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MARKOV-SWITCHING STRUCTURAL VECTOR AUTOREGRESSIONS:
THEORY AND APPLICATION

I. INTRODUCTION

A recent debate on whether it is bad monetary policy or baklthiat explains the U.S. inflation-unemployment dynamics in
the 1970s has motivated a number of empirical works. BoidA&90), Clarida, Gali, and Gertler (2000), Lubik and Scheidle
(2004)), and Boivin and Giannoni (2005), on the one hand tfiatlbad monetary policy is the main explanation for thetiela
and high inflation of the 1970s. Primiceri (2005), Sargenitligths, and Zha (2005), Bernanke and Mihov (1998), Cogley a
Sargent (2005), and Canova and Gambetti (2004), on the lotimet, find little evidence in favor of the view that the momgta
policy rule has changed drastically.

In order to shed some light on the debate Sims and Zha (20€&5)@&#he seminal work of Hamilton (1989) and use Markov-
switching structural vector autoregressions (SVARS) sediangle between the two possible explanations. Simsizen(2D05)
develop novel and efficient Markov-Chain Monte Carlo (MCM@gthods for Markov-switching SVARs identified with linear
restrictions on each structural equation. Their methodwghrer, cannot be applied directly to models identified lreotvays.

In particular, long-run restrictions on impulse responsssintroduced by Blanchard and Quah (1993), impose réstricon
nonlinear functions of the sum of the structural coefficger8ign restrictions on impulse response functions, asgsexpby
Faust (1998), Canova and De Nicol6 (2002), and Uhlig (200)y nonlinear restrictions on the model parameters.

This paper extends the MCMC method of Sims and Zha (2005) ti&daswitching SVARs with short-run, long-run, and
sign restrictions on impulse responses. We show that if theéeiwith short-run and long-run restrictions is exactlgritfied,
there exists a unique rotation of the parameter matricesruadecursive SVAR system that are mapped onto the strlictura
parameters of the original model. We derive an efficient@tigm for finding such a rotation. For Markov-switching SVAR
with sign restrictions, we develop a more efficient versiériJblig’s (2005) algorithm. This development is particljar
important, since the MCMC computation is in general quitgeticonsuming.

The SVAR literature often employs the widely used necessandition of Rothenberg (1971) to ascertain if models are
exactly identifiedt. Rothenberg’s necessary condition is easy to implementrbglgicounting enough restrictions in total. We
give examples of SVARSs that satisfy this necessary conditiot arenot identified. This motivates us to develop a new and
easily implementable necessary and sufficient conditioexactly identified SVARs. Our necessary and sufficient @mrts
not only count the number of restrictions equation by eguatbut also require the restrictions to follow a particydattern.
Our theorem applies to SVARSs with both linear restrictiond aome nonlinear restrictions on the parameters of eaditiequ

'Rothenberg (1971) also provides a sufficient condition himitondition is not implementable for SVARSs.
1



MARKOV-SWITCHING SVARS 2

We apply our procedures to analyzing whether monetary pali@ the volatility of euro area macroeconomic variables
have changed since the introduction of the EMU. In the lasade, the observed volatility of aggregate euro area Vasdias
decreased significantly. For example, from the late 197@seanly 1980s, inflation has decreased from about 10 pergent t
under 5 percent, output growth volatility has fallen whie average annual growth rate has remained unchanged, entd sh
term nominal interest rates and money growth have decreagich are now at record lows. Is the reduction in observed eu
area aggregate volatility a result of regime changes in maopgolicy? Or does it simply reflect the decreasing magiatu
of the shocks that impinge on the euro area economy? To aribese questions,we study Markov-switching SVARs with
four different identification schemes: (1) the recursiveniification of Christiano, Eichenbaum, and Evans (1998) tlfe
non recursive approach of Gordon and Leeper (1994) and Sichgha (2005), (3) the identification with a combination of
contemporaneous and long-run restrictions on impulseress as introduced by Blanchard and Quah (1993) and Gag),19
and (4) the identification governed by sign restrictionsppied by Faust (1998), Canova and De Nicolé (2002), and Uhlig
(2005).

Our approach to Markov-switching differs from that of Siri993), Uhlig (1997), Cogley and Sargent (2005), and Primice
(2005). These papers allow parameters to drift in a continwbate space. We can approximate the continuous driftamilyi
well by putting greater prior weight on the diagonal of thengition matrix. At the same time, our approach offers éolut
flexibility by allowing for a large, discrete jump in the SVARefficients

Our empirical results reveal that the source of time varraémbedded in euro area aggregate variables can be atribut
to changes in shock variances. According to the relativegmal likelihoods (i.e., posterior odds ratios), Markavishing
SVARs based solely on time-varying shock variances areglydavored compared to models in which slope coefficiel#ts a
change with the regime. This result is robust across theiftantification schemes we study and consistent with therfgslof
Stock and Watson (1996, 2003), Primiceri (2005), Canovazamdbetti (2004), and Sims and Zha (2005) for the U.S. data. We
also find a stable and persistent post-1993 regime. Thigei associated with low volatility of the shocks to outgurices,
and the short-term interest rate. Finally, the real effe€tsionetary policy shocks are small, or at most uncertalative to
other shocks. These results are robust across identificadiod regimes.

The rest of the paper is organized as follows. Section Il tajtgshe general framework. Section Ill describes our apgibn
and the four identifications we use in the paper. Section pores and explains our key findings. Section V concludes the
paper. Detailed proofs of the theorems are provided in tpergtices.

Il. THE FRAMEWORK

In this section we present a framework to analyze Markouwedwig SVAR models. We take the Bayesian approach, but all
the theoretical results apply to the classical framewonkels We begin by presenting the general form of Markov-shiitg
SVARs studied in this paper. Next, we introduce a class @diridentifying restrictions on transformations of theustuaral
parameters. We derive the necessary and sufficient conglifar the Markov-switching SVAR to be exactly identified and
show how to generate Markov-chain Monte Carlo (MCMC) drawesnf the posterior distribution. Finally, we illustrate our
methods with an example.

2Sims and Zha (2005) discuss these issues in greater detail.



MARKOV-SWITCHING SVARS 3

[I.1. The Structural Model. Following Hamilton (1989) and Sims and Zha (2005), we cogisMarkov-switching SVARSs of
the following form

p
ViAo (s) = le/tszz () +2C(s)+¢& 1)

wherep is the lag lengthT is the sample sizey is ann x 1 vector of endogenous variablesjs equal to ong andg is an
n x 1 vector of structural shocks. The conditional distribntgp is normal with mean 0 and covariance matiix(then x n
identity matrix). The value o is an element of1,- - - ,h} ands evolves according to a Markov process with transition meatri
n= (m7j)1§i7j§h, whererg j is the probability thak equalsi given thats_1 is j. For 0< ¢ < pand 1<k < h, A/(k) is an
n x n matrix of parameters. For4 k < h, C(k) is a 1x n vector of parameters. The initial conditionys, - - - ,y1_p, are taken
as given.

Let

for1<k<hand
X{ = [}/tfla“-v)/tfpv%}

for 1 <t <T. The model (1) can be compactly written as

iAo () = XA () + 8. )

The parameters of the structural model &g (k) ,A; (k)) for 1 < k < h. The reduced-form representation implied by the
structural model (2) is

Y =%B(s) +u(s)
where
B(s) = As () A1 (8), U () = &/Ag" (%), E (e ($) U (%) = Z(s) = (Ao(5) Ao (%))
The parameters of the reduced-form model@&€k) ,> (k)) for L <k <h.

I1.2. Identifying Restrictions. Without restrictions the structural system (2) is not idféd. If P is an orthogonal matrithe
reduced-form representation derived froAp(k), A, (k)) and (Ag(k)P, A, (k)P) are identical and hence the structural models
are observationally equivalent. Sims and Zha (2005) desdrow to identify the model using linear restrictions on ¢be-
temporaneous parameter mattix k) and develop Bayesian methods for simulating the posteistriloution of the structural
parameters. This class of restrictions includes recusiteemes as described by Christiano, Eichenbaum, and E1896)(
and non-recursive schemes as described by Gordon and L@88d) and Sims and Zha (2005).

Two alternative identification schemes have also been widetd. Blanchard and Quah (1993) and Gali (1992) use both
contemporaneous and long-run restrictions on impulseoresgs; Faust (1998), Canova and De Nicol6 (2002), and Uhlig
(2005) use sign restrictions on impulse responses. In #uisah we extend the results of Sims and Zha to the formes das
restrictions; sign restrictions are of a different natund will be analyzed later in Section I111.6.

For SVARs with both short-run and long-run restrictionsg thethods used in the existing literature typically invoave
system of nonlinear equations to be solved in order to oliteenmaximum likelihood estimates or the posterior estisate

Sitis straightforward to include other exogenous varialesur framework.

4By definitionP is an orthogonal matrix if and only PP’ = |
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if a prior is usec® When simulating from the posterior distribution, howeveslving a system of nonlinear equations (or
minimizing a nonlinear function) for each posterior drawtilme-consuming and practically infeasible if a large numbie
MCMC draws are required to get accurate results. In thisestttzs, we show, however, that contemporaneous and lomg-ru
restrictions on impulse responses can be representecdeas tgstrictions on transformations of the structural petars. This
innovation is the key to the efficient MCMC methods develofager in this paper.

A transformationX (-) of the structural parameters is defined as follows.

Definition1. Let X (-) be a transformation from the set of structural parametetise@et ofm x n matrices, withn < m, such
that either

(1a) X(Ao(k)C,A; (k)C) = X (Ao (k) , A} (K))C, for every invertible matrixC.

or

(1b) X (Ao (K)C, A, (K)C) = X (Ao (k) , A, (k) (C') "%, for every invertible matrix.

Condition (1a) applies when the restrictions are on thecgiral parameters themselves. Condition (1b) applies wihen
restrictions are on the impulse responses. This case iesluath restrictions at finite horizons and long-run resoms. Almost
all identifying restrictions used in the existing SVAR lié¢ure can be presented as linear restrictions on the calainsome
transformatiorX (Ag (K) ,A; (k)). In particular, for 1< j < nthere exisfjj x mmatricesQ; of rankq; such tha{Aq (k) , A (k))
satisfy the restrictions if and only if:

QjX(Ao(K), Ay (k))ej=0 @)
wheree; is the j" column of then x n identity matrix®

The recursive and non recursive restrictions on the conteamgous parameter matis(k) as used in the literature can be

defined as linear restrictions on the columns of
X (Ao (k) A (K) = Ao (K). (4)

Conditional on thé!" state, the contemporaneous impulse responses {§'tsieock correspond to thé' column of(A(j1 (k))/.
When thei" variable of the structural model is in first difference, tbed-run impulse response of tie variable to thej™"
shock conditional on thi!" state is the element in th& row andj™ column ofL’ (k) where

1
LK) = (Ao(k)— ilmk)) .

Thus, Definition 1 allows us to represent contemporaneoddamg-run restrictions on impulse responses as lineaticgshs

on the columns of
I

(Ag* (k)
L' (k)

Clearly, transformations (4) and (5) belong to the classafdformation functionX (-) in Definition 1.

