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1 Introduction

This paper provides a theoretical analysis of normative fiscal policy in a business cycle model
with the recursive preferences of Epstein and Zin (1989) and Weil (1990). I consider the stochas-
tic growth model with technology and government expenditure shocks and complete markets.
Lump-sum taxes are not available. Instead, there are proportional taxes on capital and labor in-
come. Distortionary taxes give rise to an optimal policy problem, where a benevolent planner
chooses taxes and debt under commitment in order to maximize the utility of the representative
household.

Time and risk play a central role in optimal fiscal policy. The policymaker has to decide
whether to tax in the current period or postpone taxation by issuing debt, and how to respond
to shocks that affect the government budget constraint. These two dimensions of the policy
problem are encoded in asset prices, which are central to the policymaker since they inform him
about the desirability of debt and therefore the extent to which he should resort to distortionary
taxation.

As is well known from Epstein and Zin (1989) and Weil (1990), standard time-additive ex-
pected utility, by forcing the coefficient of risk aversion to be equal to the inverse of the coeffi-
cient of intertemporal elasticity of substitution, fails to make a distinction between smoothing
over time and smoothing over states and imposes indifference to the temporal resolution of
uncertainty. This feature, besides being theoretically unappealing, may also result in an artifi-
cially low market price of risk, a fact that has popularized the use of recursive preferences in
the macro-finance literature.1 However, the implications of the distinction between time and
risk for the analysis of optimal policy are not known. This is the task of the current paper.

The basic lessons about optimal taxation over the business cycle with time-additive expected
utility come from the work of Chari et al. (1994) and Zhu (1992). These studies prescribe for
essentially zero ex-ante taxation of capital income and essentially constant labor taxes. An addi-
tional result is that labor taxes inherit the stochastic properties of exogenous shocks, and thus
optimal taxes do not constitute a distinct source of persistence in the economy.

These results are overturned in an economy with recursive preferences. There is a novel
incentive for taxation at the intertemporal margin and for variation of taxation at the intratem-
poral margin. Moreover, labor taxes persist independently of the stochastic properties of the
exogenous shocks.

The crucial element in the analysis is the excess burden of distortionary taxation, a multiplier
that captures how the planner wants to allocate distortions over states and dates. The opti-
mal policy prescription with time-additive expected utility is to spread the welfare distortions
over states and dates equally by making this multiplier constant. Instead, I find that the excess
burden of taxation with recursive preferences is time-varying and persistent, which is the reason

1See for example Tallarini (2000), Bansal and Yaron (2004) and Hansen et al. (2008).
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why the results of Chari et al. (1994) and Zhu (1992) do not hold.
I provide explicit formulas for optimal capital and labor taxes that clarify the role of pref-

erence parameters and decompose the incentives for taxation in terms of elasticities of period
marginal utilities and the time-varying excess burden. In particular, optimal ex-ante capital
taxation depends on the change of elasticities and the change of the excess burden of taxation,
whereas optimal labor taxation depends on the level of elasticities and the level of the excess
burden of taxation. Therefore, with time-additive expected utility, a case which is nested in the
paper’s framework, the ex-ante capital tax is zero and the labor tax constant when period elas-
ticities are constant. Instead, with recursive preferences, these are exactly the cases where the
entire action at the intertemporal and intratemporal margin is coming from the time-varying
excess burden of taxation.

The reason why the planner does not want to make the excess burden of distortionary tax-
ation constant becomes clear if we consider the dynamic tradeoffs involved. Facing a fiscal
shock, the planner has to decide whether to tax or to postpone taxation to the future by issuing
state-contingent debt. An increased amount of debt for a particular contingency next period en-
tails on the one hand a marginal cost, since increased debt in the future will have to be paid back
with future distortionary taxes, and a marginal benefit, since it allows less taxes today. These
are the only two tradeoffs with time-additive expected utility. Equating the marginal benefit
with the marginal cost leads to a constant excess burden of distortionary taxation. This is true
for both a deterministic time-additive economy and a stochastic time-additive expected utility
economy.

However, with recursive preferences, the planner must also consider the impact of increased
debt positions on an additional component of the stochastic discount factor, namely continu-
ation values, and acknowledge the resulting price affects. Increased debt leads to a reduction
in utility, which increases the prices of state-contingent securities when there is preference for
early resolution of uncertainty. This is beneficial in states where the government has a relatively
large state-contingent debt position, since selling claims to consumption next period at a high
price allows a lower tax rate in the current period. But it is harmful in states where the gov-
ernment has a relatively small state-contingent debt position (or assets), since the government
buys claims to consumption at a high price, forcing it to tax more in the current period.

The fact that, with a preference for early resolution of uncertainty, an increase in debt be-
comes less costly, makes the planner shift the excess burden and therefore tax distortions to-
wards contingencies for which he issues debt and away from contingencies where he buys
assets.2 Moreover, government insurance with complete markets typically involves hedging
adverse shocks like high government expenditure shocks or low technology shocks by pur-
chasing state-contingent assets, and issuing state-contingent debt for favorable shocks like low

2The opposite holds with a preference for late resolution of uncertainty. Preference for early resolution of
uncertainty is typically needed to capture asset-pricing facts, making it empirically the most relevant case.
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government expenditures shocks or high technology shocks. Therefore, the incentive to shift
tax distortions towards contingencies for which debt is issued results in a negative correlation of
changes in labor taxes with government expenditures and a positive correlation with technology
shocks.

I show that the inverse of the excess burden of distortionary taxation is a martingale with
respect to a continuation-value adjusted measure, inducing persistence to the policy variables
and to the optimal allocation. This is in contrast to the results of Lucas and Stokey (1983)
who show that in an economy without capital the labor tax, if it varies, inherits the stochastic
properties of the exogenous shocks. Chari et al. (1994) have shown quantitatively that this
result survives in an economy with capital. With recursive preferences though, optimal labor
taxes become persistent independent of the properties of the exogenous shocks.

Policy-induced persistence has also implications for the debt positions of the government.
Since optimal policy calls for larger taxes when debt is issued and smaller taxes when assets are
purchased, and since taxes are persistent, there is a corresponding relatively large increase in
absolute value in the present value of future surpluses and thus an increase in absolute value
in debt.

Related literature. The main references on optimal taxation with time-additive expected util-
ity are Chari et al. (1994) and Zhu (1992). The model I build reduces to the standard business
cycle model analyzed in these studies, if I equate the risk aversion parameter to the inverse
of the intertemporal elasticity of substitution parameter, and to the deterministic economy of
Chamley (1986) and Judd (1985), if I shut off uncertainty.3 Whenever appropriate, I show how
the analysis specializes to an economy without capital as in Lucas and Stokey (1983).

Other related studies include Farhi and Werning (2008), who analyze the implications of
recursive preferences for private information setups and Karantounias (2013), who analyzes
optimal taxation in an economy without capital, in a setup where the household entertains
fears of misspecification but the fiscal authority does not.

I follow a recursive formulation along the lines of Kydland and Prescott (1980) by keeping
track of wealth in marginal utility units (or debt in marginal utility units in an economy without
capital), a state variable that is redundant in the time-additive expected utility case, assigning
therefore a novel role to wealth. This formulation succinctly summarizes the effects of recursive
preferences in terms of the excess burden of taxation. There are similarities in spirit with the
analysis of risk-sharing under recursive preferences, as in Anderson (2005), which leads to time-
varying Pareto weights.

Another relevant line of research is the analysis of optimal taxation with time-additive ex-
pected utility and restricted asset markets as in Aiyagari et al. (2002), Farhi (2010) and Sleet and

3It is worth noting that Chamley demonstrated the generality of the zero capital tax result at the deterministic
steady state by using the preferences of Koopmans (1960).
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Yeltekin (2006). In these studies the lack of insurance markets also causes the planner to allocate
distortions in a time-varying and persistent way. However, the lack of markets implies that the
planner tries to decrease taxes and debt when good shocks are realized and increase taxes and
debt when bad shocks are realized. Instead, the opposite happens in the current paper with
preference for early resolution of uncertainty.4 More generally, with incomplete markets, the
planner would like to make the excess burden of taxation constant but he cannot, whereas with
complete markets and recursive preferences he could in principle make it constant, but does
not find it optimal to do so.

The paper is organized as follows. Section 2 lays out the economy and section 3 sets up the
Ramsey problem, its recursive formulation and derives the associated optimality conditions.
The heart of the paper resides in section 4, which analyzes the excess burden of distortionary
taxation. The implications for capital and labor taxes are derived in section 5 and a simple
illustration is provided in section 6. Finally, section 7 concludes and an Appendix follows.

2 Economy

Time is discrete and the horizon is infinite. As Chari et al. (1994) and Zhu (1992) do, I use
the stochastic growth model with distortionary labor and capital income taxation, with the ex-
ception of recursive preferences. The economy is populated by a representative household
that consumes, works, accumulates capital and trades in complete asset markets. There is
uncertainty in the economy stemming from exogenous technology and government expen-
diture shocks, that is captured by s. The variable s takes values in a finite or countable set.
Let st = (s0, s1, ..., st) denote the partial history of shocks till time t and let πt(st) denote the
probability of this history. The initial shock is assumed to be given, so that π0(s0) = 1.

2.1 Preferences

The representative household derives utility from random sequences of consumption {c} ≡
{ct(st)}t≥0,st and leisure {l} ≡ {lt(st)}t≥0,st . The notation denotes that consumption and leisure
at time t are measurable functions of the history st. There is one unit of time to allocate between
labor and leisure, thus labor is ht(st) = 1− lt(st). The household ranks consumption and leisure
plans following a recursive utility criterion of Kreps and Porteus (1978). In particular, let Vt
denote the household’s utility at time t. Vt follows the recursion

Vt = W (u(ct, 1− ht), µt(Vt+1)). (1)

4Furthermore, with incomplete markets, the excess burden of taxation is a martingale with respect to the risk-
adjusted measure in contrast to the martingale characterization in this paper.

5



The household derives utility from a composite good that consists of consumption and
leisure, u(ct, 1−ht), and from the certainty equivalent of continuation utility µt ≡ φ−1(Etφ(Vt+1)),
whereEt denotes the conditional expectation operator given information at twith respect to the
measure π, and φ(.) is an increasing and concave function that is capturing atemporal risk aver-
sion. The time preference of the household between the composite good today and the certainty
equivalent of continuation utility is captured by the time aggregator W (.).

