011) and Julliard and Parker’s (2005)

studies compare to ours in the sense that they modify the consumption data that
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is used in the empirical analysis instead of elaborating investors’ preferences.

The remainder of the paper is structured as follows. Section 2 motivates a

disaster-including CBM and outlines the econometric methodology. Section 3 dis-

cusses the estimation results, whilst Section 4 concludes.

2 Methodology

2.1 Accounting for rare disasters in a consumption-based

asset pricing model

There are two rational explanations for the high equity premia measured in U.S.

postwar return data, and both are compatible with the CBM. The first is that

investors are extremely risk averse and demand large compensations for carrying

little risk, a reasoning that is in line with the high CRRA estimates reported by

Cochrane (1996) and Yogo (2006). The second is the rare disaster hypothesis,

which states that high equity premia result because investors are compensated for

the risk of calamitous contractions that (luckily) did not happen. An empirical

assessment of this explanation is hampered when the historical data do not contain

enough information about disastrous contractions of consumption and asset prices.

In the following, we outline our idea to econometrically test the rare disaster

hypothesis within the CBM framework.

Barro (2006) considers a disaster-including consumption process that he uses

to obtain closed form solutions of equity premia conditional and unconditional on

disaster periods. We adopt his specification for our purposes, and assume that
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consumption evolves as3

Ct+1 = Cteut+1evt+1 , (2.1)

where ut+1 ∼ (µ,σ2) and vt+1 = ln(1 − bt+1)dt+1. The binary disaster indicator dt+1

is one if a disaster occurs in t + 1 and zero otherwise. If dt+1 = 1, consumption

contracts by a random factor bt+1 ∈ [q,1], where q refers to the disaster threshold,

such that

Ct+1
Ct

= eut+1(1 − bt+1)dt+1 . (2.2)

Accordingly, eut+1 denotes non-disastrous consumption growth and (1 − bt+1)dt+1

accounts for the effect of a potential disaster on consumption.

Substituting the right-hand side of Equation (2.2) into Equation (1.1), we can

write the basic asset pricing equation as it applies to a gross return:

Et [β (eut+1evt+1)−γ Rt+1] = pEt [β (eut+1(1 − bt+1))−γ Rt+1∣dt+1 = 1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

expect. cond. on disaster in t + 1

+ (1 − p)Et [β (eut+1)−γ Rt+1∣dt+1 = 0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
expect. cond. on no disaster in t + 1

= 1,

(2.3)

where the disaster probability p = P(dt+1 = 1) is assumed to be time-invariant.

Applying the Law of Total Expectation to Equation (2.3) and re-arranging terms,

we obtain

E [β (eut)−γ Rt∣dt = 0] = 1

1 − p
[1 − pE [β (eut(1 − bt))−γ Rt∣dt = 1]] . (2.4)

3 In Barro’s (2006) endowment economy, consumption equals output At, where lnAt+1 = lnAt+
µ + ut+1 + vt+1, with ut+1 ∼ N(0, σ2). For convenience, we modify Barro’s specification by
allowing for a non-zero mean of ut+1 and discarding the drift parameter µ.
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Pricing excess returns, the analogue of Equation (2.4) is

E [(eut)−γ Re
t ∣dt = 0] = − p

1 − p
[E [(eut(1 − bt))−γ Re

t ∣dt = 1]] . (2.5)

β is not identified in this case.

If a sample with disaster observations were available, we could write the sample

counterparts of the population moments in Equation (2.4) as

1

T −DT

T

∑
t=1
βcg−γnd,tRnd,t(1 − dt) =

1

1 − DT
T

[1 − DT

T
[ 1

DT

T

∑
t=1
βcg−γd,tRd,tdt]] , (2.6)

where DT = ∑Tt=1 dt counts the number of disasters in a series of length T , cgd,t and

Rd,t denote consumption growth and gross return in a disaster period, and cgnd,t

and Rnd,t are regular consumption growth and return. As T →∞ and when a Law

of Large Numbers (LLN) holds, DT
T Ð→p p and T−DT

T Ð→
p

1−p. Furthermore, assuming

that a Uniform LLN holds

1

DT

T

∑
t=1
βcg−γd,tRd,tdt ÐÐ→

p.u.
E [β (eut(1 − bt))−γ Rt∣dt = 1] , (2.7)

and

1

T −DT

T

∑
t=1
βcg−γnd,tRnd,t(1 − dt) ÐÐ→

p.u.
E [β (eut)−γ Rt∣dt = 0] , (2.8)

where ÐÐ→
p.u.

denotes uniform convergence in probability. Analogous expressions can

be given for the sample counterparts of (2.5).

Suppose that you have access to disaster-including data. You could then think

of using GMM and matching the sample moments (2.6) for selected test assets with

their population counterparts (2.4). However, your strategy would be impeded by
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the problem that even for long time series, the quality of the moment matches will

be poor and the parameter standard errors huge. Rare disasters are, well, rare,

and T has to be very large to ensure moderate estimation precision.

For the U.S. postwar data, which is used by all the studies mentioned in the

introduction, the problem is aggravated. These data do not incorporate any disas-

ter observations, i.e. dt = 0 ∀ t and thus DT = 0, such that p̂ = 0. To apply GMM,

we would use the disaster-free consumption growth cgnd,t and return series Rnd,t

(using excess returns: Re
nd,t), and match the left-hand side of Equation (2.4) (using

excess returns: (2.5)) with their sample counterparts 1
T ∑

T
t=1 βcg

−γ
nd,tRnd,t (using ex-

cess returns: 1
T ∑

T
t=1 βcg

−γ
nd,tR

e
nd,t). However, the right-hand side of Equation (2.4)

is equal to one, and the right hand side of Equation (2.5) is equal to zero, only if

p = 0. Hence, the usual moment matches for GMM estimation of the CBM

GT (β, γ) ≡
1

T

T

∑
t=1
βcg−γnd,tRnd,t − 1, (2.9)

using the gross returns of N test assets, Rnd,t = [R1
nd,t, . . . ,R

N
nd,t]′ or

GT (γ) ≡
1

T

T

∑
t=1
cg−γnd,tR

e
nd,t, (2.10)

using excess returns Re
nd,t = [Re1

nd,t, . . . ,R
eN
nd,t]′, are valid only if disastrous contrac-

tions in consumption are impossible. Yet, it is hard to imagine that investors in

1946, after World War II and the Great Depression, and at the wake of the Cold

War, should have assigned a probability of zero to states in which their consump-

tion may suffer from extreme contractions.

