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MARKOV-SWITCHING STRUCTURAL VECTOR AUTOREGRESSIONS:
THEORY AND APPLICATION

I. I NTRODUCTION

A recent debate on whether it is bad monetary policy or bad luck that explains the U.S. inflation-unemployment dynamics in

the 1970s has motivated a number of empirical works. Boivin (1999), Clarida, Gali, and Gertler (2000), Lubik and Schorfheide

(2004)), and Boivin and Giannoni (2005), on the one hand, findthat bad monetary policy is the main explanation for the volatile

and high inflation of the 1970s. Primiceri (2005), Sargent, Williams, and Zha (2005), Bernanke and Mihov (1998), Cogley and

Sargent (2005), and Canova and Gambetti (2004), on the otherhand, find little evidence in favor of the view that the monetary

policy rule has changed drastically.

In order to shed some light on the debate Sims and Zha (2005) extend the seminal work of Hamilton (1989) and use Markov-

switching structural vector autoregressions (SVARs) to disentangle between the two possible explanations. Sims and Zha (2005)

develop novel and efficient Markov-Chain Monte Carlo (MCMC)methods for Markov-switching SVARs identified with linear

restrictions on each structural equation. Their methods, however, cannot be applied directly to models identified in other ways.

In particular, long-run restrictions on impulse responses, as introduced by Blanchard and Quah (1993), impose restrictions on

nonlinear functions of the sum of the structural coefficients. Sign restrictions on impulse response functions, as proposed by

Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005) imply nonlinear restrictions on the model parameters.

This paper extends the MCMC method of Sims and Zha (2005) to Markov-switching SVARs with short-run, long-run, and

sign restrictions on impulse responses. We show that if the model with short-run and long-run restrictions is exactly identified,

there exists a unique rotation of the parameter matrices under a recursive SVAR system that are mapped onto the structural

parameters of the original model. We derive an efficient algorithm for finding such a rotation. For Markov-switching SVARs

with sign restrictions, we develop a more efficient version of Uhlig’s (2005) algorithm. This development is particularly

important, since the MCMC computation is in general quite time-consuming.

The SVAR literature often employs the widely used necessarycondition of Rothenberg (1971) to ascertain if models are

exactly identified.1 Rothenberg’s necessary condition is easy to implement by simply counting enough restrictions in total. We

give examples of SVARs that satisfy this necessary condition, but arenot identified. This motivates us to develop a new and

easily implementable necessary and sufficient condition for exactly identified SVARs. Our necessary and sufficient conditions

not only count the number of restrictions equation by equation, but also require the restrictions to follow a particularpattern.

Our theorem applies to SVARs with both linear restrictions and some nonlinear restrictions on the parameters of each equation.

1Rothenberg (1971) also provides a sufficient condition, buthis condition is not implementable for SVARs.

1



MARKOV-SWITCHING SVARS 2

We apply our procedures to analyzing whether monetary policy and the volatility of euro area macroeconomic variables

have changed since the introduction of the EMU. In the last decade, the observed volatility of aggregate euro area variables has

decreased significantly. For example, from the late 1970s and early 1980s, inflation has decreased from about 10 percent to

under 5 percent, output growth volatility has fallen while the average annual growth rate has remained unchanged, and short-

term nominal interest rates and money growth have decreased, which are now at record lows. Is the reduction in observed euro

area aggregate volatility a result of regime changes in monetary policy? Or does it simply reflect the decreasing magnitude

of the shocks that impinge on the euro area economy? To answerthese questions,we study Markov-switching SVARs with

four different identification schemes: (1) the recursive identification of Christiano, Eichenbaum, and Evans (1996), (2) the

non recursive approach of Gordon and Leeper (1994) and Sims and Zha (2005), (3) the identification with a combination of

contemporaneous and long-run restrictions on impulse responses as introduced by Blanchard and Quah (1993) and Galí (1992),

and (4) the identification governed by sign restrictions proposed by Faust (1998), Canova and De Nicoló (2002), and Uhlig

(2005).

Our approach to Markov-switching differs from that of Sims (1993), Uhlig (1997), Cogley and Sargent (2005), and Primiceri

(2005). These papers allow parameters to drift in a continuous state space. We can approximate the continuous drift arbitrarily

well by putting greater prior weight on the diagonal of the transition matrix. At the same time, our approach offers additional

flexibility by allowing for a large, discrete jump in the SVARcoefficients.2

Our empirical results reveal that the source of time variation embedded in euro area aggregate variables can be attributed

to changes in shock variances. According to the relative marginal likelihoods (i.e., posterior odds ratios), Markov-switching

SVARs based solely on time-varying shock variances are strongly favored compared to models in which slope coefficients also

change with the regime. This result is robust across the fouridentification schemes we study and consistent with the findings of

Stock and Watson (1996, 2003), Primiceri (2005), Canova andGambetti (2004), and Sims and Zha (2005) for the U.S. data. We

also find a stable and persistent post-1993 regime. This regime is associated with low volatility of the shocks to output,prices,

and the short-term interest rate. Finally, the real effectsof monetary policy shocks are small, or at most uncertain, relative to

other shocks. These results are robust across identifications and regimes.

The rest of the paper is organized as follows. Section II laysout the general framework. Section III describes our application

and the four identifications we use in the paper. Section IV reports and explains our key findings. Section V concludes the

paper. Detailed proofs of the theorems are provided in the appendices.

II. T HE FRAMEWORK

In this section we present a framework to analyze Markov-switching SVAR models. We take the Bayesian approach, but all

the theoretical results apply to the classical framework aswell. We begin by presenting the general form of Markov-switching

SVARs studied in this paper. Next, we introduce a class of linear identifying restrictions on transformations of the structural

parameters. We derive the necessary and sufficient conditions for the Markov-switching SVAR to be exactly identified and

show how to generate Markov-chain Monte Carlo (MCMC) draws from the posterior distribution. Finally, we illustrate our

methods with an example.

2Sims and Zha (2005) discuss these issues in greater detail.
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II.1. The Structural Model. Following Hamilton (1989) and Sims and Zha (2005), we consider Markov-switching SVARs of

the following form

y′tA0 (st) =
p

∑
ℓ=1

y′t−ℓAℓ (st)+z′tC(st)+ ε ′t (1)

wherep is the lag length,T is the sample size,yt is ann×1 vector of endogenous variables,zt is equal to one3, andεt is an

n×1 vector of structural shocks. The conditional distribution εt is normal with mean 0 and covariance matrixIn (the n×n

identity matrix). The value ofst is an element of{1, · · · ,h} andst evolves according to a Markov process with transition matrix

Π = (πi, j)1≤i, j≤h, whereπi, j is the probability thatst equalsi given thatst−1 is j. For 0≤ ℓ ≤ p and 1≤ k ≤ h, Aℓ (k) is an

n×n matrix of parameters. For 1≤ k≤ h, C(k) is a 1×n vector of parameters. The initial conditions,y0, · · · ,y1−p, are taken

as given.

Let

A′
+ (k) = [A1 (k)′ , . . . ,Ap (k)′ ,C(k)′]

for 1≤ k≤ h and

x′t = [y′t−1, . . . ,y
′
t−p,z

′
t ]

for 1≤ t ≤ T. The model (1) can be compactly written as

y′tA0 (st) = x′tA+ (st)+ ε ′t . (2)

The parameters of the structural model are(A0 (k) ,A+ (k)) for 1 ≤ k ≤ h. The reduced-form representation implied by the

structural model (2) is

y′t = x′tB(st)+u′t (st)

where

B(st) = A+ (st)A−1
0 (st) , u′t (st) = ε ′t A−1

0 (st) ,E
(
ut (st)u′t (st)

)
= Σ(st) =

(
A0 (st)A′

0 (st)
)−1

.

The parameters of the reduced-form model are(B(k) ,Σ(k)) for 1≤ k≤ h.

II.2. Identifying Restrictions. Without restrictions the structural system (2) is not identified. If P is an orthogonal matrix,4 the

reduced-form representation derived from(A0(k),A+(k)) and(A0(k)P,A+(k)P) are identical and hence the structural models

are observationally equivalent. Sims and Zha (2005) describe how to identify the model using linear restrictions on thecon-

temporaneous parameter matrixA0(k) and develop Bayesian methods for simulating the posterior distribution of the structural

parameters. This class of restrictions includes recursiveschemes as described by Christiano, Eichenbaum, and Evans (1996)

and non-recursive schemes as described by Gordon and Leeper(1994) and Sims and Zha (2005).

Two alternative identification schemes have also been widely used. Blanchard and Quah (1993) and Galí (1992) use both

contemporaneous and long-run restrictions on impulse responses; Faust (1998), Canova and De Nicoló (2002), and Uhlig

(2005) use sign restrictions on impulse responses. In this section we extend the results of Sims and Zha to the former class of

restrictions; sign restrictions are of a different nature and will be analyzed later in Section III.6.

For SVARs with both short-run and long-run restrictions, the methods used in the existing literature typically involvea

system of nonlinear equations to be solved in order to obtainthe maximum likelihood estimates or the posterior estimates

3It is straightforward to include other exogenous variablesin our framework.
4By definitionP is an orthogonal matrix if and only ifPP′ = I
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if a prior is used.5 When simulating from the posterior distribution, however, solving a system of nonlinear equations (or

minimizing a nonlinear function) for each posterior draw istime-consuming and practically infeasible if a large number of

MCMC draws are required to get accurate results. In this subsection, we show, however, that contemporaneous and long-run

restrictions on impulse responses can be represented as linear restrictions on transformations of the structural parameters. This

innovation is the key to the efficient MCMC methods developedlater in this paper.

A transformationX (·) of the structural parameters is defined as follows.

Definition1. Let X (·) be a transformation from the set of structural parameters tothe set ofm×n matrices, withn≤ m, such

that either

(1a) X (A0 (k)C,A+ (k)C) = X (A0 (k) ,A+ (k))C, for every invertible matrixC.

or

(1b) X (A0 (k)C,A+ (k)C) = X (A0 (k) ,A+ (k))(C′)−1, for every invertible matrixC.

Condition (1a) applies when the restrictions are on the structural parameters themselves. Condition (1b) applies whenthe

restrictions are on the impulse responses. This case includes both restrictions at finite horizons and long-run restrictions. Almost

all identifying restrictions used in the existing SVAR literature can be presented as linear restrictions on the columns of some

transformationX (A0 (k) ,A+ (k)). In particular, for 1≤ j ≤ n there existq j ×mmatricesQ j of rankq j such that(A0 (k) ,A+ (k))

satisfy the restrictions if and only if:

Q jX (A0 (k) ,A+ (k))ej = 0 (3)

whereej is the j th column of then×n identity matrix.6

The recursive and non recursive restrictions on the contemporaneous parameter matrixA0(k) as used in the literature can be

defined as linear restrictions on the columns of

X (A0 (k) ,A+ (k)) = A0 (k) . (4)

Conditional on thekth state, the contemporaneous impulse responses to thej th shock correspond to thej th column of
(
A−1

0 (k)
)′

.

When theith variable of the structural model is in first difference, the long-run impulse response of theith variable to thej th

shock conditional on thekth state is the element in theith row and j th column ofL′ (k) where

L(k) =

(
A0 (k)−

p

∑
ℓ=1

Aℓ (k)

)−1

.

