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1 Introduction

The observed patterns of equity portfolio allocation around the world are at odds with pre-
dictions from the Capital Asset Price Models (CAPM) of Sharpe [16] and Lintner [13]. What
has come to be called the ‘home bias’ phenomenon is that investors tend to hold a dispro-
portionately large share of their equity portfolio in home country stocks, as compared with
predictions of the CAPM. This paper provides an explanation of the home bias phenomenon
based on information-gap decision theory. The decision concept which is used here is that
profit is satisficed and robustness-to-uncertainty is maximized, rather than expected profit
being maximized. Furthermore, uncertainty is modelled non-probabilistically with info-gap
models of uncertainty.

French and Poterba [6, 7] quantify the magnitude of the home bias for a number of
countries and conclude that the size of the home bias is substantial, which led to the terms
Home Bias Puzzle or French and Poterba Puzzle. For more details see Jeske [10].

In their calculations, French and Poterba assume that the investor maximizes the ex-
pected return decremented with a variance-based risk term. Let w = (wh, wf)′ represent the
vector of home and foreign investments, let µ̃ be the expected returns for home and foreign
investments, and let Σ be the covariance matrix of returns. In the French and Poterba model,
w is chosen to maximize U(w) = w′µ̃ − λ

2w′Σw where λ is chosen to weight the risk term.
An extremum of U(w) occurs when µ̃ = λΣw.

Let wo denote the observed portfolio weights for a particular country, so that the expected
returns consistent with CAPM profit maximization would be µ̃o = λΣwo. For the same
country, let wmc denote the portfolio weights based on world market capitalization, without
any home bias effect. That is, wmc

h is the fraction of the world market capitalization ascribable
to the country in question. For example, wmc

h = 0.475 for the US. Without any home bias,
one would expect that 47.5% of US investments would be in US assets. The vector of
expected returns consistent with the CAPM, based on world market capitalization without
home bias, is µ̃mc = λΣwmc. French and Poterba observed, for a wide range of countries,
that:

µ̃o
h > µ̃mc

h and µ̃o
f < µ̃mc

f (1)

The returns vectors µ̃o and µ̃mc are not observed market values, but rather calculated
values which are consistent with the CAPM decision model and observed portfolio weights.
If the investor’s behavior is rightly modelled by the CAPM theory, then µ̃o and µ̃mc can
be interpreted as returns vectors which are anticipated or perceived by the investor. Rela-
tions (1) imply that investors perceive the domestic assets to perform better, and the foreign
assets to perform worse, than the bias-free portfolio would indicate. French and Poterba
assess these perceptions with the following ‘shadow cost’:

s = (µ̃o
h − µ̃mc

h )︸ ︷︷ ︸
perceived

advantage of
domestic equity

+ (µ̃mc
f − µ̃o

f )︸ ︷︷ ︸
perceived

disadvantage of
foreign equity

(2)

The shadow cost expresses how much an annual management fee for foreign assets must
exceed the management fee for domestic assets, in order to induce the investor away from
foreign assets, and towards domestic assets, according to the CAPM analysis. Most OECD
countries display shadow costs between 200 and 500 basis points, and the values for some
OECD countries are much higher. Annual management fees of several hundred basis points
are unrealistically high for financial markets.

This paper evaluates whether a model in which investors act as robust satisficers of profit,
rather than as profit maximizers, is able to account for the home bias effect. In particular, we
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explore whether an info-gap robust-satisficing decision rule requires lower shadow costs (than
required by the CAPM model) in order to account for the observed home bias phenomenon.

2 Robust Satisficing with an Info-gap Model

In this section we formulate a robust-satisficing decision function motivated by severe infor-
mation gaps facing the decision maker. Our notation is as follows.

w ∈ <N is a vector of investment weight-fractions. wi is the fraction of the total budget
which is invested in stock i, and

∑N
i=1 wi = 1. w is chosen by the decision maker.

µ ∈ <N is the profit vector, so 1 + µi dollars are earned per dollar invested in stock i. µ
is unknown when the investment is made, though the anticipated profit vector µ̃ is known.
The profit from investment, normalized to a unit budget, is w′µ. The anticipated rate of
profit is w′µ̃.

πc is a reservation profit: the lowest acceptable value of the unknown profit w′µ, per dollar
invested. For instance, πc = 0.02 means that 2% capital gain is necessary for ‘survival’.
Likewise, πc = 0 means that breaking even is adequate.

The decision maker has very limited information about the variability of the profit vector
µ, and is unable to verify a probability distribution for µ. In lieu of this, the uncertain
variation of µ is represented by an info-gap model, which is a family of nested sets of
µ-vectors: U(α, µ̃), α ≥ 0. All sets contain the known, anticipated, profit vector, µ̃, and
the range of variation of µ increases as α grows. That is, an info-gap model of uncertainty
displays the properties of ‘nesting’ and ‘contraction’ [3]:

Nesting: α < α′ implies U(α, µ̃) ⊂ U(α′, µ̃) (3)
Contraction: U(0, µ̃) = {µ̃} (4)

Relation (3) imbues α with its meaning as an ‘horizon of uncertainty’: the range of variability
of µ increases as α grows. Combining relations (3) and (4) shows that the anticipated profit
vector µ̃ is always possible, and µ̃ is the only possibility when there is no uncertainty (α = 0).