Does this imply that an empirical assessment of the rare disaster hypothesis
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and the estimation of a disaster-including CBM cannot be performed due to a

lack of suitable data? That one has to go beyond the possimpible?4 We tackle

this problem with an estimation strategy that consists of a mix of parametric

and non-parametric bootstrapping and SMM. Our approach is inspired by a quote

of Singleton (2006, p. 254), with which he advocates the simulated method of

moments:

“More fully specified models allow experimentation with alternative

formulations of economies and, perhaps, analysis of processes that are

more representative of history for which data are not readily available.”

We consider three SMM estimation strategies along that line. Each of them im-

plies matching sample moments and simulated theoretical moments, the latter

accounting for the possibility of consumption disasters. None of them requires the

availability of disaster-including consumption and return data.

2.2 Using SMM to estimate a disaster-including CBM

For the first approach towards estimating a disaster-including CBM, we derive

moment matches from Equations (2.4) and (2.5). Using time series of length T of

regular consumption and (excess) returns, sample counterparts of the left-hand side

conditional expectations can be computed as 1
T

T

∑
t=1
βcg−γnd,tRnd,t and 1

T

T

∑
t=1
βcg−γnd,tR

e
nd,t.

On the other hand, the right-hand side moments of Equations (2.4) and (2.5) can

neither be expressed as functions of parameters (which would facilitate GMM),

nor can sample counterparts be computed using disaster-free data. However, if

4 possimpible: the verge of the possible, where the possible and the impossible meet. Word
creation by Barney Stinson, a popular character of the TV show “How I Met Your Mother”.

10



it is possible to specify processes that are “more representative of history”, in the

sense of Singleton’s (2006) quote, i.e. series that include disaster observations, these

moments can be simulated, viz

1

1 − p
[1 − pE [β (eut(1 − bt))−γ Rt∣dt = 1]] ≈ 1

1 − DT
T (T )

⎛
⎝

1 − 1

T (T )

T (T )
∑
s=1

βcg−γs Rsds
⎞
⎠

p

1 − p
[E [(eut(1 − bt))−γ Re

t ∣dt = 1]] ≈ − 1

1 − DT
T (T )

1

T (T )

T (T )
∑
s=1

cg−γs R
e
sds,

(2.11)

where DT = ∑T (T )
s=1 ds denotes the number of disasters in the simulated sample of

size T (T ). Using the risk-free rate Rf and a vector of excess returns Re as test

assets, we can utilize the moment matches

GT (θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
T

T

∑
t=1
βcg−γnd,tR

f
nd,t −

1

1− D
T

T (T )

(1 − 1
T (T )

T (T )
∑
s=1

βcg−γs R
f
sds)

1
T

T

∑
t=1
βcg−γnd,tR

e
nd,t +

1

1− D
T

T (T )

1
T (T )

T (T )
∑
s=1

βcg−γs Re
sds

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (2.12)

where θ = [β, γ]′.5 SMM estimates of β and γ can then be obtained by solving

θ̂ = arg min
θ ∈Θ

GT (θ)′WTGT (θ), (2.13)

where WT is a symmetric and positive definite weighting matrix. The analysis

has to be based on a large T (T ) to ensure that the simulated data contain enough

disasters, such that the approximations in Equation (2.11) are sufficiently accurate.

We will refer to this first SMM approach as MAD-SMM (M oments Accounting for

D isasters).

5 β is identified via the first moment match in Equation (2.12) that invokes the risk-free rate.
If you want to use only excess returns, β will not be identified, and you can set it to any
non-zero number.
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In the next section, we will explain in detail how the simulation of the disaster-

including consumption growth, {cgs}T (T )
s=1 , and return series, {Rs}T (T )

s=1 , will be per-

formed. But let us first consider an alternative SMM approach, for which the

starting point is a set of moment conditions that result from a reformulation of

the basic asset pricing equation advocated by Julliard and Parker (2005). They

relate the expected excess return to the covariance of the excess return and the

stochastic discount factor (SDF), mt = βcg−γt ,

cov(mt,R
e
t) = E[(βcg−γt − µm)Re

t ], (2.14)

where µm = E[βcg−γt ], using the moment condition

E [Re
t +

E[(βcg−γt − µm)Re
t ]

µm
] = 0. (2.15)

Again, we want to account for the effect of calamitous, yet unobserved consump-

tion contractions on risk compensations, reflected in cov(mt,Re
t). This population

moment cannot be expressed analytically as a function of parameters, and us-

ing the sample covariance based on non-disastrous data is not helpful either. We

therefore resort to an approximation by simulated moments that allows for the

possibility of disasters in the generated series, viz

E[(βcg−γt − µm)Re
t ] ≈

1

T (T )

T (T )
∑
s=1

⎛
⎝
βcg−γs − 1

T (T )

T (T )
∑
s=1

βcg−γs
⎞
⎠
Re
s

µm = E[βcg−γt ] ≈ 1

T (T )

T (T )
∑
s=1

βcg−γs .

(2.16)
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Recognizing that the risk-free rate and the mean of SDF are related by

E [ 1

Rf
t

] = µm, (2.17)

estimates of β, γ and µm can be obtained using the moment matches

GT (β, γ, µm) = 1

T

T

∑
t=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
t +

1
T (T )

T (T )

∑
s=1

(βcg−γs −µm)Re
s

µm

1

Rft
− µm

µm − 1
T (T )

T (T )
∑
s=1

βcg−γs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.18)

in the SMM objective function in Equation (2.13). As pointed out by Julliard

and Parker (2005), WT has to be chosen such that the last moment match is

exact.6 We refer to estimates obtained in this fashion as JPM-SMM (Julliard-

Parker M oments) estimates.