Thus, Definition 1 allows us to represent contemporaneous and long-run restrictions on impulse responses as linear restrictions

on the columns of

X (A0 (k) ,A+ (k)) =



(
A−1

0 (k)
)′

L′ (k)


 . (5)

Clearly, transformations (4) and (5) belong to the class of transformation functionsX (·) in Definition 1.

5The 2SLS estimate, as used by Galí (1992), is an approximation to the maximum likelihood estimate. The accuracy of this approximation depends on how

good the instruments are in the first stage of the estimation.
6In addition to condition (1a) or (1b), one needsX (·) to be of full rank with respect to the restrictionsQi . The technical condition is that there exists a set

of structural parameters(A0 (k) ,A+ (k)) such that

rank(QiX (A0 (k) ,A+ (k))) = rank(Qi) .

In the examples considered in this paper, since the image ofX (·) is dense in the set of allm×n matrices, this condition will be satisfied. In general, sincethis

condition needs to hold only for a single set of parameter values, one can simply test the ranks of several arbitrarily chosen parameter values.



MARKOV-SWITCHING SVARS 5

II.3. Normalization. Since the identifying restrictions given by (3) do not uniquely determine the sign of any equation, a sign

normalization rule is needed. While the theory developed in this paper will work for any choice of sign normalization, a poor

choice of sign normalization may distort statistical inference concerning impulse responses (see Waggoner and Zha 2003b for

details). In our applications, we follow the likelihood-preserving normalization proposed by Waggoner and Zha (2003b).

For Markov-switching models, there is an additional type ofnormalization. Any permutation of the states will result inan

observationally equivalent set of parameters. Intuitively, permuting the states can be thought of as an arbitrary renaming of

the states, i.e., permuting the first and second states can beinterpreted as renaming the first state as the second and viceversa.

Since the names of the states clearly do not affect the properties of the model, there will be observationally equivalentsets of

parameters. We follow the Wald normalization as described in Hamilton, Waggoner, and Zha (2003), which minimizes the

distance, in the appropriate metric, between the observationally equivalent parameter sets and some reference set of parameters,

usually the maximum likelihood estimate. Since there are only a finite number of permutations, there are only a finite number

of comparisons to make. The models with both sign and permutation normalizations are called normalized models. The

Markov-switching SVAR models considered in this paper are normalized.

II.4. Is the Model Exactly Identified? A large part of the SVAR literature deals with exactly identified models. The precise

definition of exact identification is given below.

Definition2. A Markov-switching SVAR is exactly identified if and only if for almost every reduced-form parameter(B(k) ,Σ(k))

there exists a unique set of structural parameters(A0 (k) ,A+ (k)) with B(k) = A+ (k)A−1
0 (k) andΣ(k) = (A0 (k)A′

0 (k))−1 that

satisfies the identifying restrictions (3).

In an important article Rothenberg (1971) gives a necessarycondition for exact identification, which requiresn(n−1)/2

restrictions.7 Except for a recursive system, however, the model may not be identified even if there aren(n− 1)/2 linear

restrictions.8 The following theorem gives us a new and easily implementable necessary and sufficient condition for a Markov-

switching SVAR system to be exactly identified.9

Theorem3. A Markov-switching SVAR is exactly identified if and only if there exists a permutationσ of 1, · · · ,n such that

rank(Qi) = qi = n−σ (i) for 1≤ i ≤ n.

Proof. The proof is provided in Appendix A. �

Notice that we can always permute the equations in the original system, (1), so thatσ(i) = i. Theorem 3 allows us to check

if a Markov-switching SVAR is exactly identified. Rothenberg’s (1971) necessary condition simply counts the total number

of restrictions. Our necessary and sufficient condition notonly counts the number of restrictions but also requires that they

follow a certain pattern equation by equation. Any linear restrictions onX (·) allow for certain nonlinear restrictions onA0(k)

andA+(k) themselves. Thus Theorem 3 applies to a wide range of identification schemes, including both linear and nonlinear

restrictions onA0(k) andA+(k) as implied by (3).

Given restrictions onX (·) that exactly identify the model, how do we find the set of structural parameters such that the

restrictions are satisfied? The following theorem tells us how to do it:

7Rothenberg (1971) also provides a sufficient condition, buthis condition is not implementable for SVARs.
8Examples will be shown later in this paper. See Sims and Zha (1999) for other examples.
9Of course, our necessary and sufficient condition also worksfor constant parameter SVARs.
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Theorem4. A Markov-switching SVAR is exactly identified if and only if for almost every structural parameter(A0 (k) ,A+ (k)),

there exists a unique orthogonal matrixP(k) such that

(A0 (k)P(k),A+ (k)P(k))

satisfy the restrictions.

Proof. If (A0 (k) ,A+ (k)) and
(
Ã0 (k) , Ã+ (k)

)
are two sets of structural parameters such that(A0 (k)A′

0 (k))−1 =
(
Ã0 (k) Ã′

0 (k)
)−1

,

it follows that
(
Ã−1

0 (k)A0 (k)
)(

Ã−1
0 (k)A0 (k)

)′
is an identity matrix, soP(k) = Ã−1

0 (k)A0 (k) is an orthogonal matrix. �

Definition 2 gives the relationship between the reduced-form and the structural parameters that must hold in order for the

model to be exactly identified. Theorem 4 gives the conditions for exact identification in terms of the structural parameters

alone.

Theorem 4 is the key for an efficient MCMC algorithm for statistical inference and model comparison. If the model is

exactly identified, one simply makes a posterior draw of the structural parameters in a recursive (triangular) system using the

existing MCMC method (see Sims and Zha 1999 and 2005). Theorem 4 then guarantees the existence of an orthogonal matrix

P(k) that transforms this draw into a draw of the structural parameters that satisfy the restrictions given by (3).10

II.5. An Algorithm to Find P(k). The bottleneck of the MCMC algorithm is to find the rotation matrix P(k) for any posterior

draw from a recursive system.11 The following algorithm gives a step-by-step description of how to find this rotation efficiently.

To simplify the notation, we assume, without loss of generality, that the equations in the original system have been permuted

so thatrank(Qi) = qi = n− i.12

Algorithm1. Let a Markov-switching SVAR be exactly identified and(A0(k),A+(k)) be any set of structural parameters drawn

from a recursive system.

(Step 1) Seti = 1.

(Step 2) Form the matrix

Q̃i (k) =




QiX (A0(k),A+(k))

p1(k)′

...

pi−1(k)′




.

If i = 1, thenQ̃i (k) = QiX (A0(k),A+(k)).

(Step 3) Letpi(k) be any unit length vector such thatQ̃i (k)X (A0(k),A+(k)) pi(k) = 0. Such a vector exists because

rank(Qi) = n− i and hencerank
(
Q̃i
)

< n. Use the LU decomposition of̃Qi (k) to find this vector.

(Step 4) Ifi = n stop; otherwise, seti = i +1 and go to step 2.

The above algorithm produces the orthogonal matrix

P(k) = [p1(k), · · · , pn(k)]

10This procedure applies to the maximum likelihood estimation aswell. We first obtain the maximum likelihood estimates of the parameters in a recursive

system and then useP(k) to rotate them to get the estimates of the structural parameters.
11Or equivalently any posterior draw from the reduced-form parameters that have been transformed to structural parameters via the Cholesky

decomposition.
12This assumptions is equivalent to assuming thatσ(i) = i in Theorem 3
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that is required by Theorem 4. If the restrictions implied bymatricesQ j can be permuted to a triangular system,13 the algorithm

of findingP(k) becomes even more efficient as one needs to use only a single QRdecomposition (see Appendix B for details).

The restrictions given by (3) are more general than those considered by Sims and Zha (2005) and their method may not

always be applicable. Algorithm 1 extends the Sims and Zha method. Suppose we wish to simulate from the posterior distri-

bution for an exactly identified system with restrictions given by (3). We begin with a posterior draw of the model parameters

in any exactly identified Markov-switching SVAR that the method of Sims and Zha (2005) can handle (for example, a re-

cursive system). Denote this draw by(A0 (k) ,A+ (k)). We then use Algorithm 1 to find the rotation matrixP(k) such that

(A0(k)P(k),A+(k)P(k)) satisfy the restrictions given by (3).

II.6. An Example. In this section we provide an example to illustrate how Theorem 4 and Algorithm 1 work in practice. To

maximize the clarity of exposition, we consider a three-variable constant-parameter SVAR with one lag.14 The three variables

are output growth (∆logY), the interest rate (R), and inflation (∆ logP). For simplicity, we consider only a single lag so that

A+ = A1. There are three identifying restrictions: aggregate demand (AD) shocks have no long-run effect on output, monetary

policy (MP) shocks have no long-run effect on output, and MP shocks have no contemporaneous effect on output.

These impulse response restrictions can be expressed as therestrictions on the columns ofX (·):

X (A0,A+) =



(
A−1

0

)′

(L)′


=

MP AD AS

∆logY

R

logP

∆logY

R

logP




0 × ×

× × ×

× × ×

0 0 ×

× × ×

× × ×




where zeros indicate exclusion restrictions and× indicates no restrictions. It follows from Theorem 3 that this system is exactly

identified. The importance of Theorem 3 lies in its checkablenecessary and sufficient condition for determining whetherthe

model is exactly identified. If, for example, we replaced therestriction that MP shocks have no long-run effect on outputwith

the restriction that aggregate supply (AS) shocks have no contemporaneous effect on the interest rate, Theorem 3 would tell us

that the model is not identified. Since this alternative identification scheme has three restrictions, a direct use of thenecessary

condition given by Rothenberg (1971) would lead to the incorrect conclusion that the model is exactly identified.

Returning to the original identification, we can write the matricesQ j as

Q1 =


 1 0 0 0 0 0

0 0 0 1 0 0


 andQ2 =

[
0 0 0 1 0 0

]
.

Since there is no restriction on the third column ofX(·), there is noQ3.

For the purpose of walking through Algorithm 1, suppose thatreduced-form parametersB andΣ are

B =




0.5 −1.25 −1

0.5 0.25 0

0 0 0.5


 andΣ =




1 0.5 1

0.5 4.25 2.5

1 2.5 3




13A detailed description of such a permutation is given in Appendix B.
14The illustration can be easily extended to a Markov-switching SVAR.
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To implement Algorithm 1 we need to first computeA0 from A+ implied from a recursive identification scheme and then rotate

them so that restrictions defined byQ j andX (·) hold. The Cholesky decomposition ofΣ, A+ = BA−1
0 , andL = (A0−A+)−1

implies that(A−1
0 )′ and(L)′ are given by:

(A−1
0 )′ =




1 0 0

0.5 2 0

1 1 1


 and(L)′ =




1 1 0

−1 1 0

0 0 2




Thus,X (·) equals:

X (A0 (k) ,A+ (k)) =



(
A−1

0 (k)
)′

(L(k))′


=




1 0 0

0.5 2 0

1 1 1

1 1 0

−1 1 0

0 0 2




.

It follows from X (·) andQ1 that

Q̃1 = Q1X (A0,A+) =


 1 0 0

1 1 0


 .