X (Ao (k), A (k) = ®)

5The 2SLS estimate, as used by Gali (1992), is an approximatithe tmaximum likelihood estimate. The accuracy of this appnation depends on how

good the instruments are in the first stage of the estimation.
8in addition to condition (1a) or (1b), one neeX$-) to be of full rank with respect to the restrictio@s. The technical condition is that there exists a set

of structural parameterg\y (k) ,A; (k)) such that
rank(QiX (Ao (k) ,A¢ (K))) = rank(Qi).
In the examples considered in this paper, since the imad€ 9fis dense in the set of afh x n matrices, this condition will be satisfied. In general, sitiie

condition needs to hold only for a single set of parameteraglane can simply test the ranks of several arbitrarily ahpseameter values.



MARKOV-SWITCHING SVARS 5

[1.3. Normalization. Since the identifying restrictions given by (3) do not urétyudetermine the sign of any equation, a sign
normalization rule is needed. While the theory developethimpaper will work for any choice of sign normalization, eopo
choice of sign normalization may distort statistical irgiece concerning impulse responses (see Waggoner and Z8ka 200
details). In our applications, we follow the likelihoodeserving normalization proposed by Waggoner and Zha (2003b

For Markov-switching models, there is an additional typeofmalization. Any permutation of the states will resuliim
observationally equivalent set of parameters. Intuifiveermuting the states can be thought of as an arbitrarymieggof
the states, i.e., permuting the first and second states ciatelopreted as renaming the first state as the second anderisa.
Since the names of the states clearly do not affect the piepaf the model, there will be observationally equivalgets of
parameters. We follow the Wald normalization as descrilmedamilton, Waggoner, and Zha (2003), which minimizes the
distance, in the appropriate metric, between the obsenalty equivalent parameter sets and some reference satahpters,
usually the maximum likelihood estimate. Since there afg arfinite number of permutations, there are only a finite nemb
of comparisons to make. The models with both sign and petiontaormalizations are called normalized models. The

Markov-switching SVAR models considered in this paper anemnalized.

I1.4. Is the Model Exactly Identified? A large part of the SVAR literature deals with exactly idéieti models. The precise
definition of exact identification is given below.

Definition2. A Markov-switching SVAR is exactly identified if and only ibf almost every reduced-form parameig(k) , = (k))
there exists a unique set of structural parame&ggk) , A, (k)) with B(k) = A, (k)Aa1 (k) andX (k) = (Ao (k) A (k))’1 that

satisfies the identifying restrictions (3).

In an important article Rothenberg (1971) gives a necessamylition for exact identification, which requiragn—1) /2
restrictions. Except for a recursive system, however, the model may notleetified even if there ara(n— 1)/2 linear
restrictions® The following theorem gives us a new and easily implemestabtessary and sufficient condition for a Markov-
switching SVAR system to be exactly identified.

Theorem3. A Markov-switching SVAR is exactly identified if and only ihére exists a permutatiam of 1,--- ,n such that
rank(Qi) =g =n—o(i)for1<i<n.

Proof. The proof is provided in Appendix A. |

Notice that we can always permute the equations in the @figiystem, (1), so that(i) =i. Theorem 3 allows us to check
if a Markov-switching SVAR is exactly identified. Rothenpg&r(1971) necessary condition simply counts the total rermb
of restrictions. Our necessary and sufficient conditionardy counts the number of restrictions but also requires ttey
follow a certain pattern equation by equation. Any lineatrietions onX (-) allow for certain nonlinear restrictions @ (k)
andA, (k) themselves. Thus Theorem 3 applies to a wide range of id&ttdn schemes, including both linear and nonlinear
restrictions o (k) andA. (k) as implied by (3).

Given restrictions orX (-) that exactly identify the model, how do we find the set of duiced parameters such that the
restrictions are satisfied? The following theorem tells s o do it:

7Rothenberg (1971) also provides a sufficient condition himitondition is not implementable for SVARs.
8Examples will be shown later in this paper. See Sims and Zha®)188other examples.

%of course, our necessary and sufficient condition also wimksonstant parameter SVARSs.



MARKOV-SWITCHING SVARS 6

Theoremd. A Markov-switching SVAR is exactly identified if and only ibf almost every structural parametép (k) , A (k)),
there exists a unique orthogonal matfi) such that

(Ao (K) P(k), Ay (k) P(K))

satisfy the restrictions.

Proof. If (Ag(k),A (K)) and(,&o(k) A, (k)) are two sets of structural parameters such(‘r,h@(k)A{)(k))’l = (,&o(k),&()(k))_l,

it follows that (A (k) Ag (K)) (Ag* (k) Ao (k)" is an identity matrix, s®(k) = Ay (k) Ao (k) is an orthogonal matrix. ~ [J

Definition 2 gives the relationship between the reducedifand the structural parameters that must hold in order for th
model to be exactly identified. Theorem 4 gives the condétifur exact identification in terms of the structural parasret
alone.

Theorem 4 is the key for an efficient MCMC algorithm for sttitial inference and model comparison. If the model is
exactly identified, one simply makes a posterior draw of thectural parameters in a recursive (triangular) systeimguthe
existing MCMC method (see Sims and Zha 1999 and 2005). Thedrihen guarantees the existence of an orthogonal matrix
P(k) that transforms this draw into a draw of the structural pastens that satisfy the restrictions given by 19).

[1.5. An Algorithm to Find P(k). The bottleneck of the MCMC algorithm is to find the rotationtrbaP(k) for any posterior
draw from a recursive systeth The following algorithm gives a step-by-step descriptibh@w to find this rotation efficiently.
To simplify the notation, we assume, without loss of gerngtahat the equations in the original system have been ptth
so thatrank(Q) = ¢ = n—i.*?

Algorithm1. Let a Markov-switching SVAR be exactly identified afh(k), A (k)) be any set of structural parameters drawn
from a recursive system.

(Step 1) Set =1.

(Step 2) Form the matrix
QiX (Ao(K), Ay (k)

p1(K)’
pi-1(k)’

If i = 1, thenQ; (K) = QiX (Ao (K), A, (K)).

(Step 3) Letpi(k) be any unit length vector such th& (k)X (Ag(k),A, (k) pi(k) = 0. Such a vector exists because
rank(Q) = n—i and henceank (Q;) < n. Use the LU decomposition &}; (k) to find this vector.

(Step 4) Ifi = n stop; otherwise, seét=i+ 1 and go to step 2.

The above algorithm produces the orthogonal matrix

P(k) = [p1(Kk),- -, pn(K)]

10rnis procedure applies to the maximum likelihood estimatiowelt We first obtain the maximum likelihood estimates of theapagters in a recursive
system and then ug¥k) to rotate them to get the estimates of the structural paraseter

lor equivalently any posterior draw from the reduced-forntapeeters that have been transformed to structural paramegerther Cholesky
decomposition.

12ris assumptions is equivalent to assuming th@} =i in Theorem 3
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that is required by Theorem 4. If the restrictions impliechgtricesQ; can be permuted to a triangular systétthe algorithm

of finding P(k) becomes even more efficient as one needs to use only a singlie€@Rposition (see Appendix B for details).
The restrictions given by (3) are more general than thossidered by Sims and Zha (2005) and their method may not

always be applicable. Algorithm 1 extends the Sims and Zhth@de Suppose we wish to simulate from the posterior distri-

bution for an exactly identified system with restrictiongegi by (3). We begin with a posterior draw of the model paranset

in any exactly identified Markov-switching SVAR that the mmed of Sims and Zha (2005) can handle (for example, a re-

cursive system). Denote this draw B (k),A; (K)). We then use Algorithm 1 to find the rotation matfXk) such that

(Ao(k)P(k),A. (k)P(k)) satisfy the restrictions given by (3).

[1.6. An Example. In this section we provide an example to illustrate how Theod and Algorithm 1 work in practice. To
maximize the clarity of exposition, we consider a thredalale constant-parameter SVAR with one igrhe three variables
are output growthXlogY), the interest rateR), and inflation AlogP). For simplicity, we consider only a single lag so that
A, = A;. There are three identifying restrictions: aggregate dehfAD) shocks have no long-run effect on output, monetary
policy (MP) shocks have no long-run effect on output, and Mécks have no contemporaneous effect on output.

These impulse response restrictions can be expressed@sttietions on the columns &f(-):

MP AD AS
AogY [0 x x|
N R X X X
X (Ao,At) = (Aol,) = logP X X X
(L AlogY 0 0 x
R X X X
logP | X X x|

where zeros indicate exclusion restrictions anihdicates no restrictions. It follows from Theorem 3 thas thystem is exactly
identified. The importance of Theorem 3 lies in its checkaideessary and sufficient condition for determining whether
model is exactly identified. If, for example, we replaced tbsgtriction that MP shocks have no long-run effect on outgth
the restriction that aggregate supply (AS) shocks have nteagporaneous effect on the interest rate, Theorem 3 wellldst
that the model is not identified. Since this alternative tdmation scheme has three restrictions, a direct use ofitttessary
condition given by Rothenberg (1971) would lead to the inectrconclusion that the model is exactly identified.

Returning to the original identification, we can write thetrizesQ; as

100000
Q= andQ, = 000100}.
000100

Since there is no restriction on the third columnXdf), there is ndQs.
For the purpose of walking through Algorithm 1, suppose thdticed-form parameteBsandX are

05 -125 -1 1 05 1
B=| 05 025 0 | andZ=| 05 425 25
0 0 05 1 25 3

13 detailed description of such a permutation is given in Agpeis.

14The illustration can be easily extended to a Markov-switgrVAR.
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To implement Algorithm 1 we need to first compu{gfrom A, implied from a recursive identification scheme and thenteota
them so that restrictions defined By andX (-) hold. The Cholesky decomposition Bf A; = BA;*, andL = (Ag—A,)~*
implies that(A, 1)’ and(L) are given by:

1 00 1 1
AY=]105 2 0| andL)=| -1 1
1 11 0 0
Thus,X () equals:
[ 1 0 O]
05 2 0
x<Ao<k>,A+<k>>:[(A°l<k))/]= b
(L(k)) 1 10
-1 10
| 0 0 2]

It follows from X () andQ; that

- 1 0 O
Q1= QX (Ag,Ay) = [ ] .
1 1 0

The first step in Algorithm 1 is to find a unit length vecmrsuch tha; p; = 0. The most computationally efficient method
of doing this is to employ the LU decomposition @f (1). From a programming standpoint, however, a convenient odeth
to employ the QR decomposition @3.15 Let Q’l = QRwhereQ is orthogonal and is upper triangular. If we choos® to be
the last row ofQ, then

0
Qp=RQp=R| 0 |=0
1

sinceR is lower triangular. Therefore we spi:
P1=

To obtainp,, we form

~_[QZX(AO,A+>]_[1 1 0]
Q2= = -
D, 00 1

As before, taken, to be the last row of the orthogonal component of the QR deostign of(ﬁ’2 to get

0.7071
p2=| —0.7071
0

199 Matlab, the function gr() applied to anx n matrix will return anmx morthogonal matrix and am x n upper triagular matrix. In some applications
wherem < n, however, the “orthogonal” matrix will ben x n and the triangular matrix will ba x n. In this case, one needs to pad the mafixvith a row of

zeros before proceeding as usual.