2.3 Simulating disaster-including consumption and return

data

To apply the two SMM estimation strategies, we need to simulate disaster-including

consumption growth, {cgs}T (T )
s=1 , risk-free rate, {Rf

s}
T (T )
s=1 , and excess return series,

{Re
s}
T (T )
s=1 . Our starting point for that task is Barro’s (2006) disaster-including

consumption process in Equation (2.2), rewritten as

cgs = cgnd,s(1 − bs)ds , (2.19)

6 If you are only interested in the CRRA estimate and an analysis of the equity premium, the
second moment match in Equation (2.18) can be omitted as in Julliard and Parker (2005).
Then, β is not identified and you can set it to any non-zero number.
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which suggests to separate the simulated consumption growth, cgs, into a regular

component, cgnd,s, and the factor (1−bs), which contracts cgnd,s (only) if a disaster

occurs (ds = 1). Our empirical strategy thus consists of a two-way bootstrap,

where cgnd,s is drawn with replacement from regular consumption growth data,

and bs is drawn from a Double Power Law distribution that is fitted to a sample

of macroeconomic disasters, as suggested by Barro and Jin (2011). Since the

procedure is quite data-dependent, we outline the details on the data sources right

here, in the methodology section of our paper.

For the bootstrap of regular consumption growth and returns, we draw on

quarterly U.S. postwar data collected by Cochrane (1996), which also contain

gross returns of ten size-sorted portfolios and a risk-free rate proxy. Any U.S.

postwar data set would do, but Cochrane’s (1996) is particularly convenient, as a

variety of CBM-type asset pricing models have already been estimated on these

data, and the previously reported results provide useful reference points for our

study.7 Table 1 reports descriptive statistics of the data used for bootstrapping

regular consumption growth and returns.

[insert table 1 about here]

We also have to provide disaster data to fit the Double Power Law distribution

from which we bootstrap contractions. For that purpose, we rely on the procedure

proposed by Barro (2006), and identify calamitous GDP contractions in the cross-

country panel data collected by Angus Maddison.8 These data contain annual

7 The data are available on John Cochrane’s web site:
http://faculty.chicagobooth.edu/john.cochrane/research/Data and Programs/JPE cross%20
sectional test of investment based/Data/ accessed 04/10/2013.

8 The data are available at:
http://www.ggdc.net/maddison/oriindex.net accessed 04/10/2013.
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GDP information about 35 countries ranging from 1900 to 2008. Following Barro

(2006), we define a disaster as a contraction in GDP that exceeds the threshold

q = 14.5%. It does not matter whether the contraction accrued over one period

or more, and the length of the contraction is measured up to the year before the

rebound of the economy. Barro (2006) is not specific about how he deals with

short periods of positive growth amidst a disaster. We allow for such one-period

intermezzos if that break does not exceed the contraction in the following period in

absolute terms. Additionally, the contraction may not decrease in size by ignoring

the upward-sloping consumption phase. Following Barro (2006), we also neglect

contractions in GDP that are considered aftermaths of war, and which are allegedly

not related to a drop in consumption.9

[insert figure 1 about here]

Figure 1 illustrates the resulting disaster data. Disastrous contractions in GDP

are clustered along WWI, the Great Depression, WWII and then around various

turmoils in South America during 1980-2000.

The resulting 67 disaster observations provide the empirical distribution of

contraction sizes from which we could bootstrap bs. However, the small sample size

limits the range and severity of possible contractions. We therefore follow Barro

and Jin (2011) and fit a Double Power Law distribution to model the disaster

data. The distributional parameters are estimated by maximum likelihood. We

collect useful information about density function, mean and quantile function of

the Double Power Law distribution in Appendix A.

9 The excluded contractions are: Canada (1917-1921): -30%, Italy (1918-1921): -25%, UK
(1918-1921): -19%, UK (1943-1947): -15% and USA (1944-1947): -28%.
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We follow Barro (2006) and estimate the annualized disaster probability pa by

dividing the number of extreme contractions in GDP by the overall number of years

for which data is available. The quarterly disaster probability is then estimated

by

p̂q = 1 − (1 − p̂a)1/4. (2.20)

Maddison’s data do not contain information about financial returns associated

with (disastrous) GDP contractions. To simulate such returns, we transfer the

notion of a disaster-including consumption growth process (cf. Equation (2.19))

to gross returns, viz

Rs = (1 − b̃s)dsRnd,s, (2.21)

and bootstrap Rnd,s from the regular data. We consider two choices for the con-

traction factor b̃s. The first is to equate the contractions in consumption with

contractions in returns, b̃s = bs. This approach draws its motivation from the

empirical evidence that the correlations between consumption growth and returns

increases in the tails of the joint distribution. The second choice is to draw b̃s

independently, but from the same distribution as bs. We distinguish the two pro-

cedures to generate disaster-including returns by referring to them as MaxCorr

(Max imum Correlation) and InDraw (Independent Draws).

A third strategy to simulate disaster-including returns is based on the assump-

tion that log-consumption growth, cd, and log-return, rd, in the disaster state can

be described by a bivariate Gaussian distribution:

⎡⎢⎢⎢⎢⎢⎢⎣

cd

rd

⎤⎥⎥⎥⎥⎥⎥⎦

∼ N
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

µc,d

µr,d

⎤⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎣

σ2
c,d σcr,d

σcr,d σ2
r,d

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
, (2.22)
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which implies that

E [rd∣cd] = µr,d + ρdσc,dσr,d [cd − µc,d]

Var [rd∣cd] = (1 − ρ2d)σ2
c,d,

(2.23)

where ρd = σcr,d
σc,dσr,d

. If the parameters of the bivariate normal distribution in

Equation (2.22) were known, and given simulated disaster log-consumption cd,s =

ln[(1 − bs)cgnd,s], we could simulate a disaster log-return rd,s by drawing from a

Gaussian distribution with mean and variance given in Equation (2.23).

