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CONSUMPTION AND ASSET PRICES
WITH HOMOTHETIC RECURSIVE PREFERENCES

MARK FISHER AND CHRISTIAN GILLES

ABSTRACT. When preferences are homothetic, utility can be expressed in terms
of current consumption and a variable that captures all information about future
opportunities. We use this observation to express the differential equation that
characterizes utility as a restriction on the information variable in terms of the
dynamics of consumption. We derive the supporting price system and returns
process and thereby characterize optimal consumption and portfolio decisions.
We provide a fast and accurate numerical solution method and illustrate its use
with a number of Markovian models. In addition, we provide insight by changing
the numeraire from units of consumption to units of the consumption process. In
terms of the new units, the wealth—consumption ratio (which is closely related
to the information variable) is the value of a coupon bond and the existence of
an infinite-horizon solution depends on the positivity of the asymptotic forward
rate.

1. INTRODUCTION

We solve for the dynamics of consumption, investment, and asset prices in a
general-equilibrium, continuous-time stochastic model with a representative agent
who has recursive preferences. The setting varies and determines the problem that
we solve. In an endowment economy, the dynamics of consumption is given and
we solve for asset prices (the ezchange problem); in a partial equilibrium setting,
prices are given and we solve for the optimal consumption and investment plan (the
planning problem); in a production economy, a set of linear technologies is given and
we solve for consumption, investment and asset prices (the production problem). By
focusing on the consumption—wealth ratio, we find that these three problems are
essentially equivalent, and we provide a unified framework for solving them.

The recursive utility framework generalizes the standard time-separable power
utility model, allowing the separation of risk aversion and intertemporal substi-
tution. This framework was introduced by Epstein and Zin (1989), who analyze
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recursive preferences in a discrete-time setting, and Duffie and Epstein (1992b),
who develop a continuous-time formulation of Epstein and Zin’s class of recursive
utility called stochastic differential utility. We use a martingale approach to solve
for the equilibrium, along the lines of Duffie and Skiadas (1994), who show that the
first-order condition for optimality is equivalent to the absence-of-arbitrage condi-
tions for asset prices—namely, that asset prices deflated by the state-price deflator
are martingales. In addition, they provide a representation for the state-price defla-
tor for the Kreps—Porteus stochastic differential utility (K-P SDU) that we adopt
here.

We express utility in terms of two state variables: current consumption and a
second variable (the information variable) that captures all information about fu-
ture opportunities. This representation of utility relies on the homotheticity of K—P
SDU, and holds for the exchange problem as well as in economies with linear invest-
ment opportunities (covering both the case of the planning problem and that of the
production problem). Equilibrium in the model reduces to a central restriction on
the information variable in terms of the dynamics of a forcing process. This forcing
process can be either consumption (for the exchange problem), the real state—price
deflator (for the planning problem), the return on the market portfolio (for the
production problem), or something entirely different (for example, the state-price
deflator expressed in an arbitrary numeraire). Solving the model for (i) optimal
consumption, (i) the optimal portfolio, and (7ii) asset prices amounts to finding
the process for the growth variable that satisfies the central restriction.

Unless the elasticity of intertemporal substitution is unity, we can replace the in-
formation variable with the wealth—consumption ratio. The homogeneity properties
of the representative agent’s planning problem (homothetic preferences and linear
technology) ensure that optimal consumption is proportional to wealth. We show
that the optimal wealth—consumption ratio is the value of a coupon bond when the
numeraire has been changed from units of the consumption good to shares in the
consumption process (i.e., the dividend process). Thus, the wealth-consumption
ratio is the value of an asset. As such, it must obey a standard absence-of-arbitrage
condition.

As a practical matter, the model is solved when we know how to obtain, analyt-
ically or numerically, an expression for the consumption-wealth ratio that satisfies
this condition. It is then straightforward to obtain expressions for the rate of inter-
est and the price of risk—determined by the dynamics of the so-called state-price
deflator—and other variables of interest. In order to focus on the role of prefer-
ences, it is convenient, in the spirit of Lucas (1978) (as well as Mehra and Prescott
(1985) and Weil (1989)), to start with the exchange problem, in which the forcing
process is consumption and we solve for the supporting prices, i.e., the state-price
deflator. For the planning problem, we reverse the process, solving for the opti-
mal consumption and investment plans using the state-price deflator as the forcing
process. Finally, in the spirit of Cox, Ingersoll, Jr., and Ross (1985a) and Campbell
(1993), we model technology, which we interpret as the return on the optimally
invested wealth of the representative consumer. For this production problem, then,



CONSUMPTION AND ASSET PRICES 3

we solve for consumption and prices using the return on the market portfolio as the
forcing process.

In a Markovian setting, the dynamics of the forcing process are driven by a finite
set of Markovian state variables. In such a Markovian setting the no-arbitrage con-
dition becomes a partial differential equation (PDE) that we wish to solve for the
wealth-consumption ratio as a function of the state variables (and time). Because
this ratio is the value of a dividend-denominated coupon bond, it can be computed
from dividend-denominated bond prices. In some circumstances, standard methods
deliver exact solutions (numerically at least and sometimes even analytically) to
the bond pricing problem, and we get the wealth-consumption ratio by numerical
integration. In all other cases, we attack the annuity PDE directly and provide an
approximate solution method that produces fast and accurate numerical solutions
that converge to the Taylor expansion of the exact solution. Much like standard
bond pricing methods, our solution method transforms the PDE into a set of simul-
taneous ordinary differential equations (ODE) when the horizon is finite. A unique
solution is guaranteed to exist, but only for horizons that are sufficiently short.
We solve the infinite-horizon problem by extending the finite horizon and taking a
limit. Such a limit does not necessarily exist, but when it does, it is the solution of
a set of algebraic equations. The conditions for the existence of the solution to the
infinite-horizon problem can be understood in terms of the dividend-denominated
term structure. Since the wealth—consumption ratio is the value of a fixed-income
security, it will be finite in the limit only if the asymptotic dividend-denominated
forward rate is positive.

Related work. Asnoted above, Duffie and Epstein (1992b) and Duffie and Skiadas
(1994) lay the groundwork for continuous-time modeling of recursive preferences.
Schroder and Skiadas (1999) extend the earlier work in a number of important ways.
They prove existence and uniqueness of solutions and address the relation between
the first-order conditions and optimality in a more general non-Markovian setting
than has been treated previously, and we refer the reader to their paper regarding
these issues. In addition, they provide some closed-form solutions to the planning
problem in special cases that we also consider below.

Duffie and Epstein (1992a) derive the representation for risk premia in the setting
we adopt here. Both Duffie and Epstein (1992a) and Duffie, Schroder, and Skiadas
(1997) solve one-factor models of the term structure in the special case where the
dynamics of the state variable are introduced through the growth rate of consump-
tion. Among other things, these papers address how a change in the coefficient of
relative risk aversion affects the shape of the yield curve. Duffie and Lions (1992)
address questions of existence and uniqueness of solutions to the PDE in a setting
similar to ours.

Campbell (1993) linearizes the discrete-time model of Epstein and Zin (1991),
and derives an approximate solution to the model in the homoskedastic case that
is exact when the intertemporal rate of substitution equals unity. We derive more
general conditions under which important aspects of Campbell’s solution are essen-
tially exact, providing insight into the performance of his approximate solutions.
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In addition, we examine the approximate relations Campbell describes between the
volatility of a perpetuity and the price of risk. Campbell’s model is used by Camp-
bell and Viceira (1996) to study the planning problem.

Outline. In Section 2, we introduce the utility function (K-P SDU), for which we
derive a two-state-variable representation in the context of the exchange problem,
thereby simplifying the model’s central restriction. The state variables indepen-
dently capture the level and growth features of the endowment process.

In Section 3, we derive the returns process that supports the endowment and
we show that the wealth—consumption ratio depends only on the information vari-
able. Next, we change perspective and characterize the solution of the optimal
consumption and optimal portfolio problems.

In Section 4, we show that the wealth—consumption ratio is the value of a coupon
bond after the numeraire has been changed from units of consumption good to shares
in the endowment itself (i.e., the dividend). Next we show how to solve the model
when the dividend-denominated interest rate is deterministic or Gaussian. In the
case of unit elasticity of intertemporal substitution combined with homoskedasticity,
we show that the growth variable is a weighted average of expected future growth
rates of the forcing variable. We show that the weak form of the expectations
hypothesis as applied to the endowment term structure delivers useful results. In
addition we show how to identify the boundary between regions of convergence
and nonconvergence to an infinite-horizon solution using the asymptotic dividend-
denominated forward rate. Finally, we examine a number of limiting cases regarding
the preference parameters.

In Section 5, we introduce a Markovian structure that turns the central restriction
into a partial differential equation (PDE), and we present some illustrations. In
Section 6, we present our numerical solution method and illustrate it with some
examples.

2. HomoTHETIC SDU

We now introduce the preferences of the representative agent, for which we adopt
Kreps—Porteus stochastic differential utility (SDU). We adopt the stochastic frame-
work studied in Duffie (1996), to which we refer the reader for all omitted details.
We restrict attention to a Brownian environment, by which we mean that we are
given a [-dimensional vector of orthonormal Brownian motions, W (t), defined on a
fixed probability space, and the filtration is that generated by W (t). In other words,
the information that agents have at time ¢ is that contained in the path of W (s)
for s < t.

We present a value function for Kreps—Porteus SDU that is valid for the entire
parameter space. Using this value function and the general representation for the
SDU gradient given by Duffie and Skiadas (1994), we obtain an explicit representa-
tion for the state-price deflator. We derive expressions for the interest rate and the
price of risk in terms of this representation.

As explained by Duffie and Epstein (1992a) and Duffie and Epstein (1992b), SDU
(not just the Kreps—Porteus specification) can be represented by a pair of functions
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(f, A) called an aggregator. The functions f and A can be interpreted as capturing
separately attitudes toward intertemporal substitution and attitudes toward risk
in the following sense. First, in a deterministic setting, A plays no role. Second,
hypothetical experiments can be conducted, for example, by fixing f and varying
A to study the effect of risk aversion. Associated with the aggregator, there is a
process V(t), called continuation wutility, such that the value of the consumption
plan {c} = {c(t) | t > 0}, an Ito process, is U({c}) = V(0). Continuation utility is
also an It6 process, and we can write its dynamics as

dV (t) = py (t) dt + oy () dW (t).

Continuation utility has the following representation:

T 1
V(t) = Ex U_t f(e(s),V(s)) + A(V(s)) 5 lov (s)]|* ds + G(T) |, (2.1)

where G(T') is a terminal reward and Ej[-] denotes the expectation given informa-
tion available at time ¢. Equation (2.1) can represent either finite- or infinite-horizon
utility, depending on how the terminal reward is modeled.! Applying It6’s lemma
to (2.1) produces an equivalent characterization of V:

pv (t) = —f(e(t), V() = A(V (1)) % lov(®)||?,  subject to V(T) = G(T). (2.2)

We adopt the following standing assumption: the consumption process is positive;
its dynamics are given by?

dlog(c(t)) = Jie(t) dt + o.(t) T dW (¢). (2.3)

By definition, preferences are homothetic if U({c'}) > U({c}) < U({\}) >
U({Ac}) for A > 0. If preferences are homothetic, there is a monotonic transfor-
mation of U({c}) that is linearly homogeneous in consumption. Duffie and Epstein
(1992b) show that V' (0) = U({c}) is linearly homogeneous in consumption if and
only if the aggregator (f, A) satisfies (¢) f is homogeneous of degree 1 and (ii) A is
linearly homogeneous of degree —1 (in which case V(t) is linearly homogeneous for
any t). Their proof relied on the terminal condition G(7') = 0 but is equally valid
for the linearly homogeneous terminal condition G(T') = (¢(T"), where ¢ > 0 is

1See the appendix in Duffie and Epstein (1992b) for a formal treatment of extending finite-horizon
SDU to the infinite-horizon case.

2We use the following notational convention. If z(t) is explicitly strictly positive, then p., . and
o, refer to the quantities implicitly defined in dz(t)/z(t) = p-(t) dt4+0.(t) T dW (t) and dlog(z(t)) =
T=(t) dt + 0.(t) TdW (t), implying [i.(t) == p=(t) — 2 ]lo=(t)||*. There are two notable exceptions.
One is continuation utility, V' (t). The other is the state variables X (t) (introduced below), which
are not necessarily positive. For these variables, we write dX () = ux (t) dt+ox (t) T dW (t), so that
ux (t) refers to the drift of X (in level) and ox to its volatility.
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constant.? We adopt this terminal reward and will refer to ¢ as the bequest-motive
coefficient.

Kreps—Porteus SDU. The homogeneity conditions on f and A imply that we
can write

fle,v) =vF(c/v) and A(v)=—v/v, (2.4)

for some function F' and some constant «y. It can be shown that « is the coefficient
of relative risk aversion for static wealth gambles.* We restrict our attention to
v > 0. The form of F' determines the rate of time preference and the elasticity of
intertemporal substitution. Let 8 > 0 denote the rate of time preference and let
n > 0 denote the elasticity of intertemporal substitution. We will find the following
reparametrization of 7 and ~ useful:

p=1—-1/p<1 and a:=1-7<1. (2.5)

As we will see below (when we compute the interest rate from the utility gradient),
F//

B=zF'(z)—F(z)p and pl—i—mF/i(gj). (2.6)

Requiring 3 and p (or 1) to be constant and F(z) to be continuous in p produces®

(¥ =1)/p for p#0

log(z) for p = 0. 27)

F(z)=pu(zr) where u(x)= {

As shown by Duffie and Epstein (1992a), these preferences allow a disentangling
of attitudes toward risk from attitudes toward intertemporal substitution. The
preference for early versus late resolution of uncertainty is characterized by the
sign of « — p. For a — p = 0, Kreps—Porteus SDU specializes to time-separable
preferences with power utility, for which the consumer is indifferent toward the
timing of resolution of uncertainty. This locus is shown as the rectangular hyperbola
n~ = 1 in Figure 1 (where + is plotted on the vertical axis against 7 on the horizontal
axis). For a« — p < 0 (or -y > 1), the consumer prefers early resolution, while for
a—p >0 (or py < 1), late resolution. We will discuss the other loci below.

To sum up, our homothetic SDU preferences are characterized by the vector of
four parameters (3,7, 7, (), or, equivalently, (3, p, a, ().

3The existing literature has by and largely adopted the terminal reward ¢ = 0. An exception is
Schroder and Skiadas (1999) who provide a brief discussion of non-zero terminal rewards in general
and an example using ¢ = 1 for v = 1. As we show in Appendix C, a zero terminal reward implies
that there is no solution when p = 0. A standard fix is to adopt the inhomogeneous terminal
reward G(T) = £ > 0, but in this case there is no single transformation 7°(-) such that 7'(V (t)) is
linearly homogeneous in {c(s) | s > t} simultaneously for all .