The first step in Algorithm 1 is to find a unit length vectorp1 such thatQ̃1p1 = 0. The most computationally efficient method

of doing this is to employ the LU decomposition ofQ̃1 (1). From a programming standpoint, however, a convenient method is

to employ the QR decomposition ofQ̃′
1.15 Let Q̃′

1 = QRwhereQ is orthogonal andR is upper triangular. If we choosep1 to be

the last row ofQ, then

Q̃1p1 = R′Q′p1 = R′




0

0

1


= 0

sinceR′ is lower triangular. Therefore we setp1:

p1 =




0

0

1


 .

To obtainp2, we form

Q̃2 =


 Q2X (A0,A+)

p′1


=


 1 1 0

0 0 1


 .

As before, takep2 to be the last row of the orthogonal component of the QR decompostion ofQ̃′
2 to get

p2 =




0.7071

−0.7071

0


 .

15In Matlab, the function qr() applied to anm×n matrix will return anm×morthogonal matrix and anm×n upper triagular matrix. In some applications

wherem< n, however, the “orthogonal” matrix will bem×n and the triangular matrix will ben×n. In this case, one needs to pad the matrixQ̃i with a row of

zeros before proceeding as usual.
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To obtainp3, we form

Q̃3 =


 p

′

1

p
′

2


=


 0 0 1

0.7071 −0.7071 0


 .

Again, takep3 to be the last row of the orthogonal component of the QR decomposition ofQ̃′
3 to get

p3 =




−0.7071

−0.7071

0


 .

Combining these steps, one obtains the orthogonal matrix

P =
[

p1 p2 p3

]
=




0 0.7071 −0.7071

0 −0.7071 −0.7071

1 0 0


 .

It is straightforward to verify that

X (A0P,A+P) = X (A0,A+)P

satisfies the restrictions. In Appendix B we show that the restrictions defined in this example can be permuted into a triangular

system. We then show how a faster algorithm using a single QR decomposition can be applied to this example.

III. T HE APPLICATION

In this section, we apply our methods to answering the question of whether monetary policy in the euro area has changed

since the introduction of the European Monetary Union (EMU)using post-1970 euro-area data.

The process toward forming the EMU was initiated more than 25years ago. In March 1979 the European Monetary System

(EMS) was established with the objectives of reducing inflation and preparing for monetary integration. Ten years laterthe

Delors Report set out a plan to introduce the EMU over three stages. The first stage was launched in 1990 to increase cooperation

among central banks in the euro area. In January 1994 the second stage began with the establishment of the European Monetary

Institute (EMI) as the forerunner to the European Central Bank (ECB). The third and final stage began in January 1999 when

the euro became the single currency for the member states of the euro area and a single monetary policy was introduced under

the authority of the ECB.

In the last decade we have observed that annual inflation has been under 5 percent while it was well above 10 percent in the

late 1970s and early 1980s, the volatility of output has decreased while its average annual growth rate has remained the same,

and both short-term nominal interest rates and money growthhave been at a record low. Figure 1 displays these facts.

The coincidence of both events (an introduction of the EMU and the lower volatility of prices and output) motivates us to

ask the following questions: Is the decrease in volatility linked to (1) changes in monetary policy in the euro area or (2)changes

in the magnitude of shocks hitting the economy?

A researcher giving an affirmative answer to the first question could argue that monetary policy has been better in the euro

area since the early 1990s. A researcher giving a positive answer to the second question could maintain the hypothesis that

shocks hitting the euro area have been less volatile in the last decade. Our methodology allows us to distinguish a model with

time-varying shocks only and a model with time-varying coefficients. The results will shed some light on the debate.

Some previous work has studied the effects of the EMU on monetary policy and macroeconomic volatility in the euro area.

Peersman and Smets (2003) use a SVAR to conclude that the overall macroeconomic effects of monetary policy in the euro
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area have been stable over time. Ciccarelli and Rebucci (2003), however, find that the monetary transmission mechanism

has changed since the late 1990s. Similarly, Angeloni and Ehrmann (2003) find evidence that the monetary transmission

mechanism has become more potent and homogeneous across countries in the EMU, and De Bondt (2002) documents a quicker

pass-through process since the introduction of the euro.

There are two potential shortcomings in the previous studies. First, most of them (except Ciccarelli and Rebucci, 2003)did

not consider models with time-varying parameters. Insteadthey used pre- and post-EMU data by searching for a structural

break. Second, none of these studies allowed for the time-varying volatility of shocks.

Dividing the sample into pre- and post-EMU data exacerbatesthe small sample problems. Moreover, the structural break

analysis used to divide the sample rests on the unrealistic assumption that the probability of a regime change is either one or zero.

An event as institutionally complicated as introducing theEMU may involve a number of transitional periods with uncertainty

about the new monetary system. Equally important, allowingfor heteroscedastic shocks in regime-switching models is crucial

to eliminating the bias toward finding changes in the parameters (see Sims and Zha 2005).

The Markov-switching SVARs studied in this paper are suitedto avoiding these shortcomings. The regimes are treated sto-

chastically; the sample does not split because a large number of parameters remain constant across regimes; and heteroscedastic

shocks are an integral part of the model.

At the same time, our methodology allows us to study a large class of identification schemes to check the robustness of

our results. Specifically, we consider the four widely used identification schemes: (1) a recursive system as in Christiano,

Eichenbaum, and Evans (1996), (2) a non recursive system as in Gordon and Leeper (1994) and Sims and Zha (2005), (3) a

system with both contemporaneous and long-run restrictions on impulse responses as in Blanchard and Quah (1993) and Galí

(1992), and (4) a system with sign restrictions on impulse responses as in Faust (1998), Canova and De Nicoló (2002), and

Uhlig (2005).

The first two schemes impose linear restrictions only on the columns ofA0(k), and therefore, we can use the MCMC method

of Sims and Zha (2005) directly. The third identification scheme belongs to a more general class of Markov-switching SVARs

and the Sims and Zha method cannot be applied. Instead, we usethe methods developed in Section II.2. A new MCMC method

for the SVARs identified using sign restrictions is developed in Section III.6.

III.1. Variation Across Regimes. In our applications we consider three cases of time variation for the Markov-switching

SVARs.16 The first case is the constant-parameter SVAR, which is commonly used in the existing literature.

The second case allowsΣ(k) to vary but keeps the reduced-form coefficientsB(k) constant across regimes. For structural

parameters in this case,A0 (k) is allowed to vary butA+ (k) must be of the formA+ (k) = BA0 (k), whereB is constant across

regimes. We call this case the variance-only case. The exactrestrictions needed to get the variance-only case are discussed in

Appendix C.

The third case is the one where bothB(k) andΣ(k) are allowed to differ across regimes. In general, the corresponding

parametersA0 (k) andA+ (k) also change across regimes. If we let every parameter vary across regimes, we would have the

over-parameterization problems associated with few degrees of freedom. Thus, we place restrictions on time variationin the

manner that only part ofA+ (k) can differ across regimes. The nature of such restrictions is discussed in detail in Sims and Zha

(2005) and, for completeness, also in Appendix C. We call this case the all-change case.

16The methods developed in this paper apply to many other types oftime variations. See Sims and Zha (2005) for details.
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The comparison of these three types of time variation is important because it will allow us to determine whether the data

reflect some structural changes and, if so, whether the regime change is due to the volatility of shocks or to the shift in parameter

values.

III.2. Data. We use quarterly data form 1970:1 to 2003:4 from the Area-Wide Model (AWM) database released by the Euro-

pean Central Bank.17 All the variables used in our applications are listed along with the variable symbols used by the AWM

database. Output is real GDP in millions of euros with the base year 1995 (YER). The price level is the GDP deflator with

the base year 1995=100 (YED). The measure of the money stock is M3 in millions of euros.18 The nominal interest rate is the

short-term interest rate (STN). The nominal exchange rate is euro/$ (EEN). Figure 1 reports the annualized quarterly percent

changes for output, prices, M3, and the exchange rate. The interest rate is plotted as percent in level. Each identified model has

five lags and includes a constant term. Five lags are includedto control for possible seasonal effects that may not have been

captured by seasonally adjusted data. In the rest of the section, we describe each of the four identification schemes in detail.

III.3. CEE Identification. Christiano, Eichenbaum, and Evans (1996) use a recursive identification scheme to identify mon-

etary policy. We call this identification CEE. Under this identification, the contemporaneous matrixA0(k) is assumed to be

triangular fork = 1, ...,h. In our application, we use five variables: log GDP (log Y), log GDP deflator (log P), the nominal

short-term interest rate (R), log M3 (log M), and log nominalexchange rate (log Ex). We follow Christiano, Eichenbaum,

and Evans and place the variables in the order of log Y, log P, log R, log M, and log Ex such that an output shock will affect

output only, a shock to inflation will affect output and inflation, and so on.19 Since this identification scheme imposes linear

restrictions only on the columns ofA0(k), we can use the method of Sims and Zha (2005) directly.

III.4. GLSZ Identification. Gordon and Leeper (1994) and Sims and Zha (2005) propose an alternative identification scheme.

We call this identification GLSZ. Their identification focuses on the interpretation of the structural equations themselves. In

particular, they separate the monetary policy equation from the money demand equation and other non policy equations. The

restrictions used to achieve this identification require the simultaneous (non recursive) relationships between financial variables

such as the interest rate and money. The identification scheme is described in Table 1 where the same variables are used as

in the CEE identification. An× in Table 1 means that the corresponding parameter inA0(k) for k = 1, ...,h is unrestricted,

while zeros indicate exclusion restrictions. The monetarypolicy (MP) column in Table 1 represents the Federal Reserve

contemporaneous behavior, the information (Inf) column describes the financial sector, the MD column corresponds to the

money demand equation, and the block consisting of the last two columns represents the production sector (PS), whose variables

are arbitrarily ordered to be upper triangular.20 As in the CEE case, this identification scheme imposes linearrestrictions only

on the columns ofA0(k), and therefore, the MCMC method of Sims and Zha (2005) can be applied directly.

III.5. BGQ Identification. Instead of the short-run restrictions discussed above, Blanchard and Quah (1993) use restrictions on

the long-run impulse responses to achieve exact identification of an SVAR. When the system consists of more than two or three

equations, we often do not have enough long-run restrictions that are economically justifiable to achieve exact identification.

17See Fagan, Henry, and Mestre (2004) for details.
18The M3 measure of the money stock is not included in the Area-wide Model (AWM) database. We obtained this variable from the reference series on

monetary aggregates reported by the ECB.
19Appendix D describes in detail this identification scheme, using the notation of Section II.2.
20Appendix D uses the notation in Section II.2 to describe thisidentification scheme in detail.
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Galí (1992) suggests a combination of contemporaneous and long-run restrictions on impulse responses to get the SVAR

identified. We call this identification schemeBGQ.21

Almost all SVARs with long-run restrictions use the variables in first difference. Following Peersman and Smets (2003),

we consider a four-variable SVAR with three contemporaneous and three long-run restrictions on impulse responses. Thefour

endogenous variables are quarterly output growth (∆ logY), quarterly inflation (∆P), the nominal short-term interest rate (R),

and quarterly change of the nominal exchange rate euro/dollar (∆ logEx ). The contemporaneous restrictions are:

• Monetary policy shocks have no contemporaneous effect on output.

• Exchange rate shocks have no contemporaneous effect on output.

• Exchange rate shocks have no contemporaneous effect on the interest rate.

The long-run restrictions on impulse responses are:

• Aggregate demand shocks have no long-run effect on output.

• Monetary policy shocks have no long-run effect on output.

• Exchange rate shocks have no long-run effect on output.