In order to estimate the five distributional parameters (µr,d, µc,d, σc,d, σr,d,

ρr,d ), we proceed as follows. µc,d and σc,d are estimated by the sample mean and

standard deviation of a very long simulated disaster-including consumption growth

series that is obtained as described previously. To estimate ρd, we assume that the

correlation of log-consumption growth and log-returns conditional on d = 1 is the

same as conditional on d = 0 (ρnd):

ρd = ρnd =
σcr,nd

σc,ndσr,nd
. (2.24)

σcr,nd, σc,nd and σr,nd denote covariance and standard deviations conditional on

d = 0, which can be estimated using the regular consumption and return data.

To provide estimates of µr,d and σr,d, we further assume that the expected value

of a gross return in the disaster state equals the expected value of that gross return

in the regular state, scaled by one minus the mean contraction size:

E[Rd] = (1 −E[b])E[Rnd]. (2.25)
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By the properties of the log-normal distribution, we then have

µr,d = ln(1 −E[b]) + ln(E[Rnd]) −
σ2
r,d

2
. (2.26)

To estimate the mean contraction size, we replace in the analytical expression for

E[b] (see Appendix A) the Double Power Law parameters by their ML-estimates.

The final parameter to account for is σ2
r,d. We do that by assuming constant

“Sharpe ratios”,

E[Rd]√
Var(Rd)

= E[Rnd]√
Var(Rnd)

, (2.27)

and using the properties of the log-normal, which imply that

σ2
r,d = ln(1 + Var(Rnd)

E[Rnd]2
) . (2.28)

Var(Rnd) and E[Rnd] can be estimated by sample moments of the regular gross

return data.

We can now replace all right-hand side parameters of Equation (2.23) by their

estimates, and simulate log-returns, rd,s, conditional on log-consumption growth

in the disaster state, cd,s. We refer to this third procedure of simulating disaster-

including returns as G-Draw (Gaussian Draws).

Summing up, the simulation procedure to generate {cgs}T (T )
s=1 , {Rf

s}
T (T )
s=1 and

{Re
s}
T (T )
s=1 works as follows:

• For every s = 1, . . . ,T (T ), decide by drawing from a Bernoulli distribution

with probability p̂q whether ds = 0 or ds = 1. Regardless of the outcome, draw

cgnd,s, R
f
nd,s and Rnd,s with replacement from the regular consumption and

return data. In order to maintain the covariance structure of consumption
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and returns, draws have to be performed simultaneously.

• If ds = 0, set cgs = cgnd,s, Rf
s = Rf

nd,s and Re
s = Rnd,s −Rf

nd,s

• If ds = 1, draw bs from the fitted Double Power Law distribution and compute

cgs = (1 − bs)cgnd,s and three variants of disaster returns, Rd,s, using the

MaxCorr, InDraw and G-Draw procedures. Finally, Re
s = Rd,s − Rf

nd,s and

Rf
s = Rf

nd,s.

2.4 Alternative Histories Bootstrap

The two-way bootstrap described in the previous section suggests an alternative

approach towards estimating the structural parameters of the disaster-including

CBM. Since the simulated consumption growth and return series include disaster

observations, the moment matches in Equations (2.9) and (2.10), which have been

discarded because of the sample selection problem, can be reconsidered. To com-

plement the two SMM procedures described in Section 2.2, we therefore propose a

third approach that we refer to as Alternative H istories Bootstrap (AHB), a term

that echoes Cochrane’s remark from the introduction.

The starting point for the AHB-procedure areH independent disaster-including

samples (“alternative histories”) of size T (T ), which we generate as described in

Section 2.3. Let {cg(h)s }, {Rf(h)
s } and {Re(h)

s } denote the simulated data from

replication h. For each replication h = 1, . . . ,H, we estimate β and γ by GMM,

using the moment matches

G(h)
T (β, γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
T (T )

T (T )
∑
s=1

β (cg(h)s )
−γ
R
f(h)
s − 1

1
T (T )

T (T )
∑
s=1

β (cg(h)s )
−γ

R
e(h)
s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.29)
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AHB-estimates of β and γ are obtained from averaging the resulting estimates

across ensembles, viz

β̂ = 1

H

H

∑
h=1

β̂(h) and γ̂ = 1

H

H

∑
h=1

γ̂(h), (2.30)

where γ̂(h) and β̂(h) refer to the estimates obtained in the hth replication. In fact,

we obtain three sets of estimates using the alternative ways to generate disaster-

including returns discussed in Section 2.3. We use the empirical distribution of γ̂(h)

and β̂(h) to provide standard errors, quantiles and kernel densities. By varying

T (T ), we can quantify the considerations in Section 2.1 regarding the size of

disaster-including samples and the implications for estimation precision.

3 Empirical results

All variants to estimate a disaster-including CBM rely on simulated disaster sizes

drawn from a Double Power Law distribution that is fitted to the sample of iden-

tified disasters shown in Figure 1. Maximum likelihood estimates of the distribu-

tional parameters and their standard errors are reported in the caption of Figure

2, which depicts the empirical distribution function of the disaster sizes and the

fitted Double Power Law c.d.f. The point κ indicates the switch from one Power

Law to the other one. The figure shows that the Double Power Law fits the em-

pirical distribution function well for small contraction sizes, but also leaves more

room for severe downturns.

[insert figure 2 about here]
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For the estimation of a disaster-including CBM, we use the same test assets as

for the bootstrap simulations, i.e. the ten size-sorted portfolios and the risk-free

rate used by Cochrane (1996) (descriptive statistics are contained in Table 1).10

We also consider a set of test assets that consists of excess returns only. In this

case, the moment condition for the risk-free rate is excluded from the respective

GMM and SMM moment matches. As discussed previously, this entails that the

remaining moment conditions cannot identify β, which we set equal to one.

The two SMM variants (MAD-SMM and JPM-SMM) use T (T ) = 1 000 000.

For the Alternative Histories Bootstrap, we vary T (T ) from 187 to 16 000, and

perform H = 400 replications. The T (T ) = 16 000 variant is used to compare SMM

and AHB results. The other simulated time series lengths will be used to study

the effect of an increasing sample size on parameter estimates and their precision.

The GMM and SMM objective functions use the identity matrix for WT ; for JPM-

SMM, we make sure that the moment condition that invokes the mean of the SDF

is exactly matched as requested by Julliard and Parker (2005).