4See Epstein (1992) for a discussion of the relation between the properties of a certainty equivalent
in a dynamic setting and risk aversion in a static setting.

5This specification appears in Duffie and Epstein (1992a, p. 418). Schroder and Skiadas (1999)
adopt a different parameterization: their 7 is p, and their a is (a/p) — 1 if p # 0 and otherwise
their o is a.



CONSUMPTION AND ASSET PRICES 7

FIGURE 1. The coefficient of relative risk aversion, -y, versus the
elasticity of intertemporal substitution, n. The shaded areas show

where a/p < 0.
Y

.

2

The central restriction for homogeneous SDU. The linear homogeneity of
continuation utility in consumption implies V (t) = ¢(t) ¢ (t) for some process {1 };
the terminal reward implies ¥)(T) = (. For strictly positive and finite ¥,° we can
write

d0g((t)) = iy (8) dt + o (6) AW (2).
Ito’s lemma applied to V(¢) = ¢(t) ¥(¢) yields
wo =V (Rt o+ g loct oul?) and oy =V (o +)
Thus we can write (2.2) as
fle + [y + a% o+ oyl|* + Bu(l/1) =0, subject to ¢(T) = (. (2.8)

For a given process c, if the process ¢ solves (2.8), then the process c1) is continua-
tion utility, provided fst:o oy (s)TdW (s) is a martingale.” Thus, whenever a solution
5As we discuss below, we can avoid technical problems at the boundary, where 1 = 0 or ¢ = co

may occur, with a change of variables.
"See Proposition 3 in Schroder and Skiadas (1999).
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to the underlying problem exists, the solution to (2.8) provides it. However, the
solution to (2.8) does not provide the solution to the underlying problem unless the
volatility of ¢t is well behaved.

In general, (c,v) is not jointly Markovian. In a Markovian setting,® we have
Y(t) = P(X(t),t) for some function ¥, where X is a vector of Markovian state
variables. Given (2.8), the only way for the state variables to affect ¢ is through z.
and o.. In effect, ¢ summarizes all information about future opportunities contained
in the dynamics of the forcing variable consumption. As such, we refer to ¥ as the
information variable.

The normalized aggregator and the utility gradient. Having characterized
the utility of a given consumption process, we now turn to marginal utility, which
provides the link to optimality. Duffie and Skiadas (1994) derive the Riesz rep-
resentation of the utility gradient for a wide class of dynamic utilities including a
normalized version of KP-SDU.?

As discussed by Duffie and Epstein (1992a), for any SDU there exists a normal-
ized form (f, A) where A = 0. The normalization is achieved via an increasing
monotonic transformation of V' that produces a new continuation utility that is
ordinally equivalent. Suppose we define V(¢) := T(V(t)), where V(z) is twice-
continuously differentiable and strictly increasing. Even though the change of vari-
ables has no effect on choices, it does change the form of the aggregator (through
Ito’s lemma). Let &(z) denote the inverse function of 7°(z) so that ¢(1'(z)) = =.
Then the aggregator for V is (f, A), where

fle,2) = fe.®(2))/P'(z) and A(z) = &'(2) A(P(2)) + 9" (2)/2(2),

and the terminal reward is G(T) = T(G(T)). If T is chosen to satisfy 7"(x) —
A(x)T'(z) = 0, then A = 0. For homogeneous SDU, the normalizing transformation
is T(x) = (z* — 1)/a, so that &(x) = (1 + az)'/*, with the appropriate limits for
a = 0. For a # 0 and p # 0, the normalized aggregator is:

] 8 ((c(+az) /oy —1)

fle,2)=(1+ az) p (2.9)
For the limiting cases, we have:
B =1)/p—2) fora =p
fle,2) = (8/p) (cPeP? = 1) fora =0 (2.10)

(14 az)pB(log(c) — (1/a) log(l +az)) for p=0.

8See Section 5.
9See Duffie (1996) for a discussion of the utility gradient.
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We can compute the partial derivatives of f(c,V) as defined in (2.9) and express
them in terms of the un-normalized continuation utility:
fele, (V) = Bu'(c/V) V!
— ﬁ cafl ,L/}afp
Fole, (V) = =B~ (p—a) Bu(c/V)
=—B—(p—a)Bu(l/y).

The utility gradient is expressed in terms of the Gateaur derivative of V(0). The
Gateaux derivative V(t) at {c} in the direction of {¢} is defined by

(2.11a)

(2.11D)

yictad) (t) — it ()

(%

VV({chi{c}t) = lim

It can be expressed as

T S
ek ekt = | [ Fets + T ).
where
G(t) =D(t) ’C(f(t), V(t)), fort <T (2.12a)
G(T) = D(T) Cilf(%), (2.12b)
and

p(t) = e { | | Rlels). V) is}.

G is the Riesz representation of this utility gradient. Since V is ordinally equivalent
to V, the marginal rate of substitution for both V and V between time ¢ and time
s is given by G(s)/G(t).

Supporting price system. We now use the Riesz representation of the utility
gradient derive the price system (i.e., the interest rate and price of risk) that sup-
ports the endowment. To support a consumption plan that we assume to be strictly
positive (we restrict attention to interior solutions), prices must be aligned with mar-
ginal rates of substitution, which in the present context means that the state-price
deflator must be colinear with G(t), so that m(t) = aG(t) for some scalar a > 0.1°
We assume in this paper that this first-order condition is also sufficient for the
optimality of the solution.'!

10Gee Appendix A for a discussion of the state—price deflator.
'See Schroder and Skiadas (1999) for some results.
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In accord with (A.1), applying It6’s lemma to aG(t), where G(t) is given by
(2.12), delivers the short rate 7 and the price of risk A:'2

~ 1 1
r=F+01=p)fc—alp—a); lloc+ oull® — 3 IAN12 (2.13a)
A=1—-a)o.+ (p—a)oy, (2.13b)

where we have used (2.8) to eliminate fi, + Su(1/¢) from r. Note that oy enters
the price of risk with a sign that depends on whether early or late resolution of

uncertainty is preferred. We see that p = a delivers the well-known expressions for
r and A under the C-CAPM.!3

A representation with explicit discounting. Define V(t) = u(V(t)). In this
case $(x) = u~'(z) = (1 + px)'/?. The aggregator for V is

fle,z) =B (u(c)—2z) and A(z) = 1a+_ppz'

where 1+ p z is positive. It then follows from (2.1) that'*

T o —
V() = B [ | pere {u<c<s>> +5 (TVP() 5 rrav<s>2} ds

+e PT=Du(G(T))|. (2.14)

Recall that with standard preferences o — p = 0, and that o — p < 0 is associated
with preference for early resolution of uncertainty with respect to utility, in which
case uncertainty about continuation utility reduces current utility.

Using V(t) = u(c(t) (1)), llog(s)II?/(1 + pV(s)) = V(s)” lov(s)/V(s)|?, and
u(z)/y? +u(l/y) = u(z/y), we can rewrite (2.14) as

w((t)) = E; [/Sige—ﬁ(s—t) " (%) ds + e=BT=0 (C c(T)>]

c c(t)

T
o= B | [ e 0uep flonls) + ool ds] . 215)

=t

This provides a semi-explicit representation for the information variable; for stan-
dard preferences (« — p = 0), the representation is fully explicit. We can obtain
a useful approximation from (2.15) near p = 0 as follows: multiply both sides of

2Note that if consumption grows as a constant rate (so that o = 0 and ov = 0), then r =
B+ (1—p) fre. When the growth rate is zero (constant consumption), the interest rate equals 3, the
rate of time preference. Moreover, since fi. = (1—p)~" (r—3), we see that dji./dr = (1—p)~" = n,
the elasticity of intertemporal substitution.

!3This is consistent with Theorem 2(a) (under condition I) in Schroder and Skiadas (1999).
Related representations appear in Duffie and Lions (1992) and Schroder and Skiadas (1999).
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(2.15) by p, add 1, and evaluate at p = 0 to produce

log(v(t)) = E [/ BeBls—b) <%) ds + =0T Jog <C CC((Yt’))ﬂ

T
rat | [P as t ol ds| + 06 (210

Risk aversion and risk neutrality. In this section, we emphasize that setting
the coefficient of risk aversion v = 0 is not sufficient to guarantee risk neutrality.
Duffie and Epstein (1992b) define risk aversion for SDU as follows. Let {c} denote
an arbitrary consumption process taken from some appropriate space. Define a new
consumption process {¢} where &(t) = Ep[c(t)]. A utility function U({c}) = V{¢}(0)
is risk averse if U({c}) < U({¢}). We define risk neutrality in a parallel fashion:
A utility function is risk-neutral if U({c}) = U({¢}). For (¢, p) # (0,0), Vi< (0) =
¢(0) 1)1} (0). Therefore it is enough to compare 1)1} (0) with 1{}(0). We can use
(2.15) to express (w{c}(O))p and (w{é}(O))p.l‘f’ Multiply both sides of (2.15) by p

and add one:

- Lol o (B

(
[ e (s) uac<)+a¢<s>||2ds] (2.17)

and
(v ) / Behs ( E%()S)]> ds +e T (g —EOC[(C(E)T)]Y). (2.18)
For p=1,
T
SO0 = v0) =B | [ (6 3 lonls) + uls)?ds] 20

with equality if v = 0 (or if there is no state variation). For oo = p,

T
U@~V = [ 8e (Bole(s) = By le(s)) ds
+ ¢ PT (B (D)~ Bo TV (219)

Regardless of the sign of p, (2.19) implies U({¢}) — U({c}) > 0, with equality if
p =1 (orif {c} is deterministic). Evidently, risk-neutrality requires o = p =1 (i.e.,
v =0 and n = o0). Of course, these are the conditions that ensure the price of
risk is zero. In addition these conditions ensure that the interest rate is constant, a
point made by Cox, Ingersoll, Jr., and Ross (1981) in a related setting.

5For p = 0, we can use (2.16).
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3. OPTIMAL CONSUMPTION AND PORTFOLIO

In this section we derive the supporting returns process and then solve for optimal
consumption and the optimal portfolio.

Wealth and consumption. Let k denote wealth. Wealth is the present value of
the consumption endowment (there is no harm in identifying the state-price deflator
with the utility gradient, since they are colinear):

k(t) = Z(t)/G(1), (3.1)

where

_ g U G(s) e(s) ds + G(T) e(T)| , (3.2)

and where dZ = —(G ¢) dt + &, dW, for some Gz. Applying Ito’s lemma to k = Z/G
produces

k- k3 _ cdt, (3.3)
where d¢/¢ = pgy dt + o/ dW and
pe =1+ 0oy and op=A+0z/2. (3.4)

Thus d¢/¢ is the stochastic rate of return that supports the endowment. The results
in this section so far do not depend on any special assumptions about preferences.
To get more specific results (and in particular to identify 67/7), we now assume
homogeneous SDU.

The wealth—consumption ratio. We now establish the relation between the wealth—
consumption ratio and the information variable. Rearranging the right-hand side
of (3.1), we can express wealth as

(z UGU) ) (3.5)

where G(1)/D(t) = F.(e(t), V(1)) = (t)@ Lyt~ and
2 VV({eh{cht)
D(t) c(t) c(t) ’

The right-hand side of (3.6) is the Gateaux derivative of V(t) evaluated at the
endowment, in the direction of the endowment, per unit of current consumption. It
measures the marginal (continuation) utility of a permanent, proportional increase
in consumption:

VV({c} {cht) V@) o ((c(t)zb(t))“

(3.6)

—1 =c a—1 a
c(t) ~oc(t)  Bc(t) o )— O ). (3.7)
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Thus we can write (3.5) as

k(t) = <%> c(t).

Denoting the wealth-consumption ratio 7 := k/c, we have 7 = 1*/3.16 Given the
homotheticity of utility and the linearity of investment technology implicit in the
conceptual experiment, the wealth—consumption ratio is scale-free, depending only
on the information variable.

Before returning to the supporting returns process, we note some implications of
the relation between the wealth—consumption ratio and the information variable.
The boundary condition 1(7") = ¢ implies 7(T") = (? /(. For p < 0, 7(T") and ¢ are
inversely related; in particular, for 7(7) = 0 we must have ¢ = c0.!” For p = 0,
m(t) = 1/ for all t < T. With ¢ = 1, the terminal wealth-consumption ratio is
1/ for all values of p. The first-order approximation for 7w around p = 0 can be
obtained from (2.16) using m = (1+p log(¢))/B+O(p?).'®* We can transform (2.15)
into an expression for the wealth—consumption ratio by multiplying both sides by
p, adding 1, and dividing by :

= b [/: e Pl (%)p ds + e~8 (T <%>’” %}

T
1

+(a/p—1) E, U e Pl 1 (s) 5 llpoe(s) + ox(s)]? ds] . (3.8)
s=t

The wealth—consumption ratio is composed of two terms. The first term is the
wealth—consumption ratio for the C-CAPM, while the second term, which involves
the volatility of consumption, is present only when preferences are not additive. For
p = 0, the first term is 1/5 and the second term is zero.

Supporting returns process. In deriving the relation between the wealth—consumption
ratio and the information variable, we have identified 6,/Z: Equations (3.6) and
(3.7) imply Z(t) = D(t) (c(t)¥(t))”, so that 65/Z = a(oc + o). We can write
(3.4) as

~ 1
fig =7+ A 0y — = [log|” (3.9a)
op=A+a(oc+oy). (3.9b)

Note that the returns process is independent of wealth. Together (2.13) and (3.9)
establish the relations among the dynamics of consumption, the supporting price
system, and the supporting returns process. For example, we can use (2.13b) to

6We can compute this directly in terms of the homogeneous representation of utility as
(OV/6)/ fo = 1° /8. A

70f course, for p # 0, we could reparameterize the bequest-motive parameter: ¢ := ¢*. Then
7(T) = ¢/ for all p # 0.

8The approximations in Campbell (1993) are implicitly based on this approximation.
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eliminate o, from (3.9b) and express the price of risk as

A=q0s+(1—7) (‘%) (3.10)

Evidently risk premia depend on the covariance with the returns process and with
the information variable. Campbell (1993) derives an equivalent expression for
risk premia (his Equation (25)), which he refers to as the “cross-sectional asset
pricing formula that makes no reference to consumption.” We can obtain Campbell’s
parameterization with a change of variables. Define w := /7. Then Oy = N0y,
and (3.10) becomes A =y o4 + (1 — ) 0.

Optimal consumption. Up to this point, we have treated the consumption process
as given: Current opportunities have been given by current consumption and fu-
ture opportunities have been determined by the dynamics of consumption. Now we
change perspective. Consumption is no longer given exogenously. Instead, current
opportunities are given by current wealth and future opportunities are determined
by stochastic investment returns—either directly via the investment technology or
indirectly via the price system.