Recall thatA−1
0 (k) andL(k) represent the contemporaneous and long-run impulse responses, respectively. Thus, the above

restrictions imply the following exclusion restrictions on A−1
0 (k) andL(k):

A−1
0 (k) =




× × × ×

× × × ×

0 × × ×

0 × 0 ×




, L(k) =




× × × ×

0 × × ×

0 × × ×

0 × × ×




, (6)

where the symbol× means no restriction imposed and zero means an exclusion restriction.22 It can be easily seen from Theorem

3 that the Markov-switching SVAR with the restrictions given by (6) is exactly identified. Using Theorem 3 to check whether

the model is exactly identified should always be a first step.

To emphasize the importance of Theorem 3, consider that, instead of assuming that exchange rate shocks have no con-

temporaneous effect on output, we assume that demand shockshave no contemporaneous effect on output. This alternative

identification scheme implies the following set of restrictions onA−1
0 (k):

A−1
0 (k) =




0 × × ×

× × × ×

0 × × ×

× × 0 ×




.

In this case, Theorem 3 implies that the system wouldnot be exactly identified. Since this alternative identification scheme

imposes the same number of identification restrictions as the one described by (6), a direct use of the necessary condition given

by Rothenberg (1971) would lead to the incorrect conclusionthat this alternative identification scheme exactly identifies the

model.

21Evans and Marshall (2004) use an SVAR model with long-run restrictions as a benchmark for their general equilibrium model.
22See Appendix D for a detailed description of identification implied by matrices (6)
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Because the identification (6) imposes the restrictions onA−1
0 (k) andL(k), the method of Sims and Zha (2005) no longer

applies. We instead use the techniques developed in SectionII.2 by drawing the parameters of a recursive system and then

rotating each draw of these parameters to satisfy the contemporaneous and long-run restrictions.

III.6. CDFU Identification. The identification schemes described in Section II.2 are based on linear restrictions on transfor-

mations of the structural parameters. An objective in applying this class of restrictions is to identify monetary policy shocks.

According to the conventional wisdom, a contractionary monetary policy shock should raise the interest rate and lower prices.

Successful identification would produce impulse responsesthat conform to this conventional wisdom, but sometimes this class

of identifying restrictions does not generate such responses. Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005)

propose an alternative approach. Their basic idea is to use sign restrictions directly on impulse responses to identifySVARs.

In response to a contractionary monetary shock, for example, the interest rate should rise, while money and prices should fall.

We call this identification scheme CDFU.

The methods developed in Section II.2 cannot be applied here, because a Markov-switching SVAR with sign restrictions on

impulse responses isnot exactly identified. According to Theorem 4, a necessary and sufficient condition for a Markov-

switching SVAR to be exactly identified is that for any starting value of(A0(k),A+(k)) the uniqueP(k) exists such that

(A0(k)P(k),A+(k)P(k)) satisfy the restrictions. In the case of sign restrictions,however, there exist a number of suchP(k)’s.

To solve this problem, we develop an efficent MCMC algorithm,which can be viewed as a modified version of Uhlig’s

(2005) method.23 We begin with any Markov-switching SVAR that is exactly identified and let(A0(k),A+(k)) be the model

parameters. We search for an orthogonal matrixP(k) such that the impulse responses implied by(A0(k)P(k),A+(k)P(k)) satisfy

the sign restrictions. The main difference between Uhlig’sapproach and ours is one of efficiency and ease of implementation.

Uhlig generates a random orthogonal matrix recursively column by column, while we use the following theorem to obtain a

random orthogonal matrix using a single QR decomposition.

Theorem5. Let X be ann× n random matrix with each element having an independent standard normal distribution. Let

X = QRbe the QR decomposition ofX with the diagonal ofR normalized to be positive. ThenQ has the uniform (or Haar)

distribution.

Proof. The proof follows directly from Stewart (1980).24
�

Theorem 5 gives us a convenient way of implementing a random selection of orthogonal matrices to obtain impulse responses

that satisfy the sign restrictions. The following algorithm describes this implementation.

Algorithm 2. (Step 1) Let(A0 (k) ,A+ (k)) be a draw from the posterior distribution of any Markov-switching SVAR that is

exactly identified.

(Step 2) Draw an independent standard normaln× n matrix X and letX = QR be the QR decomposition ofX with the

diagonal ofRnormalized to be positive.

(Step 3) LetP(k) = Q and generate impulse responses fromA0(k)P(k) andB(k).

(Step 4) If these impulse responses do not satisfy the sign restrictions, return to Step 3.

23Uhlig’s (2005) method, together with the algorithms of Faust (1998) and Canova and De Nicoló (2002), is briefly described inAppendix E.
24Stewart (1980) has even more efficient algorithms for generating uniform random orthogonal matrices, but they are less straightforward and more difficult

to implement.
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As a byproduct of this algorithm,(A0(k)P(k),A+(k)P(k)) is a posterior draw of the structural parameters for the Markov-

switching SVAR with the sign restrictions.25

Our algorithm differs from Uhlig’s (2005) method in two aspects: (1) all the posterior draws are kept in practice and (2) the

orthogonal matrix is simply a draw from uniform (or Haar) distribution, whereas Uhlig (2005) searches for it recursively. These

two differences make our algorithm more efficient, especially for an SVAR system of more than three or four variables.

We consider an SVAR model with the CDFU identification, usingthe same five variables as in the CEE and GLSZ cases.

The sign restrictions are:

• In response to an expansionary monetary policy shock, the interest rate falls while money and prices rise.

• In response to a positive shock to money demand, both the interest rate and money increase.

• In response to a positive demand shock, both output and prices rise.

• In response to a positive supply shock, output rises but prices fall.

• In response to a positive external shock, the exchange rate devaluates and output increases.

All the sign restrictions hold for only two quarters. We begin with the CEE identification and use the Sims and Zha method

to generate posterior draws of the model parameters. For each draw we use Algorithm 2 to rotate the draw such that the impulse

responses satisfy the sign restrictions.

III.7. A Comment on the Variance-Only Models. The variance-only case has received considerable attention in the literature

(Stock and Watson, 1996, 2003; Canova and Gambetti, 2004; Primiceri, 2005; Sims and Zha, 2005, for example). Sims

and Zha (2005) develop the MCMC method for the variance-onlySVARs with the CEE and GLSZ identifications. For the

BGQ and CDFU schemes, our MCMC method begins with posterior draws of(A0 (k) ,A+ (k)) under a recursive system with

A+ (k) = BA0 (k), using the method of Sims and Zha (2005). For each draw, we usethe algorithms developed in this paper

to find the rotation matrixP(k) so that(A0(k)P(k),A+(k)P(k)) satisfy the restrictions. Is the resulting rotated draw of the

variance-only type? SinceP(k) is orthogonal, we have that

B(k) = A+(k)P(k)(A0(k)P(k))−1 = A+(k)(A0(k))
−1 = B.

and, thus, the answer is yes. This result is crucial because it allows us to consider variance-only cases under the BGQ and

CDFU schemes.

IV. EMPIRICAL RESULTS

In this section we use the methods described in Section II to estimate Markov-swtiching SVARs identified with the four

identification schemes discussed in Section III. For each ofthe four identification schemes we report (1) marginal likelihoods of

the models for the three different types of variation acrossregimes and different number of states, (2) the posterior probabilities

of the estimated regimes, (3) changes in variances of reduced-form residuals across regimes, and (4) the impulse responses to a

monetary shock for the best-fit model under each identification scheme.

25In theory the algorithm is not guaranteed to terminate. In practice, we set a maximum number of iterations to be 1000, in which steps (2) through (4)

are repeated. If the maximum is reached, the algorithm should move to step (1) to draw another set of parameter values. In our application this maximum was

never reached for millions of posterior draws.
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IV.1. Marginal Likelihood. Table 2 reports log marginal likelihoods for the three typesof models under the CEE and GLSZ

identifications: the constant-parameter model, the variance-only and all-change models with different numbers of states.26 The

symbol∗ means that at least one of the states is redundant so that there is no posterior probability for the redundant state. In

such an over-fitting situation, the standard error for the marginal likelihood is quite large but the marginal likelihoods are all

below the marginal likelihood for the constant-parameter model.

For both identifications the variance-only model with 2 states has the highest marginal likelihood and thus is favored bythe

data. As can be seen in Table 2, the 2-state variance-only model outperforms all other models by the difference of at least7 in

log value for the CEE identification and more than 10 in log value for the GLSZ identification. The difference of 1 to 4 in log

value means that the two models are competitive, but the difference of 7 or more implies strong evidence in favor of the model

with a higher marginal likelihood. Therefore, the data clearly imply only two regimes in the euro area between 1970 and 2004

and supports the hypothesis that only the variance of the shocks, not the coefficients, vary across regimes.

We obtain similar results for the BGQ and CDFU identificationschemes. Table 3 reports log marginal likelihoods for the

same three models under the BGQ and CDFU identifications. Theresults for the CDFU identification are identical to those

of the CEE identification because the model parameters with the CDFU identification are simply an orthogonal rotation of the

model parameters with the CEE identification as discussed inSection III.6.

For the BGQ identification, the variance-only model with 3 states is favored by the data. All the variance-only models

reported in Table 3 outperform the constant parameter modeland the all-change model by the difference of at least 8 in log

marginal likelihood. We interpret this result as strong evidence in favor of the variance-only specification. Within the set of

variance-only models, on the other hand, evidence in favor of three regimes is not as strong, since the differences amonglog

marginal likelihoods are less than 2. Because of space limitation, we present only the 3-state variance-only model in the rest of

this paper, although the other two variance-only models areequally good.

Overall, evidence from the four identification schemes uniformly supports regime changes in the euro area. More important,

we find that regime change can be fully characterized by the variance of the shocks changing across regimes. This result is

robust to different identifications.

IV.2. Regimes. In this section we analyze the estimated posterior probabilities of regimes for the best-fit model under each of

the four identifications studied so far. Figures 2 and 3 display the posterior probability of each regime for the 2-state variance-

only model with the CEE and GLSZ identifications. Figure 4 displays the posterior probability of each regime for the 3-state

variance-only model with the BGQ identification.27

26All the marginal likelihoods reported in this paper are computed with a sequence of 6 million MCMC draws, which takes about 20hours on a Pentium-IV

PC. With 100 repeated runs of sequences from different starting points, the computed maximum of numerical standard errors for all marginal likelihoods is less

than 0.7 in log value. Using the Newey-West (1987) approximation procedure, we obtain much smaller numerical standard errors. The marginal likelihood for

the constant VAR model is computed using the algorithms described by Chib (1996) and Waggoner and Zha (2003a). The Matlab code can be downloaded from

home.earthlink.net/ tzha02/programCode.html. Since the MCMC algorithm for the Markov-switching SVARs is not a Gibbs sampler, the marginal likelihoods

for these models are computed with the modified harmonic means procedure discussed by Geweke (1999). We have also studied the models with other types

of time variation. For example, we have let the coefficients in one or more structural equations (including the monetary policy equation) vary across regimes.