I focus my analysis on the isoelastic preferences of Epstein and Zin (1989) and Weil (1990)
(EZW henceforth), and use a constant elasticity of substitution time aggregator and a power
utility certainty equivalent. In particular, EZW preferences take the form

Vt = [(1− β)u(ct, 1− ht)1−ρ + β(EtV
1−γ
t+1 )

1−ρ
1−γ ]

1
1−ρ , (2)

where u is assumed to be positive. The parameter 1/ρ captures the intertemporal elasticity
of substitution between the composite good and the certainty equivalent of continuation utility,
whereas the parameter γ represents risk aversion with respect to atemporal gambles in contin-
uation values. These preferences reduce to standard time-additive expected utility when ρ = γ.
Furthermore, they take into account the temporal resolution of uncertainty and can exhibit pref-
erence for early (ρ < γ) or late (ρ > γ) resolution of uncertainty, whereas with expected utility
(ρ = γ) there is indifference to the temporal resolution of uncertainty.

It is useful for later purposes to bear in mind the monotonic transformation vt ≡ V 1−ρ
t −1

(1−β)(1−ρ)
,

which will be called the ρ-transformation.5 The utility recursion (2) becomes in this case

vt = Ut + β

[
Et[1 + (1− β)(1− ρ)vt+1]

1−γ
1−ρ

] 1−ρ
1−γ − 1

(1− β)(1− ρ)
, (3)

where U(ct, 1 − ht) ≡ u1−ρt −1

1−ρ , with respective derivatives Ui = u−ρui, i = c, l. For the rest of the
paper, I refer to U and Ui, i = c, l as period utility and period marginal utility of consumption and
leisure respectively.

Of particular interest is the case when the intertemporal elasticity of substitution becomes
unity, ρ = 1. Then (2) becomes Vt = u1−β

t µβt , and applying the ρ-transformation for ρ = 1,
vt = lnVt

1−β , we get the recursion

vt = lnut +
β

(1− β)(1− γ)
lnEt exp

[
(1− β)(1− γ)vt+1

]
, (4)

which for γ > 1 has the interpretation of a risk-sensitive recursion with risk-sensitivity pa-

5 Applying the respective γ-transformation f(V ) ≡ V 1−γ−1
(1−β)(1−γ) on (2) delivers the representation used in Weil

(1990).
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rameter σ ≡ (1− β)(1− γ).6

It will be useful to define

mt+1 ≡
V 1−γ
t+1

EtV
1−γ
t+1

, t ≥ 0, (5)

with m0 ≡ 1. For ρ = 1, the corresponding definition is mt+1 = exp[(1−β)(1−γ)vt+1]
Et exp[(1−β)(1−γ)vt+1]

. Note
that mt+1 is positive since Vt+1 is positive and that Etmt+1 = 1. So mt+1 can be interpreted as
a change of measure of the conditional probability density πt+1(st+1|st), or, in other words, a
conditional likelihood ratio. Similarly, define the product of the conditional likelihood ratios as

Mt(s
t) ≡

t∏
i=1

mi(s
i), (6)

with the normalizationM0 ≡ 1. This object has the interpretation of an unconditional likelihood
ratio and is a martingale with respect to measure π. I refer to πt ·Mt as the continuation-value
adjusted measure.

2.2 Competitive equilibrium

Let the technology in the economy be captured by a constant returns to scale production func-
tion F and let kt+1(st) denote capital at the beginning of period t+ 1 as function of information
at t. The resource constraint in the economy takes the form

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)). (7)

Household’s problem. The representative household consumes ct(st), works ht(st) at wage
rate wt(st), accumulates capital kt+1(st) that depreciates at rate δ and can be rented at rental
rate rt(st), pays proportional labor income taxes with rate τt(st), capital income taxes with rate
τKt (st), and trades in complete asset markets. The household’s problem is to choose {ct(st), ht(st),
kt+1(st), bt+1(st+1)}t≥0,st to maximize

V0({c}, {h})
6More generally, in the case of risk-sensitive preferences, the period utility function is not restricted to be log-

arithmic and the recursion takes the form vt = Ut + β
σ lnEt exp(σvt+1), σ < 0. There is an intimate link between

the risk-sensitive recursion and the multiplier preferences of Hansen and Sargent (2001) that capture the deci-
sion maker’s fear of misspecification of the probability model π. See Strzalecki (2011) and Strzalecki (2013) for a
decision-theoretic treatment and an analysis of the relationship of ambiguity aversion with the temporal resolution
of uncertainty.
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subject to

ct(s
t) + kt+1(st) +

∑
st+1

pt(st+1, s
t)bt+1(st+1) ≤ (1− τt(st))wt(st)ht(st)

+[(1− τKt (st))rt(s
t) + (1− δ)]kt(st−1) + bt(s

t),

the non-negativity constraints for consumption and capital ct(st), kt+1(st) ≥ 0 and the feasibility
constraint for labor ht(st) ∈ [0, 1], where k0 and b0 are given. The variable bt+1(st+1) stands for
the holdings at history st of an Arrow security that delivers one unit of consumption next period
if the state is st+1 and zero units otherwise. This security is traded at the price pt(st+1, s

t) in units
of the history-contingent consumption ct(st).

The household is also facing a no-Ponzi-game condition that takes the form

lim
t→∞

∑
st

qt(s
t)
[
kt+1(st) +

∑
st+1

pt(st+1, s
t)bt+1(st+1)

]
≥ 0, (8)

where qt(st) ≡
∏t−1

i=0 pi(si+1, s
i), with the normalization q0 ≡ 1. In other words, qt stands for the

price of an Arrow-Debreu contract at t = 0.
Define the after-tax gross return on capital as

RK
t+1(st+1) ≡ (1− τKt+1(st+1))rt+1(st+1) + 1− δ.

By a no-arbitrage argument we can show that the price of this return has to be unity

∑
st+1

pt(st+1, s
t)RK

t+1(st+1) = 1. (9)

This relationship will be also derived as an optimality condition of the household.
The no-Ponzi game condition (8) together with the no-arbitrage condition (9) allows us to

derive the intertemporal budget constraint of the household at t = 0,

∞∑
t=0

∑
st

qt(s
t)[ct(s

t)− (1− τt(st))wt(st)ht(st)] ≤ RK
0 k0 + b0.

Firms. A price-taking firm operates the constant returns to scale technology. The firms rents
capital and labor services and maximizes profits. Factor markets are competitive and therefore
profit maximization leads to wt = FH(st) and rt = FK(st).

Government. The government taxes labor and capital income and issues state-contingent
debt in order to finance the exogenous government expenditures. The dynamic budget con-
straint of the government takes the form

8



bt(s
t) + gt(s

t) = Tt(s
t) +

∑
st+1

pt(st+1, s
t)bt+1(st+1),

where

Tt(s
t) ≡ τt(s

t)wt(s
t)ht(s

t) + τKt (st)rt(s
t)kt(s

t−1),

the total tax revenues of the government. When bt > 0, the government borrows from the
household and when bt < 0, the government lends to the household. The respective asymptotic
condition that leads to the intertemporal budget constraint of the government is

lim
t→∞

∑
st+1

qt+1(st+1)bt+1(st+1) ≤ 0. (10)

This condition has the interpretation that the government should not have debt at infinity.

Definition 1. A competitive equilibrium with taxes is a stochastic process for prices {p, w, r}, an allo-
cation {c, h, k, b} and a government policy {g, τ, τK , b} such that:

• Given prices {p, w, r} and taxes {τ, τK}, the allocation {c, h, k, b} solves the households’s problem.

• Given {w, r}, firms maximize profits and therefore wt(st) = FH(st), rt(st) = FK(st).

• Markets clear

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)).

• The government budget constraint and the asymptotic condition (10) hold.

2.3 Characterization of competitive equilibrium

I am now in the position to characterize the competitive equilibrium. The labor supply decision
is governed by

Ul(s
t)

Uc(st)
= (1− τt(st))wt(st), (11)

which equates the marginal rate of substitution between consumption and leisure with the
after-tax wage. The first-order condition with respect to an Arrow security equates its price to
the household’s intertemporal marginal rate of substitution,

9



pt(st+1, s
t) = βπt+1(st+1|st)

(
Vt+1(st+1)

µt(Vt+1)

)ρ−γ
Uc(s

t+1)

Uc(st)
(12)

= βπt+1(st+1|st)mt+1(st+1)
ρ−γ
1−γ

Uc(s
t+1)

Uc(st)
,

where the second line uses the definition of the conditional likelihood ratio (5). The change
of measure Mt allows also a concise expression for the price of an Arrow-Debreu contract at
t = 0, qt(st) = βtπt(s

t)Mt(s
t)
ρ−γ
1−γ Uc(s

t)
Uc(s0)

.
Turning to the first-order condition with respect to capital, we have

1 = β
∑
st+1

πt+1(st+1|st)
(
Vt+1(st+1)

µt(Vt+1)

)ρ−γ
Uc(s

t+1)

Uc(st)
RK
t+1(st+1),

which, together with (12), delivers the no-arbitrage condition.7 Furthermore, at the opti-
mum the two asymptotic conditions (8) and (10) have to hold with equality, which lead to two
transversality conditions with respect to capital and Arrow securities

lim
t→∞

∑
st

βtπt(s
t)Mt(s

t)
ρ−γ
1−γUc(s

t)kt+1(st) = 0 (13)

lim
t→∞

∑
st+1

βt+1πt+1(st+1)Mt+1(st+1)
ρ−γ
1−γUc(s

t+1)bt+1(st+1) = 0 (14)

The stochastic discount factor St+1 with EZW utility is

St+1 ≡ β

(
Vt+1

µt

)ρ−γ
Uc,t+1

Uct
= βm

ρ−γ
1−γ
t+1

Uc,t+1

Uct
. (15)

The disentanglement of risk aversion and intertemporal elasticity of substitution (ρ 6= γ) in-
troduces continuation values scaled by their certainty equivalent µt into the stochastic discount
factor. As a result, besides caring for the short-run (Uc,t+1/Uct), the household cares also for the
“long-run”, in the sense that the entire sequence of future consumption and leisure will directly
affect its intertemporal marginal rate of substitution today.8

7In order to derive the household’s optimality conditions we need to calculate the derivatives of the util-
ity index with respect to consumption and labor. The derivative with respect to ct+i can be calculated recur-
sively from the relationship ∂Vt

∂ct+i
= ∂Vt

∂µt

∂µt
∂Vt+1

∂Vt+1

∂ct+i
, i ≥ 1. Similarly for labor. Therefore, we have ∂V0

∂ct
=

(1−β)V ρ0 β
tπtM

ρ−γ
1−γ
t Uct and ∂V0

∂ht
= −(1−β)V ρ0 β

tπtM
ρ−γ
1−γ
t Ult. For the ρ-transformation we have ∂v0

∂ct
= βtπtM

ρ−γ
1−γ
t Uct

and ∂v0
∂ht

= −βtπtM
ρ−γ
1−γ
t Ult.