Info-gap models express very sparse knowledge about uncertainty. An info-gap model
represents uncertainty at two levels: for any positive value of α, the specific realization of µ
from among the possibilities in U(α, µ̃), is unknown. In addition, the horizon of uncertainty,
α, is unknown and unbounded so there is no known worst (or best) case. There is no
measure-theoretic aspect to an info-gap model: there are no density functions of probability,
plausibility, membership, etc. There are many types of info-gap models [3], and we will see
one example shortly.

Since the profit vector µ is unknown, the decision maker cannot directly maximize the
profit on investment, w′µ. Furthermore, since the probability distribution of µ is also un-
known, the decision maker cannot maximize the expected profit. What can be attempted
is to satisfice the profit — guarantee adequate reward — and maximize the robustness to
the information-gaps which surround µ. This strategy of robust satisficing will now be
explained, based on an info-gap model for uncertainty in the profit.

The robustness of investment profile w is the greatest horizon of uncertainty α at which
no realization of the profit vector µ causes a profit w′µ less than the aspiration πc:

α̂(w, πc) = max

{
α : min

µ∈U(α,µ̃)
w′µ ≥ πc

}
(5)

More robustness is better than less, at the same aspiration for profit πc, so α̂(w, πc)
establishes a preference ranking on investments w based on satisficing the profit at πc. The
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robust-optimal investment profile, ŵ(πc), is an investment vector which maximizes the
robustness, at fixed profit aspiration πc:

ŵ(πc) = arg max
w

α̂(w, πc) (6)

A very important property of the robustness function is that α̂(w, πc) decreases mono-
tonically as the aspiration πc increases. This expresses the inexorable trade-off between
immunity to uncertainty, and aspiration for profit: large aspirations are more vulnerable
than low aspirations. This is an immediate result of the nesting of the info-gap model, and
holds for any fixed investment profile w. It can also be proven that this monotonic trade-off
holds for the robust-optimal profile. That is, α̂(ŵ(πc), πc) decreases as πc increases [2].

We note from eq.(5) that, since w and πc are both normalized by the budget, the robust-
ness is homogeneous to order zero in the budget: α̂(Bw, Bπc) = α̂(w, πc) for any B 6= 0. In
other words, our unit-budget assumption will not influence the evaluation of the robustness,
or the choice of a robust-optimal investment profile, so long as πc is interpreted as a fractional
profit on the investment, relative to the total budget.

3 Robustness Function with Ellipsoid-bound Info-gap Model

We will now evaluate the robustness function for a specific choice of the info-gap model of
uncertainty in the profit vector.

The analyst selects the specific form of the info-gap model as the most restrictive family
of nested sets which is consistent with the knowledge about the uncertain variability. In the
present case, the anticipated profit vector µ̃ is known. In addition, data are available which
express the interdependencies between the variation of the profits of different assets. These
data are usually represented by an empirical covariance matrix Σ ∈ <N×N , though we do
not know the underlying probability distribution.

With this information about the profit vector, a suitable choice is the ellipsoid-bound
info-gap model, which is a family of nested ellipsoids of µ-vectors:

U(α, µ̃) =
{
µ = µ̃ + u : u′Σ−1u ≤ α2

}
, α ≥ 0 (7)

Σ is a known, real, symmetric, positive definite matrix which determines the shape and
orientation of the uncertainty-ellipsoids. The size of these ellipsoids is determined by α,
which is the unknown horizon of uncertainty. This family of sets of µ vectors displays the
properties of nesting and contraction, eqs.(3) and (4).

Using Lagrange optimization one readily finds the minimum profit, up to uncertainty α,
to be:

min
µ∈U(α,µ̃)

w′µ = w′µ̃− α
√

w′Σw (8)

Referring to eq.(5), the robustness of investment w is the greatest value of α at which this
minimum profit does not fall below the critical profit πc. If the anticipated profit, w′µ̃, falls
short of the critical profit πc, then the robustness is zero. Otherwise, equating the righthand
side of eq.(8) to πc and solving for α yields the robustness of investment profile w:

α̂(w, πc) =





w′µ̃− πc√
w′Σw

if w′µ̃ ≥ πc

0 else
(9)

The robust-optimal investment vector, ŵ(πc), and the maximal robustness, α̂(ŵ, πc), are
derived in section 8. Explicit expressions are obtained, and it is shown that, unless all the
elements of the anticipated profit vector µ̃ are the same, both ŵ(πc) and α̂(ŵ, πc) vary as µ̃
changes.
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4 Robust-satisficing Shadow Cost

In this section we derive an explicit analytical expression for the robust-satisficing shadow
cost based on the info-gap robustness function for the ellipsoidal info-gap model of profit-
uncertainty.