Although the results are not reported in Table 2, the marginallikelihoods for all these models are substantially lower than those of the variance-only model

with 2 states.
27As discussed previously, the CDFU regimes are identical to the CEE regimes, and therefore, we report only the results for the CEE, GLSZ, and BGQ

identifications.
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For both CEE and GLSZ identifications there is one state whoseestimated probability is high and persistent after 1993. We

call this state the EMS regime. The other state is called the non-EMS regime. There are two important features. First, the

non-EMS regime is concentrated in the 1970-1980 period, while the EMS regime has high probability after 1993. Second,

although the EMS regime remains with high probability for some years before 1993, it periodically switches to the non-EMS

regime, probably reflecting periods of uncertainty about implementing the new monetary system (see Ungerer et al. 1990 for

details).

For both identifications, we observe that the non-EMS regimehas high posterior probability in periods of high output and

inflation volatility, i.e., during both the 1970s and the turbulent period of 1992-93 (see Figure 1). On the other hand, the EMS

regime has high posterior probability in times of low volatility of both output and inflation (i.e., the periods after 1993). Another

feature of the data that distinguishes both regimes is the behavior of M3 growth and short-term interest rates. During the 1970s

and a large part of the 1980s when the non-EMS regime is more prominent, both interest rates and money growth are well

above 10 percent; since 1993, both variables are below 10 percent, and the EMS regime prevails in most of this later period.

Between 1980 and 1993 the two regimes switch several times, reflecting the uncertainty associated with the intuitional

changes taking place in the euro area. The probability of theEMS regime, however, begins to increase after 1980, coinciding

with the fact that inflation in the euro area declined sharplyduring the 1980s.

There are three regimes under the BGQ identification. The first regime, called the transitional EMS regime, occurs between

the late 1970s and the early 1990s. The second regime, calledthe EMS regime, becomes dominant after 1993. The third regime,

called the non-EMS regime, appears sporadically in the early 1970s. As is the case for the CEE and GLSZ identifications, the

EMS regime is associated with low output and inflation volatility. On the other hand, the transitional EMS regime reflectsmore

of the transition from high inflation in the late 1970s to the early 1990s. Finally, the non-EMS regime is related to several

isolated events: the rapid increase of inflation during the early 1970s, the recession in 1975, and the impact of the 9/11 event.

In summary, an EMS regime is consistently estimated since the early 1990s for all the identification schemes. Since this

regime is associated with low volatility of both output and inflation, the following section analyzes how variances of reduced-

form shocks vary across regimes.

IV.3. Shock Variances across Regimes.For the 2-state variance-only model with the CEE identification, Table 4 reports

the variance of a reduced-form shock to each variable under each of the two regimes, along with the relative variance across

regimes. The EMS regime is associated with lower volatilityof all the reduced-form shocks. In particular, most of the fall in

volatility is due to the fall in the variances of shocks to theinterest rate and prices.

Table 5 reports the shock variances for the 2-state variance-only model with the GLSZ identification. As in the CEE case,

the EMS regime is associated with a lower volatility of shocks to all the variables, and again, most of the fall in volatility occurs

in shocks to the interest rate and prices.

Similar results hold for the shock variances in the 3-state variance-only model with the BGQ identification. As can be seen

from Table 6, the variances of shocks to all the variables aresmaller for the EMS regime than for the other regimes, and the

larger reduction in variances is due to shocks to the interest rate and inflation.28

The EMS regime, a state that we robustly find after 1993, is theregime that has the lowest shock variances in all the macro-

economic variables. Our empirical results clearly supportthe hypothesis that the lower macroeconomic volatility observed in

28For the CDFU identification, the variances of reduced-form shocks are the same as in the CEE case, since an orthogonal transformation does not change

these shock variances.
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the euro area since the early 1990s is due to smaller shocks hitting the economy and, in particular, smaller shocks to the interest

rate and inflation.

IV.4. Impulse Responses.In this section we analyze how the impulse responses to a contractionary monetary shock vary

across regimes for the best-fit model under each identification. We also compare these impulse responses to those impliedby

the constant-parameter model. In all the figures discussed below, the posterior median estimates of impulse responses to a

one-standard-deviation contractionary monetary shock are displayed, along with the error bands containing two-thirds of the

posterior probability.

Figure 5 displays the impulse responses for the CEE identification. The first column corresponds to the impulse responses

generated from the constant-parameter model. The second column corresponds to the EMS regime and the third to the non-

EMS regime. All the columns have a similar pattern of dynamicresponses. In response to a contractionary shock to monetary

policy, the interest rate rises and money falls (liquidity effect), output falls (output effect), but the price level rises somewhat

(price puzzle).29 The increase in the price level, although statistically significant, is not economically important as compared

to the responses of prices to other shocks. The impulse responses for the non-EMS regime are larger than those for the EMS

regime, while the responses for the constant-parameter model are in between. The most important difference between thetwo

regimes is the effect of a contractionary monetary policy shock on the short-term interest rate. Under the non-EMS regime the

effect is larger and more lasting.

The above results are robust to the GLSZ identification, as reported in Figure 6. The impulse responses for the non-EMS

regime (the first column in Figure 6) are larger than those forthe EMS regime (the second column), while the responses for

the constant-parameter model (the first column) are in between. In response to a contractionary shock to monetary policy, the

interest rate rises and money falls (liquidity effect), output falls (output effect), and the price level falls or staysunchanged (no

price puzzle). The main difference from the CEE results is that the uncertainty about the dynamic responses is larger. All the

68 percent posterior probability bands are wider than thosein Figure 5. The wider bands imply that the price responses are

statistically insignificant for both regimes.

Figure 7 displays the impulse responses for the BGQ identification. The posterior point estimates are very similar to the

previous results under different identifications, but the uncertainty around the estimates is much bigger. The point estimates

show the usual pattern of responses to a contractionary monetary policy shock, but the error bands seem unusually wide and

ill-determined.30 This exercise reinforces the importance of accurate error bands. Our results show that it would be misleading

to rely on the point estimates alone.

The impulse responses for the CDFU identification are displayed in Figure 8. Again, the usual pattern of responses to a

contractionary monetary policy holds and there is no price puzzle. The responses under the EMS regime are smaller than those

under the non-EMS regime. The output effect is smaller and more uncertain for the 2-state variance-only model than the output

effect for the constant-parameter model. The variance decomposition for the output effect is less than 20 percent for all three

models. This result is consistent with Uhlig’s (2005) finding of little evidence of output effect for the U.S.31

29The price puzzle still exists when we include commodity pricesin the models or when we reorder the variables (for example, letting the interest rate

respond to commodity prices or the exchange rate or both).
30The error bands reported by Peersman and Smets (2003) are much better behaved. Note that they have a different sample period and their bands are

generated by only 100 draws. We find that this particular identification is quite fragile. For example, if the data for 2003 were excluded, the characteristics of

the estimated impulse responses would be completely different. This finding is consistent with that of Faust and Leeper (1997).
31Uhlig (2005) uses a different set of variables, however. He identifies only monetary policy shocks while we identify five different shocks. But our results

do not change much when we restrict our identification to monetary policy shocks only.
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In summary, the output effects of monetary policy shocks on the euro area economy are small relative to the effects of other

shocks and there is much uncertainty around these effects. This result seems robust across different identifications and across

different regimes.

V. CONCLUSION

Long-run restrictions and sign restrictions on impulse responses have become popular tools in identifying different structural

shocks in the data. Most models with these restrictions in the SVAR literature are exactly identified according to the widely

used necessary condition of Rothenberg (1971). We show examples in which the necessary condition of Rothenberg (1971)

is satisfied but the model is unidentified. This paper develops a new and implementable necessary and sufficient conditionfor

Markov-switching SVARs to be exactly identified. This theorem is straightforward to use in practice.

We also develop new and efficient methods for implementing long-run and sign restrictions in Markov-switching SVARs.

These methods are important for MCMC algorithms in which a long sequence of posterior draws is typically needed for the

Markov-switching SVAR model.

We apply our methodology to the euro area data using four widely used identification schemes. Markov-switching SVARs

based solely on time-varying shock variances are strongly favored compared to the rest of the time-varying specifications. A

persistent regime is found after 1993. This regime is associated with low volatility of key macroeconomic variables such as

output, prices, and the interest rate. The real effects of monetary policy shocks are small and uncertain across models and across

regimes. All these results are robust to all the identifications we study in this paper.

Our methodology and results suggest some directions for future research. One direction is to use our methodology to study

monetary transmission processes across countries in the euro area. Another is to build and estimate a DSGE with time-varying

parameters and variances where Markov-switching SVARs canbe used as benchmark models for model comparison.32

32See Fernández-Villaverde and Rubio-Ramírez (2005) for some details.
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MD Inf MP PS PS

Y × × 0 × ×

P × × 0 × 0

R × × × 0 0

M × × × 0 0

Ex 0 × 0 0 0

TABLE 1. Identification Scheme for GLSZ.

CEE GLSZ

Constant 2271.00 2273.60

States

2

3

4

Variance-only All-change

2283.83 2257.49

2277.91 *

2274.93 *

Variance-only All-change

2291.08 2264.18

2280.47 *

2275.96 *
TABLE 2. Marginal log likelihoods for the three types of across regime variation for different number of

states under the CEE and the GLSZ identification schemes.

BGQ CDFU

Constant 1697.10 2271.00

States

2

3

4

Variance-only All-change

1731.57 1723.71

1733.00 *

1731.77 *

Variance-only All-change

2283.83 2257.49

2277.91 *

2274.93 *
TABLE 3. Marginal log likelihoods for the three types of across regime variation for different number of

states under the BGQ and the CDFU identification schemes.
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FIGURE 2. Posterior probabilities of states for the 2-state variance-only specification model under the CEE identification.
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FIGURE 3. Posterior probabilities of states for the 2-state variance-only specification model under the GLSZ identification.
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FIGURE 4. Posterior probabilities of states for the 3-state variance-only specification model under the BGQ identification.
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Variables EMS Non-EMS Relative volatility

Y 0.014E-03 0.042E-03 3.039

P 0.003E-03 0.016E-03 4.235

R 0.015E-03 0.064E-03 4.063

M 0.015E-03 0.028E-03 1.854

Ex 0.553E-03 1.087E-03 1.963
TABLE 4. Residual variance of the shocks for the 2-state variance-only model under the CEE scheme.

Variables EMS Non-EMS Relative volatility

Y 0.013E-03 0.039E-03 2.797

P 0.004E-03 0.014E-03 3.459

R 0.018E-03 0.052E-03 2.755

M 0.012E-03 0.028E-03 2.340

Ex 0.551E-03 1.200E-03 2.175
TABLE 5. Residual variance of the shocks for the 2-state variance-only model under the GLSZ scheme.

Variables Early EMS EMS Non-EMS

∆Y 0.056E-03 0.013E-03 0.028E-03

∆P 0.009E-03 0.003E-03 0.064E-03

R 0.053E-03 0.013E-03 0.081E-03

∆Ex 1.216E-03 0.663E-03 1.439E-03
TABLE 6. Residual variance of the shocks for the 3-state variance-only model under the BGQ scheme.
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APPENDIX A. PROOF OFTHEOREM 3

Algorithm 1 shows how to construct an orthogonal matrixP(k) satisfying the requirements of Theorem 3. That algorithm

required thatrank
(
Q̃i (k)

)
< n, and the orthogonal matrix produced will be unique, up to thesign of each column, if and only

if rank
(
Q̃i (k)

)
= n−1. The rank ofQ̃i (k) will be n−1 if and only if the span of vectorsp1 (k) , · · · , pi−1 (k) constructed in

Algorithm 1 intersect with the span of the rows ofQ̃i (k) only at the origin. One can show, though we do not explicitly do so here,

that this condition will be violated on at most a set of measure zero. This proves that ifrank(Qi) = n− i, then the normalized

Markov-switching SVAR is exactly identified. What remains tobe shown is that if the normalized Markov-switching SVAR is

exactly identified, thenrank(Qi) = n− i. We proceed via a sequence of lemmas and corollaries.