MARKOV-SWITCHING SVARS 9

To obtainps, we form
« Py 0 0 1

Qg: , =
Py 0.7071 -0.7071 O

Again, takeps to be the last row of the orthogonal component of the QR deositipn of(ﬁ’3 to get

—0.7071
p3=| —0.7071
0

Combining these steps, one obtains the orthogonal matrix

0 07071 -07071
P=|p p ps|=|0 —07071 —07071
10 0

It is straightforward to verify that

X (AoP.AP) =X (Ao, A;)P
satisfies the restrictions. In Appendix B we show that th&ic®ns defined in this example can be permuted into agrisar
system. We then show how a faster algorithm using a single €Rrdposition can be applied to this example.

IIl. THE APPLICATION

In this section, we apply our methods to answering the questi whether monetary policy in the euro area has changed
since the introduction of the European Monetary Union (ENMsipg post-1970 euro-area data.

The process toward forming the EMU was initiated more thages ago. In March 1979 the European Monetary System
(EMS) was established with the objectives of reducing iidftaind preparing for monetary integration. Ten years ltdter
Delors Report set out a plan to introduce the EMU over thragest. The first stage was launched in 1990 to increase cdiopera
among central banks in the euro area. In January 1994 thadstage began with the establishment of the European Mgneta
Institute (EMI) as the forerunner to the European CentralkB&CB). The third and final stage began in January 1999 when
the euro became the single currency for the member statbe efiro area and a single monetary policy was introducedrunde
the authority of the ECB.

In the last decade we have observed that annual inflationdesunder 5 percent while it was well above 10 percent in the
late 1970s and early 1980s, the volatility of output has elesed while its average annual growth rate has remaineduhe, s
and both short-term nominal interest rates and money grbaik been at a record low. Figure 1 displays these facts.

The coincidence of both events (an introduction of the EMU #re lower volatility of prices and output) motivates us to
ask the following questions: Is the decrease in volatilitikéd to (1) changes in monetary policy in the euro area oclfaphges
in the magnitude of shocks hitting the economy?

A researcher giving an affirmative answer to the first quastiould argue that monetary policy has been better in the euro
area since the early 1990s. A researcher giving a positise@nto the second question could maintain the hypotheats th
shocks hitting the euro area have been less volatile in giallcade. Our methodology allows us to distinguish a modal w
time-varying shocks only and a model with time-varying ¢ic&fnts. The results will shed some light on the debate.

Some previous work has studied the effects of the EMU on naopgilicy and macroeconomic volatility in the euro area.
Peersman and Smets (2003) use a SVAR to conclude that thallamacroeconomic effects of monetary policy in the euro
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area have been stable over time. Ciccarelli and RebucciBj20@wever, find that the monetary transmission mechanism
has changed since the late 1990s. Similarly, Angeloni amin&hn (2003) find evidence that the monetary transmission
mechanism has become more potent and homogeneous acrostesdn the EMU, and De Bondt (2002) documents a quicker
pass-through process since the introduction of the euro.

There are two potential shortcomings in the previous studi@st, most of them (except Ciccarelli and Rebucci, 2@Da)
not consider models with time-varying parameters. Insthagl used pre- and post-EMU data by searching for a strdctura
break. Second, none of these studies allowed for the timgngavolatility of shocks.

Dividing the sample into pre- and post-EMU data exacerbtiesmall sample problems. Moreover, the structural break
analysis used to divide the sample rests on the unrealggicaption that the probability of a regime change is eitherar zero.

An event as institutionally complicated as introducing BdU may involve a number of transitional periods with unaarty
about the new monetary system. Equally important, alloiimdheteroscedastic shocks in regime-switching modelslisial
to eliminating the bias toward finding changes in the paramdsee Sims and Zha 2005).

The Markov-switching SVARSs studied in this paper are suitedvoiding these shortcomings. The regimes are treated sto
chastically; the sample does not split because a large numhparameters remain constant across regimes; and hetelastic
shocks are an integral part of the model.

At the same time, our methodology allows us to study a largescof identification schemes to check the robustness of
our results. Specifically, we consider the four widely usaehtification schemes: (1) a recursive system as in Chiistia
Eichenbaum, and Evans (1996), (2) a non recursive system@serdon and Leeper (1994) and Sims and Zha (2005), (3) a
system with both contemporaneous and long-run restrigtimnimpulse responses as in Blanchard and Quah (1993) and Gal
(1992), and (4) a system with sign restrictions on impulspoases as in Faust (1998), Canova and De Nicol6 (2002), and
Uhlig (2005).

The first two schemes impose linear restrictions only on thenans ofAy(k), and therefore, we can use the MCMC method
of Sims and Zha (2005) directly. The third identification escte belongs to a more general class of Markov-switching SVAR
and the Sims and Zha method cannot be applied. Instead, vikaiseethods developed in Section 11.2. A new MCMC method
for the SVARSs identified using sign restrictions is develbpeSection 111.6.

[1l.1. Variation Across Regimes.In our applications we consider three cases of time variafio the Markov-switching
SVARs!® The first case is the constant-parameter SVAR, which is camyngsed in the existing literature.

The second case allovis k) to vary but keeps the reduced-form coefficieB{%) constant across regimes. For structural
parameters in this casAg (K) is allowed to vary buf, (k) must be of the formA, (k) = BA (k), whereB is constant across
regimes. We call this case the variance-only case. The essirictions needed to get the variance-only case aresfisdun
Appendix C.

The third case is the one where bdik) and % (k) are allowed to differ across regimes. In general, the cparding
parameterg\, (k) andA, (k) also change across regimes. If we let every parameter vapgsicegimes, we would have the
over-parameterization problems associated with few @esgoé freedom. Thus, we place restrictions on time variatiotine
manner that only part dk; (k) can differ across regimes. The nature of such restrict®dsscussed in detail in Sims and Zha
(2005) and, for completeness, also in Appendix C. We cal¢hse the all-change case.

16The methods developed in this paper apply to many other typ@mefvariations. See Sims and Zha (2005) for details.
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The comparison of these three types of time variation is mamd because it will allow us to determine whether the data
reflect some structural changes and, if so, whether the eegirange is due to the volatility of shocks or to the shift irepaeter

values.

[1l.2. Data. We use quarterly data form 1970:1 to 2003:4 from the Areaefithdel (AWM) database released by the Euro-
pean Central Bank’ All the variables used in our applications are listed aloritl the variable symbols used by the AWM
database. Output is real GDP in millions of euros with theebamar 1995 (YER). The price level is the GDP deflator with
the base year 1995=100 (YED). The measure of the money stddR in millions of euros® The nominal interest rate is the
short-term interest rate (STN). The nominal exchange sa&iio/$ (EEN). Figure 1 reports the annualized quartengegue
changes for output, prices, M3, and the exchange rate. Téeest rate is plotted as percent in level. Each identifiedehlas
five lags and includes a constant term. Five lags are incltmledntrol for possible seasonal effects that may not haea be
captured by seasonally adjusted data. In the rest of thseate describe each of the four identification schemes tailde

[11.3. CEE Identification. Christiano, Eichenbaum, and Evans (1996) use a recursivifidation scheme to identify mon-
etary policy. We call this identification CEE. Under this mdiéication, the contemporaneous matAx(k) is assumed to be
triangular fork =1,....h. In our application, we use five variables: log GDP (log Yy BDP deflator (log P), the nominal
short-term interest rate (R), log M3 (log M), and log nhomieathange rate (log Ex). We follow Christiano, Eichenbaum,
and Evans and place the variables in the order of log Y, logd°R, log M, and log Ex such that an output shock will affect
output only, a shock to inflation will affect output and inftat, and so ort® Since this identification scheme imposes linear
restrictions only on the columns 8§ (k), we can use the method of Sims and Zha (2005) directly.

[ll.4. GLSZ Identification. Gordon and Leeper (1994) and Sims and Zha (2005) propos¢eanadive identification scheme.
We call this identification GLSZ. Their identification fo@sson the interpretation of the structural equations themse In
particular, they separate the monetary policy equatiomfiioe money demand equation and other non policy equatidms. T
restrictions used to achieve this identification requieegimultaneous (non recursive) relationships betweendiabvariables
such as the interest rate and money. The identification sehemescribed in Table 1 where the same variables are used as
in the CEE identification. Anx in Table 1 means that the corresponding parametégik) for k = 1,...,h is unrestricted,
while zeros indicate exclusion restrictions. The monetaolicy (MP) column in Table 1 represents the Federal Reserve
contemporaneous behavior, the information (Inf) columacdees the financial sector, the MD column correspondseo th
money demand equation, and the block consisting of thedastdlumns represents the production sector (PS), whosbles

are arbitrarily ordered to be upper triangud@mis in the CEE case, this identification scheme imposes lirestrictions only

on the columns ofy(k), and therefore, the MCMC method of Sims and Zha (2005) camppkeal directly.

[11.5. BGQ Identification. Instead of the short-run restrictions discussed aboveydBlard and Quah (1993) use restrictions on
the long-run impulse responses to achieve exact idenidicaf an SVAR. When the system consists of more than two oethre

equations, we often do not have enough long-run restristibat are economically justifiable to achieve exact ideatiiidn.

17see Fagan, Henry, and Mestre (2004) for details.
18The M3 measure of the money stock is not included in the Are@Wlddel (AWM) database. We obtained this variable from theregice series on

monetary aggregates reported by the ECB.
19Appendix D describes in detail this identification schem@&githe notation of Section 11.2.

20Appendix D uses the notation in Section 11.2 to describeittesitification scheme in detail.
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Gali (1992) suggests a combination of contemporaneousargirlin restrictions on impulse responses to get the SVAR
identified. We call this identification schemeBGY).

Almost all SVARs with long-run restrictions use the varibin first difference. Following Peersman and Smets (2003),
we consider a four-variable SVAR with three contemporaseand three long-run restrictions on impulse responsesfoliie
endogenous variables are quarterly output grovdlodY), quarterly inflation AP), the nominal short-term interest rate)(
and quarterly change of the nominal exchange rate eurafd@llogEx). The contemporaneous restrictions are:

e Monetary policy shocks have no contemporaneous effect tpuau
e Exchange rate shocks have no contemporaneous effect ant.outp
e Exchange rate shocks have no contemporaneous effect am¢hest rate.