4.1 Calculating the Shadow Cost

We calculate the info-gap shadow cost in a manner analogous to the French and Poterba
method summarized in eq.(2): as the perceived advantage of the domestic equity plus the
perceived disadvantage of the foreign equity. We calculate two centerpoint profit vectors:
µ̃mc is consistent with the portfolio weights corresponding to the world market capitalization,
wmc, and µ̃o is consistent with the observed portfolio weights, wo. The shadow cost is
calculated from µ̃mc and µ̃o with eq.(2), which can be expressed:

s = (1 − 1) (µ̃o − µ̃mc) (10)

We do this for each country and each year, using the estimated covariance matrix Σ, whose
calculation is specified in section 5.2, to define the ellipsoidal info-gap model for each case.

-

6 q µ̃

qπc

πc

»»:w
(µ−µ̃)′Σ−1(µ−µ̃)=α̂2

d

µ1

µ2

Figure 1. Determining the centerpoint, µ̃, given portfolio weights w (two-country case).

We now formulate this more precisely. Let α̂d represent the demanded robustness, and
let πc denote the aspired annual profit. (We will not need to choose a πc value in order to
calculate a shadow cost. The meaning and choice of α̂d will be discussed in section 4.2.)
Let w be the specified vector of portfolio weights (either wmc or wo). We seek a centerpoint
vector µ̃ for which w is the vector of portfolio weights which maximizes the robustness, as
in eq.(6), and for which the resulting maximal robustness equals α̂d. As we will explain in
section 6.1.1, this robust-optimal configuration can be represented geometrically in µ-space:
the ellipsoid, (µ− µ̃)′Σ−1(µ− µ̃) = α̂2

d, is tangent to the hyperplane, w′µ = πc, at the point
µ = πc1. (1 is the N -vector whose elements are all ones.) This is shown schematically in
fig. 1 for the 2-country case. Tangency at the point µ = πc1 requires that the gradient of
the ellipsoid is parallel to w:

−cw = Σ−1(πc1− µ̃) (11)

where c is a positive constant which is chosen so that, when this value of µ̃ is used in eq.(9),
the robustness equals α̂d. After solving for c in this way one finds the centerpoint to be:

µ̃ = πc1 +
α̂d√
w′Σw

Σw (12)

Using this equation, µ̃o is calculated with wo and µ̃mc is calculated wmc. The shadow cost is
calculated with µ̃o and µ̃mc in eq.(10). Notice that the shadow cost does not depend upon
the profit aspiration, πc, but that it scales linearly with the demanded robustness, α̂d.
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4.2 Choosing Demanded Robustness α̂d

In this section we discuss the choice of the demanded robustness α̂d to express the investor’s
aversion to, or proclivity for, risk. Our choice of α̂d is analogous to the method which French
and Poterba use to select the risk aversion coefficient λ discussed in section 1. However, the
concepts of risk aversion are quite different.

French and Poterba choose λ by assuming that an investor who is unbiased (that is, who
diversifies according to market shares) uses an implicit µ given by:

µmc = λΣwmc (13)

They pick a country, for instance the U.S., and choose λ so that the implicit return for that
country, µus, matches a target return, µt

us. For example, this target return would be the
average return in the U.S. for the last couple of decades. The ‘U.S.’ row in eq.(13) is solved
for λ as:

λ =
µt

us∑N
i=1 σus,iwmc

i

(14)

In other words, French and Poterba ask: “How risk averse would an unbiased investor have
to be in order to have an implicit expected return for the U.S. equal to some observed long-
term average return µt

us?”. The answer is expressed in the choice of λ. A large value of λ
entails large aversion to risk.

We do something analogous in the choice of the demanded robustness α̂d, which expresses
how much immunity, to uncertainty in the returns, is required by the investor. We ask: “How
much robustness to long-term profit-variability, α̂d, would be required by an investor.

Fig. 4 shows uncertainty ellipses, µ′Σ−1µ = α2
d, for home and foreign assets, µ1 (horizon-

tal) and µ2 (vertical), based on covariance matrices for three different years. For instance,
the figure for Belgium shows that the value of α̂d for 1990 (dotted) is chosen to immunize
the investor against long-term variability of the profit by about ±10 percentage points in
both foreign and domestic assets. The immunity is less for years 1995 and 2000: about ±8
percentage points. This level of robustness is quite large, considering that long-term profits
are in the range of 2 or 3 percentage points. An investor who chooses α̂d values like those in
this figure is exceedingly, implausibly, risk averse. By comparison, consider the uncertainty
ellipses in fig. 6. For Belgium, the demanded robustness, α̂d, is chosen to attain immu-
nity against long-term profit variability of about ±2.5 percentage points, a more plausible
expression of aversion to variability.

5 Empirical Study

5.1 Formulation and Results

We have applied info-gap robust-satisficing decision theory to the analysis of financial invest-
ments in 12 industrialized countries: Australia, Belgium, Canada, France, Germany, Italy,
Japan, Netherlands, Sweden, Switzerland, UK and USA. We have calculated shadow costs
as explained in section 4, based on the optimal robustness function, α̂(ŵ(πc), πc), defined
in eqs.(5) and (6), with the ellipsoid-bound info-gap model for profit-uncertainty in eq.(7).
Covariance matrices Σ for monthly data for each country are obtained from the MSCI [14]
data base for the continuously growing window from 1987 through 2000, as explained in
section 5.2. The observed homeshares are obtained from the FIBV [5] and the IMF [9] data
bases. These data for each country contain one home asset and one foreign asset, which are
constructed as a capitalization-weighted average of all foreign equity markets.
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Fig. 2 shows the CAPM annual shadow costs over time for 12 OECD countries, calculated
with the method of French and Poterba as explained in section 1 with λ = 3. These shadow
costs are all higher than plausible values of management fees.