The dynamics of wealth as given in (3.3) embody the consumption—investment
trade-off. We can interpret d¢/¢ as the return on optimally invested wealth and
o4 as the volatility of the optimal portfolio. We refer to ¢ as the capital account,
which grows at the rate on a marginal investment. The source of returns could be
a portfolio of securities, or it could be a single stochastic investment technology. In
either case, ¢ tracks the outcome of the following investment strategy: invest one
unit of the consumption good in the returns process at time zero and thereafter
continuously reinvest the proceeds.

In the current setting, the information variable will summarize all relevant in-
formation about future opportunities as reflected in the dynamics of either the
state—price deflator or the capital account. In other words, the information variable
must conform to the dynamics of the forcing variable. Previously, in the endowment
setting, the forcing variable was consumption. We now allow the forcing variable
to be the state—price deflator or the capital account. The restriction ¢ must satisfy
when the forcing variable is the state—price deflator is obtained by eliminating f.
and o, from (2.8) using (2.13). Similarly, the restriction ¥ must satisfy when the
forcing variable is the capital account is obtained by eliminating . and o. from
(2.8) using (2.13) and (3.9).

Thus there are three versions of (2.8), the central restriction on the information
variable, each depending on a different choice for the forcing variable. It is conve-
nient to formally unify all three restrictions. To that end, we denote the generic
forcing variable y and its dynamics dlog(y(t)) = fi,(t) dt + o,(t) " dW (t), where y
is either consumption (c), the capital account (¢), or the inverse of the state—price
deflator (1/m). We can write all three restrictions as

. 1 .
ap + ay fly + fy + as B oy + a1 0yl|> + Bu(1/¥)) =0, subject to (T) = ¢,
(3.11)
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TABLE 1. Coefficients for Equation (3.11).

Yy ag a1 a2

c 0 1 1—x

¢ —Bn n  (1=9)/n
I/m —Bn n (1—=9)/(n)

where the coeflicients a; are given in Table 1. Given the dynamics of the forcing
variable and the solution to (3.11), we can use (2.13) and (3.9) to compute the
dynamics of the remaining variables. We can turn (3.11) into a PDE by adopting
the Markovian structure described in Section 5.

Optimal portfolio. As we suggested above, the capital account can be thought of
as the optimal portfolio of securities. Here we solve for the portfolio weights.

The investment opportunity set can be characterized by n risky securities with
dynamics of the form

do;
o

where W is composed of £ orthogonal Brownian motions. The expected return on
security ¢ obeys the absence-of-arbitrage condition

= pg, dt + o) dW, (3.12)

Py =T + a;)\. (3.13)

(The dynamics of the risky assets reflect the reinvestment of any dividends paid.)
Define My := (tg,s - » fo,) > let Xy denote the £ x n matrix whose i-th column
is 04,, and let r denote a vector of length n with each element equal to r. Then we
can stack together the n equations (3.13) as

My=r1+3 A\ (3.14)
In addition there is a money-market account (MMA), the value of which is b, where
db/b = rdt.
A portfolio can be characterized by a vector of weights, w(t) := (wy(t), ..., wa(t)) ",

for the risky securities and a weight wo(t) for the MMA, such that ) " jw; = 1.
The value of a portfolio evolves as follows:

d db & do;
ot gt

T

i=1
where gy = wor + M(Zw and
0p = Xpw. (3.15)
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Eliminating o4 from (3.10) and (3.15) produces

Zou= )2+ () o (3.16)

Together, (3.14) and (3.16) comprise a linear system of n + ¢ equations in the
n+ £ unknowns w and A. Assuming Yy has full rank, the solution to this system is

A=5, (2;2¢)_1 (My—1) + (1_77> <2¢ (2:;2@5)_1 ] - Ig) oy (3.17a)

w = <%> (2;2¢)_1 (My—1) + <1n_—77> (Egzd))_l oy, (3.17b)

where I, denote the ¢ x ¢ identity matrix. We see that the portfolio weights are
composed of two terms. The first term is the so-called “myopic” component of
portfolio demand, while the second term constitutes a hedge against changes in
investment opportunities. As the horizon approaches zero, the boundary condition
requires oy, to go to zero as the need to hedge against changes in future opportunities
attenuates.

In the complete markets setting n = £, X is invertible, and (3.17) specializes to

A= (Zg)fl (M, —1) (3.18a)
w = (%) =5 (2;)71 (M, —1) + <%) oy, (3.18b)

In this case, the solution for A is independent of oy, and therefore we can treat
1/m as the forcing variable and solve (3.11) for 1. Given the solution for ¢, (3.18b)
delivers the solution for w. By contrast, suppose there are n < ¢ securities. In this
case, A involves oy, so that 1/m cannot be specified exogenously. Nevertheless, we
can insert the expression for A in (3.17a) into (3.11) for y = 1/m, thereby extending
the incomplete-markets results of He and Pearson (1991) to recursive preferences.

The general equilibrium production problem. In a representative-agent general equi-
librium model, we interpret k(t) as the value of the capital stock and d¢/¢ as
the return on the aggregate investment portfolio—i.e., the return on the market
portfolio. For the purpose of studying general equilibrium, we can reinterpret the
securities as linear production technologies subject to random shocks as in Cox,
Ingersoll, Jr., and Ross (1985a).!1% In a general equilibrium, the interest rate is
endogenous and there is no borrowing or lending. Thus we require wg = 0 or equiv-
alently > "' , w; = 1. To solve for the equilibrium, add this equation to the system
(3.16) and solve (3.14) and (3.16) for r, A\, and w, in terms of M, and Xy. These
expressions for r and A can be inserted into (3.11), and that equation can then be
solved for 1. By itself, the capital account is a special case where n = 1 and w; = 1.

19Some activities may slip in and out of the optimal portfolio. At the expense of some notation for
keeping track of which activities are in the optimal portfolio at time ¢, we do not need to assume
that the set of activities in the portfolio never changes.
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At this level of analysis, we ignore the portfolio allocation problem, except to re-
quire zero net investment in the money-market account, treating the an economy
as one with a single investment opportunity.2°

4. THE DIVIDEND-DENOMINATED TERM-STRUCTURE

In this section we demonstrate that the wealth—consumption ratio is the value of
a fixed-income asset, and we use this perspective to analyze various aspects of the
model and its solution.

Asset prices and the wealth—consumption ratio. Using the Riesz representa-
tion of the utility gradient as state-price deflator, we can price assets. It is convenient
to reparameterize the utility gradient for time 7'. Define

m(t) :=D(t) fe(c(t), V(t)), fort<T,
so that G(t) = m(t) for t < T and, in view of
dG(T) £
de(T) B’

G(T) = m(T)&P/B. Note that m(t) is not really the state-price deflator in this
economy, since there is a wedge between m(7T") and G(T'). But m(¢) is more con-
venient to use for what follows, and it can be treated as the state-price deflator by
adjusting terminal payoffs by the factor (#/3. For example, the consumer’s wealth

k(t) = B, [/T (m(5)> o(s)ds + (@> %C(T)} . (4.1)

— \m(t) m(t)

=£%e(T)* ™ = fole(T), T(c(T)€))

In (4.1), we may think of the consumption endowment as the dividend that accrues
to the asset “wealth.” The final “lump-sum payment,” (¢?/3)c(T), reflects the
terminal reward. Dividing both sides of (4.1) by ¢(t) produces

- T ma(s) mq(T) ¢*
”“)‘Et[ ma® P ) B

where my(t) = m(t) c(t) and py(t, s) = Ei[ma(s)/mq(t)] is the value at time t of a
zero-coupon bond that pays one unit of the dividend (in this case, the consumption
endowment) at time s. Equation (4.2) shows that 7(¢) is the value of a dividend-
denominated coupon-bond with face value (/3 and coupon rate 3/¢P. (If (¥ =0,
then 7(t) is the value of an annuity.) Formally, my(t) is the state—price deflator
where the numeraire has been changed from units of the consumption good to units
of the endowment process (with terminal payoffs also adjusted by factor (*/f3).2!
By applying It6’s lemma to mg = m ¢, we can compute the dividend-denominated
interest rate and price of risk in terms of the real interest rate and price of risk and

T CP
:| :/ pd(t, 8) ds + de(th)v (42)

=t

20This is the setting that Campbell (1993) studies. Campbell’s “news about future returns on
invested wealth” is the volatility of )" when the forcing variable is the capital account.
21Gee Appendix A for a discussion of changing numeraires.



18 MARK FISHER AND CHRISTIAN GILLES

the dynamics of consumption:

- 1
rg=1— (uc + 5 ||ac||2> + )\Tac, (4.3a)
A=\ —o.. (4.3b)

Using (2.13) we can eliminate the real interest rate and price of risk, expressing the
dividend-denominated interest rate and price of risk in terms of the dynamics of
consumption and the volatility of the information variable:

~ 1 1
== {fetagllod? + (o - )z loul? (1.42)
Ai=—aoc+ (p—a)oy. (4.4D)

Because 7 is the value of an asset (when measured in units of the endowment
process), the drift of = will be determined by the martingale property of deflated
gains:

fix +1=7r4m+ X\ Gr, subject to n(T) = ¢"/B, (4.5)

where the (absolute) dynamics of 7 are given by dm = fi, dt + &, dW. For p # 0,
we can use the change of variables 1 = (87)Y# to show that (4.5) is simply a
restatement of (2.8).22
For p = 0, the dividend-denominated interest rate is constant, r; = (3, and
7(T) = 1/8. In this case, the solution to (4.5) is w(t) = 1/ for all t <T. Even so,
we can use (4.5) to solve for 1 as follows. Since the solution to 7 in (4.5) depends
on p in a continuous way, we can evaluate the following:
dlog(m)

log(¥)|,—o = };ig(l) log ((5 7T)1//)) _ @log\m)

dm
dp p

= (4.6)
p=0

p=0

The wealth—consumption ratio and the three forcing processes. Given the supporting
price system and the supporting returns process, we can express the dividend-
denominated interest rate and price of risk in terms of any of the three forcing
variables as

_ 1 9 1|57 2
ra=do+di (i, + da 5 lloy|I? ) = (/)5 | = (4.7a)
m
N = —dy o, + (e/d1) ==, (4.7b)
%2Note that even for ¢* =0, lim;_.7 &, (t)/m(t) = 0, since
T T
ax(t) = / pa(t,s)op,(t,s)ds and mw(t) = pa(t,s)ds,
s=t s=t

where op,(T,T) = 0 and pq(T,T) = 1. By contrast, lim;—r [ir(t)/7(t) = co. We can express the
dynamics of log(¢) in terms of the dynamics of 7:

(635 ) i m0=3(58)

w(t) 2

,D:ﬂ) (t) = ; ’/T(t)
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where the coefficients d; are given in Table 2. In effect we have reexpressed (3.11) as
(4.5) for p # 0 by the change of variable from ¢ to m. When either e = 0 or 5, = 0,
rq and Ag are exogenously determined by the dynamics of the forcing process. In
this case we can compute the wealth—consumption ratio from (4.2) by solving

Hpq (ta T) - Td(t) + )‘d(t)Tapd (tv T>7 subject to pd(Ta T) =1,
for pg(t,T).
TABLE 2. The coefficients of Equation (4.7) in terms of the prefer-

ence parameters (columns 2-5), and the feasibility of limiting para-
meter values (columns 6-9).

y  do di do e=d;+do n=0 n=o00 7v=0 =0
c g 1/n—1 1-—v 1/n—~ no yes yes no
o nB 1-—n 1—7 2—n—v yes no yes no
1/m nB 1-n 1/v=1 1/y—n yes no no yes

Consider the case where the dividend-denominated interest rate is deterministic.
When 7,4 is deterministic, the wealth—consumption ratio is given by (4.2) where
pa(t,s) = exp (— [7_, ra(u) du). Hence 7 is deterministic, which implies & = 0 and
thus 74 = do + di (fiy + da § |loy||*). In this case either (i) di = 0 (i.e., p = 0) or
(41) fiy + do % ||loy||? is deterministic. For constant 74, the solution specializes to

1—emaT=t)  cpe—rall-1)
w(t) = + . 4.8
0 — ﬁ (48)
Utility gradient in terms of observables. In this section, we show where the
condition € = 0 comes from.

Having established the relation between the capital account, the consumption
process, and the wealth—consumption ratio, we can eliminate the unobservable
from the utility gradient, following Epstein and Zin (1991), as long as p # 0. For
p # 0, we can write the utility gradient as

t a—p
6(t) = e 0 oxn ([ @/putrds) w0} e a9
Using k = cy?/[3, we can reexpress (3.3) as

dlog(¢) = dlog(c) + pdlog(y) + BY " dt. (4.10)
Integrating both sides of (4.10) and rearranging produces

a2 Moo ([ @ vas)vn}
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¥(0)7?/c(0). We can use this relation to eliminate the expression

)¢
4.9):

where Cy = ¢(0
in braces from (

G(t) = e Bl@lp)t o)~ (a/p) (1=p) g(4)(a/p)=1 (4.11)

where we have suppressed the constant of proportionality. Identifying the utility
gradient with the state—price deflator and applying It6’s lemma yields a convenient
representation for the short rate r and the price of risk A\ in terms of the observ-
able dynamics of the growth rate of consumption and the return on the market
portfolio ¢:

r(t) = 5 (a/p) + (0/p) (1~ p) Belt) + (1~ /o) Tit) — 5 INDI?  (4.120)
A(t) = (a/p) (1= p) oc(t) + (1 — a/p) os(0). (4.12b)

Note that a/p =1 (i.e., ny = 1) delivers standard preferences and the C-CAPM.
By contrast a/p = 0 (i.e., v = 1) delivers an intertemporal CAPM, where risk
premia are determined by the covariance with the market portfolio. These loci
are plotted in Figure 1 (where ~ is plotted on the vertical axis against n on the
horizontal axis), along with n = 1 and a fourth locus that we discuss presently.

Recall that the dividend-denominated state—price deflator is given by G;(t) =
G(t)c(t). In terms of observables (using (4.11)) we have

Ga(t) = e Bla/p)t C(t)bQ qS(t)bl,

where by = (a/p) — 1 and by = 1 — (a/p) (1 — p). The conditions by = 0 and by = 0
are equivalent to € = 0 in Table 1. Here is the connection: When the dividend-
denominated state—price deflator depends only on the forcing variable, then so do
the dividend-denominated interest rate and price of risk. We consider each case in
turn. First, the locus by = 0 (i.e., a/p = 1 or yn = 1) is plotted in Figure 1 as
the rectangular hyperbola of standard preferences. In this case, ¢ = 0 in (4.7) for
y = cand y = m. For y = ¢, the endowment deflator depends only on consumption:
Gq(t) = e Ple(t)?. For y = m, since G = m, we can write endowment deflator
solely in terms of the state price deflator: Gy(t) = e #(1=P)t m(¢)r/(P=1) Second,
the locus by = 0 (i.e., ¥ +n = 2) is plotted in Figure 1 as the diagonal line. In
this case, ¢ = 0 in (4.7) for y = ¢; the endowment deflator depends only on the
capital account: Gg(t) = ¢(t)?/(1=P). In each case,then, the simplification that & = 0
achieves can be ascribed to the fact that G;(¢) can be expressed as a function of the
forcing variable.