8 Bansal and Yaron (2004) and Hansen et al. (2008) have explored ways of making the intertemporal profile of
consumption quantitatively important in order to increase the market price of risk.
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It is crucial to understand how continuation values affect the stochastic discount factor in
the case of recursive preferences. Consider the derivative of the stochastic discount factor with
respect to Vt+1,

∂St+1

∂Vt+1

= (ρ− γ)β
Uc,t+1

Uct
m

ρ−γ
1−γ
t+1 V

−1
t+1[1− πt+1(st+1|st)mt+1].

The sign of the derivative of St+1 depends on the preference for early or late resolution of
uncertainty, (πt+1(st+1|st)mt+1 < 1 according to the change of measure). An increase in continu-
ation value leads to a decrease in the stochastic discount factor in the case of preference for early
resolution of uncertainty (ρ < γ). Therefore, the price of an Arrow security decreases. To state it
differently, an agent who would have high utility at st+1 would require a higher return in order
to hold a claim to one unit of consumption at this contingency. In the case of preference for late
resolution of uncertainty (ρ > γ), an increase in continuation value would lead to an increase in
the price of the state-contingent claim and therefore to a decrease in the required return.

States next period are interconnected through the certainty equivalent µt, which depends
positively on continuation values (∂µt/∂Vt+1 = πt+1(st+1|st)(Vt+1/µt)

−γ > 0). Therefore, an in-
crease in continuation value at state s̄t+1 6= st+1 will affect the stochastic discount factor through
the certainty equivalent and therefore the price of an Arrow security at state st+1. To see that, let
V̄t+1 ≡ Vt+1(s̄t+1, s

t) and compute the derivative of the stochastic discount factor with respect to
V̄t+1 to get

∂St+1

∂V̄t+1

= (γ − ρ)β
Uc,t+1

Uct
m

ρ−γ
1−γ
t+1 V̄

−1
t+1πt+1(s̄t+1|st)m̄t+1,

where m̄t+1 corresponds to the likelihood ratio at s̄t+1. Thus, an increase in continuation value
at s̄t+1 6= st+1, by increasing the certainty equivalent µt, is increasing (decreasing) the price of an
Arrow security at st+1 when there is preference for early (late) resolution of uncertainty.

Both of these mechanisms of affecting asset prices through continuation values are impor-
tant for understanding the Ramsey plan. We will see later that they provide the means of
optimally affecting the market value of the household’s wealth (Arrow securities plus capital)
and, as a result, the dynamic tradeoffs that the planner is facing when he tries to minimize the
welfare cost of distortionary taxation.
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3 Ramsey problem

I formulate the Ramsey problem under commitment. The problem of the planner is to choose at
period zero the competitive equilibrium that maximizes the utility of the representative house-
hold. I follow the primal approach of Lucas and Stokey (1983) and eliminate taxes and equi-
librium prices from the competitive equilibrium conditions. As a result, the problem of the
planner reduces to a problem of choosing allocations that satisfy the resource constraint (7) and
implementability constraints, i.e. constraints that allow the optimal allocation to be implemented
as a competitive equilibrium.

3.1 Implementability constraints

I am going to work with the household’s wealth Wt, which consists of the holdings of Arrow
securities bt and capital wealth RK

t kt,

Wt(s
t) ≡ bt(s

t) +RK
t (st)kt(s

t−1). (16)

Given the above definition, we can recast the household’s budget constraint in terms of
wealth. In particular, note that

∑
st+1

pt(st+1, s
t)Wt+1(st+1) =

∑
st+1

pt(st+1, s
t)[bt+1(st+1) +RK

t+1(st+1)kt+1(st)]

=
∑
st+1

pt(st+1, s
t)bt+1(st+1) + kt+1(st),

by using the no-arbitrage condition (9). Therefore, the household’s dynamic budget constraint
becomes

ct(s
t) +

∑
st+1

pt(st+1, s
t)Wt+1(st+1) = (1− τt(st))wt(st)ht(st) +Wt(s

t).

Using now (11) and (12) to eliminate labor taxes and equilibrium prices and multiplying by

marginal utility of consumption leads to

UctWt = Ωt + βEtm
ρ−γ
1−γ
t+1 Uc,t+1Wt+1, (17)

where

12



Ωt ≡ Uct[ct − (1− τt)wtht] = Uctct − Ultht. (18)

The variable Ωt stands for consumption net of after-tax labor income, in period marginal utility
of consumption units. Note that Ωt is a function of consumption and labor only, Ωt = Ω(ct, ht).
We can summarize this discussion in terms of a proposition:

Proposition 1. The Ramsey planner faces the following implementability constraints:

UctWt = Ωt + βEtm
ρ−γ
1−γ
t+1 Uc,t+1Wt+1, t ≥ 1

Uc0W0 = Ω0 + βE0m
ρ−γ
1−γ
1 Uc,1W1

where W0 ≡
[
(1 − τK0 )FK(s0, k0, h0) + 1 − δ

]
k0 + b0, ct, kt+1 ≥ 0, ht ∈ [0, 1] and (k0, b0, τ

K
0 , s0)

given. Furthermore, the two transversality conditions (13) and (14) have to be satisfied. The conditional
likelihood ratios mt+1, t ≥ 0, defined in (5), are endogenously determined by continuation values that
follow the recursion (2).

Complete markets allow the collapse of the household’s dynamic budget constraint to a
unique intertemporal budget constraint. However, maintaining the dynamic budget constraint
of the household is convenient for a recursive formulation. Note that the initial tax on capital
income τK0 acts like a lump-sum tax. I am abstracting from this channel for tax revenues and
take τK0 as exogenously given.

A consumption-labor-capital allocation (c, h, k) that satisfies the resource constraint (7) and
the constraints of proposition 1 can be implemented as a competitive equilibrium by recover-
ing prices {p, w, r}, tax rates {τ, τK} and government debt policies {b} from the household’s
optimality conditions and budget constraints. Note that, as Zhu (1992) and Chari et al. (1994)
have shown, we can recover in a unique way only the labor tax τ , whereas there is multiplicity
of capital tax and debt policies {τK , b} that can implement the same allocation as a competitive
equilibrium with prices {p, w, r}. The reason behind this result is that an implementable allo-
cation {c, h, k} uniquely determines only the household’s wealth Wt, which can be generated by
a multiplicity of capital tax and debt policies through (16). However, it is well known that we
can uniquely determine the ex-ante tax rate on capital income τ̄Kt+1(st), which is restricted to be
function of history st and will be the subject of the subsequent analysis,9

9The ex-ante tax rate is associated with the ex-post tax rate through the relationship

τ̄Kt+1(st) =

∑
st+1

pt(st+1, s
t)rt+1(st+1)τKt+1(st+1)∑

st+1
pt(st+1, st)rt+1(st+1)

.
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τ̄Kt+1(st) ≡
∑

st+1
pt(st+1, s

t)
(
rt+1(st+1) + 1− δ

)
− 1∑

st+1
pt(st+1, st)rt+1(st+1)

. (19)

Definition 2. The Ramsey problem is to maximize at t = 0 the utility of the representative household
subject to the implementability constraints of proposition 1 and the resource constraint (7).

3.2 Recursive formulation

I follow the methodology of Kydland and Prescott (1980) and break the Ramsey problem in
two subproblems, which are stated in the Appendix: the problem from period one onward and
the initial period problem. For that purpose, let zt denote the household’s wealth in period
marginal utility units, zt ≡ UctWt, and rewrite the dynamic implementability constraint (17) as

zt = Ωt + βEtm
ρ−γ
1−γ
t+1 zt+1, t ≥ 1.

It will be useful for later purposes to define ωt ≡ Etm
ρ−γ
1−γ
t+1 zt+1. The variable ω appears in the

right-hand side of the dynamic implementability constraint and is instrumental in the interpre-
tation of the Ramsey plan. It can be roughly thought of as the market value of the household’s
wealth, since ωt = Uct

β
EtSt+1Wt+1.

I represent the commitment problem from period one onward recursively by keeping track
of the natural state variables (kt, st) and wealth in marginal utility units zt, that captures the
commitment of the planner to his past promises. Note that wealth in marginal utility units is
a forward-looking variable that it not inherited from the past. This creates the need to specify
Z(s, k), the space where z lives. The set Z(s, k) represents the values of wealth in marginal
utility units that can be generated from an implementable allocation when the initial shock is s
and capital k and is defined in the Appendix. Let V (z1, k1, s1) denote the value function of the
planner’s problem from period one onward, where z1 ∈ Z(s1, k1). Assume that the exogenous
shocks follow a Markov process with transition probabilities π(s′|s).

Bellman equation. The functional equation that determines the value function V (.) takes the
form

V (z, k, s) = max
c,h,k′,z′

s′

[
(1− β)u(c, 1− h)1−ρ + β

[∑
s′

π(s′|s)V (z′s′ , k
′, s′)1−γ] 1−ρ

1−γ
] 1

1−ρ

subject to
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z = Ω(c, h) + β
∑
s′

π(s′|s) V (z′s′ , k
′, s′)ρ−γ[∑

s′ π(s′|s)V (z′s′ , k
′, s′)1−γ

] ρ−γ
1−γ

z′s′ (20)

c+ k′ − (1− δ)k + gs = F (s, k, h) (21)

c, k′ ≥ 0, h ∈ [0, 1] (22)

z′s′ ∈ Z(s′, k′) (23)

The variables k′ and z′s′ stand for capital and wealth in marginal utility units. The notation
z′s′ captures the fact that the planner is choosing wealth next period at state s′, which is a conse-
quence of the complete markets assumption.

The nature of the Ramsey problem is fundamentally changed because, in contrast to the case
of time-additive utility, the value function shows up in the dynamic implementability constraint
and in particular in the determination of the market value of wealth ω. This is due to the fact
that continuation values determine the stochastic discount factor as we saw earlier. Thus, there
is an essential non-linearity in the state variable z in the dynamic implementability constraint.

Initial period problem. The initial value of the forward-looking variable z1 that was taken as
given in the formulation of the planner’s problem from period one onward is chosen optimally
in order to maximize the utility of the household at t = 0. In this sense, the variable z is a
pseudo-state variable, i.e. a jump variable that is treated as a state variable in order to capture
the commitment of the planner to the optimal plan devised at the initial period. Furthermore,
the problem at the initial period is different from period one onward due to the presence of the
initial debt and capital (b0, k0) and to the exogenously fixed tax rate on initial capital income
τK0 . As a result, the overall value of the Ramsey problem and the initial period policy functions
(c0, h0, k1, z1) depend on (b0, k0, s0, τ

K
0 ).