Fig. 3 shows the demanded robustness, α̂d, over time for 12 OECD countries. Each value
of α̂d is chosen so that the resulting info-gap robust-satisficing shadow cost, whose calculation
was explained in section 4.1, precisely equals the CAPM shadow cost for the same year and
country. Fig. 4 shows profit-uncertainty ellipses, µ′Σ−1µ = α̂2

d, for home and foreign assets,
µ1 (horizontal) and µ2 (vertical), based on the α̂d values from fig. 3. Ellipses for three years
are drawn: 1990, 1995 and 2000.

The results in figs. 3 and 4 are re-done in figs. 5 and 6, but now the demanded robustness
is chosen to achieve a shadow cost of precisely 0.01 for each country and each year.

The following conclusions can be drawn.

1. From fig. 4, the robustness, α̂d, required to precisely reproduce the CAPM shadow
costs, typically entails aversion to long-term profit fluctuations in the neighborhood of:

(a) ±5% in 3 countries: CAN, UK and USA.
(b) ±6 to ±8% in 6 countries: AUS, BEL, FRA, GER, NET and SWI.
(c) ±20% or more in 3 countries: ITA, JAP and SWE.

2. From fig. 6, the robustness, α̂d, required to produce annual shadow costs of 0.01,
typically entails aversion to long-term profit fluctuations in the neighborhood of:

(a) ±1% in 3 countries: AUS, ITA and JAP
(b) ±2% in 5 countries: BEL, CAN, FRA, GER and SWE.
(c) ±3% in 3 countries: SWI, UK and USA.
(d) ±6% in 1 country: NET.

3. From fig. 3, the robustness, α̂d, required to precisely reproduce the CAPM shadow
costs, typically is fairly stable over time.

4. From fig. 5, the robustness, α̂d, required to produce annual shadow costs of 0.01,
typically fluctuates very substantially over time.

These observations are discussed in section 6.

5.2 Data Appendix

We consider two sets of countries: One consisting of the twelve countries for which we
compute the home bias, call it G12, and one larger set of 23 countries, call it G23, consisting
of the original 12 in addition to 11 more countries. For the 11 countries in G23 but not in
G12 we do not calculate home bias, but nevertheless they are included in the computation
of the index of the world stock market.

The data sources are as follows:
The international equity investment positions for the G12 countries Australia, Belgium,

Canada, France, Germany, Italy, Japan, Netherlands, Sweden, Switzerland, UK and USA
come from the IFS database (International Financial Statistics) from the International Mon-
etary Fund. The same is true for monthly CPI inflation1 and monthly exchange rates.

1Australia is the only country among the twelve that does not report monthly CPI numbers. The quarterly
CPI figures are therefore split evenly among the three months of each quarter. Since most of the variation of
real monthly stock returns in the other 11 countries comes from the movements in the index, not in the CPI,
this seems very reasonable.
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The end-of-year market capitalizations for the years 1990-2000 for G23 countries come
from the World Federation of Exchanges (FIBV). The 23 countries are the G12 countries
for which we compute home bias in addition to Brazil, Chile, Hong Kong, Indonesia, South
Korea, Spain, Mexico, Singapore, Taiwan, Thailand and Turkey.

Monthly nominal returns for 1987:12 to 2000:12 in $US for the G23 countries come from
the MSCI database (www.msci.com).

For each of the G12 countries we compute domestic and foreign returns in home currency
and deflate them by domestic CPI. The foreign series is a capitalization-weighted average
of the other 22 countries.2 Precisely, the correlation matrices Σ needed for the info-gap
ellipsoids are computed for the G12 countries and 11 years using returns from 1987:12 to the
end of the corresponding year. For example, the Σ for Italy for the year 1995 is computed
using returns from 1987:12 up to 1995:12 for both Italian domestic returns and an average
of returns from the other 22 countries.

6 Discussion

The following conclusions can be drawn from the results of section 5.1, given the observed and
market capitalization portfolio weights, wo and wmc, and using the info-gap robust-satisficing
decision model.

1. The CAPM shadow costs entail unreasonably high risk aversion for all countries through-
out the time interval examined.

2. Considering long-term returns of 4 to 5%, we think that robustness against profit
variations of ±3% constitutes plausible aspiration for immunity. For prediction of
annual shadow costs equal to 0.01, the robust-satisficing model implies:

(a) Unreasonably low risk aversion for 3 countries: AUS, ITA and JAP (±1%.)

(b) Somewhat low risk aversion for 5 countries: BEL, CAN, FRA, GER and SWE
(±2%.)

(c) Plausible risk aversion for 4 countries: NET (±6%), SWI, UK and USA. (±3%.)

3. For the 3 countries, AUS, ITA and JAP, the ±1% could be raised to ±3% by raising
the shadow cost, but it would still be substantially lower than the CAPM shadow cost,
as witnessed by fig. 4.