Solving for ¢ when p = 0. For y = ¢, (2.16) provides a semi-explicit solution to
(3.11) when p = 0. More generally for y,

log(v(t) / Be P d(t, s)ds + e PTDd(t, T) + e P T~ log (¢)

+ / f e B B [C(s)]ds, (4.13)
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dtes) = [ Bl ) du= B flog (2]

1
C(s) =ap+ ay 3 lla1 oy(s) + 0¢(s)\\2.

where

Applying 1t6’s lemma to (4.13) produces

p (t) = 3 log (9 (1)) — an iy (t) — C(2), (4.14)
thereby confirming that (4.13) is the solution to (3.11), and
T T
oy(t) = / Be P St u)yds+ e P TD S(t, T) + / e PV 50(t, s),
s=t s=t
(4.15)

where
S
St s) = / 5 (1) du
u=t
and where oy, (t,u) is the volatility of Ei[u,(u)] and 6¢(t,s) is the volatility of
E,[C(s)].% If i1, and oy, are constant, then oy = 0 and (4.13) specializes to

log((1)) = % (1-e70) (ao faify+ag Hoy||2> + e log(0).
(4.16)

If (4.15) is independent of ¢, then (4.15) and (4.13) provide a fully explicit
solution for ¢. This is the case, for example, when C(¢) is deterministic, in which
case the last term on the right-hand side of (4.15) is zero. Either of the following
two conditions ensures that C(t) is deterministic:

Condition 1. v = 1.
Condition 2. fi,(t) is Gaussian and oy(t) is constant.

Under Condition 1 (which produces log utility), C(t) = ag. Under Condition 2,
o5, (t,u) is a deterministic function of u — ¢, which latter ensures that oy(t) is
deterministic for the finite-horizon problem and constant for the infinite-horizon
problem.?*

Now we establish a related result for p # 0 and under Condition 2. We assume
e = 0 so that the solution for 7(t) is given by (4.2). Given these assumptions, r4
is Gaussian and )\; is constant, which together imply the weak form of the expec-
tations hypothesis holds for the dividend-denominated term structure. Applying
[t6’s lemma, to 7 given in (4.2) and using the implication of the weak form given by
(B.8), we have

ou(t) = ar {/i walt, s) 5(t,u) ds + ¢ (#) 2(t,T)} , (4.17)

23Campbell (1993) derives a similar result when y = ¢ for the infinite-horizon problem in a discrete-
time version of this model.
24Condition 2 is not the most general condition that generates a deterministic C/(t).
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where wy(t, s) := py(t,s)/n(t) and a; is given in Table 1, and where we have used
the facts that 6,,(t,u) = di 6z, (t,u) and oy, = (1/p) &, /7.

Recall that when y = 1/m, [i,(t) = r(t) + 2 |A(t)||? and oy(t) = A(t), where r
is the real interest rate. Our assumption that o, is constant implies that dji,(t) =
dr(t), so that oz (t,u) = 0,(t,u). On the other hand, the volatility of a real
coupon bond is given by (B.4b) where o, is given by (B.8). Assuming an infinite
horizon solution exists, we have established no, ~ —o04. They differ only by the
weights: wq(t, s) versus w(t,s) := p(t,s)/w(t). However, even when n = 1, the
weights do not converge: When n = 1, the endowment perpetuity weights are
wy(t,s) = Be (=18 while the real perpetuity weights are determined by r and
A and need not bear any particular relation to wg(t,s). Nevertheless, whenever
consumption remains constant we have my proportional to m, so that the real and
endowment term structures are identical. This situation occurs with n = 0 and

~v = oo and does not require homoskedasticity. (See the discussion on limit cases
below.)?

The existence of an infinite-horizon solution. The interpretation of 7 as the
value of a fixed income asset provides a framework for analyzing the existence of
a utility function in limit as the horizon goes to infinity. Define the dividend-
denominated forward rate as f4(t, s) := —0log(pa(t, s))/0s, and define the asymp-
totic forward rate as g4 := lims oo fi(f,s) when a finite limit exists. Then (7) if
4 > 0, an infinite-horizon solution exists; (i7) if ¢4 < 0, an infinite-horizon solution
does not exist; (ii1) if ¢4 = 0 and lims_,oc p4(t, s) # 0, an infinite-horizon solution
does not exist; () if pg = 0 and lims_,o, pg(t,s) = 0, more information is needed
to determine whether an infinite-horizon solution exists.?

When the dividend-denominated interest rate is deterministic, the asymptotic
dividend-denominated forward rate is simply pg = lim;_. rq(t), and @4 = rq for
constant ry. For p =0, rg = 6 > 0, and we are guaranteed of having an infinite-
horizon solution for all parameter values. For p # 0, let us examine standard
preferences at its extremes as an example. Table 2 indicates that (i) y = c is
feasible for (n,v) = (00,0) and (i) y = 1/m is feasible for (n,v) = (0,00). In the
first case, rg = 3 — [ic — 3 ||oc||?, and we must have fic + 3| oc[|* < 8. In the second
case, 7q = r, and the real interest rate must be positive.

When the dividend-denominated interest rate is stochastic, as long as ¢ = 0,
we can compute the asymptotic dividend-denominated forward rate from dividend-
denominated bond prices given the exogenously specified dividend-denominated in-
terest rate and price of risk. In the more general case when ¢ # 0, neither r; nor Ay
would be exogenous and we could not directly solve for bond prices. Nevertheless,
as shown in Appendix B, if the asymptotic dividend-denominated forward rate were
negative, then limp_,oo 0(¢,T) = limp_,oo 0p,(t,T) = op,(t, c0) if the limit exists.

25Campbell (1993) discusses the relation between the real and endowment perpetuities. We can
recover his expression with the change of variables w := ¥'/", so that o, ~ —oe instead of
Oy X —N0w.

26See Appendix B.
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Therefore, in the region of nonconvergence we can solve the following problem

Hpg (t7 T) = Td(t> + )‘d(t)To'Pd (t7 T)? (4‘18)

where
ra(t) = do + dy iy (0) + i da 3 oy O — (c/d)5 lopu(t.00)|P (4190)
Ai(t) = —dy oy(t) + (¢/dr) op,(t, 0). (4.19b)

The correct specification of o,,(t,00) in (4.19) produces an internally consistent
solution. We provide an illustration in Section 5.

Limit cases. In this section we examine the model at the limit values of the pa-
rameter space for intertemporal substitution and risk aversion. We consider the
cases where 1 and - are zero or infinity. We can identify certain features of the
solution without solving the model entirely. However, care must be taken: For a
given limit, there may be no equilibrium for arbitrarily chosen dynamics of a given
forcing variable. By examining the limiting values of d; and dy in Table 2, we can
see that certain combinations of forcing processes and limiting parameter values
are infeasible (if either d; or ds goes to infinity). See columns 6-9 of Table 2 for a
summary.
Case 1: n =0 (y = ¢ or 1/m).

This corresponds to extreme unwillingness to substitute intertemporally.
We note that lim, o u(z) = 0 and lim, o ¥ = lim,_o (87)Y@"D = 1.
In (2.8), these restrictions impose a restriction on the consumption process:
fic = (v — 1) 3 |loc||?>. If v = 1, the CAPM case, then log consumption is a
martingale.

Case 2: n =00 (y =¢).

This corresponds to a perfect willingness to substitute intertemporally. This
value of 7 forces a restriction on the process for the state—price deflator that
can be expressed as 7 + 1 ||A[|2 = 8 and A = v 5. (Solve (2.13) and (3.9).)

Case 3: v=0 (y=cor ¢).

This is the case of risk neutrality with respect to static wealth gambles.
However, as we have shown above, agents are not risk neutral with respect
to dynamic consumption processes. Although we have ruled out y = 1/m in
this case, there is in fact a solution; but in general it involves setting c(t) = 0
often, a corner solution that does not satisfy our system of equations (since
we have assumed the strict positivity of consumption).

Case 4: 7y =00 (y = 1/m).

In this case the agent is extremely risk-averse with respect to static wealth
gambles. See Case 6.

Case 5: n=0and v =0 (y = ¢).

In this case the agent is unwilling to substitute consumption across periods
but perfectly willing to substitute across states of nature. The state-price de-
flator is m(t) = c(t)/¢(t), and from (2.8), we infer that c(¢) is a martingale,
a fact that has far-reaching implications in the infinite-horizon case. Because
c(t) is a positive martingale, it converges. If technology is such that a constant
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and strictly positive asymptotic consumption flow is feasible, then consump-
tion might converge to such a value. Otherwise, the consumer asymptotically
exhausts his wealth and consumption converges to zero, for any value of the
rate of time preference 3. For example, suppose that ji4 is constant (even if
Ly and oy are not). Then the solution is 1/7(t) = ¢(t) = r(t) = pg, A(t) =0,
and o.(t) = ox(t) = 04(t). If o4(t) does not go to zero, then c(t) and k(t)
both do almost surely (though, of course, not in the L; norm).
Case 6: n=0and 7 =00 (y = 1/m).

Given the results in Case 1, (2.8) can only be satisfied if p. = 0. = 0,
which means that ¢(¢) is a constant determined by the initial wealth. Not
surprisingly (3.10) shows that the optimal portfolio is determined entirely by
the hedging component: o4(t) = —oy(t). Since consumption is constant,
rqg =1 and Ay = A, so m(t) is the value of a real coupon bond as well as that of
a dividend-denominated coupon bond. Finally, given 7(t) = 1/(5(t)) when
n = 0, we have —oy(t) = 0x(t). Therefore the optimal portfolio is a real
annuity in this case (a real perpetuity in the infinite-horizon case).?”

Case T: n=occ and v =0 (y = ¢).

This is the case of risk-neutrality. The price of risk vanishes and, from
(4.12a), the interest rate is determined by the rate of time preference, r(t) = 3.
As a result, the expected rate of return on any asset is equal to 3, and the
yield curve is flat at that level.

Case 8: n =00 and 7 = o0.
This combination is not feasible with any of the three forcing processes.

5. ILLUSTRATIONS AND MARKOVIAN STRUCTURE

In this section we provide some illustrations with closed-form solutions. First,
we introduce a Markovian structure that we will use for the examples and for the
numerical solutions in Section 6.

Markovian structure. We suppose there are d Markovian state variables X driving
the forcing process y, where y = ¢, or 1/m, or ¢. The joint dynamics of X and y
are given by

dX(@) ) (e (XEDY L ox(X(®)" dw (t),

dlog(y(t)) fiy (X (t)) oy (X ()"

where W' = (VVQ;r ) Wy) is a [-dimensional vector of orthonormal Brownian motions,
with W, (I — 1)-dimensional and W, scalar. The dimensions of ox(z) and oy (x)
are respectively [ x d and [ x 1. We assume that the last column of ox(z)" is
a vector of zeros, so that the state variables are not affected by W,: ox(z)" =
(Sx(z)" 0), where ¥x(z) is (I — 1) x d.?® Note that even if the state variables are

deterministic (ox(z) = 0), y can be stochastic; a completely deterministic economy

2"This point is made by Campbell and Viceira (1996).
28This assumption is without loss of generality. It simply allows for the possibility that there exists
a shock, Wy, that affects y but not X.
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would require oy () = 0 as well. The following functions of the state variables are
called collectively the data:
px(x), pby(z), ox(x) ox(z), ox(@)oy(z), and oy(z) oy(z). (5.1)

For the most part, we will take ( > 0 so that the information variable is strictly
positive and finite. In addition, since we have assumed the data do not depend on
time, the solution will be time-homogeneous. As a consequence, it is convenient to
model log(¥(t)) = 2(X(t),T —t). Given the function £2(z,7), we can compute the
functions for the drift and diffusion iy (t) = pe(X(t),t) and oy (t) = oo(X(t),1),
in terms of the partial derivatives of (2:

po(z,7) = Qu(z,t) " ux(z) + % tr |ox(z) ox(z) 2pe(, 7')} —2:(z,7) (5.2a)

ooz, 7) = 2(x,7)ox (). (5.2b)

The data turn (3.11) into a quasi-linear partial differential equation (PDE) in terms
of the unknown function {2,

~ 1 —2(x, T
ap + a1 py (x) + po(x, 7) + az 5 lla1 oy (z) + 09(3:,7')”2 + Bu (e (=, )> =0,
(5.3)

subject to the boundary condition £2(x,0) = log(¢).?" If the data are real analytic,
the Cauchy—Kowaleskaya theorem guarantees a unique real analytic function £2(z, 7)
exists in the neighborhood of 7 = 0.3% The theorem does not guarantee the existence
of a solution for an arbitrary finite horizon. Below, we provide an example that fails
to have such a solution. However, if solutions exist for all finite horizons, then they
converge to an infinite-horizon solution if and only if lim, .o $2-(z,7) = 0. In
Section 4 we examined the conditions for an infinite-horizon solution to exist, and
we provide illustrations in this section.

A single state variable. For the illustrations, we entertain three models, each
with a single affine state variable.
Model 1 (this model is Gaussian-affine):

dr =k (T —x)dt + sx dW) (5.4a)
dlog(y) = (ay + by x) dt + s1 dW; + 52 dWo. (5.4b)

Model 2 (this model is “square-root”-affine):
dr = k(T — x)dt + sx VzdW; (5.5a)
dlog(y) = (ay + by ) dt + s1 V& dWi + sg /z dWs. (5.5b)

Model 3 (this model is Gaussian-quadratic):
dx = Kk (T — x)dt + sx dW; (5.6a)

dlog(y) = (ay + by z + ¢, :c2) dt + (s1 + s1x ) dWq + (s2 + sox ) dWs,  (5.6b)

2Duffie and Lions (1992) address the existence and uniqueness of PDE solutions in a related
setting.
30See Rauch (1991, Chapter 1), for example.
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The parameters s, T, sx, ay, by, ¢y, 51, S1x, 52, and syx are scalar constants.

Example 1: Constant dividend-denominated interest rate. Here we adopt
(5.4). If by = 0, (4.7a) gives rq = do +dy (ay +d2 % (s? + s3) z). For example, if
y = 1/m, then

ra=nf+ (- (re 2L 657
2y )7
where ||A||? = (s? + s3) Z. In addition, for p = 0 (4.16) gives
log(¥(t)) = 1 (1 - e*mﬂﬂ) (7‘ — B+ M) +e T8 10g(¢). (5.8)
B 29

For all parameter values we have o, = o, = 0. As a consequence, the optimal
portfolio is mean—variance efficient and the dynamics of optimal consumption and
the optimal portfolio weights are independent of the horizon. Optimal consumption
dynamics (which are given by the solution to (2.13)) are

~ 1 1—~vyn\1 9 A
= — - — =1 d =—. 5.9
o= =8)+ (2= S22 FIAR and o =3 (5.9
Another consequence is ||o.||? = ||oy||? (see (3.9b)), which is the main difficulty this
model has with the equity premium puzzle data. In order to get ||o.[? < |loyl?,
sufficient state variation must be introduced.