The long-run restrictions on impulse responses are:

e Aggregate demand shocks have no long-run effect on output.
e Monetary policy shocks have no long-run effect on output.

e Exchange rate shocks have no long-run effect on output.

Recall thatAal(k) andL(k) represent the contemporaneous and long-run impulse resporespectively. Thus, the above
restrictions imply the following exclusion restrictions 8, (k) andL(k):

X X X X X X X X

1 X X X X 0 x x x
Ay~ (k) = , Lk = ; (6)

0 x x x 0 x X X

0 x 0 x 0 x x X

where the symbak means no restriction imposed and zero means an exclustoicties > It can be easily seen from Theorem
3 that the Markov-switching SVAR with the restrictions givey (6) is exactly identified. Using Theorem 3 to check whethe
the model is exactly identified should always be a first step.

To emphasize the importance of Theorem 3, consider thakgadsof assuming that exchange rate shocks have no con-
temporaneous effect on output, we assume that demand shae&sno contemporaneous effect on output. This alternative
identification scheme implies the following set of restdot onAal(k):

0 X x X

1 X X X X
A~ (K) =

0 x x x

x x 0 x

In this case, Theorem 3 implies that the system wadtlbe exactly identified. Since this alternative identificatstheme
imposes the same number of identification restrictions@astie described by (6), a direct use of the necessary camditien
by Rothenberg (1971) would lead to the incorrect conclugian this alternative identification scheme exactly idegithe
model.

2lgyvans and Marshall (2004) use an SVAR model with long-rurrictigins as a benchmark for their general equilibrium model.

2250¢ Appendix D for a detailed description of identificatioplied by matrices (6)
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Because the identification (6) imposes the restrictionép:lﬁ(k) andL(k), the method of Sims and Zha (2005) no longer
applies. We instead use the techniques developed in Sdt&oby drawing the parameters of a recursive system and then
rotating each draw of these parameters to satisfy the cquraneous and long-run restrictions.

[11.6. CDFU ldentification. The identification schemes described in Section 1.2 aredas linear restrictions on transfor-
mations of the structural parameters. An objective in applyhis class of restrictions is to identify monetary pglghocks.
According to the conventional wisdom, a contractionary etary policy shock should raise the interest rate and lowieep.
Successful identification would produce impulse respotissconform to this conventional wisdom, but sometimes thass
of identifying restrictions does not generate such respangaust (1998), Canova and De Nicol6 (2002), and Uhliggp00
propose an alternative approach. Their basic idea is toigeeaestrictions directly on impulse responses to iderif¥ARs.

In response to a contractionary monetary shock, for exartipeinterest rate should rise, while money and prices shiailil
We call this identification scheme CDFU.

The methods developed in Section 1.2 cannot be applied bemause a Markov-switching SVAR with sign restrictions on
impulse responses isot exactly identified. According to Theorem 4, a necessary aiificent condition for a Markov-
switching SVAR to be exactly identified is that for any stagtivalue of (Ao(k),A.(k)) the uniqueP(k) exists such that
(Ao(k)P(K), A (k)P(K)) satisfy the restrictions. In the case of sign restrictitresyever, there exist a number of suefk)’s.

To solve this problem, we develop an efficent MCMC algoritiwinjch can be viewed as a modified version of Uhlig’s
(2005) method? We begin with any Markov-switching SVAR that is exactly idiéied and let(Aq(k), A, (k)) be the model
parameters. We search for an orthogonal mé&(k) such that the impulse responses implied Ay(k)P(k), A (k)P(k)) satisfy
the sign restrictions. The main difference between Uhligigproach and ours is one of efficiency and ease of implenmemtat
Uhlig generates a random orthogonal matrix recursivelymool by column, while we use the following theorem to obtain a

random orthogonal matrix using a single QR decomposition.

Theoremb. Let X be ann x n random matrix with each element having an independent atdnaormal distribution. Let
X = QRbe the QR decomposition &f with the diagonal oR normalized to be positive. The@ has the uniform (or Haar)

distribution.
Proof. The proof follows directly from Stewart (19884 O

Theorem 5 gives us a convenient way of implementing a randbecton of orthogonal matrices to obtain impulse respsnse
that satisfy the sign restrictions. The following algonitidescribes this implementation.

Algorithm 2. (Step 1) Let(Ao (K),A+ (k)) be a draw from the posterior distribution of any Markov-slihg SVAR that is
exactly identified.

(Step 2) Draw an independent standard normaln matrix X and letX = QR be the QR decomposition of with the
diagonal ofR normalized to be positive.

(Step 3) LetP(k) = Q and generate impulse responses fitk)P(k) andB(k).

(Step 4) If these impulse responses do not satisfy the sgiriations, return to Step 3.

23Uhlig’s (2005) method, together with the algorithms of Fad$98) and Canova and De Nicol6 (2002), is briefly describefpendix E.
2Astewart (1980) has even more efficient algorithms for gemegaitniform random orthogonal matrices, but they are lesg$tifarward and more difficult

to implement.
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As a byproduct of this algorithm{Ag(k)P(k), A+ (k)P(k)) is a posterior draw of the structural parameters for the ark
switching SVAR with the sign restrictior?s.

Our algorithm differs from Uhlig’s (2005) method in two aspe (1) all the posterior draws are kept in practice andh@) t
orthogonal matrix is simply a draw from uniform (or Haar)tdisution, whereas Uhlig (2005) searches for it recursiv€hese
two differences make our algorithm more efficient, espgcfal an SVAR system of more than three or four variables.

We consider an SVAR model with the CDFU identification, usihg same five variables as in the CEE and GLSZ cases.
The sign restrictions are:

e In response to an expansionary monetary policy shock, teesist rate falls while money and prices rise.
e Inresponse to a positive shock to money demand, both theegiteate and money increase.

e In response to a positive demand shock, both output andsprise

e Inresponse to a positive supply shock, output rises buegffall.

e Inresponse to a positive external shock, the exchange eatduhtes and output increases.

All the sign restrictions hold for only two quarters. We begiith the CEE identification and use the Sims and Zha method
to generate posterior draws of the model parameters. Fardzaw we use Algorithm 2 to rotate the draw such that the isgul
responses satisfy the sign restrictions.

[lI.7. A Comment on the Variance-Only Models. The variance-only case has received considerable attenttbe literature
(Stock and Watson, 1996, 2003; Canova and Gambetti, 200djderi, 2005; Sims and Zha, 2005, for example). Sims
and Zha (2005) develop the MCMC method for the variance-&\WRs with the CEE and GLSZ identifications. For the
BGQ and CDFU schemes, our MCMC method begins with posterewsl of (A (k) ,A; (k)) under a recursive system with
A, (k) = BAy (K), using the method of Sims and Zha (2005). For each draw, weheselgorithms developed in this paper
to find the rotation matri¥P(k) so that(Ag(k)P(k), A+ (K)P(K)) satisfy the restrictions. Is the resulting rotated drawhef t
variance-only type? Sind®(k) is orthogonal, we have that

and, thus, the answer is yes. This result is crucial becdwsws us to consider variance-only cases under the BGQ and
CDFU schemes.

IV. EMPIRICAL RESULTS

In this section we use the methods described in Section Istimate Markov-swtiching SVARs identified with the four
identification schemes discussed in Section Ill. For ea¢chefour identification schemes we report (1) marginal ih@bds of
the models for the three different types of variation acregimes and different number of states, (2) the postermivaduilities
of the estimated regimes, (3) changes in variances of rediace residuals across regimes, and (4) the impulse regsdo a
monetary shock for the best-fit model under each identificagscheme.

299 theory the algorithm is not guaranteed to terminate. Irctre, we set a maximum number of iterations to be 1000, in whighss(2) through (4)
are repeated. If the maximum is reached, the algorithm shouwl tacstep (1) to draw another set of parameter values. In qlicafion this maximum was

never reached for millions of posterior draws.
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IV.1. Marginal Likelihood. Table 2 reports log marginal likelihoods for the three typemodels under the CEE and GLSZ
identifications: the constant-parameter model, the vagiamly and all-change models with different numbers aest® The
symbolx means that at least one of the states is redundant so thatisheo posterior probability for the redundant state. In
such an over-fitting situation, the standard error for theginal likelihood is quite large but the marginal likelind®are all
below the marginal likelihood for the constant-parametedet.

For both identifications the variance-only model with 2 esatas the highest marginal likelihood and thus is favoreithey
data. As can be seen in Table 2, the 2-state variance-onlgloatberforms all other models by the difference of at I&ast
log value for the CEE identification and more than 10 in logredior the GLSZ identification. The difference of 1 to 4 in log
value means that the two models are competitive, but therdifice of 7 or more implies strong evidence in favor of theehod
with a higher marginal likelihood. Therefore, the data diganply only two regimes in the euro area between 1970 ar@#20
and supports the hypothesis that only the variance of thekshaot the coefficients, vary across regimes.

We obtain similar results for the BGQ and CDFU identificatsmihemes. Table 3 reports log marginal likelihoods for the
same three models under the BGQ and CDFU identifications.r@dts for the CDFU identification are identical to those
of the CEE identification because the model parameters WtlCDFU identification are simply an orthogonal rotationtwf t
model parameters with the CEE identification as discuss&eaation 111.6.

For the BGQ identification, the variance-only model with 8tes is favored by the data. All the variance-only models
reported in Table 3 outperform the constant parameter mamudlthe all-change model by the difference of at least 8 in log
marginal likelihood. We interpret this result as strongdevice in favor of the variance-only specification. Withie #et of
variance-only models, on the other hand, evidence in faf/three regimes is not as strong, since the differences arogng
marginal likelihoods are less than 2. Because of spacedliioit, we present only the 3-state variance-only modelerréist of
this paper, although the other two variance-only modelgqually good.

Overall, evidence from the four identification schemesamifly supports regime changes in the euro area. More impiprta
we find that regime change can be fully characterized by thiavee of the shocks changing across regimes. This result is
robust to different identifications.

IV.2. Regimes. In this section we analyze the estimated posterior proiiaisibf regimes for the best-fit model under each of
the four identifications studied so far. Figures 2 and 3 digjtthe posterior probability of each regime for the 2-staieance-
only model with the CEE and GLSZ identifications. Figure 4othys the posterior probability of each regime for the 3esta
variance-only model with the BGQ identificatidh.