Theorem 4 implies that if a normalized linearly identified Markov-switching SVAR is exactly identified, then for almost all

structural parameters(A0 (k) ,A+ (k)) there exists a unique orthogonal matrixP(k) such that(A0 (k)P(k),A+ (k)P(k)) satisfy

the linear restrictions. The following lemma implies that existence holds for all structural parameters, while uniqueness is still

only guaranteed for almost all structural parameters.

Lemma6. If a normalized linearly identified Markov-switching SVAR is exactly identified, then for every structural parameter

(A0 (k) ,A+ (k)) there exists an orthogonal matrixP(k) such that(A0 (k)P(k),A+ (k)P(k)) satisfy the linear restrictions.

Proof. Suppose that there exists a structural parameter(A0 (k) ,A+ (k)) such that there is no orthogonal matrixP(k) such that

(A0 (k)P(k),A+ (k)P(k)) satisfy the linear restrictions. We show that there is an open setU about(A0 (k) ,A+ (k)) such that for

every
(
Ã0 (k) , Ã+ (k)

)
∈ U there is noP(k) such that

(
Ã0 (k)P(k), Ã+ (k)P(k)

)
satisfy the linear restrictions. Since open sets

have positive measure, this contradicts Theorem 4.

If there were no such open setU , then there would exist sequences
(
Ai

0 (k) ,Ai
+ (k)

)
andPi(k) such that

(
Ai

0 (k) ,Ai
+ (k)

)
con-

verges to(A0 (k) ,A+ (k)), Pi(k) is orthogonal, and
(
Ai

0 (k)Pi(k),Ai
+ (k)Pi(k)

)
satisfy the linear restrictions. Since thePi(k) are

elements of a compact space, some subsequence converges to an orthogonal matrixP(k). But since
(
Ai

0 (k)Pi(k),Ai
+ (k)Pi(k)

)

satisfy the linear restrictions, so will(A0 (k)P(k),A+ (k)P(k)), which is a contradiction. �

Lemma7. For 1≤ i ≤ k≤ n, letVi be a subspace ofRn. If for every invertiblen×n matrix A, there exists an orthonormal set

{v1, · · · ,vk} in R
n such thatvi ∈ AVi , then there exists aj with 1≤ j ≤ k and dim(Vi) ≥ k.

Proof. Given a subspaceW of R
n and ε ∈ R, let AW,ε be the linear transformation that fixesW and maps eachu in the

perpendicular component ofW to εu. If dim (Vi) < k for 1≤ i ≤ k, then using the following three statements aW andε > 0 can

be constructed such thatAW,ε violates the conditions of the lemma. So it suffices to prove the following.

(1) If dim(Vi) < k, then there exists a subspaceU of R
n of dimensionn−k+1 such thatU ∩Vi = {0}.

(2) LetW be ak−1 dimensional subspace ofR
n. There exists aδ > 0 such that there cannot bek orthonormal vectors in

the set

SW,δ = {w+u∈ R
n |w∈W and‖u‖ < δ} .

(3) LetU andV be subspaces ofRn such thatU ∩V = {0} and letW be the perpendicular complement ofU . For every

δ > 0 there exists aγ > 0 such that for allε < γ if v∈ AW,εV and‖v‖ = 1, thenv∈ SW,δ .

(1) If dim(Vi) < k ≤ n, then eachVi is of measure zero inRn, as will be the union of theVi . So there exists au1 that is not

contained in anyVi . If k = n, then the one-dimensional subspace generated byu1 is the required subspace. Ifk < n, then letṼi

be the subspace generated byVi andu1. Since dim
(
Ṽi
)

< k+1≤ n, by the same measure argument as before, there will exist
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a u2 that is not contained in the union of theṼi . If k = n−2, then the two-dimensional subspace generated byu1 andu2 is the

required subspace. This argument can be continued until a basisu1, · · · ,un−k+1 has been constructed for the required subspace.

(2) Suppose there werev1, · · · ,vk in SW,δ that were orthonormal. Since thev are inSW,δ , write vi = wi +ui wherewi ∈W

and‖ui‖< δ . LetX be then×k matrix
[

w1 · · · wk

]
and letY be then×k matrix

[
v1 · · · vk

]
. Because thew are in a

k−1 dimensional space, the matrixX′X is singular and because thev are orthonormal,Y′Y is thek×k identity matrix. Because

δ can be chosen to be arbitrarily small,X′X can be made to be arbitrarily close to the identity matrix, which is a contradiction.

(3) If this were not true, then there would exist aδ > 0 and a sequence ofvi and εi such that theεi tend to zero and

vi ∈ AW,εiV, ‖vi‖= 1, andvi /∈ SW,δ . BecauseU andW are perpendicular components,vi can be uniquely written asvi = ui +wi

whereui ∈U andwi ∈W. Since‖vi‖ = 1 andui andwi are orthogonal,‖wi‖ ≤ 1. Sincevi /∈ SW,δ , ‖ui‖ > δ . Sincevi ∈ AW,εiV,
1
εi

ui +wi ∈V. Dividing by the norm, we see that

ui + εiwi√
‖ui‖

2 + ε2
i ‖wi‖

2
∈V

Since this is a bounded sequence, some subsequence must converge. Since‖ui‖ is bounded away from zero,‖wi‖ is bounded

above, andV is closed, the convergent subsequence must converge to a nonzero element ofU ∩V, which is a contradiction. �

Lemma8. For 1≤ i ≤ k≤ n, letVi be a subspace ofR
n with dim(V1)≤ ·· · ≤ dim(Vk). The following statements are equivalent.

(1) For every invertiblen×n matrixA there exists an orthonormal set{v1, · · · ,vk} such thatvi ∈ AVi .

(2) For 1≤ i ≤ k, dim(Vi) ≥ i.

Proof. (1)⇒(2). Proceed by finite induction onk. Whenk = 1, the result is trivially true. Now suppose that (1)⇒(2) for some

k < n. Let (V1, · · ·Vk+1) be a sequence of subspaces of non decreasing dimension such that (1) holds. By Lemma 7, we know

that dim(Vk+1) ≥ k+ 1. Since (1) holds for(V1, · · ·Vk+1), (1) will also hold for(V1, · · ·Vk). This implies that for 1≤ i ≤ k,

dim(Vi) ≥ i. This, combined with the fact that dim(Vk+1) ≥ k+1, shows that (2) holds.

(2)⇒(1). Assume that (2) holds and letA be any invertiblen×n matrix. Since dim(AV1) ≥ 1, there exists a vectorv1 ∈ AV1

of unit length. Now suppose that an orthonormal set
{

v1, · · ·v j
}

has been chosen so thatvi ∈ AVi for 1≤ i ≤ j. Let U be the

n− j dimensional subspace ofR
n consisting of vectors orthogonal to

{
v1, · · ·v j

}
. Since dim

(
AVj+1

)
≥ j +1, the intersection

of U andAVj+1 contains a non zero vector. Letv j+1 be any element ofU ∩AVj+1 of unit length. Then
{

v1, · · ·v j+1
}

is a set of

orthonormal vectors withvi ∈ AVi for 1≤ i ≤ j +1. So (1) holds.

�

Corollary 9. For 1≤ i ≤ n≤ m, let Qi be a matrix withmcolumns withrank(Q1)≥ ·· · ≥ rank(Qn). Let X be a full rankm×n

matrix such thatrank(QiX) = rank(Qi). The following are equivalent.

(1′) For every invertiblen×n matrixA there exists an×n orthogonal matrixP such thatQiXA−1Pei = 0.

(2′) For 1≤ i ≤ n, rank(Qi) ≤ n− i.

Proof. The corollary is a simple restatement of Lemma 8 whenk = n. Define

Vi = {v∈ R
n |QiXv= 0} .

SinceQiXA−1Pei = 0 if and only if Pei ∈ AVi , (1′) is equivalent to (1) of Lemma 8. Since dim(Vi) = n− rank(QiX) =

n− rank(Qi), (2′) is equivalent to (2) of Lemma 8.

�



MARKOV-SWITCHING SVARS 31

We can now complete the proof of Theorem 3. Assume that the normalized linearly identified Markov-switching SVAR is

exactly identified. Let there be a set of structural parameters such thatrank(QiX (A0(k),A+(k))) = rank(Qi). By permuting

the equations of the original system, we can assume without loss of generality that the linear restrictions on the columns ofX (·)

satisfy the conditionrank(Q1) ≥ ·· · ≥ rank(Qn). Since the model is assumed to be exactly identified, Lemma 6 implies that

for every invertible matrixC there exists an orthogonal matrixP such that(A0(k)CP,A+(k)CP) satisfy the linear conditions. So

0 = QiX (A0(k)CP,A+(k)CP)ei

= QiX (A0(k),A+(k))DPei

whereD =C if condition (1a) holds andD = (C′)−1 if condition (1b) holds. In either case, condition (1′) of Corollary (9) holds,

so rank(Qi) ≤ n− i. The rank conditions of Rothenberg (1971) imply that in factrank(Qi) = n− i. This completes the proof

of Theorem 3.

APPENDIX B. ANALYSIS OF TRIANGULAR SYSTEMS

Algorithm 1 gives us a way to find the matrixP(k) for a general class of linear restrictions. Most restrictions used in the

literature are exclusion restrictions. If these restrictions meet certain conditions, we have an even more efficient algorithm for

determining the matrixP(k). Such conditions are described by the following definition.

Definition10. Identifying restrictions of the form of (3) aretriangular if the following condition holds:Q jX (A0 (k) ,A+ (k))ej =

0 if and only if there is a permutation matrixP1 of the rows ofX (A0 (k) ,A+ (k)) and a permutation matrixP2 of the columns of

X (A0 (k) ,A+ (k)), such that the permuted matrixP1X (A0 (k) ,A+ (k))P2 is lower triangular.

If exclusion restrictions are triangular, Algorithm 1 can be further improved, so that the orthogonal matrix given by Theorem

4 can be found using a single QR decomposition as described inthe following theorem.

Theorem11. Suppose the identifying restrictions are triangular and let P1 andP2 be the permutation matrices that make the

restrictions triangular. For 1≤ k ≤ h, let (A0 (k) ,A+ (k)) be a set of structural parameters coming from the recursive identi-

fication. Using the QR decomposition for(P1X (A0 (k) ,A+ (k)))′, write P1X (A0 (k) ,A+ (k)) = TL (k)P3 (k) whereP3 (k) is an

orthogonal matrix andTL (k) is lower triangular. The structural parameters(A0 (k)P(k) ,A+ (k)P(k)) for P(k) = P3 (k)′P2
′

satisfy the restrictions.