4. For the 5 countries, BEL, CAN, FRA, GER and SWE, the value of ±2% could be
raised to ±3% by modest increase of the shadow cost, perhaps to 0.015.

5. For NET, the value of ±6% could be reduced to ±3% by further reducing the shadow
cost substantially below 0.01.

The implication of these points is that the info-gap robust-satisficing decision model
provides a plausible explanation of the observed portfolio weights, while the CAPM model
does not. We now proceed to develop some understanding of why this is.

2These G23 countries comprise between 95% and 97% of world market capitalization during the years
considered, so that we can confidently assume the 23 countries taken together are a good approximization to
the world stock market.
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6.1 Economic Intuition: Why Robust-satisficing Works

6.1.1 Geometrical Introduction

To understand why the info-gap approach finds it easier — measured as the necessary shadow
cost — to account for home bias, it is useful to look at the mechanics of the model. The
discussion in this section is intuitive and geometrical. A rigorous derivation of the optimal
robustness appears in the appendix (section 8).

In the two-country version, a graphical representation combines all the variables of inter-
est: profit aspiration πc, investment weights w, and robustness α̂. Fig. 7 does exactly that
in (µ1, µ2) space.

-

6 q µ̃

qπc

πc

½½>
w

(µ−µ̃)′Σ−1(µ−µ̃)=α̂2

µ1

µ2

Figure 7. Determining the robustness α̂(w, πc) (two-country case).

The dotted line lies at 45 degree to the axes. The solid line plots all (µ1, µ2) points
for which µT w = πc for given aspiration πc and given portfolio weights w. Consequently,
the solid line has slope −w1/w2 and crosses the point (πc, πc) on the 45 degree line. If
w′µ̃ < πc then the robustness for this portfolio is zero (second line of eq.(9)). Thus consider
w and πc such that µ̃ is above the solid line. The robustness α̂ (w, πc) is given by the
α in U (α, πc) for which the ellipse is tangent to the solid line. In that case the value of
arg minµ∈U(α̂,πc)

{
w′µ : wT µ ≥ πc

}
is given by the tangency point, or in other words where

the gradient 2Σ−1 (µ− µ̃) of the ellipsoid function is a multiple of the vector w as in fig. 7.

-

6 q µ̃

qπc

πc

»»:ŵ(πc)
(µ−µ̃)′Σ−1(µ−µ̃)=α̂2

µ1

µ2

Figure 8. Determining the robustness-optimizing portfolio ŵ (two-country case).

With fig. 7 we have demonstrated the graphical determination of the robustness of given
portfolio weights w. To find the robustness-optimizing portfolio weights ŵ (πc) we can again
employ the graphical representation as shown in fig. 8. Find the α such that the ellipse
intersects the 45 degree line at (πc, πc). Then it is easy to see that ŵ(πc) is the normalized
gradient of the ellipsoid function at (πc, πc). Changing w would rotate the straight line
around the point (πc, πc) which would cut into the ellipse and thus lower the robustness.
Hence, ŵ maximizes robustness.3

6.1.2 Shadow Costs: Algebraic Formulation

Equipped with these geometrical tools we can see how the info-gap robust-satisficing decision
model can explain large home bias with lower shadow cost than in the CAPM approach. The
basic intuition is that the very steep part of the ellipse results in a nearly horizontal robust-
optimal investment vector ŵ as in fig. 8, which corresponds to a high home share. We now
develop this intuition more quantitatively.

3This argument is valid if both elements of ŵ are positive. See section 8 for a general derivation of α̂(ŵ, πc).
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The shadow cost from French and Poterba in a two-country example can be derived
graphically in a manner similar to the info-gap derivation in figs. 7 and 8. As explained
in section 1, the first-order conditions for an extremum of the profit, decremented with a
risk-aversion term, require that profit, µ, and investment weights, w, be related by:

µ = λΣw (15)

Taking w, Σ, and C as given, consider the following optimization problem, which will underlie
our geometrical interpretation of the CAPM approach in section 6.1.3:

max
µ

w′µ subject to µ′Σ−1µ = C2 (16)

The first-order condition that comes out of this problem is:

µ =
1
2η

Σw (17)

where η is the Lagrange multiplier on the constraint. Comparing eqs.(15) and (17) we see
that, in the CAPM approach, the implicit expected return vector µ satisfies the first-order
conditions of the optimization in eq.(16) if λ = 1

2η . Using the constraint to solve for η,
together with some algebraic manipulations, one can show that:

C =
√

λw′µ (18)
= λ

√
w′Σw (19)

6.1.3 Shadow Costs: Geometric Formulation

The graphical representation of the CAPM shadow cost is portrayed in fig. 9 with two ellipses
in (µ1, µ2) space, defined by C2 = µ′Σ−1µ, one with Co =

√
λwo′µo and one with Cmc =√

λwmc′µmc. This is a critical difference between the CAPM and the info-gap approaches.
CAPM uses two ellipses of different sizes, Co and Cmc. The info-gap approach uses 2 ellipses
of the same size, α̂d. As explained in section 4.2, α̂d is homologous to the CAPM risk-
aversion parameter λ which takes a single value. (We will discuss risk aversion again at the
end of this section.)