267\l the marginal likelihoods reported in this paper are conepurith a sequence of 6 million MCMC draws, which takes about@@rs on a Pentium-I1V
PC. With 100 repeated runs of sequences from differenirsggubints, the computed maximum of numerical standard erromifmarginal likelihoods is less
than 0.7 in log value. Using the Newey-West (1987) approxiongirocedure, we obtain much smaller numerical standardserféve marginal likelihood for
the constant VAR model is computed using the algorithms destbly Chib (1996) and Waggoner and Zha (2003a). The Matlaé cad be downloaded from
home.earthlink.net/ tzha02/programCode.html. Since the IGl\gorithm for the Markov-switching SVARs is not a Gibbs s#nghe marginal likelihoods
for these models are computed with the modified harmonic meansguoe discussed by Geweke (1999). We have also studied thelsmith other types
of time variation. For example, we have let the coefficientsria or more structural equations (including the monetary p@guation) vary across regimes.
Although the results are not reported in Table 2, the mardikelihoods for all these models are substantially lowenttzose of the variance-only model

with 2 states.
27ps discussed previously, the CDFU regimes are identicaléddBE regimes, and therefore, we report only the results ®CHBE, GLSZ, and BGQ

identifications.
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For both CEE and GLSZ identifications there is one state whemated probability is high and persistent after 1993. We
call this state the EMS regime. The other state is called treEMS regime. There are two important features. First, the
non-EMS regime is concentrated in the 1970-1980 periodlenthe EMS regime has high probability after 1993. Second,
although the EMS regime remains with high probability fomsoyears before 1993, it periodically switches to the nonsEM
regime, probably reflecting periods of uncertainty aboutléamenting the new monetary system (see Ungerer et al. 1390 f
details).

For both identifications, we observe that the non-EMS rediamhigh posterior probability in periods of high output and
inflation volatility, i.e., during both the 1970s and theltulent period of 1992-93 (see Figure 1). On the other hardEMS
regime has high posterior probability in times of low vdigtiof both output and inflation (i.e., the periods after 399Another
feature of the data that distinguishes both regimes is thaser of M3 growth and short-term interest rates. During 1870s
and a large part of the 1980s when the non-EMS regime is mamipent, both interest rates and money growth are well
above 10 percent; since 1993, both variables are below Hepegrand the EMS regime prevails in most of this later period

Between 1980 and 1993 the two regimes switch several tineflgcting the uncertainty associated with the intuitional
changes taking place in the euro area. The probability oEtI& regime, however, begins to increase after 1980, camgid
with the fact that inflation in the euro area declined shaduising the 1980s.

There are three regimes under the BGQ identification. Thieréiggme, called the transitional EMS regime, occurs betwee
the late 1970s and the early 1990s. The second regime, tadl€&tMS regime, becomes dominant after 1993. The third regim
called the non-EMS regime, appears sporadically in theyd®T0s. As is the case for the CEE and GLSZ identificatiores, th
EMS regime is associated with low output and inflation viditsitiOn the other hand, the transitional EMS regime refleatse
of the transition from high inflation in the late 1970s to thelg 1990s. Finally, the non-EMS regime is related to sdvera
isolated events: the rapid increase of inflation during #réyel 970s, the recession in 1975, and the impact of {Hid @vent.

In summary, an EMS regime is consistently estimated sineeséirly 1990s for all the identification schemes. Since this
regime is associated with low volatility of both output andlation, the following section analyzes how variances diieed-
form shocks vary across regimes.

IV.3. Shock Variances across Regimed-or the 2-state variance-only model with the CEE identificgt Table 4 reports
the variance of a reduced-form shock to each variable uralgr ef the two regimes, along with the relative variance s&ro
regimes. The EMS regime is associated with lower volatdityll the reduced-form shocks. In particular, most of tHeife
volatility is due to the fall in the variances of shocks to thierest rate and prices.

Table 5 reports the shock variances for the 2-state varianlyemodel with the GLSZ identification. As in the CEE case,
the EMS regime is associated with a lower volatility of sheotkall the variables, and again, most of the fall in volgtiiccurs
in shocks to the interest rate and prices.

Similar results hold for the shock variances in the 3-statégance-only model with the BGQ identification. As can bensee
from Table 6, the variances of shocks to all the variablesaraller for the EMS regime than for the other regimes, and the
larger reduction in variances is due to shocks to the inteaés and inflatior?®

The EMS regime, a state that we robustly find after 1993, isdbane that has the lowest shock variances in all the macro-
economic variables. Our empirical results clearly supgwthypothesis that the lower macroeconomic volatilityestaed in

28c0r the CDFU identification, the variances of reduced-fonocks are the same as in the CEE case, since an orthogoné&btraation does not change

these shock variances.
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the euro area since the early 1990s is due to smaller shatikglthe economy and, in particular, smaller shocks tortiterest
rate and inflation.

IV.4. Impulse Responseslin this section we analyze how the impulse responses to aamionary monetary shock vary
across regimes for the best-fit model under each identificatiVe also compare these impulse responses to those inglied
the constant-parameter model. In all the figures discusskmivbthe posterior median estimates of impulse respomsas t
one-standard-deviation contractionary monetary shoeldeplayed, along with the error bands containing twodthiof the
posterior probability.

Figure 5 displays the impulse responses for the CEE ideatiific. The first column corresponds to the impulse responses
generated from the constant-parameter model. The secdmehic@orresponds to the EMS regime and the third to the non-
EMS regime. All the columns have a similar pattern of dynaregponses. In response to a contractionary shock to mgnetar
policy, the interest rate rises and money falls (liquidiffeet), output falls (output effect), but the price levedes somewhat
(price puzzle¥® The increase in the price level, although statisticallyiigant, is not economically important as compared
to the responses of prices to other shocks. The impulsemespdor the non-EMS regime are larger than those for the EMS
regime, while the responses for the constant-parameteelnaoe in between. The most important difference betweetwbe
regimes is the effect of a contractionary monetary poliayc&ion the short-term interest rate. Under the non-EMS regira
effect is larger and more lasting.

The above results are robust to the GLSZ identification, parted in Figure 6. The impulse responses for the non-EMS
regime (the first column in Figure 6) are larger than thosdtierEMS regime (the second column), while the responses for
the constant-parameter model (the first column) are in bEtwkn response to a contractionary shock to monetary pahiey
interest rate rises and money falls (liquidity effect),puitfalls (output effect), and the price level falls or stayehanged (no
price puzzle). The main difference from the CEE results & the uncertainty about the dynamic responses is largéthdl
68 percent posterior probability bands are wider than tho$ggure 5. The wider bands imply that the price responses ar
statistically insignificant for both regimes.

Figure 7 displays the impulse responses for the BGQ ideatiific. The posterior point estimates are very similar to the
previous results under different identifications, but thheartainty around the estimates is much bigger. The potimhates
show the usual pattern of responses to a contractionary tavyngolicy shock, but the error bands seem unusually wide an
ill-determined®® This exercise reinforces the importance of accurate eand$. Our results show that it would be misleading
to rely on the point estimates alone.

The impulse responses for the CDFU identification are dysulan Figure 8. Again, the usual pattern of responses to a
contractionary monetary policy holds and there is no pricezfe. The responses under the EMS regime are smaller thae th
under the non-EMS regime. The output effect is smaller ancerancertain for the 2-state variance-only model than thpudu
effect for the constant-parameter model. The variancerdposition for the output effect is less than 20 percent fbtraee
models. This result is consistent with Uhlig’s (2005) fingliof little evidence of output effect for the U,

29The price puzzle still exists when we include commodity pricehe models or when we reorder the variables (for examplendethe interest rate

respond to commodity prices or the exchange rate or both).
30The error bands reported by Peersman and Smets (2003) are niterhbledaved. Note that they have a different sample periddtzeir bands are

generated by only 100 draws. We find that this particulartifleation is quite fragile. For example, if the data for 2008re excluded, the characteristics of

the estimated impulse responses would be completely diffeTéi finding is consistent with that of Faust and Leeper {399
31Uhlig (2005) uses a different set of variables, however. démfifies only monetary policy shocks while we identify fivéfelient shocks. But our results

do not change much when we restrict our identification to mapgtalicy shocks only.
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In summary, the output effects of monetary policy shockshengturo area economy are small relative to the effects of othe
shocks and there is much uncertainty around these effebts.r@sult seems robust across different identificatiomisaamoss
different regimes.

V. CONCLUSION

Long-run restrictions and sign restrictions on impuls@oeses have become popular tools in identifying differanicsural
shocks in the data. Most models with these restrictionseénSIWAR literature are exactly identified according to the eilyd
used necessary condition of Rothenberg (1971). We show@grarn which the necessary condition of Rothenberg (1971)
is satisfied but the model is unidentified. This paper dewepew and implementable necessary and sufficient condition
Markov-switching SVARSs to be exactly identified. This thewaris straightforward to use in practice.

We also develop new and efficient methods for implementimgdaun and sign restrictions in Markov-switching SVARSs.
These methods are important for MCMC algorithms in whichraylsequence of posterior draws is typically needed for the
Markov-switching SVAR model.

We apply our methodology to the euro area data using fourlyigsed identification schemes. Markov-switching SVARs
based solely on time-varying shock variances are stroraglgréd compared to the rest of the time-varying specifinatid\
persistent regime is found after 1993. This regime is aasadiwith low volatility of key macroeconomic variables Buas
output, prices, and the interest rate. The real effects ofatawy policy shocks are small and uncertain across moddla@oss
regimes. All these results are robust to all the identifissiwe study in this paper.

Our methodology and results suggest some directions fardutsearch. One direction is to use our methodology to/stud
monetary transmission processes across countries in therma. Another is to build and estimate a DSGE with timerwar

parameters and variances where Markov-switching SVAR$earsed as benchmark models for model compari$on.

3235ee Fernandez-Villaverde and Rubio-Ramirez (2005) for satzdlsl
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MD | Inf | MP | PS| PS
Y X X 0 X | X
P X X 0| x|O
R | x X X 0| O
M X X X 0|0
Ex| O x| 01]0]O0

TABLE 1. Identification Scheme for GLSZ.

CEE GLSZ
Constant 2271.00 2273.60
States| | | Variance-only| All-change Variance-only| All-change
2 2283.83 2257.49 2291.08 2264.18
3 2277.91 * 2280.47 *
4 2274.93 * 2275.96 *

TABLE 2. Marginal log likelihoods for the three types of acrossimegyvariation for different number of
states under the CEE and the GLSZ identification schemes.

BGQ CDFU
Constant 1697.10 2271.00
States| | | Variance-only| All-change Variance-only| All-change
2 1731.57 1723.71 2283.83 2257.49
3 1733.00 * 2277.91 *
4 1731.77 * 2274.93 *

TABLE 3. Marginal log likelihoods for the three types of acrossimegvariation for dif

states under the BGQ and the CDFU identification schemes.

fferent number of
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FIGURE 2. Posterior probabilities of states for the 2-state vagaonly specification model under the CEE identification.
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FIGURE 3. Posterior probabilities of states for the 2-state vagaonly specification model under the GLSZ identification.