Table 2 (using excess returns and the risk-free rate as test assets) and Table 3

(using excess returns as test assets only) collect SMM and AHB estimation results.

Panels A (G-Draw), B (InDraw) and C (MaxCorr) break down the results by the

three alternative disaster return simulation procedures. We report the preference

parameter estimates and asymptotic standard errors (for SMM) or standard de-

viations across replications (for AHB), the p-values of the J-statistics (for SMM)

10 In principle, the test assets and the data used to bootstrap regular consumption growth and
returns may come from different sources, but the natural choice is to use the same data for
both purposes.
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and the root mean squared errors computed as

RMSE =
√

1

N
GT (β̂, γ̂)′GT (β̂, γ̂), (3.1)

where N denotes the number of test assets. Figure 3 illustrates the estimation

precision using kernel density estimates, based on the H = 400 AHB-ensembles.

[insert tables 2 and 3 about here]

[insert figure 3 about here]

The key finding is that all variants to estimate a disaster-including CBM yield

economically plausible estimates for the preference parameters. For the CRRA

parameter γ one to ten is considered a sensible range (more rigorous scholars cap

the interval at five); the subjective discount factor β should be less than one. Only

for MAD-SMM with MaxCorr simulated returns do we get a β-estimate slightly

above one. However, the hypothesis that β is smaller than one cannot be rejected

at conventional levels of significance. Both asymptotic inference (for SMM) and the

bootstrap inference (for AHB) yield small parameter standard errors, i.e. narrow

confidence bounds for the preference parameters. The kernel densities in Figure 3

illustrate and confirm these conclusions. The p-values of the J-statistics computed

for the two SMM approaches indicate that the disaster-including CBM cannot be

rejected at conventional levels of significance. Furthermore, the quality of moment

matches (measured by the RMSE) does not differ much across estimation methods

and disaster return simulation procedures. The G-Draw variant tends to deliver

the smallest RMSE.
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While the general picture is that neither disaster return simulation procedure

nor estimation philosophy (SMM vs. AHB) yield qualitatively different results,

there is some variation across the estimates. The MAD-SMM approach tends

to deliver the highest, the JPM-SMM specification the smallest γ̂. Moreover, the

MaxCorr return simulation implies somewhat smaller γ-estimates than the InDraw

and G-Draw procedures. Hence, γ̂ = 3.538 (JPM-SMM/MaxCorr) and γ̂ = 7.240

(MAD-SMM/G-Draw) span the range of CRRA parameter estimates. Yet overall,

the risk aversion estimates do not change much with respect to the procedure to

simulate disaster returns. For example, comparing the JPM-SMM estimates, we

have γ̂ = 4.167 when using the InDraw return simulation, γ̂ = 4.178 when relying on

the G-Draw simulation and γ̂ = 3.538 with the MaxCorr procedure. Eight out of

nine specifications end up with estimates of the subjective discount factor between

β̂ = 0.93 (AHB/InDraw) and β̂ = 0.98 (JPM-SMM/MaxCorr and AHB/MaxCorr).

The estimates of β tend to be higher and more precise for the MaxCorr procedure.

The kernel density estimates in Figure 3 illustrate the effect of the choice of return

simulation procedures on estimated preference parameters.

By comparing the AHB estimates for increasing sample sizes, we can quantify

the effects that we have discussed in Section 2. We have argued there that the

quality of the GMM moment matches will be affected by using short time series

that contain too few if any disaster observations in order to be representative of

the possible paths of history that investors had in mind. Using the AHB approach,

we can assess which sample size would be needed for standard GMM to achieve a

reasonable estimation precision. We can also study the distribution of the estimates

when the simulated sample size is as small as in the empirical data, but when
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some simulated histories include disaster observations. A comparison with the

empirical results using disaster-free data serves as a plausibility check for the AHB

methodology.

In addition to T (T ) = 16 000, we therefore also perform AHB estimations with

simulated histories of lengths T (T ) = 187, 1 000 and 5 000. These choices are mo-

tivated as follows. Cochrane’s (1996) data consist of 187 quarterly observations,

so the ensembles have the same length but are potentially disaster-including. For

T (T ) = 1 000, the simulated data span roughly three successive generations, as-

suming a life-span of 80 years.11 For T (T ) = 5 000, they overlap approximately

fifteen generations.

[insert tables 4 and 5 about here]

[insert figures 4 - 6 about here]

For each T (T ), we perform separate AHB estimations using the MaxCorr,

InDraw and G-Draw return simulation procedures. The results are reported in

Table 4 (test assets include the risk-free rate) and Table 5 (only excess returns as

test assets). Figures 4 - 6 illustrate the findings using kernel densities.

The AHB estimates using the small simulated sample size of T (T ) = 187 have

the properties well-known from empirical applications. Regardless of the proce-

dure used to simulate disaster returns, β̂ is greater than one and γ̂ is far beyond

the upper plausibility limit. Furthermore, the estimates are very imprecise, as

indicated by the huge standard errors and the shape of the kernel densities.

11 “The days of our years are threescore and ten; and if by reason of strength they be fourscore
years, yet is their strength labor and sorrow; for it is soon cut off, and we fly away.” Psalms
90:10, King James Bible, Pure Cambridge Edition.
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Increasing the sample size to T (T ) = 1 000, the point estimates take on more

plausible values. The estimation precision improves, but is still low as indicated by

the standard errors and the kernel densities. At T (T ) = 5 000, the estimation re-

sults are satisfactory in the sense that the estimation precision is sufficient and the

β and γ-estimates are economically plausible. This simulation exercise shows that

the failure of the CBM using conventional estimation techniques and the currently

available information about returns and consumption comes at no surprise, and

is not at odds with the rare disaster hypothesis. If the rare disaster hypothesis is

true, and if conventional estimation techniques are used, one has to wait for a long

time – with potentially very unpleasant intermezzos of consumption contractions

– before a sufficient estimation precision can be expected. Our simulation-based

methods thus provide a shortcut.