3.3 Optimality conditions

It turns out that is easier to derive the optimality conditions of the problem by using the ρ-
transformation of the value function, v(z, k, s) ≡ V (z,k,s)1−ρ−1

(1−β)(1−ρ)
. The transformed Bellman equa-

tion is stated in the Appendix.
Let Φ and λ be the multipliers on the dynamic implementability constraint and the resource

constraint respectively of the transformed problem and letm′s′ denote the conditional likelihood
ratio, which obviously depends on the value function. Note that at the optimal solution the
multipliers will be functions of the state, Φ = Φ(z, k, s) and λ = λ(z, k, s). The first-order
necessary conditions for an interior solution at points of differentiability of the value function
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are

c : Uc + ΦΩc = λ (24)

h : −Ul + ΦΩh = −λFH (25)

k′ : λ = β
∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ vk(z

′
s′ , k

′, s′) + βΦ
∂ω

∂k′
(26)

z′s′ : π(s′|s)m
′ ρ−γ
1−γ
s′ vz(z

′
s′ , k

′, s′) + Φ
∂ω

∂z′s′
= 0 (27)

The variables Ωi, i = c, h stand for the partial derivatives of Ω with respect to consumption
and labor. The derivatives of the market value of wealth ω with respect to capital and wealth in
marginal utility units in (26) and (27) take the form

∂ω

∂k′
= (1− β)(ρ− γ)

∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ vk(z

′
s′ , k

′, s′)η′s′ (28)

∂ω

∂z′s′
= π(s′|s)m

′ ρ−γ
1−γ
s′

[
1 + (1− β)(ρ− γ)vz(z

′
s′ , k

′, s′)η′s′
]
, (29)

where

η′s′ ≡ V ′ρ−1
s′ z′s′ − µρ−1

∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ z′s′ . (30)

The variable η′s′ is crucial for the interpretation of the Ramsey plan and will be analyzed
in detail later. The variable µ stands for the certainty equivalent and V ′s′ is shorthand for
V (z′s′ , k

′, s′).10 Using (28) and (29), the first-order conditions with respect to k′ and z′s′ are fi-
nally becoming

k′ : λ = β
∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ vk(z

′
s′ , k

′, s′)[1 + (1− β)(ρ− γ)η′s′Φ] (31)

z′s′ : vz(z
′
s′ , k

′, s′) + Φ
[
1 + (1− β)(ρ− γ)vz(z

′
s′ , k

′, s′)η′s′
]

= 0. (32)

The initial period optimality conditions which determine the initial allocation (c0, h0, k1) and
the optimal initial value of the state variable z1 as functions of (b0, k0, s0, τ

K
0 ) are stated in the

Appendix.

10I use the non-transformed value function V (which is equal to [1 + (1− β)(1− ρ)v]
1

1−ρ ) in the definition of η′s′
as matter of convenience, since it allows a more compact exposition of the first-order conditions.
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Envelope conditions. The envelope conditions for the endogenous state variables are

vz(z, k, s) = −Φ (33)

vk(z, k, s) = λ(1− δ + FK). (34)

Note that Φ ≥ 0 and that λ > 0 so that vz(z, k, s) ≤ 0 and vk(z, k, s) > 0.11

Economy without capital. It is easy to see how the analysis specializes to an economy without
capital as in Lucas and Stokey (1983). In that case, the resource constraint reads ct(st) + gt(s

t) =

at(s
t)ht(s

t), where at(st) captures the technology shock. Following the same steps as in the
economy with capital, under Markov shocks we can express the commitment problem recur-
sively by keeping as a state variable (z, s) and solving for a value function v(z, s). Since there
is no capital, zt is defined as debt in marginal utility of consumption units, zt ≡ Uctbt and Ωt,
which is consumption net of after-tax labor income in marginal utility units, is also equal to
the primary surplus of the government in marginal utility units. Furthermore, ω captures the
market value of the government portfolio of Arrow securities in an economy without capital. So
the recursive formulation goes through with a dynamic implementability constraint as in (20),
a resource constraint c + gs = ash and sets Z that depend only s. At time zero the value of
the pseudo-state variable z1 is optimally chosen, given the initial realization of shocks s0 and
the initial government debt b0. As a result, the respective first-order conditions for period one
onward are (24), (25), (32), with FH = as.

4 Excess burden of distortionary taxation

The main object of the analysis is the multiplier Φ, which captures the shadow cost of the con-
straints that the competitive equilibrium imposes in the second-best world. In particular, as the
envelope condition (33) shows, Φ captures the cost of an additional unit of wealth in marginal
utility units. It is a cost, because increases in wealth (debt and capital) have to be accompanied
by an increase in distortionary taxation. In a first-best world with lump-sum taxes available, Φ

would be zero. For that reason, I refer to it as the excess burden of distortionary taxation.

11I am implicitly assuming that the government has access to lump-sum transfers, so that the dynamic imple-
mentability constraint takes the form zt ≤ Ωt + βωt. Furthermore, note that the definition of the sets Z(s, k) can
be sharpened by considering as a lower bound negative positions z that involve no transfers and support the
first-best allocation.
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4.1 Price effect of continuation value

Changes in z′s′ affect through continuation values the market value of the household’s wealth
portfolio ω. To facilitate the analysis, I will drop the “marginal utility” qualifier and will refer
to z′s′ simply as wealth.

Consider the first-order condition (32), which captures the dynamic tradeoffs that the plan-
ner is facing when z′s′ is increased, and decompose it into three terms:

vz(z
′
s′ , k

′, s′)︸ ︷︷ ︸
MC of increasing z′

s′

+ Φ︸︷︷︸
MB of relaxing IC

+ (1− β)(ρ− γ)vz(z
′
s′ , k

′, s′)η′s′︸ ︷︷ ︸Φ

EZW term: price effect of z′
s′ (+/-)

= 0. (35)

The first-order condition equates the marginal costs and benefits of increasing z′s′ . An in-
crease of z′s′ at shock s′ has a marginal cost since it is associated with more taxation in the future
(vz(z′s′ , k

′, s′) < 0) but it entails also a marginal benefit by relaxing the implementability con-
straint and allowing therefore less taxation today. These are the first and second terms respec-
tively in (35) and the only two terms that are relevant if we were in the time-additive expected
utility world of Chari et al. (1994) and Zhu (1992) where ρ = γ. In that case, the optimality
condition would reduce to

−vz(z′s′ , k′, s′) = Φ,

which – by using the envelope condition with respect to z (33)– implies that Φ′s′ = Φ for all
values of the state (z, k, s). Thus, in the case of time-additive expected utility, the planner would
optimally make the excess burden of distortionary taxation constant. This is the formal result
that hides behind the common intuition that the policymaker should spread welfare distortions
among states and dates.

However, when we go to the recursive utility case (ρ 6= γ), an increase of z′s′ has a novel
effect, which I will call the price effect of continuation value, since it affects the market value
of the household’s wealth ω through the value function. This effect is captured by the third
term in (35) and can be either positive or negative, depending on the preference for early (late)
resolution of uncertainty (ρ < (>)γ) and the sign of η′s′ . In order to see the economics clearly,
consider again the derivative of ω with respect to z, (29),

∂ω

∂z′s′
= π(s′|s)m

′ ρ−γ
1−γ
s′

[
1 + (1− β)(ρ− γ)vz(z

′
s′ , k

′, s′)η′s′
]
.
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The first term represents the marginal increase in the market value of wealth by increasing
the wealth position, keeping m constant. This is the marginal benefit of increasing z′s′ that is
present in the time-additive case. The second term denotes the novel marginal change in ω due
to the presence of the value function in the stochastic discount factor. Use the definition of η′s in
(30), and decompose the second term as

(1− β)(ρ− γ)vz(zs′ , k
′, s′)V ′ρ−1

s′ z′s′ − (1− β)(ρ− γ)vz(z
′
s′ , k

′, s′)µρ−1ω. (36)

Consider first the case of preference for early resolution of uncertainty (ρ < γ). An increase
in zs′ reduces continuation value at s′ (vz(z′s′ , k

′, s′) < 0) and, since ρ < γ, it increases the price
of a claim to consumption next period at s′ ((ρ − γ)vz(zs′ , k

′, s′) > 0). This increase in price is
beneficial or costly to the planner depending on the term V ′ρ−1

s′ z′s′ . Positive wealth positions
z′s′ > 0 imply a benefit since a higher value of these positions relaxes the implementability
constraint. However, as we noted previously in the analysis of the stochastic discount factor
with recursive preferences, a decrease in continuation value at s′ will decrease the certainty
equivalent and therefore will decrease the price of claims at states s̄′ 6= s′ when ρ < γ. This
explains the minus in the second term in (36). The benefit or cost of this reduction in asset prices
depends on the overall value of the market value of wealth ω. Therefore, the net benefit or cost
to the planner of affecting the market value of wealth through continuation values depends on
the variable η′s′ = V ′ρ−1

s′ z′s′ − µρ−1ω, which explains why I use a separate notation for it.
In particular, note that η′s′ has the following property:

Lemma 1. (Innovation property) ∑
s′

π(s′|s)m′s′η′s′ = 0

Proof. Use the definition of η to get

∑
s′

π(s′|s)m′s′η′s′ =
∑
s′

π(s′|s)m′s′V
′ρ−1
s′ z′s′ − µρ−1

∑
s′

π(s′|s)m′s′︸ ︷︷ ︸
=1

∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ z′s′

= µρ−1
[∑
s′

π(s′|s)m′s′
( V ′s′

µ︸︷︷︸
=m
′ 1
1−γ
s′

)ρ−1

z′s′ − ω
]

= µρ−1
[∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ z′s′ − ω

]
= µρ−1[ω − ω] = 0.
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Therefore, η′s′ can take both positive and negative values. Note that we could see the result
above by rewriting η′s′ as η′s′ = V ′ρ−1

s′ z′s′ −
∑

s′ π(s′|s)m′s′V
′ρ−1
s′ z′s′ , so η′s′ could be interpreted as

the conditional innovation of V ′ρ−1
s′ z′s′ under the continuation-value adjusted measure πt ·Mt. In

the case of ρ = 1, there is a sharper interpretation of η′s′ as the conditional innovation of wealth
z′s′ under the mentioned measure, η′s′ = z′s′ − ω, so its sign would capture if the position z′s′ is
above or below the market value of the household’s wealth portfolio ω. For that reason, I will
be referring to η′s′ as the innovation in wealth or net wealth position, even for ρ 6= 1.

To summarize, when η′s′ > 0, which can be written as z′s′ > m
′ 1−ρ
1−γ
s′ ω, then there is a net

marginal benefit and therefore a positive price effect of continuation value. In contrast, when

η′s′ < 0, i.e. when z′s′ < m
′ 1−ρ
1−γ
s′ ω, then there is a marginal cost and a negative price effect. What

is the economic intuition behind this result? For ease of exposition, I will refer to the case
of a positive net wealth position as a situation of net debt, and to the case of a negative net
wealth position as a situation of net assets. Consider a situation of net debt. In this case, the
increase in asset prices induced by the decrease in continuation value is beneficial because these
are situations where the planner is selling securities on net. Therefore, the planner benefits
marginally by increasing the price at which he sells, leading to a reduction of the return on his
liabilities. In the opposite case where we have net assets, the planner is buying on net securities
at s′. As a result, an increase in their price entails a cost, since the return on these assets is
becoming low.