MARKOV-SWITCHING SVARS 23

2
E
8] -
Ko}
e
o
|
1970 1975 1980 1985 1990 1995 2000 2005
EMS regime in transition
1 T T
2
%
8 05F
e
o
0 1 n n [—
1970 1975 1980 1985 1990 1995 2000 2005
EMS regime
1 T T
2
%
8 05 —
e
o
O r— _'.___ T — | L
1970 1975 1980 1985 1990 1995 2000 2005

Non-EMS regime

FIGURE 4. Posterior probabilities of states for the 3-state vagaonly specification model under the BGQ identification.
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Variables EMS Non-EMS | Relative volatility
Y 0.014E-03| 0.042E-03 3.039
P 0.003E-03| 0.016E-03 4.235
R 0.015E-03| 0.064E-03 4.063
M 0.015E-03| 0.028E-03 1.854
Ex 0.553E-03| 1.087E-03 1.963

TABLE 4. Residual variance of the shocks for the 2-state variantgmodel under the CEE scheme.

Variables| EMS Non-EMS | Relative volatility
Y 0.013E-03| 0.039E-03 2.797
P 0.004E-03| 0.014E-03 3.459
R 0.018E-03| 0.052E-03 2.755
M 0.012E-03| 0.028E-03 2.340
Ex 0.551E-03| 1.200E-03 2.175

24

TABLE 5. Residual variance of the shocks for the 2-state variamtgmodel under the GLSZ scheme.

Variables| Early EMS EMS Non-EMS
AY 0.056E-03| 0.013E-03| 0.028E-03
AP 0.009E-03| 0.003E-03| 0.064E-03
R 0.053E-03| 0.013E-03| 0.081E-03
AEX 1.216E-03| 0.663E-03| 1.439E-03

TABLE 6. Residual variance of the shocks for the 3-state variamtgmodel under the BGQ scheme.
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FIGURE5. Impulse responses to a one-standard-deviation mongdéicy shock under the CEE identifica-
tion scheme. The solid line represents the posterior mestiimate and the two dashed lines contain the 68
percent probability based on 500,000 MCMC draws.
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FIGURE6. Impulse responses to a one-standard-deviation mor@téicy shock under the GLSZ identifica-
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FIGURE 7. Impulse responses to a one-standard-deviation monatéicy shock under the BGQ identifica-
tion. The solid line represents the posterior median eséiraad the two dashed lines contain the 68 percent
probability based on 500,000 MCMC draws.
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FIGURE 8. Impulse responses to a one-standard-deviation mongtéicy shock under the CDFU identifi-
cation. The solid line represents the posterior mediamesté and the two dashed lines contain the 68 percent
probability based on 500,000 MCMC draws.
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APPENDIXA. PROOF OFTHEOREM 3

Algorithm 1 shows how to construct an orthogonal maR{k) satisfying the requirements of Theorem 3. That algorithm
required thatank(@i (k)) < n, and the orthogonal matrix produced will be unique, up tostige of each column, if and only
if rank(@i (k)) =n—1. The rank ofQ; (k) will be n— 1 if and only if the span of vectorgy (k) ,--- , pi_1 (k) constructed in
Algorithm 1 intersect with the span of the rows(:gf(k) only at the origin. One can show, though we do not explicitysd here,
that this condition will be violated on at most a set of measaero. This proves that iink(Q;) = n—i, then the normalized
Markov-switching SVAR is exactly identified. What remaindi®shown is that if the normalized Markov-switching SVAR is
exactly identified, themank(Q;) = n—i. We proceed via a sequence of lemmas and corollaries.

Theorem 4 implies that if a normalized linearly identified fkav-switching SVAR is exactly identified, then for almodit a
structural parameter@y (k) ,A; (k)) there exists a unique orthogonal matRik) such that(Aq (k) P(k),A (K) P(k)) satisfy
the linear restrictions. The following lemma implies thaiséence holds for all structural parameters, while unitgss is still
only guaranteed for almost all structural parameters.

Lemmab. If a normalized linearly identified Markov-switching SVAR éxactly identified, then for every structural parameter
(Ao (k),A (k) there exists an orthogonal matfXk) such that Ag (k) P(k), A, (k) P(k)) satisfy the linear restrictions.

Proof. Suppose that there exists a structural paraméigfk) ,A; (k)) such that there is no orthogonal matR¥k) such that
(Ao (k) P(k), Ay (k) P(k)) satisfy the linear restrictions. We show that there is ama®U about(Ag (K) , A+ (k)) such that for
every (Ao (k),A. (k) € U there is naP(k) such that(Aq (k) P(k),A. (k)P(k)) satisfy the linear restrictions. Since open sets
have positive measure, this contradicts Theorem 4.

If there were no such open g8t then there would exist sequendg (k) , Al, (k)) andP'(k) such that A} (k) , A’ (k)) con-
verges taAq (k) ,A; (k)), P'(K) is orthogonal, andAy (k) P (k), Al, (k) P'(k)) satisfy the linear restrictions. Since tRek) are
elements of a compact space, some subsequence convergesrtioogional matrip (k). But since(A} (k) P'(k), A, (k)P (k))
satisfy the linear restrictions, so w{lhg (k) P(k), A+ (k) P(k)), which is a contradiction. O

Lemma?. For 1<i<k<n, letVj be a subspace @&". If for every invertiblen x n matrix A, there exists an orthonormal set
{v1,---, W%} in R" such that; € AV, then there exists awith 1 < j <k and dimV;) > k.

Proof. Given a subspace/ of R" and ¢ € R, let Ay be the linear transformation that fix®¢ and maps each in the
perpendicular component @f to eu. If dim (Vi) < kfor 1 <i <k, then using the following three statemen#/ande > 0 can
be constructed such thajy ¢ violates the conditions of the lemma. So it suffices to prénefollowing.

(1) Ifdim(V;) <k, then there exists a subspad¢ef R" of dimensionn —k+ 1 such thatl NV; = {0}.
(2) LetW be ak— 1 dimensional subspace Bf'. There exists & > 0 such that there cannot kerthonormal vectors in
the set

Svs ={w+ueR"lweWand|ul| < d}.
(3) LetU andV be subspaces @&" such thatU NV = {0} and letW be the perpendicular complementldf For every
6 > O there exists & > 0 such that for alk < yif ve AyV and||v|| = 1, thenv € Sy 5.

(1) If dim (Vi) < k < n, then eachV is of measure zero iR", as will be the union of th¥,. So there exists g that is not
contained in any,. If k= n, then the one-dimensional subspace generated B/the required subspace.Ki n, then letV,
be the subspace generated\pyandu;. Since dirr(\7i) < k+1 < n, by the same measure argument as before, there will exist
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au, that is not contained in the union of the If k= n— 2, then the two-dimensional subspace generatead landus, is the
required subspace. This argument can be continued untdliala- - - ,u,_k. 1 has been constructed for the required subspace.
(2) Suppose there wesg,-- -, Vi in Sy 5 that were orthonormal. Since theare inSy 5, write vi = w; + Ui wherew; € W
and|ui|| < 0. LetX be then x k matrix [ wy --- wg | andletY bethenxkmatrix | v; -+ v } Because thevare in a
k— 1 dimensional space, the mat%X is singular and because thare orthonormaly’Y is thek x k identity matrix. Because
0 can be chosen to be arbitrarily smadlX can be made to be arbitrarily close to the identity matrixicltis a contradiction.
(3) If this were not true, then there would existda> 0 and a sequence of and & such that theg tend to zero and
Vi € AwgV, Vil = 1, andv; ¢ Sy 5. Becaus&) andW are perpendicular componengscan be uniquely written ag = u; +w;
whereu; € U andw; € W. Since||vi|| = 1 andu; andw; are orthogonal|w; || < 1. Sincev; ¢ Sy 5, ||Ui]| > 0. Sincev; € Ay gV,
gliui +w; € V. Dividing by the norm, we see that

Ui + Wi cv

2 2
Ui [+ &7 1w |

Since this is a bounded sequence, some subsequence mustgenrince|u; || is bounded away from zerdw; || is bounded
above, and is closed, the convergent subsequence must converge tozermelement df NV, which is a contradiction. [J

LemmaB. For 1<i <k<n, letVi be a subspace &" with dim(V;) < --- <dim (V). The following statements are equivalent.
(1) For every invertiblen x n matrix A there exists an orthonormal sgti, - - - , v} such that; € A\V.
(2) For1<i <k, dim(M) >i.

Proof. (1)=(2). Proceed by finite induction do Whenk = 1, the result is trivially true. Now suppose that<£1(2) for some
k <n. Let(Vq,---Vkr1) be a sequence of subspaces of non decreasing dimensiorhau¢h)tholds. By Lemma 7, we know
that dim(Vk;1) > k+ 1. Since (1) holds fofVy,---Viy1), (1) will also hold for(V4,---Vk). This implies that for I< i <Kk,
dim(V) >i. This, combined with the fact that difw 1) > k+ 1, shows that (2) holds.

(2)=(1). Assume that (2) holds and l&tbe any invertiblen x n matrix. Since dinjAV;) > 1, there exists a vecteg € A4
of unit length. Now suppose that an orthonormal @ql; - 'V]’} has been chosen so thatc A for 1 <i < j. LetU be the
n— j dimensional subspace &" consisting of vectors orthogonal {(yl, Y } Since din(AVHl) > j+1, the intersection
of U andAVj, 1 contains a non zero vector. Lt 1 be any element dfl N AV}, 1 of unit length. Then{vl, . 'Vi+1} is a set of
orthonormal vectors with;, € Af for 1 <i < j+1. So (1) holds.

O

Corollary 9. For 1<i <n<m, letQ; be a matrix withm columns withrank(Q1) > --- > rank(Qy). LetX be a full rankmx n
matrix such thatank(Q;X) = rank(Q;). The following are equivalent.

(1) For every invertiblen x n matrix A there exists @ x n orthogonal matriP such that;X A~1Pg = 0.

(2) Fori<i<n,rank(Q) <n-—i.

Proof. The corollary is a simple restatement of Lemma 8 wkenn. Define
Vi = {veR"|QXv=0}.

Since QXA 'Pg = 0 if and only if Pg € AV, (1) is equivalent to (1) of Lemma 8. Since diM) = n—rank(Q;X) =
n—rank(Q;), (2) is equivalent to (2) of Lemma 8.
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We can now complete the proof of Theorem 3. Assume that thealared linearly identified Markov-switching SVAR is
exactly identified. Let there be a set of structural paramsetach thatank(Q;X (Ag(k),A+(k))) = rank(Q;). By permuting
the equations of the original system, we can assume withsatdf generality that the linear restrictions on the colsiofiX ()
satisfy the conditiomank(Q1) > --- > rank(Qy). Since the model is assumed to be exactly identified, Lemmapéies that
for every invertible matrixC there exists an orthogonal matisuch thai{ Aq(k)CP, A (k)CP) satisfy the linear conditions. So

0 = QX(A(KICRA,(KICP)e
~ QX (Ao(k).A(K)) DPa

whereD = C if condition (1a) holds an® = (C’)’l if condition (1b) holds. In either case, conditiori)(@f Corollary (9) holds,
sorank(Q;) < n—i. The rank conditions of Rothenberg (1971) imply that in faetk(Q;) = n—i. This completes the proof
of Theorem 3.