4 Conclusion

Financial economics and econometrics alike use Hansen and Singleton’s (1982)

consumption-based asset pricing model with additive power utility SDF as refer-

ence point and springboard for theoretical extensions and methodological devel-

opments. When taking the canonical CBM to data, however, its empirical perfor-

mance has been notoriously disappointing. The estimates of the CBM preference

parameters, subjective discount factor and relative risk aversion, tend to be both

highly implausible and quite imprecise. However, the CBM framework is not easily

discarded: it represents the only rational link between the real economy (consump-

tion) and financial markets (prices of future risky payoffs). Accordingly, attempts

to vindicate the CBM have been manifold. Scaled factors have been employed
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to account for time varying risk aversion, alternative measures for the errors-in-

variables-prone macroeconomic consumption data have been used, investor hetero-

geneity has been accounted for, and more flexible specifications of intertemporal

utility functions have been tested. Whilst these studies have had some empirical

success, the problem of imprecise and implausible preference parameter estimates

is at best mitigated.

Our study has probed an alternative explanation to vindicate the CBM: the

rare disaster hypothesis that is associated with the seminal work by Rietz and

Barro. We retain the stochastic discount factor of Hansen and Singleton’s CBM,

but we account for the disturbing suspicion that the U.S. data, which have been

used extensively to test the CBM, may not be representative. Consumers and

investors born and living after WWII in the U.S. and other western countries that

have collected consumption and financial data for 60+ years have experienced an

unprecedented period of peace, prosperity and progress. A lucky path of history

spared them from calamitous contractions of GDP and aggregate consumption.

Those investors and data tell the story of survivors, which is always a pleasant,

but often a misleading narrative. Statistics and econometrics classes center around

sample selection problems and the danger of interpreting self-selected data. In

empirical macro-finance, we sometimes ignore the presence of a pink elephant in

our laboratory.

Adopting Barro’s (2006) specification of a disaster-including consumption pro-

cess, we motivate two alternative moment matches that we use to estimate the

CBM preference parameters by SMM. To simulate disaster-including consumption

growth and return processes, we perform a non-parametric bootstrap from regular
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U.S. postwar data, which is combined with a parametric bootstrap from a distri-

bution that is fitted to calamitous contractions data. An alternative estimation

strategy entails repeating the bootstrap simulation and applying GMM to the sim-

ulated “alternative histories”. Here, point estimates of the preference parameters

result from averaging over the replications. The bootstrap distributions enable us

to judge the estimation precision that can be expected using varying sample sizes.

The three methods to estimate a disaster-including CBM rely on three specifica-

tions to simulate disaster-including financial returns. We perform the estimation

with and without the risk-free rate included in the test assets.

Whichever approach is used, the result remains qualitatively the same. The

estimated preference parameters are of an economically plausible size and the es-

timation precision is much higher than in previous studies that use the canonical

CBM. In particular, the estimate of the relative risk aversion parameter is smaller

than five in most specifications and always smaller than ten, i.e. the estimates

are in the range that is considered to be consistent with reasonably risk-averse

investors. The parameter standard errors are small, the confidence bounds nar-

row. A comparable combination of plausibility and estimation precision has not

been delivered in the related literature (cf. the empirical results discussed in the

introduction).

We also show that size and precision of the CBM estimates reported in previous

studies are quite realistic under the rare disaster hypothesis. Decades have to

pass before standard empirical techniques would yield precise estimation results on

empirical data. The simulation-based estimation techniques that we apply in our

study provide a shortcut to empirically assess the effect of consumption disasters
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on asset prices. They come at the cost of assumptions, which may be questioned

but can be modified, and one can study the sensitivity of the estimation results.

In our study, the variation of assumptions did not change the results qualitatively.

Our findings should encourage those who believe that rational investor behavior

prevails in financial markets. Yes, the CBM can explain the equity premium at

reasonable levels of risk aversion, once the latent risk of rare disasters is accounted

for. The nexus between finance and real economy postulated by the CBM is, after

all, empirically not refuted.
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A Power Law distribution: useful results

Following Barro and Jin (2011), we use a Double Power Law distribution to model

the distribution of disastrous contraction sizes b. For that purpose, we use the

transformation of disaster sizes into the random variable z = 1
1−b , for which we

assume the Double Power Law density

fZ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z < z0

Bz−θ if z0 ≤ z < δ

Az−α if δ ≤ z

, (A.1)

where B = Aδ(θ−α) and A = [ δ(θ−α)θ−1 (z(1−θ)0 − δ(1−θ)) + δ(1−α)

α−1 ]
−1

. z0 is defined as z0 =
1

1−q , where q denotes the disaster threshold.

A draw from the Double Power Law density can be performed by drawing a

standard uniform random variable, ν, and inserting it in the quantile function,

which is given by

z[ν] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−θ

√
z−θ0 − θ

Bν if ν ≤ Fδ≤z(δ)

−α

√
δ−α − α

A
(ν − B

θ (z−θ0 − δ−θ)) if ν > Fδ≤z(δ).
(A.2)

The realizations of the random variables z that are drawn using the quantile func-

tion (A.2) have to be re-transformed into contraction sizes by b = 1 − 1
z .

Using the density for z = 1
1−b , the expected value of the contraction size b (which

we need for the G-Draw return simulation) is given by:

E[b] = E [1 − 1

z
] = 1 +Aδ−(α+1) ( 1

θ + 1
− 1

α + 1
) − A

(θ + 1)
δ(θ−α)z

−(θ+1)
0 . (A.3)
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Tables and figures

Table 1: Descriptive statistics of regular consumption growth and return
data used for bootstrapping
The table holds descriptive statistics on Cochrane’s (1996) consumption growth
and gross return data. The data range from the second quarter in 1947 to the
end of 1993. Consumption growth is denoted as Ct+1

Ct
and 1st, 2nd, etc. refer to the

respective return deciles for ten size-sorted portfolios of NYSE stocks. Rf is the
risk-free rate proxy. The column titled ρ gives information on the autocorrelation
of the variables and std refers to the standard deviation. The last eleven columns
picture the correlations between the different variables.