Example 2: Solving for ¢ given p = 0, part 1. We continue to adopt (5.4),
but we allow b, # 0 and treat the infinite-horizon case. In this example, we use
(4.13) and (4.15) to solve for log(y) given p = 0. The conditional expectation of x
and its volatility are given by

Eyfz(w)] =z +e ) (2(t) — 2)

ox(t,u) =sxe ”® (u=t),
(we consistently drop the second component of the volatilities, because they all
vanish). The conditional expectation of 11, and its volatility are given by Ey[f,(u)] =
ay + by Ey[z(uw)] and o7, (t,u) = by 7 (¢, u). Thus

— ek (s—t)
d(t, s) = (s — 1) (ay + by ) + (1 . ) b, ((t) — ) (5.10a)
N <1 ek (s—t))
B(t,5) = bysx [ . (5.10b)

Using (5.10a),
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which can be interpreted as the sum of permanent and transitory components.
Using (4.15) and (5.10b),

o - b
oy = / Be P St s)ds = L oX
s=t

B+K

: (5.11)

Given (5.11) we can write

C—anrar ] (s ) 4 g
=ao +az 51 B1n S5 ¢ -

Note that C'is state-independent, so that the calculation of oy, in (5.11) is correctly
based on (4.15), which therefore has the solution:

by (x — ) n ay +b,z+C

B+r 8 '
The first-order approximation for the wealth—consumption ratio around p = 0 is
™= 1/8+ (p/B) log(¥) + O(p?). If we take y = ¢ and set a, = 0 and b, = 1,
we have the setting adopted by Campbell (1993) and Campbell and Koo (1997).

In Section 6 we apply our numerical solution method to solve this model over the
entire parameter space.

log(1) = (5.12)

Example 3: Solving for ¢ given p = 0, part 2. In the previous example, the
state-independence of oy, allowed us to compute it directly from (4.15). In this
example, we take the PDE approach to obtain the same solution. Then we apply
the PDE approach to models (5.4) and (5.5), where the state-dependence makes
the direct approach more difficult.

First we attack (5.4). In this case, the solution can be written as 2(z,7) =
do(7) + 61(7) (x — z). PDE (5.3) decomposes into a pair of ODEs:

86(T) = xo0 + X1 01(7) + X2 61(7)* = B0 (7)
61(1) = 00 + 01 61(7),

subject to d0(0) = log(¢) and d1(0) = 0, where

1
onag—(s%—i-s%)—i-ao—é—ay—i-bya’;

—a528 d 0o = by
X2:a2§5X

The solutions are

§o(r) = e 77 1og(¢) + xo0 <ﬂ> + /T e 7079 (x1 61(s) + x201(5)%) ds
’ (5.13a)
by (1— e—(BJm)T)
B+
For the infinite-horizon, (5.13) specializes to (5.12).

01(7) =

(5.13b)
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Now we attack (5.5). Again, 2(z,7) = do(7) + 01(7) (z — Z) and PDE (5.3)
decomposes into

86(T) = X0 + x101(7) + x261(7)* — B0(7)
5’1(7') =60y + 6, 51(7') + 05 (51(7')2,

subject to 60(0) = log(¢) and §1(0) = 0, where

1 1
onagi(s%—ks%)%—ao—kay—kbyf 90:a2§(5%+33>+by
X1 = a2 S1Sx and 0y =azs1sx — (B+ k)

1 4 L 5
X2:(12§3X 62:@58)('

The solutions are

2 r
do(r) = e 97 og(@) 4 x0 (5 )+ [P0 (i) 4 xadi (o) ds
- (5.14a)

_ 29091 (EAT—I) _\/27
(51(7‘) = 92 (91 (1 _eAT) +A(1+6A7))’ where A = 91 —40092. (5.14b)

Now we adopt (5.6). In this case 2(x,7) = 6o(7) + 61(7) (x — Z) + da(7) (7 — 7)?
and PDE (5.3) now decomposes into three ODEs:
56(7’) =x0+ x101(7) + x2 51(7')2 + x302(T) — Bdo(7)
51(7’) =0+ 01 01(7) 4+ 0202(T) + 051 (7) d2(T)
85(T) = €0 + €1 82(T) + €2 62(T)?,

subject to dp(0) = log(¢) and 01(0) = d2(0) = 0, where xo, x1, and x2 are as given
above, x3 = 233( z, and

00:by+26yi 1
91:—(/8+/€) 60:6y+a2§(8%+83)

0y =2a9818x T and 61:—(64‘2/‘?)-{—2(12818)(
0322&25%@ 62:2a28§<.

The solutions are

1—eP7
So(1) = e 77 1og(¢) + x0 | —=— | +
i ’ < b > (5.15a)

/ TO P9 (x1 61(5) + x2.01(5)2 + X3 62(3)) s
o1(r) = /;O exp {91 (T—5)+03 /T: d2(w) du} (B + 02 65(s)) ds (5.15b)

2 AT 1
5o(7) = e (e ) where A = \/e12 — deges.  (5.15¢)

e2(e1(1—eAT)+ A(1+e27))’
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Term structure example. As a specific example, we take the consumption process
as given and we solve for the term structure of interest rates, paralleling Duffie and
Epstein (1992a) and Duffie, Schroder, and Skiadas (1997). Those papers treat the
inhomogeneous case, while we treat the homogeneous case.3!

Using (2.13), the interest rate and price of risk are given by

~ 1
r =08+ .+ (a—§> loell? + aal oy (5.16a)
A=(1—-a)o.—aoy (5.16Db)
for p = 0. In order to compute the term structure, we need
ox 2.(z,T)
Oy = 5
0
where
sx 01(7) for Model 1
ox 2:(x,7) = sx 1(7)x for Model 2

sx (61(7) 4+ 02(r)z) for Model 3,

where the factor loadings are specific to each model. We see that r and A depend
on the horizon 7 in the finite-horizon setting unless o = 0 (log utility).

Duffie and Epstein (1992a) adopt Model 2 and set a, = —@. Although they
use a inhomogeneous terminal reward, (5.16) agrees with their term structure in
the time-independent case (either 7' = oo or a@ = 0): the term structure of Cox,
Ingersoll, Jr., and Ross (1985b). Duffie, Schroder, and Skiadas (1997) solve for a
Gaussian term structure (with inhomogeneous utility) in a setting where they can
vary the way in which uncertainty is resolved. Model 1 is in the spirit of their
paper. Let us examine the infinite-horizon problem with that setup: » = rg +r1 x
and A = (A1, A2) ", where

1 a s18xb
ro=0+ay+ <oz—§> (S%+S%)+Tﬁy
r1 = by

asx by
A =(1- —
1= @) 52 B+ kK
A2 = (1 —a)sa.
Real bond prices are of the form P(z,7) = exp(A(7) + B(7) x), where
—KT _ 1
Br)= €771,
K

Let note that lim, .., B(7) = b,/k. The asymptotic forward rate is

A 1 2
(pm+r1§:—<rlsx 1+—<T18X> )
K 2 K

31We discuss the relation between the two cases in Appendix C.
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Therefore,

dp 2 2 (by sx )2 52 S92

T YPA) g = 4=,

oo 81+82+H(,8+/€) Oy sx ﬁ+/<:+ K
the sign of which depends on the covariance in the last term on the right-hand side.
A similar computation can easily be made for Model 3.

Example 4: Regions of convergence. Here we compute the boundary for the
regions of convergence. Consider model (5.4). If dividend-denominated bond prices
are exponential-affine, where Py(z,7) = exp(A(r) + B(7)z), then oy, (t,00) =
(sx B(0),0), and (4.7) implies r4 = ro + r1  and Ay = (A1, A2) | where
1

ro =do +diay + 3 (d1 do (53 4+ 52) — (¢/dy) s% B(oo)Q)

r = d1 by

A = —dg s] + (€/d1) Sx B(OO) and Ay = —dy s9.

Given the risk-return condition (4.18), the factor loadings comprise a system of
ODEs:

A7) = —r0+ (57— M sx) B(r) + 3 5% B(r)

B'(t) = —r1 — k B(7).
If an asymptotic forward rate exists, the ODEs imply an algebraic system:

1
—@pqg =10+ (KT — A1 5x) B(00) + 53?)( B(OO)2

0=—r; — k B(c0),
the solution to which is B(co) = r1/k and

1{ysX Kby sx s1+ K (5] + s3) a7

@d:d0+d1{ay+byi}+d1d2§ 2

Recall that nonconvergence requires ¢y < 0. Therefore the boundary between
regions of convergence and nonconvergence is given by ¢; = 0. Notwithstanding
the ill behavior of the scale of the economy in terms of the wealth—consumption
ratio, the dynamics of consumption growth and of the state—price deflator (i.e., the
interest rate and the price of risk) are well-behaved as the horizon goes to infinity
in the nonconvergent case: They depend only on oy which does converge.

For models (5.5) and (5.6), we can follow the same steps, although the algebraic
system will be quadratic for these models. The correct solution is the limit of the
solution to the system of ODEs.

Ezistence: An example. Although the Cauchy—Kowaleskaya theorem guarantees a
unique solution exists in the neighborhood of 7 = 0, it does not guarantee the
existence of a solution for all finite 7. The absence of finite-horizon solutions will
be indicated by the absence of an asymptotic dividend-denominated forward rate.
Here we provide an example to illustrate this issue.
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Let the forcing variable be 1/m and consider Model 2. Let

s
r=x and A=z ! ,
52
so that iy = = + %:U (s? + s3). Solving for the asymptotic dividend-denominated
forward rate produces two solutions, both of which involve v/ K, where
K=7%k2-(1-7)sx (2vesi+ (v (24 312) +(1—7) 322) sx) -
If K < 0, then no asymptotic (dividend-Denominated) forward rate exists. For

v =1, K = k?, while for y =0, K = —s%sg(.

Example 5: Optimal portfolio. In this section, we provide two related illustra-
tions. For the first illustration, we take y = 1/m and adopt Model 3, so that

9 A1 s1+six@
r=ro+rix+rox® and A= = ,
A2 S92+ sax T
where
2 2 2 2
ST+ s Siy + 8
1 2 1X 2X
o= ay — =5, 1 =by — (s151x +s252x), and ry= ey - =S

This setup produces an exponential-quadratic term structure (assuming ro # 0)
similar to Constantinides (1992):

p(t,t+7) = P(x,7) = exp {Bo(T) + Bi(7) z + Ba(7) xQ} ,

where 7 is the maturity of the bond and B;(7) are factor loadings that can be
computed in closed form. Using (2.13b), the volatility of optimal consumption is
given by oc = v ' A+ (1 - (n7)~!) oy, where oy = sx 2,(x,7) and 7 := T — ¢
is the planning horizon. (In this partial equilibrium problem, T" is a variable that
is private to the consumer; in the economy the price system can price cash flows
beyond T'.)

Turning to the optimal portfolio, suppose that the consumer must invest his
wealth in the money market account, a zero-coupon bond of fixed maturity s (choos-
ing s > T obviates the need to change investment vehicle) and a non-dividend paying
stock S. Arbitrage free asset returns are given by

? =rdt

ds

— = ps dt + o5, dW1 + o5, dWs
dp(t, s)
—_— = dt dW
p(t, S) MP(T) + UP(T) 1,

where og, are parameters, 0,(7) = sx (B1(7) + 2 By(7) z), 7 := s — t, and
us =1+ (81 + s1x 1‘) os, + (82 + sox 1‘) 08,
pp(7T) =7+ (514 s1x T) 0p(7)
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The building blocks for the portfolio weights are
os, op(T sx 2(x, T
s (75 ) gy (X2
os, 0 0

As long as the matrix o, has full rank, markets are complete. The portfolio weights
themselves are

S+ Sox X :
wi| 1 s, 1—7 _
7; S1+81xx (32—1—32)(35)051 + ny Qx(va)
wa -
op(T) op(T) 03, Bi(7) + Ba(7)z

In this example, all of the hedging is done with the bond. Moreover, if Ao = 0, then
the stock is not held at all (and optimal consumption does not depend on Ws). If
the price of risk is zero and preferences are additive, then only the bond is held to
hedge the opportunity set and finance optimal consumption which in this case is
deterministic.

For the second illustration, we treat the incomplete-market case studied by Camp-
bell and Viceira (1996). The interest rate be constant, r = ro. In addition to the
money market account, there is a single risky stock, the dynamics of which are, as
before, dS/S = pgdt + os, AW + g, dWs. In this case ug = ro +lo + 11 = is given,
and the dynamics of z are Gaussian as in (5.6a). Referring to (3.17), the price of
risk and the portfolio weights are given by

lo+haz [os 1—7Y o5, 8x 2:(x,7) [ =05,
A = m + 2 2 —l— 2 (518)
O'Sl 0'52 052 n O-Sl 052 051
and3?2
1 lo+lhzx 1—7v)\ sx _Qz(xﬂ_‘)dsl
wr = (=) 7+ 2 z
Y O-Sl + 052 nvy US1 + JSQ

Inserting fiy = ro + 3 [|A|> and oy = A (where X is given in (5.18)) into (5.3)
provides the equation to solve. The price system is endogenous unless v = 1. For
log utility (n =~ = 1), there is a closed-form solution.

6. NUMERICAL SOLUTION METHOD

In this section, we present a method for numerically solving (5.3). Our numerical
solution technique can be thought of as the method of undetermined coefficient
functions. It is based on the exact solutions described in the previous section for
p = 0. To illustrate our method and to reduce the notational burden, we suppose
there is a single state variable. Given real analytic data, {2(x,7) has the power-
series representation expanding around x = xp and treating 7 as a parameter:

32An equivalent expression appears in Campbell and Viceira (1996). Their expression can be
obtained by (i) setting lp = % (Ugl —1—052) and l; = 1 so that fis = ro + = and (i) replacing
oy = sx 2(z,T) with ox/p.
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2z, 7) = 302 0n(7) (x — x9)". The condition for convergence to an infinite-
horizon solution is 2 (z,7) = 0. The partial derivatives are given by

Qr(z,m) = 8,(7) (& —2o)"
n=0

Qp(z,7) = Z nop(7) (x — mo)”_l
n=1

o0
Qpo(z,7) = Z n(n—1)6,(7) (z — z0)" 2
n=2
The boundary condition, 2(z,0) = log(¢), implies d0(0) = log(¢) and 6;(0) = 0 for
i > 1. The solution method becomes operational by approximating 2(z, 7) as

N
OV (z,7) =) 6 (7) (& — @o)",
n=0

which is inserted into (5.2) and the result is inserted into (5.3), upon which the
N-th order Taylor approximation is computed. The result can be separated into
a system of nonlinear ordinary differential equations. In the previous section with
p = 0, we saw three examples where this representation provided exact solutions
with finite N.