In the case of preference for late resolution of uncertainty (ρ > γ), the direction of the re-
sults is reversed, since a decrease in continuation value leads to a decrease in the price of state-
contingent claims. As a result, there is now a marginal cost when η′s′ > 0, and a marginal benefit
when η′s′ < 0. The reason behind this outcome is the same though. The planner still has an in-
centive to reduce the returns when there is net debt and increase returns when there are net
assets. However, since an increase in the wealth position z′s′ decreases prices, it bears a benefit
at states where the planner is purchasing instead of selling securities.

To see the implications of the price effect on the excess burden of taxation, use the envelope
condition with respect to z′s′ and rewrite the optimality condition in terms of the inverse of Φ

(assuming that Φ is not zero, i.e. the state (z, k, s) is not such so that the first-best allocation can
be supported) as12

1

Φ′s′
=

1

Φ
+ (1− β)(ρ− γ)η′s′ ,

which, using also the optimality condition for the optimal z1 and turning into sequence
notation, becomes

12Otherwise, write the optimality condition in sequence notation as Φt+1 = Φt/
[
1 + (1−β)(ρ−γ)ηt+1Φt

]
. Thus,

if Φt = 0, then Φt+i = 0, i ≥ 0.
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1

Φt+1

=
1

Φt

+ (1− β)(ρ− γ)ηt+1, t ≥ 0. (37)

We can make statements now about the allocation of the excess burden of taxation among
both states and dates. Consider again a preference for early resolution of uncertainty (ρ < γ),
a state s′ where η′s′ > 0 and a state s̃′ where η′s̃′ < 0. Then Φ′s′ > Φ > Φ′s̃′ . Thus, the fact that
the planner can make debt positions less costly and asset positions more profitable makes the
planner shift taxation (in the sense of the excess burden of taxation) to states where he issues
debt on net and away from states where he holds assets on net (Φ′s′ > Φ′s̃′). This is the source of
the variation over states in the excess burden.

Furthermore, as far as the dynamics are concerned, we see that for η′s′ > 0, the excess burden
of taxation increases with respect to the current one, Φ′s′ > Φ, whereas for η′s̃′ < 0 it decreases
(Φ′s̃′ < Φ). Thus, a sequence of positive (negative) net wealth positions leads to an increasing
(decreasing) sequence of excess burden of taxation over time. When ρ > γ, the opposite result
holds (Φ′s′ < Φ < Φ′s̃′), leading the planner to shift taxation away from states where there is net
debt towards states where there are net assets.

Relationship to shocks. We typically expect that the planner hedges government expenditure
shocks by taking a negative net wealth position η′s′ < 0 (net assets) for states s′ that involve
high expenditure shocks, allowing therefore running a deficit and a positive net wealth posi-
tion η′s′ > 0 (net debt) for s′ that involve low expenditure shocks, that is paid back by surpluses.
If that is the case, then for ρ < γ, the excess burden of taxation decreases with high expendi-
ture shocks and increases with low expenditure shocks. This translates, as we will see later,
to lower labor taxes for high expenditure shocks and higher labor taxes for low expenditure
shocks. In the same vain, we may expect that for high technology shocks the planner is taking
a positive net position whereas for low technology shocks he assumes a negative net position.
Therefore, and again for ρ < γ, the excess burden of taxation is increasing for high technology
shocks and decreasing for low ones. To conclude, we expect the change in the excess burden
of taxation to be negatively correlated with government expenditures and positively correlated
with technology shocks.

Deterministic versus stochastic world. In a deterministic world the net wealth position ηt+1

is identically equal to zero (ηt+1 ≡ 0), which leads to a constant excess burden of taxation Φ̄.
Furthermore, as analyzed earlier, even under uncertainty but with ρ = γ we have Φt = Φ0∀t ≥
0, so the excess burden of taxation would again stay constant at its initial value (albeit different
than the relevant one in the deterministic case). Thus, as far as Φ is concerned, there is no
essential difference between a deterministic world and a stochastic world where ρ = γ.
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Persistence. The net wealth position ηt captures the incentives of the planner to reduce or
increase the returns on claims, given the excess burden of taxation of the previous period and
therefore becomes the determinant of the conditional time-variation of Φt. The law of motion
(37) indicates that the inverse of the excess burden of taxation at t depends on the cumulative
net wealth positions ηi, i = 1, ..., t, a property which is explained by the fact that all past prices
of state-contingent claims change with a change in continuation values at time t. Thus, the
excess burden of taxation and therefore the allocation depend on the past. Note furthermore
that, if there is an absorbing state, then ηt+1 becomes identically zero after the absorbing state is
reached, and therefore Φt stays permanently at the level that it reaches when the absorbing state
is hit. More generally, we have

Proposition 2. (Martingale Characterization)
The inverse of Φt is a martingale with respect to the continuation-value adjusted measure πt ·Mt and

therefore Φt is a submartingale with respect to πt ·Mt.

Proof. Take conditional expectation in (37) to get

Etmt+1
1

Φt+1

=
1

Φt

Etmt+1 + (1− β)(ρ− γ)Etmt+1ηt+1 =
1

Φt

,

since Etmt+1 = 1 and Etmt+1ηt+1 = 0 by lemma 1. Thus 1/Φt is a martingale with respect to
πt ·Mt. Furthermore, since the function f(x) = 1/x is convex for x > 0, an application of the
conditional version of Jensen’s inequality leads to Etmt+1

1
xt+1
≥ 1

Etmt+1xt+1
. Set now xt = 1/Φt

and use the martingale result to finally get Etmt+1Φt+1 ≥ Φt.

The martingale result about the inverse of the excess burden of taxation can be interpreted
loosely as an indication of persistence. A natural question that arises is about the behavior of
Φt under the physical measure π. Using the fact that Covt(mt+1,Φt+1) = Etmt+1Φt+1 − EtΦt+1

(since Etmt+1 = 1) and the submartingale property of Φt, we get that

EtΦt+1 ≥ Φt − Covt(mt+1,Φt+1).

In principle, we cannot sign definitely the conditional covariance of the excess burden of
taxation with the increment to the continuation-value adjusted measure. We can get an idea
about its expected sign if we consider the ρ = 1 and γ > 1 case (or more generally risk-sensitive
preferences). Conditional on Φt, we expect a negative correlation of Φt+1 with government
expenditure shocks and a positive correlation with technology shocks. But high government
expenditure shocks, since they provide low utility, are associated with a higher conditional
probability mass and therefore a higher mt+1 = exp[(1−β)(1−γ)vt+1]/Et exp[(1−β)(1−γ)vt+1],
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whereas high technology shocks, by increasing utility, lead to a lower mt+1. Therefore, for both
types of shocks, we expect the conditional covariance of mt+1 and Φt+1 to be negative. In that
case, the excess burden of taxation exhibits a positive drift also with respect to the physical
measure π.

4.2 Recursive versus sequential formulation

Readers accustomed to optimal taxation problems with complete markets may wonder how
the excess burden of taxation can be time-varying when there is a unique intertemporal budget
constraint. In this section I illustrate the sequential formulation of the problem in order to make
clear where this result is coming from. The details are relegated to the Appendix.

The intertemporal budget constraint of the household, after expressing tax rates and asset
prices in terms of marginal rates of substitution, becomes

∞∑
t=0

∑
st

βtπt(s
t)Mt(s

t)
ρ−γ
1−γ Ω(ct(s

t), ht(s
t)) = Uc0W0.

Since there is a unique intertemporal budget constraint, we can assign a multiplier Φ̄ and pro-
ceed with the analysis of the problem. However, the nature of the problem with recursive
preferences is altered. Consider for example an increase in consumption. This will not only
affect Ω(ct, ht) (as in the time-additive case) but it will also affect the unconditional likelihood
ratio Mt through continuation values.

In the Appendix I show how to treat this problem by appending additional “implementabil-
ity” constraints to the Ramsey problem that describe utility recursions and the law of motion of
Mt.13 The connection between the excess burden of taxation Φt and multipliers on continuation
values is analyzed, making clear that the time-varying multiplier Φt captures the shadow value
of the additional implementability constraints that arise even in a complete markets setup. The
benefit of the recursive formulation of the commitment problem, besides illuminating obvi-
ously that z is the relevant state variable, is to clearly summarize the effects of continuation
values in terms of a time-varying Φt. This allows a clean comparison with the time-additive
expected utility case. There are obvious similarities in spirit with the optimal risk-sharing liter-
ature with recursive preferences, which finds time-varying Pareto weights.14

13In the case of the multiplier preferences of Hansen and Sargent (2001), it is natural to think of the utility
recursions as implementability constraints since they correspond to optimality conditions of the malevolent alter-
ego of the household, that minimizes the household’s utility subject to a penalty. See Karantounias (2013). This
minimization procedure would also emerge naturally if we expressed recursive utility as the variational utility of
Geoffard (1996).

14See for example Anderson (2005) and references therein.

23



4.3 The novel role of wealth

The time-varying nature of Φt is also the deeper reason for keeping z as a state variable:

Proposition 3. (“Wealth matters”) EZW preferences contribute an additional state variable zt to the
optimal taxation problem. With time-additive expected utility ρ = γ, it would be sufficient to keep track
only of (k, s), because the excess burden of taxation is constant.

Proof. See Appendix.

The proof relies on the fact that wealth is necessary for the determination of the solution
only through the excess burden of taxation. Since, for the case of expected utility, this cost
is constant, wealth becomes redundant as a state variable, as along as the planner takes into
account how the excess burden of taxation affects the household’s utility.15 Another way to
state the above result is that, given a constant excess burden of taxation, wealth (or debt in an
economy without capital) is a by-product of the planner’s problem. In contrast, with recursive
utility, wealth resumes its importance as a state variable, since it becomes an instrument of
directly affecting asset prices though the enriched stochastic discount factor.

5 Capital and labor income taxation

In this section I analyze the taxation of the intertemporal and the intratemporal margin.