mean std ρ correlation

Ct+1
Ct

1.004 0.006 0.206 Ct+1
Ct

Rf 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.031 0.100 0.290 0.288 0.090 0.754 0.858 0.893 0.910 0.936 0.939 0.948 0.960 0.971

2nd 1.027 0.090 0.293 0.288 0.131 0.797 0.895 0.928 0.946 0.965 0.968 0.975 0.982

3rd 1.026 0.087 0.307 0.285 0.132 0.812 0.905 0.940 0.955 0.969 0.976 0.981

4th 1.026 0.083 0.313 0.267 0.129 0.836 0.923 0.956 0.969 0.980 0.979

5th 1.024 0.080 0.308 0.259 0.158 0.848 0.936 0.966 0.973 0.979

6th 1.025 0.078 0.288 0.238 0.144 0.863 0.952 0.974 0.979

7th 1.024 0.074 0.332 0.242 0.165 0.896 0.973 0.985

8th 1.023 0.070 0.291 0.239 0.173 0.906 0.976

9th 1.022 0.067 0.302 0.201 0.193 0.930

10th 1.018 0.058 0.376 0.232 0.224

Rf 1.002 0.008 0.700 0.130
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Table 2: SMM and AHB estimation results using excess returns and the
risk-free rate as test assets
The table presents the SMM and AHB estimates of the preference parameters β
and γ. Asymptotic standard errors of the SMM estimates are reported in paren-
theses. The numbers in brackets are standard deviations of the AHB estimates
across H = 400 replications. The table also reports the p-values (in percent) of
Hansen’s J-statistic. The RMSE is computed using the average pricing errors,

RMSE=
√

1
NGT (β̂, γ̂)′GT (β̂, γ̂), where N denotes the number of test assets. For

the AHB approach, the reported RMSE (in basis points) is obtained by averaging
over the 400 replications. Panels A, B and C break down the results by procedure
used to simulate disaster-including returns (G-Draw, InDraw and MaxCorr).

Panel A – G-Draw

β̂ γ̂ J RMSE
MAD-SMM 0.956 7.240 57.4 18

(0.017) (0.128)
JPM-SMM 0.938 4.178 60.6 21

(0.018) (0.184)
AHB 0.943 4.778 21

[0.011] [0.891]

Panel B – InDraw

β̂ γ̂ J RMSE
MAD-SMM 0.961 7.199 34.0 24

(0.016) (0.127)
JPM-SMM 0.939 4.167 41.2 28

(0.018) (0.181)
AHB 0.932 4.740 23

[0.029] [0.843]

Panel C – MaxCorr

β̂ γ̂ J RMSE
MAD-SMM 1.005 6.646 39.0 28

(0.006) (0.128)
JPM-SMM 0.979 3.538 41.7 28

(0.007) (0.176)
AHB 0.979 4.046 20

[0.002] [0.844]

33



Table 3: SMM and AHB estimation results using only excess returns as
test assets
The table presents the SMM and AHB estimates of the coefficient of relative
risk aversion γ. Asymptotic standard errors of the SMM estimates are reported
in parentheses. The numbers in brackets are standard deviations of the AHB
estimates across H = 400 replications. The table also reports the p-values (in
percent) of Hansen’s J-statistic. The RMSE is computed using the average pricing

errors, RMSE=
√

1
NGT (γ̂)′GT (γ̂), where N denotes the number of test assets. For

the AHB approach, the reported RMSE (in basis points) is obtained by averaging
over the 400 replications. Panels A, B and C break down the results by procedure
used to simulate disaster-including returns (G-Draw, InDraw and MaxCorr).

Panel A – G-Draw

γ̂ J RMSE
MAD-SMM 7.240 60.1 20

(0.128)
JPM-SMM 4.178 60.6 22

(0.184)
AHB 4.769 25

[0.888]

Panel B – InDraw

γ̂ J RMSE
MAD-SMM 7.198 38.2 26

(0.127)
JPM-SMM 4.167 41.2 29

(0.181)
AHB 4.745 28

[0.848]

Panel A – MaxCorr

γ̂ J RMSE
MAD-SMM 6.646 40.4 29

(0.128)
JPM-SMM 3.538 41.7 30

(0.176)
AHB 4.051 23

[0.840]
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Table 4: Effect of varying T (T ) on AHB parameter estimates
The table reports the AHB estimates of the subjective discount factor and the
coefficient of relative risk aversion for a varying T (T ). It also shows the standard
deviation (std) and the 95%-quantile of the parameter estimates from the H = 400
simulated histories. The RMSE is computed using the average pricing errors,

RMSE= 1
H

H

∑
h=1

√
1
NG

(h)
T (β̂(h), γ̂(h))′G(h)

T (β̂(h), γ̂(h)), where N denotes the number of

test assets. It is expressed in basis points. Panels A, B and C break down the
results by procedure used to simulate disaster-including returns (G-Draw, InDraw
and MaxCorr).

Panel A – G-Draw

T (T ) 187 1 000 5 000 16 000

β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂
1.072 82.630 0.959 12.745 0.944 5.407 0.943 4.778

std 0.182 93.005 0.037 30.781 0.014 1.574 0.011 0.891
95%-quantile 1.409 249.919 1.005 20.527 0.963 8.410 0.959 6.341

RMSE 65 33 23 21

Panel B – InDraw

T (T ) 187 1 000 5 000 16 000

β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂
1.064 83.016 0.948 12.860 0.936 5.498 0.932 4.740

std 0.190 92.710 0.051 30.822 0.033 1.592 0.029 0.843
95%-quantile 1.409 249.919 1.012 21.563 0.972 8.343 0.965 6.267

RMSE 61 28 24 23

Panel C – MaxCorr

T (T ) 187 1 000 5 000 16 000

β̂ γ̂ β̂ γ̂ β̂ γ̂ β̂ γ̂
1.068 83.149 0.973 12.509 0.977 4.659 0.979 4.046

std 0.185 92.645 0.030 30.946 0.003 1.610 0.002 0.844
95%-quantile 1.409 249.919 0.989 23.738 0.982 7.486 0.982 5.621

RMSE 61 26 20 20
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Table 5: Effect of varying T (T ) on the AHB estimate of γ using excess
returns
The table reports the AHB estimates of the coefficient of relative risk aversion for a
varying T (T ). It also shows the standard deviation (std) and the 95%-quantile of
the parameter estimates from the H = 400 simulated histories. The RMSE is com-

puted using the average pricing errors, RMSE= 1
H

H

∑
h=1

√
1
NG

(h)
T (γ̂(h))′G(h)

T (γ̂(h)),
where N denotes the number of test assets. It is expressed in basis points. Panels
A, B and C break down the results by procedure used to simulate disaster-including
returns (G-Draw, InDraw and MaxCorr).