For comparison with Campbell (1993) and Campbell and Koo (1997), we treat
the case where the forcing variable is the return on optimally invested wealth. We
adopt the dynamics given in (5.4). In order to directly compare with their results,
we adopt a change of variables. Define w := 9!/7. We can write (3.11) in terms of
w for y = ¢:

8t (Fo it (1= g lowt 0ol ) +Su1/) =0, (6)

subject to w(T) = ¢Y/7. Now we let log(w(t)) = 2(X(t), T —t). Given (5.4) we
have

po(x) = k(2 — ) (z,7) + 5% % Dz, 7) — 2:(2,7) (6.2a)
on(z) = °X QQE)(I’ ™) . (6.2b)

We are now set to apply our truncated series representation to the Markovian
version of (6.1). Let ¢ = 1 so that {2(x,0) = 0. For example, with N = 1 and
To = T, we have

/ 8 (1 - ei-m )
)=z 6+ ( — >+(1—7)%((31+5X5}(7))2+s§) (6.3a)

o' (1) = 1= (k48180 5l(r), (6.3b)
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subject to 65(0) = 61(0) = 0. For N = 2, we must add terms to the right-hand sides
of (6.3) (changing 4} to §2): s% 65(7) to (6.3a) and sx (1 — ) (s1 + sx 02(7)) 05(7)
to (6.3b), where

3 () = 5 DR (1) 83 (r)? -
(26+B80MBO) B(r) +2(1 =) sk B2 (64)
subject to d2(0) = 0.

Special cases. Before we proceed to the numerical solution, there are two cases we
can analyze analytically. Both cases involve a linearization of (6.3). These cases can
be understood in terms of the dividend-denominated asymptotic forward rate, yg.
Using (4.7) and o, = (n — 1) 0,,, we can write the dividend-denominated interest
rate and price of risk as

ra=npf+(1—mn) {ﬁ¢> +(1=9) % logl”> = (2 —=n—7) % H%IIQ} (6.5a)
Ad=(y—1)0p = (2-1n—7)0u. (6.5b)

Note that when n + v = 2, the terms involving o, drop out of (6.5), leaving an
exponential-affine model of the dividend-denominated term structure.

For the first case, consider n = 1 (p = 0). In Section 5 we showed that the
solution for log(v) is 2(z,7) = §o(7) + 61(7) (z — ) in this case. Since w = /7,
the solution for log(w) is identical. Thus we get the true solution with N = 1.
Moreover, g = rq = 8 > 0, so that convergence to an infinite-horizon is guaranteed.
Therefore we can characterize the infinite-horizon problem as a system of algebraic
equations,

0=%— 3 B0o(00) + (1—7) % (51 + s 81(00))? + 3) (6.62)

0=1—(k+pB)d(0), (6.6b)
with the unique solution?3

_ 2
So(00) = = i Gy % ((31 + %) +s§> (6.7a)

81 (00) (6.7b)

B4k

For the second case, let oy < 0. In this case there is no infinite-horizon solution:
The wealth—consumption ratio, which is the value of a coupon bond, grows without
bound, and its inverse, the consumption—wealth ratio, shrinks to zero as the horizon
goes to infinity. The term e~ 5 () captures the scale of ¢/k, and so it goes to

33See Section 4 for a different derivation of (6.7).
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zero, thereby linearizing the system of ODEs. For large 7, (6.3) becomes

() =z B+ % +(1—7) % ((s1+sx0l(m)*+53)  (68a)

§V(r) =1 —kdl(r). (6.8b)
For N > 1, all higher-order coefficients are asymptotically zero, so that the model

is asymptotically first-order in the region of nonconvergence. Using (6.8b), we can
compute lim;_,o, 61(7) = 1/k. Inserting this into (6.8a) produces

lim 6(r) =2 G o (=) g (s bsx/0P 4 ). (69)

Because the model is asymptotically first-order in the region where it does not
converge, we have lim,_,», 0, = (sx/k, 0). This suggests that even when we
cannot determine the boundary of the region of nonconvergence analytically, we
can use our solution method to compute it numerically.

Numerical investigation. For a numerical investigation, let
8 =0.06, Kk =2.67, £ =0.065, sx =0.126, s; = 0.16, and sy = 0.04.

The parameter values are all measured per annum, and have been chosen to (roughly)
match the monthly moments in Campbell (1993). Numerical solutions for various
combinations of 77 and  are summarized in Tables 3—7. The first column indicates
the order of the approximation, IV, which runs from 1 to 8. In the second column,
2N (9, 7) is computed as a measure of whether there has been convergence. In the
tables, zg = .065 and 7 = 10° years.?* Numbers less the 10716 in absolute value are
reported as zero.

TABLE 3. Model 1, =1, v =2, 7 = 10°, and zy = 0.065.

N 027 (2o, 7) d' () 5 (r) 83(r) s (r) &Y (r) 8F(r) & (r)
1 0 —2.8416(—1) 3.6630(—1)

2 0 —2.8416(—1) 3.6630(—1) 0

3 0 —2.8416(—1) 3.6630(—1) 0 0

4 0 —2.8416(—1) 3.6630(—1) 0 0 0

5 0 —2.8416(—1) 3.6630(—1) 0 0 0 0

6 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
7 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
8 0 —2.8416(—1) 3.6630(—1) 0 0 0 0 0
0 signifies less than 1071% in absolute value; n(d) := n x 10%.

34The initial step size taken in solving the ODEs is 107% years (= 31.5 seconds).
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TABLE 4. Model 1, 7 =2, v =2, 7 = 10°, and zy = 0.065.
N 927 (zo0,7) 85’ (1) a7 (1) 83’ (1) 33 (1) 83 (1) 33 (1) 85 (1)
1 0 —2.4934(—1) 3.6403(—1)
2 0 —2.4914(—1) 3.6402(—1) 9.4148(—4)
3 0 —2.4914(—1) 3.6402(—1) 9.4253(—4) —7.3255(—5)
4 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3314(—5) 4.6005(—6)
5 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6032(—6) —2.2577(—7)
6 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2586(—7) 7.7784(—9)
7 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2587(—7) 7.7793(—9)
8 0 —2.4914(—1) 3.6402(—1) 9.4261(—4) —7.3318(—5) 4.6034(—6) —2.2587(—7) 7.7790(—9)
0 signifies less than 107 ¢ in absolute value; n(d) := n x 10¢.

TABLE 5. Model 1, 7 =0, v =2, 7 = 10°, and zy = 0.065.

N 027 (zo0,7) 8’ (1) 87 (1) 53’ (1) 33 (1) 83 (1) 82 (1) 55 (1)
1 0 —3.3570(—1) 3.6861(—1)

2 0 —3.3591(—1) 3.6862(—1) —5.4124(—4)

3 0 —3.3591(—1) 3.6862(—1) —5.4061(—4) —4.3393(—5)

4 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3356(—5) —2.8664(—6)

5 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8645(—6) —1.5459(—7)

6 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6105(—9)
7 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6082(—9)
8 0 —3.3591(—1) 3.6862(—1) —5.4066(—4) —4.3359(—5) —2.8647(—6) —1.5451(—7) —6.6082(—9)
0 signifies less than 10716 in absolute value; n(d) := n x 10%.

TABLE 6. Model 1, n =2, v =1, 7 = 10°, and zo = 0.065.

N 2% (x0,7) 5’ (1) 87 (1) 53 (1) 33 (1) 53 (1) 52 (1) 53’ (1)
1 0 8.7011(—2) 3.6697(—1)

2 0 8.7210(—2) 3.6697(—1) 6.8632(—4)

3 0 8.7210(—2) 3.6697(—1) 6.8632(—4) —5.4442(—5)

4 0 87210(—2) 3.6697(—1) 6.8638(—4) —5.4442(—5) 3.5329(—6)

5 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5329(—6) —1.8447(—T7)

6 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3644(—9)
7 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3644(—9)
8 0 8.7210(—2) 3.6697(—1) 6.8638(—4) —5.4446(—5) 3.5331(—6) —1.8447(—7) 7.3643(—9)
0 signifies less than 10716 in absolute value; n(d) := n x 10¢.
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TABLE 7. Model 1, 7 =4, v =0, 7 = 10°, and z¢ = 0.065.

N 27 (x0,7) 3o (1) 5(1)  83(r) 83 (r) 6 (m) 85 () &5 (1)

1 7.2641(—3) 7.2684(2) 3.7453(—1)

2 7.2641(—3) 7.2684(2) 3.7453(—1) 0

3 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0

4 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0

5  7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0

6  7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0 0

7 7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0 0

8  7.2641(—3) 7.2684(2) 3.7453(—1) 0 0 0 0 0

0 signifies less than 107¢ in absolute value; n(d) := n x 104,

TABLE 8. Model 2, =1, v =2, 7 = 10°, and zy = 0.065.

N 27 (20, 7) 3o (1) 87 (1) 8’ (1) 83 (1) 83 (1) 35 (1) 3¢ (1)
1 0 —2.3860(—1) 2.5745(—1)
2 —2.6097(—16) —2.3860(—1) 2.5745(—1)  5.5093(—11)
3 —2.1117(—15) —2.3860(—1) 2.5745(—1) —4.4649(—11) —3.1826(—11)
4 0 —2.3860(—1) 2.5745(—1)  2.5589(—11)  2.0673(—10)  3.2711(—10)
5 —1.3657(—16) —2.3860(—1) 2.5745(—1)  1.6848(—12) —1.2576(—11) —1.1281(—10) —2.1945(—9)
6 0 —2.3860(—1) 2.5745(—1) —2.8775(—12) —8.2670(—12) —8.6877(—11) —6.0362(—10) —7.4186(—10)
7 0 —2.3860(—1) 2.5745(—1)  9.6853(—12)  5.4134(—11)  2.5007(—10)  9.6076(—10) 3.4567(—9)
8  —5.4286(—16) —2.3860(—1) 2.5745(—1) —1.4021(—11) —9.6002(—12) —3.4361(—12)  2.2344(—13)  1.7694(—12)
0 signifies less than 107 ¢ in absolute value; n(d) := n x 10¢.

TABLE 9. Model 2, n =2, v =2, 7 = 10°, and zy = 0.065.

z
Q
0
o

2

5y’ (1) 87 (1) 83’ (1) 83’ (1) 53 (1) 85 (1) 35 (1)

0 —2.1360(—1) 2.5627(—1)

0 —2.1352(—1) 2.5629(—1) 3.9605(—4)

0 —2.1352(—1) 2.5629(—1) 3.9371(—4) —2.1841(—5)

0 —2.1352(—1) 2.5629(—1) 3.9374(—4) —2.1696(—5) 9.7983(—7)

0 —2.1352(—1) 2.5629(—1) 3.9374(—4) —2.1697(—5) 9.7321(—7) —3.4951(—8)

0 —2.1352(—1) 2.5629(—1) 3.9374(—4) —2.1697(—5) 9.7326(—7) —3.4739(—8) 9.2272(—10)
0 —2.1352(—1) 2.5629(—1) 3.9374(—4) —2.1697(—5) 9.7326(—7) —3.4740(—8) 9.1939(—10)
0 —2.1352(—1) 2.5629(—1) 3.9374(—4) —2.1697(—5) 9.7326(—7) —3.4740(—8) 9.1935(—10)

Ol v~ o vt = w v ~

signifies less than 107 1¢ in absolute value; n(d) := n x 10¢.
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TABLE 10. Model 2, n =0, v =2, 7 = 10°, and zo = 0.065.

N 927 (zo0,7) 85’ (1) 87 (1) 83’ (1) 33’ (1) 83 (1) 83 (1) 35 (1)

—2.7324(—1) 2.5864(—1)

—2.7331(—1) 2.5863(—1) —2.4897(—4)

—2.7332(—1) 2.5863(—1) —2.5048(—4) —1.4025(—5)

—2.7332(—1) 2.5863(—1) —2.5050(—4) —1.4123(—5) —6.5206(—7)

—2.7332(—1) 2.5863(—1) —2.5050(—4) —1.4124(—5) —6.5677(—7) —2.4830(—8)

—2.7332(—1) 2.5863 —2.5050(—4) —1.4124(—5) —6.5682(—7) —2.5004(—8) —7.5546(—10)
—2.7332(—1) 2.5863(—1) —2.5050(—4) —1.4124(—5) —6.5682(—7) —2.5006(—8) —7.5994(—10)

0
0
0
0
0
0
0
0 —2.7332(—1) 2.5863(—1) —2.5050(—4) —1.4124(—5) —6.5682(—7) —2.5006(—8) —7.5996(—10)

Ol v~ o ot = w v ~

0—16

signifies less than 1 in absolute value; n(d) := n x 104,

TABLE 11. Model 2, n =2, v =1, 7 = 10?, and zy = 0.065.

N Y (zo,7) 8’ (1) 87 (1) 53 (1) 33 (1) 83 (1) a2 (1) 55 (1)
1 0 8.7011(—2) 3.6697(—1)

2 0 8.7210(—2) 3.6704(—1) 6.8655(—4)

3 0 8.7207(—2) 3.6703(—1) 6.7914(—4) —5.4488(—5)

4 0 87207(—2) 3.6703(—1) 6.7929(—4) —5.3845(—5) 3.5389(—6)

5 0 8.7207(—2) 3.6703(—1) 6.7929(—4) —5.3856(—5) 3.4968(—6) —1.8509(—7)

6 0 8.7207(—2) 3.6703(—1) 6.7929(—4) —5.3856(—5) 3.4974(—6) —1.8306(—7) 7.4163(—9)
7 0 8.7207(—2) 3.6703(—1) 6.7929(—4) —5.3856(—5) 3.4974(—6) —1.8308(—7) 7.3585(—9)
8 0 8.7207(—2) 3.6703(—1) 6.7929(—4) —5.3856(—5) 3.4974(—6) —1.8308(—7) 7.3581(—9)
0 signifies less than 10716 in absolute value; n(d) := n x 10%.

TABLE 12. Model 2, n =4, v =0, 7 = 10°, and zy = 0.065.

N QY (0, 7) 5 (1) 8 (1) 83(1) 85 (r) 65 (r) 85 (1) §F (1)
1 1.1423(—2) 1.1426(3) 5.2678(—1)

2 1.1423(—2) 1.1426(3) 5.2678(—1) 0

3 1.1423(—2) 1.1426(3) 5.2678(—1) 0 0

4 1.1423(—2) 1.1426(3) 5.2678(—1) 0 0 0

5 1.1423(—2) 1.1426(3) 5.2678(—1) 0 0 0 0

6 1.1423(—2) 1.1426(3) 5.2678(—1) 0 0 0 0 0
7 1.1423(—2) 1.1426(3) 5.2678(—1) 0 0 0 0 0
8 1.1423(—2) 1.1426(3) 5.2678(—1) 0 0 0 0 0
0 signifies less than 10716 in absolute value; n(d) := n x 10¢.
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TABLE 13. Model 3, n =1, v =2, 7 = 10°, and zo = 0.065.