Proof. Because of condition (1) on the transformationX (·),

X (A0 (k)P(k) ,A+ (k)P(k)) = X (A0 (k) ,A+ (k))P(k)

So

P1X (A0 (k)P(k) ,A+ (k)P(k))P2 = P1X (A0 (k) ,A+ (k))P(k)P2

= TL (k)P3 (k)P3 (k)′P2
′P2

= TL (k)

which implies that the rotated parametersX (A0 (k)P(k) ,A+ (k)P(k)) satisfy the restrictions. �
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The illustration of section II.6 is continued. In that example, the restrictions were of the form

MP AD AS

∆logY

R

logP

∆logY

R

logP




0 x x

x x x

x x x

0 0 x

x x x

x x x




To rotate this into a triangular form, the first and third columns need to be interchanged and the fourth row needs to be made

the first row. This implies that

P1 =




0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




andP2 =




0 0 1

0 1 0

1 0 0




are the required permutation matrices. As in that example, we walk through the algorithm for a single state and so suppress the

indexk. The reduced-form parametersB andΣ were given and thenA0 andA+ were computed via a Cholesky decomposition,

i.e., theA0 andA+ are a set of structural parameters coming from a recursive identification. The transformationX (A0,A+) is

X (A0,A+) =




1 0 0

0.5 2 0

1 1 1

1 1 0

−1 1 0

0 0 2




The QR decomposition of(P1X (A0,A+))′ gives

P3 =




−0.7071 −0.70710 0

−0.7071 0.7071 0

0 0 1


 andTL =




−1.4142 0 0

−0.7071 −0.7071 0

−1.7678 1.0607 0

−1.4142 0 1

0 1.4142 0

0 0 2




The required rotation isP = P3P2, which is equal to

P = P3P2 =




0 −0.70710 −0.7071

0 0.7071 −0.7071

1 0 0




It is easy to verify thatX (A0P,A+P) satisfies the restrictions.
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APPENDIX C. THE REGIMES

In this section we describe the three types of parameter variation across regimes considered in this paper. First, we show

the likelihood function of model (1) when identified using linear restrictions on columns ofA0(k). Second, we detail the three

types of parameter variation across regimes. Third, we describe the three prior distributions that implement the variation across

regimes. Finally, we describe the three implied posterior distributions and how to draw from them.

It is important to note that, in principle, the three types ofvariation of parameters across regimes can only be considered

when the model is identified using linear restrictions on columns ofA0(k), i.e., when it is possible to use the methods described

by Sims and Zha (2005). As shown in section IV.2, when a draw from a Markov-switching SVAR exactly identified using

linear restrictions on columns ofA0(k) is rotated to consider a more general set of restrictions, the three types of variation

across regimes still hold. Therefore, these three types of parameter variation across regimes are general enough to be applied

to all the identification schemes analyzed in this paper.

C.1. The Likelihood Function. In this section we describe how to evaluate the likelihood for the Markov-switching SVAR

defined by (1) when identified using linear restrictions on columns ofA0(k).

For j = 1, . . . ,n andk = 1, . . . ,h, let theq j ×n matrixQ j , whereq j ≤ n, define theq j restrictions over thej th column ofA0,

then linear restrictions on columns ofA0(k) can be written as:

Q jA0 (k)ej = 0.

Let a j,0(k) be a column ofA0(k), then the former restriction can be written in the followingway:

Q j a j,0(k) = 0,

Let U j be then×q j matrix whose columns form the orthonormal basis for the nullspace ofQ j . Then,Q j a j,0(k) = 0 if and

only if ∃ aq j ×1 vectorb j(k) such that

a j,0(k) = U j b j(k).

Finally, for j = 1, . . . ,n, let

b j = [b j (1)′ , . . . ,b j (h)′]′,

b = [b1, . . . ,bn, ]

and

U = [U ′
1, . . . ,U

′
n]
′.

Note the following three points. First, any set ofa j,0(k) andQ j for j = 1, . . . ,n andk = 1, . . . ,h implies a set ofU j andb j(k)

for j = 1, . . . ,n andk = 1, . . . ,h and vice versa. Therefore, it is equivalent to defining the linear restrictions using eithera j,0(k)

andQ j or U j andb j(k). This implies that we can evaluate the likelihood function either usingQ j anda j,0(k) or U j andb j(k).

We follow the second approach.

Let us define:

d j (k) = a j,+ (k)−Saj,0 (k) ,

for k = 1, . . . ,h and j = 1, . . . ,n, where

S= [I ′n×n,0
′
(m−n)×n]

′
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andm= np+1.

Now let

d j = [d j (1)′ , . . . ,d j (h)′]′

for j = 1, . . . ,n.

Finally, let

d = [d1, . . . ,dn].

Note that anyA0 andd imply a matrixA+. Therefore, for any givenU , the matricesb andd imply the matricesA0 andA+.

Thus, we can write the likelihood function using eitherA0 andA+ or b andd. We choose the first option.

Now, if we define

Yt = [y1 . . .yt ]
′ , and

for all t, we can write the conditional likelihood function as follows.

Given the restriction matrixU , the conditional likelihood function,π
(
yt |Yt−1,st ,b,d

)
, is:

π
(
yt |Y

t−1,st ,b,d
)

∝ det| [U1b1 (st) . . .Unbn (st)]|exp

[
−

1
2

n

∑
j=1

b′j (st)U ′
jStU jb j (st)

]

exp

[
−

1
2

n

∑
j=1

(
d j (st)+

(
S−Pt

)
U jb j (st)

)′
Ht
(
d j (st)+

(
S−Pt

)
U jb j (st)

)
]

,

where

Ht = x′txt ,

Pt = H−1
t x′tyt ,

and

St = y′tyt −P
′

t HtPt .

Next, following Kim and Nelson (1998), we can write the likelihood functionπ (YT |b,d). Hence, given the restriction matrix

U , the likelihood function,π
(
YT |b,d,Π

)
, is:

π(YT |b,d,Π) ∝
T

∏
t=1

{
h

∑
st=1

[π(yt |Y
t−1,st ,b,d)Pr(st |Y

t−1,b,d,Π)]

}

where

Pr(st |Y
t−1,b,d,Π) =

h

∑
st=1

π(st |st−1)Pr(st−1|Y
t−1,b,d,Π)

and Pr(st−1|Yt−1,b,d,Π) is updated using the Bayes rule.33

33We initialize the system setting Pr(s0|Y0,b,d,Π) = Pr(s0|b,d,Π) = 1/h.
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C.2. Modelling Regimes. If we let all the parameters vary across regimes,b andd can be estimated independently across

regimes. Therefore, we could use the methods used by Chib (1996) to perform the model estimation. The problem is

that a Markov-switching SVAR with four to seven endogenous variables and one-year lag length would suffer the over-

parameterization problems associated with few degrees of freedom. Hence, we define three sets of priors that restrict the

variation of parameters across regimes. First, we considerpriors that impose a constant-parameters model, i.e., no cross-regime

variation. Second, we contemplate priors that only allow the reduced-form variances of the shocks to change across regimes.

Finally, we also use priors that imply that both structural parameters and structural variances can change across regimes. The

actual priors for each of the cases are defined in subsection C.3. In this section we just highlight the main differences among

the three sets of priors and their implications for across regime variation. In order to do that, we first rewrite the parameters

defining model (1) in the following way:

ai, j,0 (k) = ai, j,0ξ j (k)φi, j (k) ,

di, j,ℓ (k) = di, j,ℓξ j (k)λi, j (k) ,

and

c j (k) = c jξ j (k)µ j (k)

for i, j = 1, . . . ,n andk = 1, . . . ,h. Notice that writing the parameters this way already imposes a restriction on cross-regime

variation. We restrict the cross-regime variation ofd, since we do not allow for variation between lags (i.e.,(di, j,ℓ (k) = di, j,ℓ′ (k)

for ℓ′, ℓ = 1, . . . , p)). This restriction is common to the three cases considered here.

• Constant-Parameters Case. These priors imposeξ j(k) = 1, φi, j(k) = 1, λi, j(k) = 1, andµ j(k) = 1 for i, j = 1, . . . ,n

andk = 1, . . . ,h. Thereforeai, j,0 (k) = ai, j,0 (k), di, j,ℓ (k) = di, j,ℓ (k), andc j (k) = c j for i, j = 1, . . . ,n andk = 1, . . . ,h.

This case corresponds to the constant-parameters VARs widely used in the literature.

• Variance-Only Case. These priors imposeφi, j(k) = 1, λi, j(k) = 1, andµ j(k) = 1 for i, j = 1, . . . ,n andk = 1, . . . ,h.

Therefore, we can writeai, j,0 (k) = ai, j,0ξ j (k), di, j,ℓ (k) = di, j,ℓξ j (k), andc j (k) = c jξ j (k) for i, j = 1, . . . ,n andk =

1, . . . ,h. These restrictions imply thatB(k) does not change across regimes.

• All-Change Case. These priors imposeξ j(k) = 1, a j,0 = 1, andc j = 1 for i, j = 1, . . . ,n andk = 1, . . . ,h. Therefore

ai, j,0 (k) = φi, j (k), di, j,ℓ (k) = di, j,ℓλi, j (k), andc j (k) = c j (k)µ j (k) for i, j = 1, . . . ,n andk= 1, . . . ,h. These restrictions

imply that the reduced-form parameters and variances change across regimes.

C.3. The Priors. In this appendix we specify the details of the priors used in the paper. First, we describe the priors onΠ,

common to the three cases. Then, we describe the priors on theparameters that differ across the three cases.

The priors on the transition matrix,Π, take a Dirichlet form, as suggested by Chib (1996). For the kth column ofΠ, πk, the

prior density isπ(πk) = π(π1k, . . .πnk) ∝ πα1k−1
1k . . .παnk−1

nk . We chooseαi j for i, j = 1, . . . ,nas described in Sims and Zha (2004).

Basically, we setαi j for i, j = 1, . . . ,n such that the average duration of each state is around seven quarters, independently of

the number of regimes.

Now let us describe the priors on the parameters that differ across the three cases. Before proceeding, we introduce a few

new notations. Letςn be a column vector ofn ones. Let

A0 = [a1,0, . . . ,an,0],



MARKOV-SWITCHING SVARS 36

wherea j,0 is an×1 vector of the form:

a j,0 = [a1, j,0, . . . ,an, j,0]
′ for all j.

Now let

ξ = [ξ1, . . . ,ξn] ,

whereξ j is ah×1 vector of the form:

ξ j = [ξ j (1) , . . . ,ξ j (h)]′ for all j.

Let

φ = [φ1, . . . ,φn] ,

whereφ j is anh×1 vector of the form:

φ j =
[
φ ′

j (1) , . . . ,φ ′
j (h)

]′
, for all j,

whereφ j (k) is an×1 vector of the form:

φ j (k) =
[
φ1, j (k) , . . . ,φn, j (k)

]′
, for all k and all j.

Define also

d = [d
′
1, . . . ,d

′
n]
′,

whered j is am×1 vector of the form:

d j = [d
′
j,1, . . . ,d

′
j,p,c j ]

′ for all j,

whered j,ℓ is an×1 vector of the form:

d j,ℓ =
[
d1, j,ℓ, . . . ,dn, j,ℓ

]′
for all ℓ and all j.

Let

λ = [λ1, . . . ,λn] ,

whereλ j is anh×1 vector of the form:

λ j =
[
λ ′

j (1) , . . . ,λ ′
j (h)

]′
for all j,

whereλ j (k) is an×1 vector of the form:

λ j (k) =
[
λ1, j (k) , . . . ,λn, j (k)

]′
for all j and allk.