5.1 Intertemporal wedge: capital tax

Turning to the optimal choice of capital k′, it is clear that capital has a novel effect on ω through
the stochastic discount factor. In particular, consider the optimality condition with respect to
capital (26), which is rewritten here for convenience,

λ︸︷︷︸
MC of increasing k′

= β
∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ vk(z

′
s′ , k

′, s′)︸ ︷︷ ︸
MB of increasing k′

+ βΦ
∂ω

∂k′︸ ︷︷ ︸
EZW term: price effect of k′ (+/-)

The optimality condition equates the marginal cost of increasing k′ by one unit in the current
period with the marginal benefit of having one additional unit of capital in the beginning of
next period and the marginal benefit or cost that an additional unit of k′ has on ω. As can be
seen from the derivative of ω with respect to capital (28), for ρ = γ, this marginal benefit or

15Similarly, in an economy without capital and time-additive expected utility, we would only need to keep track
of the exogenous shocks, which would be a manifestation of the history-independence result of Lucas and Stokey
(1983).
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cost is absent, ∂ω/∂k′ ≡ 0. For the recursive utility case though, an increase in capital increases
continuation value vk > 0 and therefore decreases prices for ρ < γ. What matters again is the
net wealth position η′s′ . For η′s′ > 0 there would be now a marginal cost, whereas for η′s′ < 0

there would be a marginal benefit. Since capital is not state-contingent, the actual benefit or
cost depends on the discounted expected value of the product of vk and η′s′ , as seen from (28).

Use now sequence notation and the law of motion of Φt (37) to replace 1+(1−β)(ρ−γ)ηt+1Φt

in (31) with the ratio Φt/Φt+1. This allows us to see explicitly the dependence of the optimal
capital decision on the time-varying Φt,

λt = βEtm
ρ−γ
1−γ
t+1 vk(zt+1, kt+1, st+1)

Φt

Φt+1

. (38)

Furthermore, using the envelope condition with respect to capital (34) to eliminate vk deliv-
ers

EtS
?
t+1(1− δ + FK,t+1) = 1, (39)

where

S?t+1 ≡ βm
ρ−γ
1−γ
t+1

λt+1/Φt+1

λt/Φt

. (40)

I will call S?t+1 the planner’s stochastic discount factor. The variable S?t+1 captures how the
planner discounts the pre-tax gross return on capital at the second-best allocation. S?t+1 contrasts

to the market stochastic discount factor St+1 ≡ βm
ρ−γ
1−γ
t+1 Uc,t+1/Uc,t. In a first-best world with

lump-sum taxes available, we have identically S?t+1 ≡ St+1. The planner’s discount factor S?t+1

can differ though from St+1 in the second-best world, and is useful in summarizing the optimal
wedge at the intertemporal margin. More specifically, recall the definition of the ex-ante tax
rate on capital income (19) and use (39) to get

τ̄Kt+1 =
Et
[
St+1 − S?t+1

]
(1− δ + FK,t+1)

EtSt+1FK,t+1

. (41)

Thus, there is a positive (negative) tax rate on capital income if the numerator of (41) is
positive (negative). Another way to think about the sign of the numerator is in terms of the size
of the (non-centered) covariances of the planner’s and the market stochastic discount factors with
the pre-tax capital return 1 − δ + FK,t+1. A (non-centered) covariance of the market stochastic
discount factor with the pre-tax return on capital that is larger (smaller) than the respective non-
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centered covariance of the planner’s stochastic discount factor with the pre-tax return, leads to
a positive (negative) ex-ante tax rate τ̄Kt+1 > 0 (τ̄Kt+1 < 0).

The planner’s stochastic discount factor S?t+1 is associated with the market stochastic dis-
count factor St+1 as follows:

S?t+1 = St+1
λt+1/(Φt+1Uc,t+1)

λt/(ΦtUc,t)

= St+1

1
Φt+1

+ Ωc,t+1

Uc,t+1

1
Φt

+ Ωc,t
Uc,t

, t ≥ 1

where I used the optimality condition with respect to consumption (24) in the second line. Thus,
we have

St+1 − S?t+1

St+1

=

1
Φt
− 1

Φt+1
+ Ωc,t

Uc,t
− Ωc,t+1

Uc,t+1

1
Φt

+ Ωc,t
Uc,t

. (42)

The difference in the two discount factors and, consequently, a wedge at the intertemporal
margin, can be attributed to time variation in Ωc/Uc and to time variation in Φt. Note that Ωc/Uc

can be expressed in terms of elasticities,

Ωc

Uc
= 1− εcc − εch, (43)

where εcc ≡ −Uccc/Uc > 0 and εch ≡ Uclh/Uc, i.e. the own and cross elasticity of the pe-
riod marginal utility of consumption with respect to consumption and labor.16 Using these
elasticities and the expression for the difference in the two discount factors (42) allows us a de-
composition of the incentives for an intertemporal wedge in terms of changes in 1/Φt and changes
in εcc and εch:

Proposition 4. (Sources of capital taxation) The ex-ante tax rate on capital income τ̄Kt+1, t ≥ 1 is positive
(negative) iff

EtSt+1(1− δ + FK,t+1)
[( 1

Φt

− 1

Φt+1

)
︸ ︷︷ ︸

change in 1/Φt

+
(
εcc,t+1 + εch,t+1 − εcc,t − εch,t

)︸ ︷︷ ︸
change in period elasticities

]
> (<) 0

If εcc + εch is constant, then the only reason for taxing the intertemporal margin comes from variation in
the excess burden of taxation Φt.

16Each elasticity is multiplied with minus unity.
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Proposition 4 includes as subcases the deterministic economy and the economy of Chari
et al. (1994) and Zhu (1992). Furthermore, the criterion for capital taxation holds also for the
deterministic and stochastic time-additive case for any period utility U satisfying the standard
monotonicity and concavity assumptions, i.e. without being restricted to U = (u1−ρ − 1)/(1 −
ρ), u > 0. The criterion holds also for the risk-sensitive preferences with parameter σ < 0,
without the logarithmic restriction on the period utility function, i.e. without being confined to
treat the risk-sensitive preferences as a subcase of EZW utility for ρ = 1.17

Deterministic economy. Assume that we are in a deterministic economy. Then Φt is constant
and the formula for capital taxation simplifies to18

τKt+1 > (<) 0 iff εcc,t+1 + εch,t+1 > (<) εcc,t + εch,t.

Thus capital income is taxed (subsidized) if the sum of the own and cross period elasticities
is increasing (decreasing). A necessary and sufficient condition for a zero capital tax at every
period from period two onward in the deterministic economy is that the sum of the elasticities
of the period marginal utility of consumption is constant (which implies that S?t+1 = St+1). If
the period utility function is such so that the elasticities are not constant for each period, then
there is zero tax on capital income at the deterministic steady state, where the constancy of the
consumption-labor allocation delivers constant elasticities. This delivers the zero-tax result of
Chamley (1986) and Judd (1985).

Stochastic economy, time-additive expected utility. Turn now to the stochastic case of Chari
et al. (1994) and Zhu (1992) with time-additive expected utility (ρ = γ), where Φt is again
constant. The formula in proposition 4 becomes

τ̄Kt+1 > (<) 0 iff EtSt+1(1− δ + FK,t+1)
[
εcc,t+1 + εch,t+1 − εcc,t − εch,t

]
> (<) 0

The analysis remains essentially the same as in the deterministic case, with the nuance of
integrating properly over next period’s shocks the product of the market discount factor, the
pre-tax gross return on capital and the change in the sum of period elasticities, due to the fact
that only the ex-ante tax rate is determined by the allocation. Note that variation in the sum

17In that case, conditional likelihood ratios read mt+1 = exp(σvt+1)/Et exp(σvt+1), the law of motion
of Φt remains the same by replacing (1 − β)(ρ − γ) with σ in (37) and the planner’s stochastic discount
factor becomes S?t+1 = βmt+1

λt+1/Φt+1

λt/Φt
. The optimality condition with respect to capital reads λt =

βEtmt+1vk(zt+1, kt+1, st+1)[1 + σηt+1Φt], where ηt+1 = zt+1 − Etmt+1zt+1.
18Without uncertainty there is obviously no difference between the ex-ante and ex-post tax rate on capital in-

come, so I am dropping the bar notation for that case.
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of period elasticities is a necessary condition for an intertemporal wedge, since a constant sum
of period elasticities implies S?t+1 = St+1. It is not a sufficient condition, since the integration
necessary for the determination of the ex-ante tax rate could still in principle deliver a zero tax.

Stochastic economy, ρ 6= γ. For the case of EZW preferences, the full version of the formula in
proposition 4 applies. The change in both the excess burden of taxation and the sum of elasticities
determines the intertemporal wedge. Consider the case of constant period elasticities, which
would deliver a zero tax in the case when the distinction between time and risk is absent, as
analyzed in the previous paragraph. With recursive preferences though, there is a novel source
of taxation coming from changes in Φt. States where there are debt positions on net (ηt+1 > 0),
lead to a higher excess burden of taxation in the case of preference for early resolution of un-
certainty, Φt+1 > Φt, and therefore to a planner’s discount factor that is smaller than the market
discount factor, S?t+1 < St+1, as can be seen from (42). So an increase in Φt captures an incentive
to introduce a positive intertemporal wedge. In contrast, at the states where there are assets on
net (ηt+1 < 0), we have Φt+1 < Φt and therefore a planner’s discount factor that is larger than
the market discount factor, S?t+1 > St+1, leading to an incentive to introduce a negative wedge.
The final answer about the sign of the ex-ante tax rate depends on the integration of the product
of the market discount factor, the pre-tax return and the change in 1/Φt, so τ̄Kt+1 > (< 0) if and
only if EtSt+1(1− δ+FK,t+1)(1−β)(γ−ρ)ηt+1 > (<)0. The smaller (larger) in absolute value the
negative net wealth positions ηt+1 are relative to the respective positive ones, the more probable
it is to have an ex-ante tax (subsidy) in the case of preference for early resolution of uncertainty.

5.2 Intratemporal wedge: labor tax

Turning to the intratemporal wedge, we can eliminate λ and combine the first-order conditions
with respect to consumption and labor (24)-(25) so as to derive the optimal wedge in labor
supply

Ul
Uc
·

1− ΦΩh
Ul

1 + ΦΩc
Uc

= FH . (44)

Expressing also the term Ωh/Ul in terms of elasticities delivers

Ωh

Ul
= −1− εhh − εhc, (45)

where εhh ≡ −Ullh/Ul > 0 and εhc ≡ Ulcc/Ul, the own and cross elasticity of the period marginal
disutility of labor with respect to labor and consumption. The period elasticities are helpful for
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deriving an explicit formula for the optimal labor tax. In particular,19

Proposition 5. (Labor tax) The optimal labor tax is

τt = Φt
εcc,t + εch,t + εhh,t + εhc,t

1 + Φt

(
1 + εhh,t + εhc,t

) , t ≥ 1.

Proof. Use the labor supply condition Ul/Uc = (1− τ)FH in order to express (44) in terms of the
labor tax as τ = −Φ(Ωc/Uc + Ωh/Ul)/(1−ΦΩh/Ul). Use now the elasticity formulas (43) and (45)
to get the result.

The same comment about the applicability of the capital taxation criterion in proposition
4 can be made for the labor tax formula in proposition 5, i.e. it holds also for the determin-
istic, stochastic time-additive case and the risk-sensitive case, for more general period utility
functions U . The formula holds also for the respective economies without capital.