=z
S
¥
2

55 (1) a7 (1) 8 (1) 63°(1) 8y (r) 65 (r) &g (7)

1 0 —2.1191(—1) 1.9171(—1)

2 0 —3.5652(—1) 1.9992(—1) —5.3453(—1)

3 0 —3.5652(—1) 1.9992(—1) —5.3453(—1) 0

4 0 —3.5652(—1) 1.9992(—1) —5.3453(—1) 0 0

5 0 —3.5652(—1) 1.9992(—1) —5.3453(—1) 0 0 0
6 0 —3.5652(—1) 1.9992(—1) —5.3453(—1) 0 0 0
7 0 —3.5652(—1) 1.9992(—1) —5.3453(—1) 0 0 0
8 0 —3.5652(—1) 1.9992(—1) —5.3453(—1) 0 0 0
0 signifies less than 107¢ in absolute value; n(d) := n x 104,

TABLE 14. Model 3, n =2, v =2, 7 = 10°, and zo = 0.065.

N 927 (zo0,7) 85’ (1) 87 (1) 83’ (1) 83 (1) 83 (1) 85 (1) 85 (1)

0 —1.9194(—1) 1.9092(—1)

0 —3.0409(—1) 1.9849(—1) —5.3236(—1)

0 —3.0409(—1) 1.9847(—1) —5.3235(—1) —9.6958(—4)

0 —3.0408(—1) 1.9847(—1) —5.3233(—1) —9.8032(—4) 1.0361(—3)

0 —3.0408(—1) 1.9847(—1) —5.3233(—1) —9.8304(—4) 1.0375(—3) —1.5321(—4)

0 —3.0408(—1) 1.9847(—1) —5.3233(—1) —9.8309(—4) 1.0400(—3) —1.5437(—4) 1.2410(—4)
0 —3.0408(—1) 1.9847(—1) —5.3233(—1) —9.8310(—4) 1.0400(—3) —1.5479(—4) 1.2427(—4)
0 —3.0408(—1) 1.9847(—1) —5.3233(—1) —9.8310(—4) 1.0400(—3) —1.5480(—4) 1.2457(—4)

Ol v~ o ot = w o ~

0—16

signifies less than 1 in absolute value; n(d) := n x 104,

TABLE 15. Model 3, n =0, v =2, 7 = 10°, and zo = 0.065.

z
Q
0
o

2

5y’ (1) 87 (1) 85’ (1) 33’ (1) 83 (1) 85 (1) 55 (1)

0 —2.3854(—1) 1.9252(—1)

0 —4.4260(—1) 2.0138(—1) —5.3658(—1)

0 —4.4261(—1) 2.0139(—1) —5.3658(—1) 4.6062(—4)

0 —4.4261(—1) 2.0139(—1) —5.3659(—1) 4.6515(—4) —4.3188(—4)

0 —4.4261(—1) 2.0139(—1) —5.3659(—1) 4.6385(—4) —4.3117(—4) —7.2489(—5)

0 —4.4261(—1) 2.0139(—1) —5.3659(—1) 4.6383(—4) —4.3018(—4) —7.2953(—5) 4.9123(—5)
0 —4.4261(—1) 2.0139(—1) —5.3659(—1) 4.6384(—4) —4.3018(—4) —7.2751(—5) 4.9041(—5)
0 —4.4261(—1) 2.0139(—1) —5.3659(—1) 4.6384(—4) —4.3019(—4) —7.2749(—5) 4.8924(—5)

Ol v~ o v = w v =

signifies less than 107 1¢ in absolute value; n(d) := n x 10¢.
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TABLE 16. Model 3, n =2, v =1, 7 = 10, and zo = 0.065.

N 927 (zo0,7) 85’ (1) 87 (1) 83’ (1) 33 (1) 83 (1) 35 (1) 35 (1)

8.7780(—2) 3.6746(—1)

8.8514(—2) 3.6746(—1) 2.5409(—3)

8.8514(—2) 3.6746(—1) 2.5408(—3) —4.9953(—5)

8.8514(—2) 3.6746(—1) 2.5409(—3) —4.9953(—5) 2.9314(—6)

8.8514(—2) 3.6746(—1) 2.5409(—3) —4.9955(—5) 2.9314(—6) —1.2979(—7)
8.8514(—2) 3.6746(—1) 2.5409(—3) —4.9955(—5) 2.9314(—6) —1.2979(—7) 3.7607(—9)
8.8514(—2) 3.6746(—1) 2.5409(—3) —4.9955(—5) 2.9314(—6) —1.2979(—7) 3.7607(—9)
8.8514(—2) 3.6746(—1) 2.5409(—3) —4.9955(—5) 2.9314(—6) —1.2979(—7) 3.7605(—9)

o O O O O o o ©

Ol v @ ot i w o ~

0—16

signifies less than 1 in absolute value; n(d) := n x 104,

TABLE 17. Model 3, n =4, vy =0, 7 = 10°, and zy = 0.065.

N 2Y(zo,7) 8 (1) 57 (1) 5 (1) 83(r) 8 (1) 65 (r) & (r)
1 1.3644(—2) 1.3647(3) 6.0163(—1)

2 2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1)

3 2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1) 0

4 2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1) 0 0

5  2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1) 0 0 0

6  2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1) 0 0 0

7 2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1) 0 0 0

8  2.5078(—2) 2.5080(3) 6.1910(—1) 6.8732(—1) 0 0 0

0 signifies less than 10716 in absolute value; n(d) := n x 10¢.
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Table 3 presents the results for n = 1 and v = 2. The results in the table confirm
our analysis in this case. The value of the time derivative in column 2 indicates
that an infinite-horizon solution does indeed exist. The first-order solution appears
to be exact, since higher-order terms contribute nothing. Even absent analytical
proof, we can always insert the solution into the PDEs, and evaluate the absolute
value of the residual as a function of the state variable at the horizon in question.
For n = 1, the residual is indistinguishable from zero for all values of v and at all
horizons.

In Table 4 we move away from the analytically available solutions to n = 2 and
~ = 2. In this case the solution has infinite order. Here we see that the coefficients
converge quite rapidly of a function of IV: 6]1\\;72 has converged to five significant
digits. Also note that the coefficients die off rapidly as a function of order. The same
observations hold for the coefficients in Tables 5 and 6. Note that in Tables 46,
5 remains close to 1/(8 + k).

Results for Models 2 and 3 for the same preference parameters are shown Tables
8—11 and Tables 13-16, respectively. The models are calibrated so that the uncon-
ditional drift and instantaneous variance of log(¢) are the same as for Model 1. In
terms of convergence, the are qualitatively similar to Model 1, although Model 2
suffers from some rounding error at 7 = 1 that is not present in either of the other
two models. Quantitatively, we see all three models are essentially the same for

v =1.

TABLE 18. Maximum absolute errors for z € (—0.12,0.25) for n = 2,
v =2,and 7 = 10°.

N Model 1 Model 2 Model 3

1 1.7858(—4) 8.4821(—5) 1.0978(—1)
2 3.8123(-6) 1.2870(—6) 7.0186(—5)
3 5.8662(—8) 1.4172(-8) 1.5077(=5)
4 6.6224(—10) 1.1647(—10) 5.8699(—7)
5 5.0328(—12) 6.8003(—13) 9.2199(—38)
6 1.2101(—14) 1.9513(—15) 3.3115(-9)
7 3.8858(—16) 0 4.1261(—10)
8 0 0 1.3604(—11)

0 signifies less than 1076 in absolute value;

n(d) :=n x 104.

There remains the question as to how well 2%V (xz, 00) fits the defining restriction.
Since the solution method is local in nature, the fit will be perfect at x¢ and decay
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as we move away, although the decay need not be monotonic in |z — zg|. There are
two related issues here. First, what is the range over which we desire a good fit,
and, second, how good a fit should the fit be? To help determine the appropriate
range, we can compute the unconditional distribution of the state variable. In our
example for Model 1, z ~ N (Z,sx /V2 k) = N (0.065,0.054526). A range centered
on T that includes more than 99.9 percent of the PDF is (—0.12,0.25). Table 18
shows the maximum absolute error over this region for (n,7) = (2,2). Also shown
are the maximum absolute errors over the same region for Models 2 and 3. Even the
first-order approximation for Models 1 and 2 and the second-order approximation
for Model 3 are reasonably accurate over the region.

Regions of nonconvergence. For Model 1, we can easily compute the boundary of
the regions of nonconvergence using (5.17):

wa =18+ (1 —n)(0.065+ (1 —~)0.0223). (6.10)

With 8 =0.06, n =4, and v = 0, we have ¢ = —0.0291. Table 7 shows results for
n =4 and v = 0. The time derivative is clearly not zero, even at a horizon of 10°
years. Moreover, all of the coefficients higher than first-order are effectively zero
at this horizon. The residual from the PDE is indistinguishable from zero at this
horizon. Also note that §%V = 1/k = 0.37453 as expected.

Using (6.10), we can map out the regions of nonconvergence. Panel (a) of Figure 2
shades the regions where ¢4 < 0 using 8 = 0.06. Standard preferences are plotted as
the rectangular hyperbola vy = 1. Note that there is no infinite-horizon solution for
standard preferences unless 0.26 < v < 4.65. This rules out the level of risk-aversion
that has previously been found consistent with the moments of asset returns and
consumption growth. Panel (b) of Figure 2 illustrates the effect of lowering the rate
of time preference to 8 = 0.02 on the regions of nonconvergence. We see that a
sizable fraction of the region Campbell studied is nonconvergent in this case. In the
limit as 8 — 0, the regions of nonconvergence form a checkerboard, approaching
the point (n,v) = (1,3.9195). Figures 3 and 4 show similar results for Models 2 and
3, respectively.

Two state variables. Now consider a model with two state variables. Augment the
previous model with stochastic volatility. In particular, let
dlog(gb) =xdt + s1dW7 + \/§dW2

de = k(T — x)dt + sx dW

dy = Ky (§ —y) dt + sy /y dWs.
We keep the values for s, Z, k, and sx from the previous example, and let § = 0.042
so that \/y = .04 (= sy from the previous example). Finally let Ky = 1 and sy =
.02.35 Table 19 shows some results for n = 2 and v = 2. There are (N +1) (N +2)/2
coefficients d;;(7) for which ¢ + j < N. The upper-left number in each block is the

constant term dpo(7). The remaining numbers in the first row of each block are the
coefficients on powers of x — T, while the remaining numbers in the first column

35These values have been chosen arbitrarily.
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FIGURE 2. Areas of nonconvergence for Model 1 are shaded. Panel
(a) uses # = 0.06, while panel (b) uses § = 0.02.

(a) (b)

FIGURE 3. Areas of nonconvergence for Model 2 are shaded. Panel
(a) uses § = 0.06, while panel (b) uses § = 0.02.

(a) (b)
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FIGURE 4. Areas of nonconvergence for Model 3 are shaded. Panel
(a) uses # = 0.06, while panel (b) uses § = 0.02.
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of each block are the coefficients on powers of y — . The time derivatives are
essentially zero, indicating the existence of an infinite-horizon solution for these
parameter values. As in the one-factor example, the coefficients converge rapidly as
a function of N. Note that the coefficients for x are little changed from the previous
example, while at the same time y enters the solution with an impact of the same
magnitude as x. In Table 20, the coefficient of relative risk aversion is set to one,
which is the CAPM. In this case, the model reverts to a one-factor model: The
volatility of the return on the market plays no role. In Table 21, the parameters
are n = b and v = 5. In this case, the coefficients for y do not decay as rapidly as
previously with respect to the order.

APPENDIX A. THE ABSENCE OF ARBITRAGE

We assume the existence of a state-price deflator, which follows a strictly positive

It6 process m(t) that we write as:

dmi(t) T

—= = —r(t)dt = A(t) dW(t Al

= —r =0 AW (), (A1)
where “T” denotes the transpose, r(t) is the instantaneous rate of interest and A(t)
is the price of risk. Observe that we are free to model r(t) and A\(¢) independently,
as long as a solution to (A.1) exists and

e@(lt—ﬁM@Ww+M@wW@Q
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TABLE 19. n =2, vy=2, 7 = 10°, 29 = 0.065, o = 0.0016.

x
N 02F y 0 1 2 3 4
1 0 0 —24915(—1)  3.6404(—1)
1 —4.5584(—1)
2 0 0 —24896(—1)  3.6402(—1) 9.4132(—4)
1 —4.5576(—1) —3.3897(—3)
2 3.7764(—3)
3 0 0 —24895(—1)  3.6402(—1) 9.4236(—4) —7.3243(—5)
1 —4.5576(—1) —3.3944(—3) 3.4113(—4)
2 3.7833(—3) —5.6083(—4)
3 3.4483(—4)
4 0 0 —24895(—1)  3.6402(—1) 9.4244(—4) —7.3302(—5) 4.5999(—6)
1 —4.5576(—1) —3.3947(—3) 3.4145(—4) —2.6436(—5)
2 3.7838(—3) —b5.6147(—4) 5.7989(—5)
3 3.4532(—4) —5.8242(—5)
4 2.3228(—5)

0 signifies less than 1076 in absolute value. n(d) := n x 10

is a martingale.36

A state-price deflator m(t) guarantees that asset prices are free of arbitrage pos-
sibilities. The price of any asset (expressed in a given unit of account) is determined
by the formula that its deflated gain is a martingale. To see what this means, con-
sider an asset with cumulative dividend D(t) and value S(t), both Itd processes.
For simplicity of exposition, assume that D(t) is locally riskless. Let the dynamics
of S and D be given by

dS(t) = ms(t)dt +55(t)"dW(t), and dD(t) = Z(t)dt,

where Z(t) is the flow of dividends. The gain is the sum of the asset’s value and
its cumulative dividend, G(t) := S(t) + D(t), while the deflated gain is G(t) m(¢).
To say that G(t) m(t) is a martingale is equivalent to saying that the price process

S(t) obeys
S(t) = E, [ / Tt (ZE;;) Z(s)ds + (%) S(T)] : (A.2)

36This condition is referred to as an integrability condition. The example given in Cox, Ingersoll,
Jr., and Ross (1985b) fails this condition.