As indicated in fig. 9, the implicit expected return vector, µo, consistent with the observed
portfolio weights, wo, is the tangency point to the Co ellipse of the hyperplane defined by
wo. Similarly, the implicit market capitalization returns, µmc, is the tangency point of the
wmc hyperplane to the Cmc ellipse. The CAPM shadow cost is the sum of the coordinate
distances of the two tangency points as specified in eq.(2) and shown by the length of the
dotted lines in fig. 9. Furthermore, if wo

1 À wmc
1 and Σ11 À Σ22 then eq.(19) can be used to

show that Co À Cmc. In that case the horizontal distance between the two points µ̃o and
µ̃mc can be very large, contributing to a big shadow cost in the CAPM framework.

In info-gap approach, on the other hand, one begins with two ellipses, both of size α̂d,
one centered at µ̃o and one centered at µ̃mc, as in figs. 8 and 10. The centerpoints, µ̃o and
µ̃mc, are fixed as described in eq.(12) of section 4.1. One finds that α̂d is substantially less
than Co and Cmc. That is, the info-gap ellipse is smaller than both of the CAPM ellipses.
The shadow cost is the sum of the coordinate distance between µ̃mc and µ̃o, as indicated by
the dotted lines in fig. 10.

Let us summarize figs. 9 and 10. We have implemented the info-gap robust-satisficing
theory in parallel to the CAPM theory. In particular, the CAPM risk-aversion parameter λ is
transposed into the info-gap demanded robustness α̂d. Each parameter, λ and α̂d, is single-
valued in its respective theory. In addition, we have developed a geometrical explanation of
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the CAPM shadow cost which entails ellipsoidal sets of profit vectors µ which are homologous
to the uncertainty sets of the ellipsoidal info-gap model. The shadow cost is less in the info-
gap than the CAPM method because both info-gap ellipses are of the same size, α̂d, which
is smaller than both of the CAPM ellipse-sizes, Co and Cmc.

So what does it mean that the CAPM uncertainty sets are greater than the info-gap
maximal-robustness set? Some insight is obtained by comparing the info-gap and CAPM
concepts of risk aversion. In the info-gap robust-satisficing theory, α̂d is the robustness,
to profit uncertainty, which the investor demands. A larger value of α̂d is chosen as the
investor’s risk-aversion increases. In the CAPM theory, λ is the risk-aversion weight in
the utility function. Like α̂d, a larger λ is chosen as the investor’s risk-aversion increases.
A robust-satisficing investor, looking at the CAPM sets and thinking in robust-satisficing
terms, would say: “What a large α̂d. How risk averse!” Conversely, a CAPM investor,
looking at the robust-satisficing sets and thinking in CAPM terms, would say: “What a
small λ. How risk-loving!” In fact, both assessments are wrong, because each is based
on a mistaken understanding of the other’s mental model. To the CAPM investor, the
info-gap robust-satisficer looks risk-loving because the profit is being satisficed rather than
maximized. To the robust-satisficer, the CAPM investor looks risk averse because the profit
is being maximized rather than satisficed.

Further understanding may be obtained by comparing the CAPM and the info-gap robust-
satisficing decision models. The CAPM investor knows the returns vector, µ. This would
allow the investor to choose the portfolio weights w so as to maximize the return, µ′w.
However, this objective function, µ′w, is decremented with its weighted portfolio-variance,
λw′Σw, to express aversion to risky fluctuation of the returns.

In contrast, the info-gap robust-satisficing investor does not know the returns vector,
µ. Consequently the investor chooses the portfolio weights w so as to satisfice the return,
µ′w. Since satisficing (unlike optimizing) generally has an infinity of solutions, the robust-
satisficing investor has an additional degree of freedom, which is used to maximize the
robustness.

11



6.2 Knightian Uncertainty, Bounded Rationality, and Info-gap Robust
Satisficing

Our explanation of the home bias puzzle is based on using the info-gap robustness func-
tion to satisfice the profit and to maximize the immunity to uncertainty. This decision
model provides one possible quantification of Knightian uncertainty combined with Simon’s
conception of bounded rationality, as we will now explain. See also [3, chap. 12].

Frank Knight emphasized the fundamental distinction between probabilistically measur-
able uncertainty, which he called risk, and unmeasurable and uninsurable uncertainty, which
he referred to as “ ‘true’ uncertainty” [11, p.20; 12, p.120]. It is uncertainty, rather than risk,
which Knight saw as underlying the greatest challenges to economic agents and analysts [11,
pp.231–232]. Other writers have also noted the distinction between uncertainty and risk,
notably Samuelson [15, pp.503–504] and Arrow [1, p.19].

An info-gap model of uncertainty is a family of nested sets U(α, ũ), α ≥ 0. The elements
of these sets represent events (in our analysis: realizations of the profit vector µ). At any
given value of the horizon of uncertainty, α, the set U(α, ũ) specifies a range of possible
variation of the events. Since the horizon of uncertainty is unknown and unbounded, there
is no worst case. Since no measure functions of probability (or plausibility, or belief, etc.)
are specified by an info-gap model, the analyst cannot calculate statistical expectations and
cannot probabilistically insure against the unknown contingencies identified in the info-gap
model.