Panel A – G-Draw

T (T ) 187 1 000 5 000 16 000
γ̂ 75.779 12.233 5.405 4.769

std 82.122 27.586 1.573 0.888
95%-quantile 216.105 20.524 8.408 6.332

RMSE 61 37 26 25

Panel B – InDraw

T (T ) 187 1 000 5 000 16 000
γ̂ 76.164 12.350 5.493 4.745

std 81.820 27.633 1.592 0.848
95%-quantile 216.105 21.554 8.338 6.280

RMSE 58 32 30 28

Panel C – MaxCorr

T (T ) 187 1 000 5 000 16 000
γ̂ 76.301 12.000 4.659 4.051

std 81.754 27.763 1.609 0.840
95%-quantile 216.105 23.728 7.485 5.620

RMSE 56 28 23 23
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Figure 1: Disastrous GDP contractions identified from Maddison’s data
(1900-2008)
The figure illustrates the 67 cases for which the contraction in GDP exceeded
q = 14.5%. The analysis was based on per capita GDP data for 35 countries:
Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, Colombia, Den-
mark, Finland, France, Germany, Greece (1901-1912), India, Indonesia (1942-
1948), Italy, Japan, Malaysia (1900-1910 and 1943-1946), Mexico, Netherlands,
New Zealand, Norway, Philippines (1900-1901 and 1941-1945), Peru, Portugal,
South Korea (1900-1910), Spain, Sri Lanka, Sweden, Switzerland, Taiwan (1900),
U.K., U.S.A., Uruguay, Venezuela. Values in parentheses indicate missing data.
Black lines refer to European countries, red ones to South America, Green belongs
to Western Offshores and Blue denotes Asian countries. The average contraction
size is 27.88%. The standard deviation of contractions is 14.24%. The smallest
disaster found in the data is 14.52% (India, 1916-1918), whilst the biggest one
equals 66.14% (Greece, 1937-1945). Computed as proposed by Barro (2006), these
data imply an estimated quarterly disaster probability of p̂q = 0.43%.
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Figure 2: Comparison of Double Power Law and empirical distribution
function for disaster sizes
The figure illustrates the empirical distribution function (blue bumpy line) and the
fitted cumulative distribution function (red smooth line) of the disastrous contrac-
tions identified in Maddison’s macroeconomic data using a disaster threshold of
14.5%. We estimate the parameters by means of maximum likelihood as α̂ = 3.627
(0.394), θ̂ = 12.250 (1.656) and δ̂ = 1.366 (0.024). Standard errors are reported in
parentheses. κ denotes the threshold at which the one power law morphs into the
other one and is linked to δ̂ by means of κ = 1 − 1

δ̂
=0.268.
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Figure 3: Kernel densities for AHB estimates
The two figures depict kernel densities of the AHB estimates of the subjective
discount factor, β̂, and the coefficient of relative risk aversion, γ̂. We use H = 400
and T (T ) = 16 000. The green (solid) density is for estimates based on the G-Draw
return simulation procedure. The gray density (short dashes) is for parameter
estimates that rely on the InDraw procedure and purple density (long dashes)
refers to estimates that use the MaxCorr procedure. The AHB point estimates
are indicated by vertical lines.

(a) subjective discount factor (b) relative risk aversion
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Figure 4: Effect of varying T (T ) on AHB parameter estimates using the
G-Draw return simulation procedure
The four panels depict kernel densities of the AHB/G-Draw estimates of the sub-
jective discount factor, β̂, (upper panels) and the coefficient of relative risk aver-
sion, γ̂ (lower panels). We use H = 400, and T (T ) varies between 187 and 1 000
(left panels) and 5 000 and 16 000 (right panels). The dashed red densities in the
left panels are for T (T ) = 187, whilst the solid cyan colored densities refer to
T (T ) = 1 000. The dashed purple densities are associated with T (T ) = 5 000 and
green (solid) relies on T (T ) = 16 000. The AHB point estimates are indicated by
vertical lines in the respective colors.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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Figure 5: Effect of varying T (T ) on AHB parameter estimates using the
InDraw return simulation procedure
The four panels depict kernel densities of the AHB/InDraw estimates of the subjec-
tive discount factor, β̂, (upper panels) and the coefficient of relative risk aversion, γ̂
(lower panels). We use H = 400, and T (T ) varies between 187 and 1 000 (left pan-
els) and 5 000 and 16 000 (right panels). The dashed red densities in the left panels
are for T (T ) = 187, whilst the solid cyan colored densities refer to T (T ) = 1 000.
The dashed purple densities are associated with T (T ) = 5 000 and green (solid)
relies on T (T ) = 16 000. The AHB point estimates are indicated by vertical lines
in the respective colors.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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Figure 6: Effect of varying T (T ) on AHB parameter estimates using the
MaxCorr return simulation procedure
The four panels depict kernel densities of the AHB/MaxCorr estimates of the
subjective discount factor, β̂, (upper panels) and the coefficient of relative risk
aversion, γ̂ (lower panels). We use H = 400, and T (T ) varies between 187 and
1 000 (left panels) and 5 000 and 16 000 (right panels). The dashed red densities in
the left panels are for T (T ) = 187, whilst the solid cyan colored densities refer to
T (T ) = 1 000. The dashed purple densities are associated with T (T ) = 5 000 and
green (solid) relies on T (T ) = 16 000. The AHB point estimates are indicated by
vertical lines in the respective colors.

(a) β̂ for small T (T ) (b) β̂ for large T (T )

(c) γ̂ for small T (T ) (d) γ̂ for large T (T )
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