46 MARK FISHER AND CHRISTIAN GILLES

TABLE 20. n =2, v=1, 7 = 10°, 29 = 0.065, 7o = 0.0016.

x
N 02F y 0 1 2 3 4
1 0 0 87011(—2) 3.6697(—1)
1 0
2 0 0 87210(—-2) 3.6697(—1) 6.8632(—4)
1 0 0
2 0
3 0 0 87210(—2) 3.6697(—1) 6.8632(—4) —5.4442(—5)
1 0 0 0
2 0 0
3 0
4 0 0 87210(—2) 3.6697(—1) 6.8638(—4) —5.4442(—5) 3.5329(—6)
1 0 0 0 0
2 0 0 0
3 0 0
4 0

0 signifies less than 1076 in absolute value. n(d) :=n x 10%.

for any T' > t, where E} stands for the expectation conditional on time-t information.
A direct implication of the pricing equation (A.2) is the no-arbitrage condition:

As(t) + Z(t) = r(t) S(t) + A(t) o5 (t). (A-3)

Fixed income assets play a central role in the body of the paper. Let p(¢,7T)
denote the price at time ¢ of a zero-coupon bond paying one unit of account at
time 7. According to the pricing formula (A.2), the terminal condition p(7,7T) = 1
implies

p(t.T) = Fy [mm] ,

m(t)

so that the term structure theory reduces to the problem of producing conditional
forecasts of the state-price deflator. The value of a coupon bond with a face value
of 6 that pays one unit continuously until it matures at time 7 is given by

=(t) = B UT m(s) ds+0ﬂ} /ST p(t, ) ds + 0 p(t, T).

— m(t) m(t) =t
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TABLE 21. n =5, vy=5, 7 = 10°, 29 = 0.065, 4o = 0.0016.

N 02F y 0 1 2 3 4
1 0 0 —45912(-1)  3.2825(—1)
1 —1.3742( 0)
2 0 0 —4.5832(—1)  3.2745(—1) 1.4076(—2)
1 —1.3640( 0) —1.6253(—1)
2 5.5135(—1)
3 0 0 —45829(—1)  3.2739(—1) 1.4247(-2) —3.3503(—3)
1 —1.3633( 0) —1.6479(—1) 4.8315(—2)
2 5.6024(—1) —2.3310(—1)
3 3.8396(—1)
4 0 0 —4.5829(—1)  3.2739(—1) 1.4256(—2) —3.3732(—3) 4.8814(—4)
1 —1.3633( 0) —1.6489(—1) 4.8649(—2) —7.6931(—3)
2 5.6054(—1) —2.3458(—1) 3.9485(—2)
3 3.8537(—1) —5.7982(—2)
4 —4.8659(—2)

0 signifies less than 1076 in absolute value. n(d) := n x 10

Now consider the asset whose value is given in (A.2). Assume the dividend is strictly
positive and S(T') = 6 Z(T'). Then we can divide both sides of (A.2) by Z(¢):

S0 _p,| [ (20 4 (mDZD) SO

Z(1) =¢ ﬂ”(b(é)Z(t) m(t) Z(t) ) Z(T)
mg(s

- EtT[/S:t ma(t) ”%iifﬂ

/ pa(t,s)ds+0py(t,T),
s=t

where my(t) := m(t) Z(t) and pg(t,T) := Ei[mq(T)/ma(t)]. We refer to m, as the
dividend-denominated state—price deflator and p,4(¢, T') as the dividend-denominated
zero-coupon bond. Following (A.1), we can apply Itd’s lemma to mg(t), producing
dmg(t)/mg(t) = —rg(t) dt — Xg(t) "dW (t), where

ra(t) =r(t) — pz(t) + M) Toz(t) and  Mg(t) = A(t) — o4(1),

where dZ(t)/Z(t) = uz(t)dt + oz(t) T dW (t).
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APPENDIX B. ASYMPTOTICS AND REGIONS OF CONVERGENCE

In this section we examine the relation between the value of an annuity and the
value of a zero-coupon bond with the same maturity as the maturity goes to infinity.
Particular attention is paid to the case where no infinite-horizon solution exists due
to nonpositive asymptotic forward rates. As it turns out, the value of a coupon
bond is proportional to the value of a discount bond of the same maturity in the
limit as the horizon goes to infinity. As discussed above, if the asymptotic forward
rate exists and is positive, then the value of a coupon bond converges to the value
of a perpetuity as the horizon goes to infinity. When the asymptotic forward rate
is negative, the value of a coupon bond grows without bound. Nevertheless, the
relative dynamics of the coupon bond does converge.

Let p(t,T) be the price at time ¢ of a zero-coupon bond that pays one unit at
time 7T'. The relative dynamics of bond prices is given by

dp(t,T)

Sy = et D) d oyt T) AW ()

For this section, we assume the existence of the following two limits:

Tlim pp(t,T) = pp(t,00) and  lim o,(t,T) = op,(t, 00). (B.1)

T—o00

Define the forward rate as f(¢,7) = —0log(p(t,T))/0T. The dynamics of forward
rates can be derived from the dynamics of bond prices:

4 (1,T) = — o dlog(p(t, T)) = g (1. T) di + (1, 7) W (1),
where
Ouy(t, T) +00p(t,T)
T) = o=/ =/ B.2
Mf(t, ) 8T + U:D(tv ) aT ( a“)
_ Ooy(t,T)
of(t,T)=— T (B.2b)
Define the asymptotic forward rate as
lim f(t,T)=¢ (B.3)
T—o0

when the limit exists, where ¢ is a finite constant. When the asymptotic forward
rate exists, limr_o pr(¢t,7) = 0 and limy_.o of(¢,7) = 0. The limits (B.1) are
sufficient to guarantee the existence of the asymptotic forward rate.

The value of a coupon bond with a face value of § > 0 that pays a continuous
unit coupon is given by w(t,T') = ftTp(t, s)ds+0p(t,T). The relative dynamics of
the value of this coupon bond can be written as

dw(t,T)

STy~ et T)dt+ ot T)Tdw (t),
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where37
ft (t,s) pp(t,s)ds =1+ 0p(t,T) pup(t,T)
pe(t,T) = = ET) (B.4a)
ft (t,s)op(t,s)ds+0p(t,T)o,(t,T)
0w (t,T) = = T) . (B.4b)

Consider the limiting values for i and o5. Note that if both numerators and both
denominators in (B.4) diverge, then L’Hopital’s rule delivers

lm pe(t,T) = li T im oo(t,T) = li T). (B.
Jm pe(t,T) = Im 4,(t,T) and  lim on(t,T) = lm op(t,T). (B.5)

First note that unless limp_, p(t,T) = 0, the condition (that both numerators and
both denominators diverge) holds. Thus the condition is definitely true if ¢ < 0,
since bond prices diverge.®® On the other hand, the condition is definitely false if
@ > 0, since limp_,, p(t,7) = 0 and the ratio test shows that limy_,., w(t,T)
converges as well. If ¢ = 0, the condition will be true as long as bond prices do not
converge to zero. However, if they do, additional analysis is needed to determine
whether the condition holds or not.

An illustration. As an illustration, consider a Markovian setup where bond prices
are of the exponential-affine class, so that p(¢,T7) = P(X(t),T —t), where P(x,7) =
exp(A(7) + B(7) ") and where the dynamics of the Markovian state variables are
given by

dX(t) = px (X (1) dt + ox (X (t)) TdW ().

Applying Ito’s lemma to the bond price function we get

it t+7) = ph B(r) + %tr [ox 0% B() B(r)T] - A7) - B()TX (1)
op(t,t +7) = o B(T).

The forward rate is given by —A’(7) — B'(1) " X (t). If the asymptotic forward rate
exists, then

lim A'(1)=—¢ and lim B(r) =B,

T—00 T—00
where B is a vector of finite constants. Therefore, for ¢ < 0, the asymptotic
dynamics of an annuity are given by

1
lim g (t,t+7) = py B+ 3 tr [JX J)T(BBT} +
T—00

lim on(tt+7)=0yB.
T—00
3"The relative dynamics are well-behaved everywhere except at time T if § = 0.
38 Another way to see this is to consider the behavior of p(t,T)/w(t,T) for large T. When ¢ < 0,
both p(t,T) and w(t,T) diverge, and we can appeal to L’Hopital’s rule:
. p(t,T) . op(t,T)/0T . op(t,T)/oT
1 — - = —_— — — B6
T @, T)  Toee 0w(t,1)/0T Tee  p(t,T) 4 (B6)
which shows that when the asymptotic forward rate is negative, the value of an annuity is asymp-
totically proportional to the value of a very long discount bond.
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The risk-return condition for an asymptotic annuity is
1
axB+ §tr [O‘X J)T(BBT] +p=r,

where ix = px — Aoy is the risk adjusted drift of X. Given the functions jix,
ox, and r, this condition can be solved for B and . For example, let there be a
single state variable with O-U dynamics, so that fix = (X — z), ox = sx, and
r = z. Then we have

- 1
li(X—x)B+§s%(32+50:x,

or, by undetermined coefficients,

- _ 1
B=— and ¢=X—_
K

5 (S—X)2 : (B.7)

K

To establish the correctness of (B.7) for ¢ = 0, eliminate X using ¢ = 0 as given
in (B.7), solve for bond prices, and take the limit. In this case, bond prices converge
to a positive value, exp (—s% /(4 k*) — x/k), thereby establishing the condition that
delivers the result for ¢ = 0 as well.

The weak form of the expectations hypothesis. Let the forward rate be de-
fined as f(t,s) := —0log(p(t,s))/ds. The weak form of the expectations hypoth-
esis states that f(t,s) = Eir(s)] + £(s — t), where £(7) is a deterministic func-
tion of 7 and £(0) = 0.37 If the interest rate is Gaussian and the price of risk
is constant, then the weak form will hold. Let the dynamics of E;[r(u)] be given
dE[r(u)] = 6,(t,s)"dW (t). Then df(t,s) = —{'(s—t) dt+6,(t,s) " dW(t). Applying
[t6’s lemma to p(t, s) = exp (— fuszt ft,u) du), produces

dlog(p(t,s)) = (r(t) + £(s —t)) dt — ap(t,u) " dW (t),

where
S
ot 5) = — / 60(t, ) du. (B.8)
u=t
APPENDIX C. INHOMOGENEOUS TERMINAL REWARD
When the terminal reward is inhomogeneous, utility U({c}) = V(0) remains

homothetic and can be transformed into a homogeneous form. However the process
for continuation utility {V'} cannot be linearly homogeneous in consumption, and
therefore cannot be represented as V' (t) = ¢(t) () for all t < T', except in the limit
as T'— oo (in which case the terminal reward is irrelevant). The problem is that
the transformation that makes U({c}) homogeneous depends on the horizon. As
time advances, the transformation changes. We illustrate these ideas with a simple
example.

39The strong form of the expectations hypothesis states that £(7) = 0.
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Simple example. In this example, the rate of consumption is constant: ¢(t) = ¢
for all t < T'. In this case the central restriction can be written as the ODE

V'(t) + V(t) Bu(co/V(t)) =0, subject to V(T) = co+E&,

where V'(t) denotes the derivative with respect to time. We have added an inho-
mogeneous term to the boundary condition, £ > 0. The solution is

/
V) = (e =1y ch+ (1= a(T =) (Ceo+ g)p)l * for p£0 o
Y(Ceo + )10 for p =0,

where ¢(7) = 1 — e 7. We can compute the wealth-consumption ratio as we did
in the body of the paper (see Footnote 16): V./f. = m. Therefore

T—t)+(1- pl
r)— AT =0+ 0 =T~ )¢ Car+ &
B
for all values of p.

For £ = 0, the boundary is homogeneous, the wealth—consumption ratio is inde-

pendent of consumption,

T —t)+ (1 —q(T—1))¢”

ﬁ )
and continuation utility is linearly homogeneous in consumption, V (t) = cg 1 (t),
where

m(t) =

(T—t)+ (1—q(T —1))¢*)"" for p#£0
Y(t) = {é(f_q(T—t) ( ! ) ) for Z =0.

For p = ¢ = 0, the unique solution is V() = ¢(t) = 0.
For ¢ = 0, continuation utility V' is not homogeneous in consumption:

Vi) = (a@ -ty + (- -n)er) "

Nevertheless, 7(t) = ¢(T'—t)/ is independent of consumption, indicating that util-
ity is homothetic. There is of course a transformation of V' (0) that is homogeneous.

Define V (t) = YT (V(t)), where
zf —(1—q(7)¢

T (x) = ,
@) q(7)
so that V(O) = ¢p. However, since the transformation is horizon-dependent,
- T—1t)cy+q(t)€°
q(T)

is not homogeneous for all t < T'. For p =0,
V(t) =0 gmalT,

where the wealth—consumption ratio is 7(¢) = q(T — t)/. It is the inhomogeneous
problem that Duffie and Epstein (1992a) solve.
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For the case where ¢ > 0 and £ > 0, 7(t) depends on consumption (unless p = 1),
which implies utility is not homothetic. Indeed, there is no transformation of V(0)
that is homogeneous in this case unless p = 1.

The wealth—consumption ratio more generally. When continuation utility is
not linearly homogeneous in consumption, we need to start from scratch. If utility
is homothetic, then there is a “solution” for continuation utility in terms of c(t)
and an arbitrary second state variable ¢: V = g(c,v). Homotheticity (combined
with linear investment technology) guarantees that the wealth—consumption ratio
is independent of consumption:

ge(c, ) _
Fie.gleon " 2
The solution to (C.2) is
B (cpﬁW+C(¢))1/p for p #£0
g(c,Q/}) - {CBWCO(Ip) fOI‘ p= O, (03)

where C() and Cyp(v)) are arbitrary functions of .

For homogeneous utility, it is convenient to choose C(¢) = 0 and Cy(¢)) = ¢. (For
p =0, 87 = 1, so continuation utility is indeed homogeneous in this case.) For
inhomogeneous utility, we consider two cases. First, for p # 0, we can accommodate
the example from above where ( = 0 and £ > 0 as follows. Let C(¢)) = (1 — Gm) ¢
and Co(¢) = ¢ =B where Bn(t) = q(T — t).

Second, for the inhomogeneous case when p = 0, we can choose Cy(¢)) = 1. The
terminal reward imposes the condition g(c,v) = £, which implies 7(7) = 0 and
Y(T') = £. The following specification is consistent with the restrictions:

q(T —t)

g(c, ) =Ty and 7= 3

. (C.4)
The central restriction is given by

- 1 )
Qi+ i + a5 g+ oyl — Flog(t) =0, subject to Y(T) =€ (C.5)

There are three versions of (C.5), the unification of which is parallel to that for the
three versions of (2.8). The supporting price system can be computed from

fole, X (1)) = By~ ! (C.6a)
fole, T("9)) = =B {1+ a((g — 1) log(c) + log(v)) } . (C.6b)

The supporting returns process is given by (3.9a) and o4 = A+« (¢(T —1t) 0.+ 0y).
The optimal portfolio weights can be obtained by eliminating o, from this expression
and the price of risk: o4 = (1—agq(T—t))~' (\+a0y). The solution to the resulting
linear system is consistent with Theorem 2 in Schroder and Skiadas (1999).
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