The formula in proposition 5 expresses the optimal labor tax in terms of curvature properties
of the period marginal utility of consumption and leisure and in terms of the excess burden of
taxation Φt. As is clear from the formula, the variation of the labor tax is due either to variation
in the period elasticities or due to variation in Φt, a stochastic process that follows the law of
motion (37). Note also that when Ucl ≥ 0, the cross elasticities become non-negative εch, εhc ≥ 0

and, as a result, the labor tax is positive. Furthermore, in the case of constant elasticities, the
formula shows that the labor tax varies monotonically with the excess burden of taxation.20

To conclude, there is an intertemporal wedge if there is a change in period elasticities and a
change in the excess burden of taxation whereas the intratemporal wedge depends on the level
of the period elasticities and the level of the excess burden of taxation. Thus, focusing on the
time-varying excess burden of taxation –the element which recursive utility contributes– we
infer that the capital tax depends on the net wealth position ηt, whereas the labor tax depends
on the cumulative net wealth position

∑
i ηi.

The analysis of capital and labor taxation up to this point has not taken a stance on the com-
posite good u. In the following section, I provide examples of u that deliver explicit formulas
for the period elasticities εij, i, j = c, h.

5.3 Examples of aggregators u

Consider two specifications of the composite good u.

19The optimal labor tax at t = 0 is different due the presence of initial debt and capital,

τ0 = Φ0

εcc + εch + εhh + εhc + (1− τK0 )FKHFH
k0 − (εcc + εhc)c

−1
0 W0

1 + Φ0

(
1 + εhh + εhc − εhcc−1

0 W0

) . (46)

The respective elasticities and marginal products are evaluated at the initial allocation.
20We have ∂τ

∂Φ = εcc+εch+εhh+εhc[
1+Φ(1+εhh+εhc)]2

> 0, as long as the numerator is positive. Ucl ≥ 0 is sufficient for that.
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5.3.1 Power utility in consumption and separability (zero capital tax for expected utility)

Consider preferences that are separable between consumption and leisure and isoelastic in con-
sumption with parameter ρ,21

u(c, 1− h) =
[
c1−ρ − (1− ρ)v(h)

] 1
1−ρ , (47)

where v′, v′′ > 0. For specification (47) we get the own elasticities εcc = ρ and εhh =

v′′(h)h/v′(h) > 0 and zero cross elasticities εch = εhc = 0. Note that for this aggregator, the
inverse of the elasticity of the marginal disutility of labor represents the Frisch elasticity of labor
supply εF (h) = 1/εhh = 1/v′′(h)h

v′(h)
> 0.

Chari et al. (1994) and Zhu (1992) have shown that these preferences imply a zero ex-ante
tax rate on capital income from period two onward. This is easily interpreted in terms of the
formula in proposition 4, since the own and the cross elasticity of the marginal utility of con-
sumption are constant, leading therefore to S?t+1 = St+1 and τ̄Kt+1 = 0. For the recursive utility
case though, this is a case where taxation of the intertemporal margin is only due to variation
in the excess burden of taxation.

The labor tax formula in proposition 5 specializes to

τt = Φt

ρ+ 1
εF (ht)

1 + Φt(1 + 1
εF (ht)

)
, t ≥ 1, (48)

which provides a convenient interpretation of the elasticity variation in terms of the Frisch
elasticity. Some remarks are due here. Consider for a moment the constant Φ case of the de-
terministic or stochastic but time-additive economy and let the Frisch elasticities be such that
εF (h) > εF (h′), h 6= h′. Then the respective tax rates will be τ < τ ′, i.e. the optimal tax is
negatively related to the elasticity of labor supply.22 High labor is typically associated with
high government expenditure shocks, so if the Frisch elasticity is inversely related to labor, we
expect the tax rate to be high for high government expenditures shocks.

Turning now to the recursive utility case and in particular to ρ < γ, then, as we analyzed
earlier, the excess burden of taxation increases (decreases) for a net debt (net asset) position. As
a result we expect that the tax rate will increase (decrease). Therefore, if the planner hedges high
government expenditures with a net asset position, then, on the one hand, it has an incentive

21It is assumed that parameters are such that c1−ρ − (1 − ρ)v(h) > 0. Otherwise, we can just consider the
risk-sensitive case and drop the non-negativity restriction. We can see in a clearer way the separability between
consumption and leisure by applying the ρ-transformation to get the period utility function U(c, 1−h) = c1−ρ−1

1−ρ −
v(h). For ρ = 1, the utility recursion becomes Vt = exp

[
(1− β)

(
ln c− v(h)

)
+ β lnµt

]
.

22The derivative of the tax rate with respect to the Frisch elasticity is ∂τ
∂εF

= − Φ
ε2F
· 1+Φ(1−ρ)

(1+Φ(1+ 1
εF

))2
. The sign of

1+Φ(1−ρ) can be found from the first-order condition with respect to c, (24), which becomes for these preferences
c−ρ(1 + Φ(1− ρ)) = λ > 0. So 1 + Φ(1− ρ) > 0 even for ρ > 1. Thus, ∂τ/∂εF < 0.
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to decrease the tax rate in order to increase returns, and on the other hand, it has the incentive
to increase the tax rate due to the low Frisch elasticity at these contingencies, leading to two
opposite forces coming from the two sources of taxation at the intratemporal margin.

Constant Frisch elasticity. The differences in optimal taxation with recursive utility become
stark when v(h) = ah

h1+φh
1+φh

, which, implies a constant Frisch elasticity εF = 1/φh. For the time-
additive case, not only we have a zero capital tax but also a constant labor tax, leading to perfect
tax smoothing, τ = Φ(ρ+φh)

1+Φ(1+φh)
. For ρ 6= γ though, we have:

Proposition 6. (Labor tax with constant Frisch elasticity)

1. The labor tax takes the form

1

τt+1

=
1

τt
+

(1− β)(ρ− γ)

ρ+ φh
ηt+1, t ≥ 1. (49)

2. (Monotonicity) Let the household have a preference for early resolution of uncertainty ρ < γ (the
direction of the inequalities is reversed for the case of ρ > γ). Then

• if ηt+1 > 0, then τt+1 > τt (because Φt+1 increases)

• if ηt+1 < 0, then τt+1 < τt (because Φt+1 decreases)

3. (Martingale Characterization) The inverse of the labor tax 1/τt is a martingale with respect to
the measure πt · Mt and therefore, τt is a submartingale with respect to πt · Mt. Furthermore,
Etτt+1 ≥ τt − Covt(mt+1,Φt+1).

Proof. The labor tax becomes τt = Φt(ρ+ φh)/(1 + Φt(1 + φh)) with inverse

1

τt
=

1 + φh
ρ+ φh

+
1

ρ+ φh

1

Φt

.

Note that 1/τt is an affine function of 1/Φt. Use the law of motion of Φt in (37) to write the law of
motion of the labor tax as in (49). Notice the close resemblance of the law of motion of the labor
tax (49) to the law of motion of the excess burden of distortionary taxation (37), a fact that leads
to similar conclusions about monotonicity and martingale-like properties as in proposition 2
and the discussion thereafter.

The above period utility function is an example of the constant elasticity case. As a result,
the labor tax, instead of being constant (or more generally instead of inheriting the stochastic
properties of the exogenous shocks), inherits the stochastic properties of Φt.
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5.3.2 Balanced-growth consistent preferences of Chari et al. (1994)

Preferences (47) do not allow for balanced growth in a deterministic version of our economy,
unless ρ = 1. Consider now a Cobb-Douglas aggregator

u(c, 1− h) = cθ(1− h)1−θ,

where θ ∈ (0, 1). These preferences are a workhorse for the real business cycle literature
and, unless ρ = 1, feature non-separabilities between consumption and leisure. In contrast to
the separable preferences, there is variation in the sum of the elasticities of the marginal utility
of consumption, leading to taxation of capital even in the expected utility case (ρ = γ).23 The
variation due to the period elasticity channel is absent if ρ = 1 and we would have only the
novel variation in Φt as a channel for the taxation of capital. The labor tax for t ≥ 1 becomes

τt = Φt

1 + ht
1−ht

1 + Φt

[
1 + θ(1− ρ) +

(
θ + (1− θ)ρ

)
ht

1−ht

] ,
which for ρ = 1 simplifies further to formula (48) with εF (h) = (1− h)/h.

The formulas for both examples of the composite good show that the crucial parameter for
the period elasticities channel is ρ (and not γ), whereas both ρ and γ affect the Ramsey outcome
through Φt.

6 A simple illustration

The evolution of the excess burden and therefore the analytic formulas for taxes presented in
earlier sections hinge on the sign of the net wealth positions ηt+1, i.e. on the government’s
insurance against adverse shocks. In this section, I assume a simplified stochastic structure -
deterministic except for one period- with only fiscal shocks. This setup is rich enough to capture
both the variation in the excess burden and its dynamics. Details are relegated to the Appendix.

23The own and cross elasticities of period marginal utility of consumption are εcc = 1 − θ(1 − ρ) and εch =
(1− θ)(1− ρ)h/(1− h). The elasticities of the period marginal disutility of labor are εhh = (θ + (1− θ)ρ)h/(1− h)
and εhc = θ(1− ρ). The dependence of εch on labor h vanishes when ρ = 1 (and εch becomes zero), leading to zero
taxation of capital income in the time-additive expected utility case. The Frisch elasticity is εF (h) = 1−h

h
1−θ(1−ρ)

ρ .
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Figure 1: The left panel shows the evolution of the excess burden of taxation and the labor tax along the two
histories for the expected utility (EU, γ = 1) and the recursive utility (EZW, γ = 10) case. The right panel shows
the respective debt positions normalized by output.

6.1 Economy without capital

Assume there is an economy without capital and only fiscal shocks, with resource constraint ct+
gt = ht, zero initial debt, and consider the case of ρ = 1 and γ > 1.24 Assume that government
expenditures take the value gL with certainty except for period one. At period one we have
g1 = gH with probability π and g1 = gL with probability 1−π, where gH > gL. I use superscripts
for the endogenous variables in order to denote if we are in the high-shock history (g1 = gH)
or in the low-shock history (g1 = gL). For example, cit, i = H,L, denotes consumption at period
t ≥ 1 when the shock at t = 1 is high or low respectively. Similar notation holds for the rest of
the variables.

With time-additive expected utility, we are in the environment of Lucas and Stokey (1983),
where consumption is function of the shock g and the constant Φ̄, ct = c(gt, Φ̄). Therefore,
consumption is the same for all nodes of the tree except for the high-shock realization at t = 1,
i.e. ct = c(gL, Φ̄)∀t 6= 1, cL1 = c(gL, Φ̄) and cH1 = c(gH , Φ̄). As a result, consumption, and
correspondingly labor and the tax rate, revert after period one to their initial value after a high
shock realization.