Let

µ = [µ1, . . . ,µn] ,

whereµ j is ah×1 vector of the form:

µ j = [µ j (1) , . . . ,µ j (h)]′ for all j.

Then we can write

a j,0 = Φ j
(
ξ j ⊗a j,0

)
,

where

Φ j = diag
({

Φ j (k)
}h

k=1

)

and

Φ j (k) = diag
({

φi, j (k)
}n

i=1

)
.
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Finally, we can also write

d j = Λ j
(
ξ j ⊗d j

)
,

where

Λ j = diag
({

Λ j (k)
}h

k=1

)
,

Λ j (k) =


 Ip⊗∆ j (k) 0np×1

01×np µ j (k)


 ,

and

∆ j (k) = diag
({

λi, j (k)
}n

i=1

)
.

We are now ready to specify the priors corresponding to all the cases. We begin with the all-change case and work backward

to the constant-parameters case.

C.3.1. All-Change Case.Let ξ j = ςh, a j,0 = ςn, andc j = 1 for all j. Then

a j,0 = Φ jςhn = φ j for all j,

d j = Λ j
(
ςh⊗d j

)
for all j,

and

c j = µ j for all j.

Let the priors on the contemporaneous parameters of the model, a j,0, now be:

π
(
a j,0
)

= π (φ j) = ℵ
(
0, Ih⊗H j,0

)
for all j,

whereH j,0 is set following the procedure described in Sims and Zha (2004).

Since

φ j = (Ih⊗U j)b j , for all j,

that implies priors onb j of the form:

π (b j) = ℵ
(
0,H j,0

)
,

where

H j,0 =
(
U ′

j

(
Ih⊗H−1

j,0

)
U j

)−1
.

Let the priors on the lagged and constant parameters of the model,d j , now be:

π
(
d j
)

= ℵ(0,H j,+) for all j,

π (λ j) = ℵ
(
0,(Ih⊗ In)σ2

λ
)

for all j,

and

π (µ j) = ℵ
(
0, Ih⊗σ2

j,µ
)

for all j,

whereH j,+ is set following the procedure described in Sims and Zha (2004), σλ = 50, andσ j,µ is set in the same way as

H j,+.
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C.3.2. Variance-Only Case.Let φ j = ςn, λ j = ςnh, andµ j = 1 for all j, then

a j,0 = ξ j ⊗a j,0 for all j,

d j = ξ j ⊗d j for all j,

and

c j = c jξ j for all j.

Let the priors on the contemporaneous parameters of the model, a j,0, now be:

π
(
a j,0
)

= ℵ
(
0,H j,0

)
for all j,

whereH j,0 is set following the procedure described in Sims and Zha (2004).

Since

ξ j ⊗a j,0 = (Ih⊗U j)b j , for all j,

that implies priors onb j of the form:

π (b j |ξ j) = ℵ
(

0, H̃ j,0

)
,

where

H̃ j,0 = ϒ̃ j,h⊗
(
U ′

jH
−1
j,0U j

)−1
,

and

ϒ̃ j,h =




ξ j (1)2 ξ j (1)ξ j (2) . . . ξ j (1)ξ j (h)

ξ j (2)ξ j (1) ξ j (2)2 . . . ξ j (2)ξ j (h)
...

...
. . .

...

ξ j (h)ξ j (1) ξ j (h)ξ j (2) . . . ξ j (h)2




.

Let us define the priors on the lagged and constant parametersof the model. We have:

π
(
d j
)

= ℵ(0,H j,+) for all j,

and:

π (c j) = ℵ(0,σ j,c) for all j,

whereH j,+ andσ j,c are set following the procedure described in Sims and Zha (2004).

Finally, let priors onξ j (k) be defined overζ j (k) = ξ 2
j (k) as:

π (ζ j (k)) = Γ
(
αζ ,βζ

)
for all k and j.

whereαζ = 1 andβζ = 1.
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C.3.3. Constant-Parameters Case.Let ξ j = ςh, φ j = ςn, λ j = ςnh, andµ j = 1 for all j, then

a j,0 = ςh⊗a j,0 for all j,

d j = ςh⊗d j for all j,

and

c j = c j for all j.

Let the priors on the contemporaneous parameters of the model, a j,0, now be:

π
(
a j,0
)

= ℵ
(
0,H j,0

)
for all j,

whereH j,0 is set following the procedure described in Sims and Zha (2004).

Since

ςh⊗a j,0 = (Ih⊗U j)b j , for all j,

that implies priors onb j of the form:

π (b j) = ℵ
(

0, Ĥ j,0

)
,

where

Ĥ j,0 = ϒ̂ j,h⊗
(
U ′

jH
−1
j,0U j

)−1
,

and

ϒ̂ j,h =




1 1 . . . 1

1 1 . . . 1
...

...
...

...

1 1 . . . 1




.

Let the priors on the lagged and constant parameters of the model,d j , now be:

π
(
d j
)

= ℵ(0,H j,+) for all j,

whereH j,+ is set following the procedure described in Sims and Zha (2004). Finally, let us consider the priors onc j :

π (c j) = ℵ(0,σ j,c) for all j,

whereσ j,c is set in the same way asH j,0.

C.4. Posterior. In this section we briefly describe our procedure to draw fromthe posterior of the structural parameters of

model (2). Because of space considerations we refer the reader to Sims and Zha (2004) for a detailed discussion of the posterior

distributions implied by the priors described in section C.3 and how to draw from them. Suffice it to say that we are interested

in the following posterior distributions:
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π(ST |YT ,b,d,φ ,λ ,µ ,Π)

π(Π|YT ,b,d,φ ,λ ,µ ,ST)

π(φ ,λ ,µ |YT ,b,d,ST ,Π)

π(b|YT ,d,φ ,λ ,µ ,ST ,Π),

whereST = (s1, . . . ,sT) andd, φ , λ , andµ are defined in section C.3. We also use standard MCMC to draw from these

posterior distributions and the modified harmonic mean (MHM), described in Gelfand and Dey (1994) and Geweke (1999), to

compute the marginal likelihood. We use Geweke’s (2005) procedures to check the convergence of the posterior draws.

APPENDIX D. THE IDENTIFICATION SCHEMES

In this section we use the notation of section II.2 to describe three of the identification schemes used in the paper.

D.1. CEE. In order to write the CEE in the notation of section II.2 we letX(·) be equal to (4) and consider the following set

of Q j :

Q1 =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




Q2 =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




Q3 =


0 0 0 1 0

0 0 0 0 1




and

Q4 =
[
0 0 0 0 1

]

D.2. GLSZ. In order to write the GLSZ in the notation of section II.2 we let X(·) be equal to (4) and consider the following

set ofQ j :

Q1 =
[
0 0 0 0 1

]

Q3 =




1 0 0 0 0

0 1 0 0 0

0 0 0 0 1






MARKOV-SWITCHING SVARS 41

Q4 =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




and

Q5 =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




D.3. BGQ. In order to write the BGQ in the notation of section II.2 we letX(·) be equal to (5) and consider the following set

of Q j :

Q1 =




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




and

Q3 =
[
0 0 1 0 0 0 0 0

]

APPENDIX E. EXISTING METHOD TO ESTIMATE SIGNED RESTRICTEDSVARS

Faust (1998), Canova and De Nicoló (2002), and Uhlig (2005) have proposed an alternative approach to impose sign re-

strictions directly on impulse responses themselves to identify SVARs. For example, in response to a contractionary monetary

shock the interest rate should rise, while money and prices should fall. Although Faust (1998), Canova and De Nicoló (2002),

and Uhlig (2005) start from the same idea, they implement it in different ways. In this section, we first briefly describe the ap-

proaches of Faust, Canova and De Nicoló, and Uhlig, highlighting the problems of applying these approaches to our switching

model.

E.1. Faust Method. Faust (1998) presents a way to check the robustness of any claim from an SVAR. All possible identifica-

tions are checked searching for the one that is worst for the claim, subject to the restriction that the identified SVAR produces

the impulse response functions with the “correct” sign.

Faust (1998) shows that this problem is equivalent to solving an eigenvalue problem∑M
i=0

R!
i!(R−i)! times, whereR is the

number of sign restrictions andM = max(n− 1,R). As Faust (1998) recognizes, this method may not be feasiblefor large

problems, like the one analyzed here.
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E.2. Canova and De Nicoló Method.Canova and De Nicoló (2002) also identify SVARs using impulse response sign restric-

tions. Their method is based on the following theorem:

Theorem12. Let P (n× n) be an orthogonal matrix. Then a unique series{{θi, j}
n
j=i+1}

n−1
i=1 exists, where 0≤ θi, j < 2π if

j = i +1 and−π/2≤ θi, j ≤ π/2 if j > i +1, such that:34

P =
n−1

∏
i=1

n

∏
j=i+1

Qi, j (θi, j)

or

P = S
n−1

∏
i=1

n

∏
j=i+1

Qi, j (θi, j)

where

S=




1 · · · 0 0
...

...
...

...

0 · · · 1 0

0 · · · 0 −1




and

Qi, j (θi, j) =




col i

↓

col j

↓

1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

row i → 0 · · · cos(θi, j) · · · −sin(θi, j) · · · 0
...

...
.. .

...
...

row j → 0 · · · sin(θi, j) · · · cos(θi, j) · · · 0
...

...
...

. ..
...

0 · · · 0 · · · 0 · · · 1




.

Proof. The proof follows from Algorithm 5.2.2 of Golub and Van Loan (1996). �

Using theorem 12, Canova and De Nicoló (2002) identify SVARswith the following algorithm:

Algorithm3.

(1) Begin with a triangular SVAR system.

(2) Draw the system parametersA0(k) andB(k) from the posterior distribution.

(3) Determine a grid on the set of all orthogonal matrices.

(4) Perform a grid search to find an orthogonal matrixP(k), such that the impulse responses generated fromA0(k)P(k) and

B(k) satisfy all the sign restrictions.

34In Canova and De Nicoló (2002), the notationQi, j (θ) is used whereθ is implicitly assumed to vary with differenti and j.
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Theorem 12 allows for different ways to design a grid, but because the space of all orthogonaln×n matrices is an(n−1)/2

dimensional space, any grid that divides the interval[−π/2,π/2] in M points35 implies a search over 2hMn(n−1)/2 points in the

space of all orthogonaln×n matrices.36 Thus, it is not feasible to perform this grid search for largevalues ofn and/orh.

E.3. Uhlig’s Methods. Uhlig (2005) proposes another method to identify SVARs based on impulse response sign restrictions.

His method also draws from the set of posterior orthonormal matrices, such that the impulse response sign restrictions hold,

using the following algorithm:

Algorithm4.

(1) Begin with a triangular SVAR system.

(2) Draw the system parametersA0(k) andB(k) from the posterior distribution.

(3) Drawn independent standard normal vectors of lengthn and recursively orthonormalize them. CallP(k) the resulting

orthonormal matrix.

(4) Generate the impulse responses fromA0(k)P(k) andB(k).

(5) If these impulse responses do not satisfy the sign restrictions, keep the draw. Otherwise discard it.

This method is feasible for large models like the one we are dealing with in this paper. In fact, the method we propose is just

a more efficient version of Uhlig’s approach.

35Or the interval[−π,π] in 2M points.
36Theh term comes from the fact that we have to find theP(k) for h regimes.
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