APPENDIXB. ANALYSIS OF TRIANGULAR SYSTEMS

Algorithm 1 gives us a way to find the matriXk) for a general class of linear restrictions. Most restricsizised in the
literature are exclusion restrictions. If these resticsi meet certain conditions, we have an even more efficigotitim for

determining the matri®(k). Such conditions are described by the following definition.

Definition10. Identifying restrictions of the form of (3) atdangular if the following condition holdsQ; X (Aq (k) ,A; (k)) €j =
0 if and only if there is a permutation matii of the rows ofX (Ag (k) , A+ (K)) and a permutation matri of the columns of
X (Ao (K),A, (k)), such that the permuted matixX (A (k) , A, (k)) P, is lower triangular.

If exclusion restrictions are triangular, Algorithm 1 camflorther improved, so that the orthogonal matrix given bgdriem
4 can be found using a single QR decomposition as descriltbeé iiollowing theorem.

Theoremll. Suppose the identifying restrictions are triangular andPleand P, be the permutation matrices that make the
restrictions triangular. For £ k < h, let (Ag(k),A+ (K)) be a set of structural parameters coming from the recurdieati-
fication. Using the QR decomposition f@P, X (Ag (K), A, (K)))', write PLX (Ag (K), A, (K)) = Tp (k) Ps(k) wherePs (k) is an
orthogonal matrix and (k) is lower triangular. The structural parametéfs (k) P (k),A; (k)P (k)) for P(k) = Ps(k)' P/
satisfy the restrictions.

Proof. Because of condition (1) on the transformatit),
X (Ao (K)P(K), Ay (k)P (K)) = X (Ao (k) , A (k) P (K)

So

PiX (Ao (K) P (k) , Ay (K) P (k) P2 PiX (Ao (K), A (k) P (K) P,
= TL(KPs(K)Ps(K) PP,

= T(k

which implies that the rotated paramet&r&?o (k) P (k) , A+ (k) P (k)) satisfy the restrictions. O
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The illustration of section 11.6 is continued. In that exdehe restrictions were of the form

AlogY
R
logP
AlogY
R
logP

MP AD AS

X

1
X X O X X O

X X O X X
X x X x x X

To rotate this into a triangular form, the first and third cohs need to be interchanged and the fourth row needs to be made

the first row. This implies that

P =

o O o ~» O
o O » O O
o »r O O O
o O O O -
O B O O O O

0 0 0O

0
0
0 0 1
0
0andF’z:01o
100
0
1_

are the required permutation matrices. As in that exampeyalk through the algorithm for a single state and so supyhes

indexk. The reduced-form parametedBsaand were given and theAy andA, were computed via a Cholesky decomposition,

i.e., theAg andA, are a set of structural parameters coming from a recursemtification. The transformatiod (Ao, A} ) is

X (Ao, Ay) =

The QR decomposition dPyX (Ag, A, ))’ gives

—-0.7071 —-0.70710 O
-0.7071 Q7071 O
0 0 1

P

The required rotation iB = P;P,, which is equal to

1
0.5

-
SO r F P N O

andT,. =

N O Ok O O

[ —1.4142
—0.7071
—~1.7678
—1.4142

0
0

0 -0.70710 —-0.7071

P=RR=10

1

0.7071
0

It is easy to verify thaX (AgP, A P) satisfies the restrictions.

—0.7071
0

0
—0.7071
10607
0
14142
0

N ©O » O O o
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APPENDIXC. THE REGIMES

In this section we describe the three types of parameteati@mni across regimes considered in this paper. First, wa sho
the likelihood function of model (1) when identified usingdar restrictions on columns 8§(k). Second, we detail the three
types of parameter variation across regimes. Third, werilesthe three prior distributions that implement the vi@oiaacross
regimes. Finally, we describe the three implied posteristritutions and how to draw from them.

It is important to note that, in principle, the three typesvafiation of parameters across regimes can only be comsider
when the model is identified using linear restrictions orunwis ofAy(k), i.e., when it is possible to use the methods described
by Sims and Zha (2005). As shown in section IV.2, when a dramfa Markov-switching SVAR exactly identified using
linear restrictions on columns @& (k) is rotated to consider a more general set of restrictioresthhee types of variation
across regimes still hold. Therefore, these three typesuapeter variation across regimes are general enough toptiech
to all the identification schemes analyzed in this paper.

C.1. The Likelihood Function. In this section we describe how to evaluate the likelihoadtifie Markov-switching SVAR
defined by (1) when identified using linear restrictions olugms ofAg(k).

Forj=1,...,nandk=1,...,h, let theg; x n matrix Qj, whereq; < n, define theg; restrictions over thg!" column ofAy,
then linear restrictions on columns Af(k) can be written as:

QjAo(k) € = 0.

Let aj o(k) be a column of\g(k), then the former restriction can be written in the followingy:

Qjajo(k) =0,
LetU; be then x g; matrix whose columns form the orthonormal basis for the spdice 0Q;. Then,Q;ja;o(k) = 0 if and
only if 3 aqg; x 1 vectorbj(k) such that
aj’o(k) = Uj bj (k)
Finally, forj=1,...,n, let
bj = [bj (1),...,bj (h)'],
b= [blv'“abnv]
and
U=[Ug....u"

Note the following three points. First, any setag(k) andQj for j =1,...,nandk=1,... himplies a set otJ; andb (k)
forj=1,...,nandk=1,...,hand vice versa. Therefore, it is equivalent to defining thedr restrictions using eithay (k)
andQj or U; andbj (k). This implies that we can evaluate the likelihood functi@ther usingQ; anda; o(k) or U; andbj (k).
We follow the second approach.

Let us define:

d; (k) = a4 (k) = Sg0(K),
fork=1,...,handj=1,...,n, where

S= “r/1><nv0/(m—n)><n]/
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andm=np+1.
Now let

forj=1,...,n
Finally, let

d=1[dy,...,dn.

Note that anydy andd imply a matrixA .. Therefore, for any giveld, the matriced andd imply the matrice®y andA,..
Thus, we can write the likelihood function using eitigrandA.. or b andd. We choose the first option.

Now, if we define
Y'=ly1...%)', and

for all t, we can write the conditional likelihood function as follew
Given the restriction matrild, the conditional likelihood functiorg (y;[Y'~,5,b,d), is

n
n(yt|Y‘*1,st,b,d) O det| [Uiby(s)...Unbn (s)]|exp Z UJ'/SUjbj(S[)‘|

2

1 n / -
exp|— +(S—R)Ujbj (s)) Ht (d;j () + (S—R) Ujb; (st))],
J:l
where
H'[ = X{Xh
R = Htilxt,yt)
and

S =yt —RHR.

Next, following Kim and Nelson (1998), we can write the lilkedod functionrt(Yr|b,d). Hence, given the restriction matrix
U, the likelihood functionsz(YT[b,d, M), is

T h
n(YT|b,d,M) 0 I—l{ S [m(ye[Y',5,b,d) Pr(s Ytl,b7d7l'l)]}
t= s=1

where

h
Pr(s|Y'",b,d,M) = 5 m(s|s-1)Prs-a[Y'" b,d,M)
s=1

and Pts_1|Y'"1 b,d, M) is updated using the Bayes riffe.

33We initialize the system setting @|Y°,b,d, M) = Pr(so|b,d,M) = 1/h.
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C.2. Modelling Regimes. If we let all the parameters vary across regimesndd can be estimated independently across
regimes. Therefore, we could use the methods used by ChB6Y1® perform the model estimation. The problem is
that a Markov-switching SVAR with four to seven endogenoasiables and one-year lag length would suffer the over-
parameterization problems associated with few degreeseetibm. Hence, we define three sets of priors that restrct th
variation of parameters across regimes. First, we conpitlars that impose a constant-parameters model, i.e.,assaegime
variation. Second, we contemplate priors that only allogvréduced-form variances of the shocks to change acroseasgi
Finally, we also use priors that imply that both structuralgmeters and structural variances can change acrosseegiine
actual priors for each of the cases are defined in subsect®inli€Cthis section we just highlight the main differencesoam
the three sets of priors and their implications for acroggme variation. In order to do that, we first rewrite the paetens
defining model (1) in the following way:

ai.j.0(k) =3aj0&j (K @Kk,

dij.o (K) = di & (K)Aij (K),
and
¢j (k) =T &j (k) Hj (k)

fori,j=1,...,nandk=1,... h. Notice that writing the parameters this way already impa@seestriction on cross-regime
variation. We restrict the cross-regime variatiordp$ince we do not allow for variation between lags (i ¢ (k) = d; j (k)
for¢/,¢=1,...,p)). This restriction is common to the three cases consideseg h

e Constant-Parameters Cas&hese priors imposé&; (k) = 1, @ j(k) = 1, A j(k) = 1, andpj(k) =1 fori,j=1,...,n
andk=1,....h. Therefores; j o (k) = jo(k), di j (k) =di ¢ (k), andcj (k) =Tj fori,j=1,...,nandk=1,...,h.
This case corresponds to the constant-parameters VAR$ywisled in the literature.

e Variance-Only CaseThese priors impos@ j(k) = 1, A j(k) = 1, anduj(k) =1 fori,j=1,...,nandk=1,...,h.
Therefore, we can write; j o (k) = j0éj (k), di j¢ (k) = Hi‘jj;fj (k), andcj (k) =Tjéj (k) fori,j=1,...,nandk =
1,...,h. These restrictions imply th&(k) does not change across regimes.

¢ All-Change CaseThese priors imposgj(k) = 1,380 =1, andc; = 1 fori,j=1,...,nandk = 1,...,h. Therefore
ajok)=a,(k),d (k) =dijeA; k), andc; (k) =c;j (k) pj (k) fori, j=1,...,nandk=1,...,h. These restrictions
imply that the reduced-form parameters and variances ehacigpss regimes.

C.3. The Priors. In this appendix we specify the details of the priors usechapaper. First, we describe the priorsion
common to the three cases. Then, we describe the priors gathmeters that differ across the three cases.

The priors on the transition matrikl, take a Dirichlet form, as suggested by Chib (1996). For thecklumn off1, 7%, the
prior density isT(7%) = (o, . . . Thy) O klk_l ... k”k_l. We choosaejj fori, j=1,...,nas described in Sims and Zha (2004).
Basically, we setyjj for i, j = 1,...,n such that the average duration of each state is around sexgtecs, independently of
the number of regimes.