An info-gap model of uncertainty is a more extreme departure from probabilistic tradition
than proposed by Gilboa and Schmeidler [8] and developed by Epstein and Wang [4] and
others, who replace a single prior probability distribution with a set of distributions. In our
formulation, preferences are generated without any distribution functions at all.

Knight never provided a quantification of his conception of ‘true uncertainty’, and such
a quantification may not be unique. It would seem, however, that the highly unstructured
and minimalistic quantification of uncertainty entailed in an info-gap model corresponds
reasonably well to Knight’s conception of uncertainty.

‘Satisficing’ is the satisfaction of minimal requirements or specifications: making the
performance good enough, as distinct from optimizing the performance. Herbert Simon has
pointed out that ‘comparative advantage’, whether in biological or economic survival, is a
satisficing strategy (don’t optimize, just beat the competition) [18, p.69]. Simon recognized
the role of satisficing as a means for dealing with the “limitations upon the capacities and
complexity of the organism, and [for] taking account of the fact that the environments to
which it must adapt possess properties that permit further simplication [sic] of its choice
mechanisms.” [17, p.129]. Simon refers to this combination of organismic and environmental
limitations as ‘bounded rationality’ [19].

The info-gap robustness function, α̂(w, πc) in eq.(5), evaluates the immunity, of investment
w, to the Knightian uncertainty of an info-gap model, while attempting to satisfice the profit
at the level πc. The robustness function generates preferences on the investment alternatives
w. While profit is satisficed rather than maximized, what is maximized, resulting in the
robust-optimal investment ŵ(πc) in eq.(6), is the immunity to uncertainty.

Decision makers can respond in many ways to Knightian uncertainty and to bounded
rationality. One possible response is to employ the info-gap robustness function. The epis-
temic requirements are no greater than those needed for selecting an info-gap model, which
constitutes a quantification of Knightian uncertainty. The robustness function explicitly sat-
isfices rather than optimizes the profit. Our study of the home bias phenomenon suggests
that robustness optimization may not exceed the capability of “boundedly rational” decision
makers.
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7 Appendix: Partial Geometric Derivation of Robust-optimal
Investment

In this section we outline a geometrical derivation of the investment vector ŵ(πc) which
maximizes the robustness for the ellipsoid-bound info-gap model. We consider the general
N -country case, so w and µ are N -vectors, and w satisfies w′1 = 1 where 1 is the N -
vector whose elements are all ones. Let H(w, πc) denote the hyperplane in µ-space defined
by w′µ = πc. We first derive the robustness function, α̂(w, πc), for fixed portfolio w and
aspiration πc. We then derive the robustness-maximizing portfolio, ŵ(πc), given aspiration
πc. We then derive the aspiration and portfolio as functions of the robustness, πc(α̂) and
ŵ(α̂).

Robustness function α̂(w, πc). Examination of eq.(5) shows that, if the anticipated
profit vector, µ̃, does not yield more than the aspired profit, w′µ̃ ≤ πc, then the robustness
vanishes: α̂(w, πc) = 0. In other words, the robustness is positive if and only if µ̃ is above
the hyperplane H(w, πc).

So, for µ̃ above H(w, πc), find the value of α at which the ellipsoid in µ-space, α2 =
(µ− µ̃)′Σ−1 (µ− µ̃), is tangent to H(w, πc). (See fig. 7 for a 2-dimensional illustration.)
The geometric realization of the definition of the robustness in eq.(5) is that this value of α
is the robustness. At this point of tangency between the hyperplane and the ellipsoid, the
outward normal of the ellipsoid is 2Σ−1 (µ− µ̃), while the normal to the hyperplane is w.
That is:

cw = 2Σ−1 (µ− µ̃) (20)

where c is a non-zero constant which guarantees that this µ lies on the boundary of the
ellipsoid, resulting in:

µ = µ̃− α√
w′Σw

Σw (21)

Since w′µ = πc for this µ which lies on the hyperplane H(w, πc), this value of α (which is
the robustness), becomes the expression in eq.(9).

Robustness-maximizing portfolio ŵ(πc). The central fact is that the hyperplane
H(w, πc) contains the point µ = πc1 for any choice of the portfolio w. The next point is
that the ellipsoid α2 = (µ− µ̃)′Σ−1 (µ− µ̃) is tangent to H(w, πc) when α equals α̂(w, πc),
as we have explained in connection with eqs.(20) and (21). It results that the greatest
possible robustness, for aspiration πc, is the value of α for which the ellipsoid is tangent to
the hyperplane at the point µ = πc1 (see fig. 8 for a 2-dimensional illustration).

When the ellipsoid is tangent to H(w, πc), the normal to the ellipsoid is proportional to
w. When this occurs at µ = πc1, the value of w, which is the portfolio which maximizes the
robustness, is found to be:

ŵ(πc) =
1

1′Σ−1 (πc1− µ̃)
Σ−1 (πc1− µ̃) (22)

Substituting this into eq.(9) results in the maximal robustness for aspiration πc:4

α̂(ŵ(πc), πc) =
√

(πc1− µ̃)′Σ−1 (πc1− µ̃) (23)

8 Appendix: Algebraic Derivation of Robust-optimal
Investment

In this section we outline the derivation of the investment vector ŵ(πc) which maximizes the
robustness for the ellipsoid-bound info-gap model, eq.(9). It is convenient to consider two

4Something is wrong. Eq.(22) results in a robustness which is the negative of eq.(23).
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cases.

1. µ̃ = m01, where m0 is a scalar.

2. µ̃ 6= m01, where m0 is a scalar. We proceed in two steps:

(a) Find w to minimize w′Σw subject to w′1 = 1 (budget constraint; 1 is an N -vector
of ones) and w′µ̃ = κ where κ is a constant no less than πc. Denote the result
ŵ(κ).

(b) Find κ to maximize α̂(ŵ(κ), πc) in eq.(9).

We first consider case 1. µ̃ = m01 and, by the budget constraint, w′1 = 1, so
w′µ̃ = m0. So, from eq.(9), the robustness is zero unless m0 ≥ πc. Consequently, w
maximizes the robustness if w is chosen as a solution of the following optimization problem:

minw′Σw subject to w′1 = 1 (24)

Lagrange optimzation immediately results in the following robust-optimal investment vector
and corresponding maximal robustness:

ŵ =
1

1′Σ−11
Σ−11 (25)

α̂(ŵ, πc) = (m0 − πc)
√

1′Σ−11 (26)

We note that the robust-optimal investment vector, ŵ, is independent of the anticipated
profit vector µ̃. The maximal robustness, α̂(ŵ, πc) varies affinely with the magnitude, m0,
of the anticipated profit vector.

We now consider case 2, for which µ̃ 6= m01, where m0 is a scalar.
Step 2a. We use Lagrange optimization to solve the following problem, for any value of

κ ≥ πc:
minw′Σw subject to w′µ̃ = κ, w′1 = 1 (27)

The result is:
ŵ(κ) =

1
hf − g2

Σ−1 [(fµ̃− g1)κ + h1− gµ̃] (28)

where:
f = 1′Σ−11, g = µ̃′Σ−11, h = µ̃′Σ−1µ̃ (29)

Some manipulation reveals that eq.(28) can be expressed:

ŵ(κ) =

θ︷ ︸︸ ︷
1

µ̃′Σ−1(µ̃1′ − 1µ̃′)Σ−11

Ξ︷ ︸︸ ︷[
Σ−1(µ̃1′ − 1µ̃′)Σ−1

]
(1κ− µ̃) (30)

which defines the scalar θ and the matrix Ξ, neither of which depends upon κ.
Step 2b. From eqs.(9) and (30), and since ŵ′(κ)µ̃ = κ and κ ≥ πc, we express the

robustness as a function of κ:

α̂(ŵ(κ), πc) =
κ− πc

θ
√

(1κ− µ̃)′Ω(1κ− µ̃)
(31)

where we have defined Ω = Ξ′ΣΞ.
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α̂(ŵ(κ), πc) and α̂2(ŵ(κ), πc) reach extrema at the same values of κ. Analysis of α̂2(ŵ(κ), πc)
reveals that its only extremum occurs at:

κ̂ =
(πc1− µ̃)′Ωµ̃

(πc1− µ̃)′Ω1
(32)

provided that this is no less than πc; otherwise the extremum occurs at κ = ∞.
From eq.(31) we see that:

α̂(ŵ(κ = πc), πc) = 0, and lim
κ→∞ α̂(ŵ(κ), πc) > 0 (33)

Hence the extremum of α̂(ŵ(κ), πc), obtained with κ̂ of eq.(32), must be a maximum.
In summary of case 2: the robust-optimal investment vector, ŵ(κ̂), is obtained by com-

bining eqs.(30) and (32). The maximal robustness, α̂(ŵ(κ̂), πc), is obtained by combining
eqs.(31) and (32). We note that κ̂ varies nonlinearly with the magnitude of the anticipated
profit vector µ̃. Consequently both the optimal investment, ŵ(κ̂), and the maximal robust-
ness, α̂(ŵ(κ̂), πc), vary as µ̃ changes. This is unlike case 1, for which the optimal investment
is independent of µ̃ and the maximal robustness varies affinely with the magnitude of µ̃.
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Figure Captions

1. Determining the centerpoint, µ̃, given portfolio weights w (two-country case).

2. CAPM annual shadow costs versus year.

3. Demanded robustness, α̂d, versus year. Shadow cost at each point equals the corre-
sponding CAPM value.

4. Profit-uncertainty ellipses, µ2 (vertical) vs. µ1 (horizontal). Shadow cost at each point
equals the corresponding CAPM value. Year 1990: dotted; 1995: dashed; 2000: solid.

5. Demanded robustness, α̂d, versus year. Shadow cost at each point is 0.01 (annual).

6. Profit-uncertainty ellipses, µ2 (vertical) vs. µ1 (horizontal). Shadow cost at each point
is 0.01 (annual). Year 1990: dotted; 1995: dashed; 2000: solid.

7. Determining the robustness α̂(w, πc) (two-country case).

8. Determining the robustness-optimizing portfolio ŵ (two-country case).

9. Geometrical explanation of the CAPM shadow cost: the sum of the two dotted lines.

10. Geometrical explanation of the info-gap shadow cost: the sum of the two dotted lines.
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