Now let us describe the priors on the parameters that diffeyss the three cases. Before proceeding, we introduce a few

new notations. Let, be a column vector afi ones. Let

AO - [51,07 .. 7én,0]a
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whereg; g is an x 1 vector of the form:
3j0=1[a1j0.---,3nj0 forall j.
Now let
& =1[6,....&nl,
whereéj is ah x 1 vector of the form:
& =1&(1),....& (h) forall j.
Let

whereg; is anhx 1 vector of the form:
@ =[gQD),....¢ (0], forall j,

whereg; (k) is an x 1 vector of the form:

@ (K) = [@nj(K),....en (k)] forallkand allj.

Define also
—/

d=d,....d,

whered; is amx 1 vector of the form:
dj=[d|4,....dj ., forall j,
whered; ; is an x 1 vector of the form:
dj¢=[dijs,...,dnj] forall¢andallj.

Let

A =[A1,..., A0,
whereA| is anhx 1 vector of the form:
Aj=[A{(1),....,A] ()] forall j,
whereA| (k) is an x 1 vector of the form:

Aj(K) = [Arj (K),....Anj (k)] forall j and allk.

Let
M= {1, kn],
wherey; is ah x 1 vector of the form:
i = (1 (1), pj (D)) forall j.
Then we can write
ajo=; (§j®3a)0),
where
®; = diag ({®; ()}, )
and
®; (K) = diag({@1; (K)}i_,)

36
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Finally, we can also write

dj =Aj (§@d)),
where
. h
A :d|ag<{/\j (k)}kzl),
lo@A; (K)  Onpx
/\j (k) _ p® ) ( ) npx1 7
01><np H;j (k)
and

A; () = diag ({Ai (K)},).

We are now ready to specify the priors corresponding to alttses. We begin with the all-change case and work backward
to the constant-parameters case.

C.3.1. All-Change Caselet ¢j = ¢y, @j,0 = Gy, andcj = 1 for all j. Then
aj0 = Pj¢n= @ forall j,

dj =Aj (¢h®dj) forall j,
and
cj = j forall j.
Let the priors on the contemporaneous parameters of thelpragdenow be:
m(aj0) = (@) =0 (0,Ih®Hjp) forall j,
whereH; o is set following the procedure described in Sims and Zha4200
Since
@ = (Ih®U;j)b;, forall j,
that implies priors or; of the form:
m(b;) =0 (0,Hjpo),
where
Fio=(Uf (e H;3) U,-)fl

Let the priors on the lagged and constant parameters of taelntg, now be:
m(dj) =0 (0,H;j ) forall j,

m(Aj) =0 (0,(Ih®1n) oy) forall j,
and
m(yj) =0 (0,lh@o?,) forall j,
whereH; . is set following the procedure described in Sims and Zha4paf), = 50, andoj , is set in the same way as

Hj+.

)
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C.3.2. Variance-Only Caselet ¢ = ¢y, Aj = ¢, andp; = 1 for all j, then

ajo= ¢ ®ajpforall j,

d; = & ®d; for all j,
and
cj =Cj¢; forall j.
Let the priors on the contemporaneous parameters of thelpadenow be:
m(ajo) = 0 (0,Hj) forall j,

whereH; g is set following the procedure described in Sims and Zha4200
Since

§j@aj0= (In®Uj)b;, forall j,
that implies priors ot; of the form:
m(by]&) =0 (0.Hjo).
where
~ ~ -1
Hio=Yin® (UH3U;)
and
L2 HMED .. D&M
o §2&1)  §27 ... §2¢&h)
Yih= . . _ .
GMED §MEED ... &)’
Let us define the priors on the lagged and constant parantétérs model. We have:
m(dj) =0 (0,Hj 4) forall j,
and:

n(cj) = 0(0,0j) forall j,

whereH;_ andgj¢ are set following the procedure described in Sims and Zh@4R0
Finally, let priors oré; (k) be defined ovel; (k) = Ejz(k) as:

m(; (k) =T (az,B;) forallkandj.

wherea; = 1 andB; = 1.

38
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C.3.3. Constant-Parameters Cas&et & = Gy, ¢ = G, Aj = G, andyj = 1 for all j, then

aj0= ¢G®ajgforall j,

dj = gy@d; forall j,
and
cj =c; forall j.
Let the priors on the contemporaneous parameters of thelpa@enow be:
m(ajo) =0 (0,Hj) forall j,

whereH; o is set following the procedure described in Sims and Zha4200
Since
G ®aj0=(Inh®@Uj)bj, forall j,
that implies priors ot of the form:

ﬂ(bj) =0 (07 |:|\J',0) s

where
. . ~1
Hj,O:Yj7h®(Uj/HjT(}Uj) ,
and
1
~ 1
Yj,h:
11 ... 1

Let the priors on the lagged and constant parameters of telntg, now be:
m(dj) =0 (0,H;j ) forall j,

whereH; , is set following the procedure described in Sims and Zha42dEinally, let us consider the priors @t

n(cj) =0(0,0j¢) forall j,

wheregj ¢ is set in the same way &§ o.

C.4. Posterior. In this section we briefly describe our procedure to draw ftbenposterior of the structural parameters of
model (2). Because of space considerations we refer theréa8ims and Zha (2004) for a detailed discussion of thespiost
distributions implied by the priors described in sectio @d how to draw from them. Suffice it to say that we are intetes
in the following posterior distributions:
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m(S'YT,b,d, @A, u,M)
m(nYT",b,d, @, A, u,S")
(@A, ulYT,b,d,S", M)
m(blYT.d, @ A, u,S", M),

whereS' = (s1,...,Sr) andd, @, A, andu are defined in section C.3. We also use standard MCMC to dramv fhese
posterior distributions and the modified harmonic mean (MHdéscribed in Gelfand and Dey (1994) and Geweke (1999), to
compute the marginal likelihood. We use Geweke’s (20053 guares to check the convergence of the posterior draws.

APPENDIXD. THE IDENTIFICATION SCHEMES

In this section we use the notation of section 1.2 to desctiitvee of the identification schemes used in the paper.

D.1. CEE. In order to write the CEE in the notation of section 11.2 weXgt) be equal to (4) and consider the following set

OfQjZ

(0 1 0 0 0
00100

Q1=
00010
000 0
0 1 0
Q= 0
i 0 1
0

Qs =
1

and

Q4=00001]

D.2. GLSZ. In order to write the GLSZ in the notation of section 1.2 wéXd-) be equal to (4) and consider the following
set ofQ;:

O

w

I
o O
o +—» O
= O O,
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0
Q1=
0
and
01 0 0O
0 01 0O
Qs =
0O 00O 1O
0 0 0 0 1

D.3. BGQ. In order to write the BGQ in the notation of section 11.2 weXgt) be equal to (5) and consider the following set
of QJ'Z

0010000 d
0001000 d
Q=10 0 0 0 01 0 ¢
00000GO01d
0000000 g

and

Q=[0 0100000

APPENDIXE. EXISTING METHOD TO ESTIMATE SIGNED RESTRICTEDSVARS

Faust (1998), Canova and De Nicolé (2002), and Uhlig (20@&Etproposed an alternative approach to impose sign re-
strictions directly on impulse responses themselves tatiigeSVARS. For example, in response to a contractionaryetary
shock the interest rate should rise, while money and pricesld fall. Although Faust (1998), Canova and De Nicol6 200
and Uhlig (2005) start from the same idea, they implememt different ways. In this section, we first briefly describe #p-
proaches of Faust, Canova and De Nicol6, and Uhlig, highiigithe problems of applying these approaches to our simtch
model.

E.1. Faust Method. Faust (1998) presents a way to check the robustness of dnyfotan an SVAR. All possible identifica-
tions are checked searching for the one that is worst forlHimgsubject to the restriction that the identified SVAR gwoes
the impulse response functions with the “correct” sign.

Faust (1998) shows that this problem is equivalent to sghén eigenvalue problerﬁ{\ioﬁ times, whereR is the
number of sign restrictions arfd = maxn— 1,R). As Faust (1998) recognizes, this method may not be feafibliarge
problems, like the one analyzed here.
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E.2. Canova and De Nicol6 Method. Canova and De Nicolé (2002) also identify SVARSs using impuissponse sign restric-

tions. Their method is based on the following theorem:

Theoreml12. Let P (nx n) be an orthogonal matrix. Then a unique seldtiéé.,j}'fziﬂ}{‘;ll exists, where 6< 6 ; < 2 if
j=i+land-m/2< 6 <m/2if j >i+1, such that*

n-1 n
P=T1 T] Q.i6)
i=1j=i+1
or
n-1 n
P=S[ 1 Qi (6.)
i=1j=i+1
where
1 0 O
S:
0 1 0
0 0 -1
and
I col i col j 1
! |
1 0 0 0
Q,;(6j)=| rowi— 0 --- cos(@;) --- -—sin(G;j - O
rowj— 0 --- sin(6;) --- cos(f; --- O
i 0o -- 0 0 1
Proof. The proof follows from Algorithm 5.2.2 of Golub and Van LoalBQ6). |

Using theorem 12, Canova and De Nicol6 (2002) identify SVARS the following algorithm:

Algorithm 3.
(1) Begin with a triangular SVAR system.
(2) Draw the system parameteéfg(k) andB(k) from the posterior distribution.
(3) Determine a grid on the set of all orthogonal matrices.
(4) Perform a grid search to find an orthogonal mafk), such that the impulse responses generated fg()P(k) and

B(k) satisfy all the sign restrictions.

34n Canova and De Nicol6 (2002), the notatiQn; (0) is used wherd is implicitly assumed to vary with differemtandj.
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Theorem 12 allows for different ways to design a grid, buthese the space of all orthogomek n matrices is a(n—1) /2
dimensional space, any grid that divides the intefvat/2, 77/2] in M points’™® implies a search ovetM"("1/2 points in the
space of all orthogonal x n matrices>® Thus, it is not feasible to perform this grid search for lavgies ofn and/orh.

E.3. Uhlig’'s Methods. Uhlig (2005) proposes another method to identify SVARs baseimpulse response sign restrictions.
His method also draws from the set of posterior orthonormetrices, such that the impulse response sign restrictiolts h
using the following algorithm:

Algorithm4.

(1) Begin with a triangular SVAR system.

(2) Draw the system parametekg(k) andB(k) from the posterior distribution.

(3) Drawn independent standard normal vectors of lengénd recursively orthonormalize them. CRB[K) the resulting
orthonormal matrix.

(4) Generate the impulse responses frtk)P(k) andB(k).

(5) If these impulse responses do not satisfy the sign ctistns, keep the draw. Otherwise discard it.

This method is feasible for large models like the one we aadimgwith in this paper. In fact, the method we propose i$ jus
a more efficient version of Uhlig’s approach.

35%0r the interval—, 11 in 2M points.

36Theh term comes from the fact that we have to find B&) for h regimes.
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