Instead, with recursive utility, we can think of consumption as function of the shock and
the time-varying Φt, ct = c(gt,Φt). In order to determine Φt, we need to figure out the debt
positions of the government at the beginning of t = 1. Note at first that, due to the absence

24Or more generally, consider risk-sensitive preferences with parameter σ < 0. The analysis of this example
does not depend on the functional form of U , as long as U is such so that it is optimal to impose a tax instead of a
subsidy.
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Figure 2: The left panel depicts the capital paths for the expected utility case (γ = 1) for the high- and low-shock
history, and the right panel the respective ones for the recursive utility case (γ = 10). In the recursive utility case,
capital is converging to two different steady states depending on the realization of the shock at t = 2.

of uncertainty after t = 1, the excess burden of taxation will stay permanently at the value it
assumed at t = 1. Thus ΦH

t = ΦH
1 ,∀t ≥ 1, ΦL

t = ΦL
1 ,∀t ≥ 1. Furthermore, if gL = 0 it is easy

to show that the government runs a surplus at t = 0, borrows for contingency g1 = gL (bL1 > 0)
and uses the initial surplus and the proceeds from borrowing in order to hedge g1 = gH with
assets bH1 < 0. If the high shock hits, the government runs a primary deficit that is financed
with assets bH1 and with additional issuance of debt bH2 > 0. For every period after period
t = 2, the government runs a constant surplus, which is used to pay interest on a constant
amount of debt, bHt = bH2 , t ≥ 2. If the low shock hits at period t = 1, then the government
issues a constant amount of debt each period bLt = bL1 , t ≥ 1, and runs a surplus to finance
the interest payments. Due to this fiscal hedging, the debt positions in marginal utility units
become zH1 ≡ Uc(c

H
1 , 1−hH1 )bH1 < 0 and zL1 ≡ Uc(c

L
1 , 1−hL1 )bL1 > 0 and therefore the net positions

become negative for the high shock and positive for the low shock (ηH1 < 0 and ηL1 > 0). As
a result, the excess burden of taxation is falling for the high shock and increasing for the low
shock, ΦH

1 < Φ0 < ΦL
1 .

If we also assume a period utility function with constant Frisch elasticity as in proposition
6, then it is clear that also the tax rate falls for the high shock, increases for the low shock,
τH1 < τ0 < τL1 , and stays permanently at these values for all periods after period one, whereas
with expected utility the tax rate would remain the same for all t ≥ 0. Figure 1 illustrates
this example for a member of this class of utility functions in the case of a positive low shock,
gL > 0.25 The net debt positions are still negative for the high shock and positive for the low

25 U = ln c − ahh
1+φh/(1 + φh) with (β, γ, φh) = (0.96, 10, 1) and corresponding risk-sensitivity parameter
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shock, so the same picture emerges. The figure shows also that the positions of the government
(normalized by output) become larger in absolute value in the case of recursive utility, which is
to be expected since the permanent decrease or increase of the tax rate leads to a higher present
value of future surpluses (deficits) in absolute value.

6.2 Economy with capital

Consider now an economy with capital and a similar stochastic structure as before, but let the
uncertainty take place at t = 2, so g2 = gH with probability π and g2 = gL with probability
1− π, whereas gt = gL,∀t 6= 2.26,27 Since there is no uncertainty before and after t = 2, we have
Φ1 = Φ0 and Φi

t = Φi
2, i = H,L, t ≥ 2, so the excess burden of taxation will remain permanently

at the values it assumed at t = 2. I consider the same period utility function as in the example
without capital, which implies a zero ex-ante capital tax at the second period, a zero capital tax
for t ≥ 3 and a constant labor tax for t ≥ 1 for the time-additive case.28

In an economy with capital the relevant positions are wealth in marginal utility units (and
not just debt). Again, for the high shock at t = 2, the planner takes a negative position and for
the low shock a positive position, which leads to ΦH

2 < ΦL
2 and a permanently lower (higher)

labor tax at the high-shock (low-shock) history.29 Since the economy becomes deterministic after
t = 2, the capital tax will be zero for t ≥ 3, but the ex-ante tax rate for t = 2 is not necessarily
zero anymore and for the particular illustration it turns out to be a small subsidy.30 Figure 2
focuses on the respective capital paths for the expected utility case and the recursive utility
case. What is worth noting is that, since the change in the excess burden of taxation (labor tax)
is permanent, there are two steady states depending on what value government expenditures
took at t = 2. For the high-shock history, which is associated with a lower labor tax, there is a

σ ≡ (1− β)(1− γ). I calibrate ah so that the household works 0.4 of its total time (normalized to unity) when there
are no distortionary taxes and g = gL. The shock gL is set to 0.25 of the first-best output(labor) which is equal to
0.4. The high shock is gH = 1.5 · gL with π = 0.5.

26I let the shock materialize at t = 2 because I want to disentangle the effect of initial debt and capital from the
effect of uncertainty on the optimal taxation problem.

27The presence of initial wealth (which would be absent if we had zero initial debt, full depreciation and an
initial tax rate on capital income of 100%) alters the taxation incentives for labor income at t = 0 and capital
income at t = 1. In particular, the planner has an incentive to increase initial consumption in order to reduce initial
wealth in marginal utility units. By subsidizing initial labor income and taxing capital income at t = 1, he is able
to achieve that.

28The production function is F = kαh1−α. The parameters for the illustration are (β, γ, φh, α, δ, τ
K
0 , b0) =

(0.96, 10, 1, 1/3, 0.08, 0.3, 0) with a total endowment of time normalized to unity. The parameter ah is set so that the
household works 0.4 of its time at the first-best steady state. The initial capital is set to 0.9 of the first-best steady
state capital. The size of gL is set so that the share of government expenditures in the first-best steady state output
is 0.2. The high shock is gH = 2 ·gL and π = 0.5. Due to the minimal uncertainty, I use a relatively large high shock
for both illustrations. This would not be necessary in a fully stochastic setup.

29 For the time-additive case (γ = 1) the labor taxes are τ0 = −15.84% and τt = 29.55%, t ≥ 1. For the recursive
utility case (γ = 10) we have τ0 = −15.89% and τHt = τH2 = 29.32%, < τ1 = 29.59% < τLt = τL2 = 29.90%, t ≥ 2.

30When γ = 1 capital taxes are τK1 = 331.77%, τ̄K2 = 0 and τKt = 0, t ≥ 3. When γ = 10 we have τK1 = 332.16%,
τ̄K2 = −0.2874% and τKt = 0, t ≥ 3. I follow Chari et al. (1994) and do not impose upper bounds on capital taxation,
allowing capital taxes to exceed 100%.
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steady state with higher capital holdings and labor, whereas for the low-shock history, which is
associated with a higher labor tax, the steady state involves lower capital holdings and labor.

7 Concluding remarks

Dynamic optimal taxation entails the notions of time and risk. The analysis in this paper shows
that when the attitudes towards these two notions are distinct, the conventional normative tax-
smoothing results are substantially altered. There is an incentive to tax capital income, the labor
tax is time-varying and optimal policy generates endogenously persistence independent of the
stochastic properties of the exogenous shocks.

These results indicate that ignoring this distinction is not an innocuous assumption. I have
focused on time and risk in an otherwise standard business cycle model. An analysis beyond
the representative agent framework, or an exploration of different timing protocols like lack of
commitment, are worthy directions for future research.

More broadly, the asset pricing literature like Bansal and Yaron (2004) and Hansen et al.
(2008), has used recursive preferences in conjunction with persistent exogenous risk, in order
to make the intertemporal profile of consumption quantitatively important for asset pricing
purposes. It is interesting to observe that from an optimal policy perspective, merely the fact
that the agent cares for the “long-run”, causes the planner to optimally introduce persistence to
policy variables in an otherwise frictionless environment.
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A Recursive formulation

A.1 Two subproblems

Define

Z(s1, k1) ≡
{
z1|∃{ct, ht}t≥1, {kt+1, zt+1, Vt+1}t≥1,with ct, kt+1 ≥ 0 and ht ∈ [0, 1]

such that:

zt = Ω(ct, ht) + βEtm
ρ−γ
1−γ
t+1 zt+1, t ≥ 1

ct + kt+1 − (1− δ)kt + gt = F (st, kt, ht), t ≥ 1

where mt+1 defined as in (5) with Vt+1, t ≥ 1 following recursion (2)

and the transversality condition lim
t→∞

E1β
t

(
Mt+1

M1

) ρ−γ
1−γ

zt+1 = 0
}

(A.1)

The set Z(s1, k1) stands for the set of values of zt at t = 1, that can be generated by an
implementable allocation, when the initial shock is s1 and the capital inherited from period
zero is k1. So the state space is endogenous. It could be potentially calculated by following the
recursive procedure of Kydland and Prescott (1980).

Problem 1. Let z1 ∈ Z(s1, k1). The problem from period one onward is

V (z1, k1, s1) ≡ maxV1({ct, ht}t≥1)

subject to

zt = Ω(ct, ht) + βEtm
ρ−γ
1−γ
t+1 zt+1, t ≥ 1

ct + kt+1 − (1− δ)kt + gt = F (st, kt, ht), t ≥ 1,

the non-negativity constraints for consumption and capital, the feasibility constraint on labor, the transver-

sality condition limt→∞E0β
tM

ρ−γ
1−γ
t zt = 0,31 where mt+1 denotes the conditional likelihood ratio that is

generated by the utility recursion (2).

Problem 2. The problem at t = 0 is

V̄0(b0, k0, s0, τ
K
0 ) ≡ max

c0,h0,k1,z1,s1

[
(1− β)u(c0, 1− h0)1−ρ + β

[∑
s1

π1(s1|s0)V (z1,s1 , k1, s1)1−γ] 1−ρ
1−γ
] 1

1−ρ

31Strictly speaking, this condition (which is implied by (13) and (14)) is sufficient for the exhaustion of the
intertemporal budget constraint of the household.
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subject to

Uc0
[(

(1− τK0 )FK(s0, k0, h0) + 1− δ
)
k0 + b0

]
= Ω(c0, h0)

+β
∑
s1

π1(s1|s0)
V (z1,s1 , k1, s1)ρ−γ[∑

s1
π1(s1|s0)V (z1,s1 , k1, s1)1−γ

] ρ−γ
1−γ

z1,s1 (A.2)

c0 + k1 − (1− δ)k0 + g0 = F (s0, k0, h0) (A.3)

c0, k1 ≥ 0, h0 ∈ [0, 1], (A.4)

z1,s1 ∈ Z(s1, k1) (A.5)

where (b0, k0, s0, τ
K
0 ) given.

The notation z1,s1 denotes the value of the state variable z1 at s1. The overall value of the
Ramsey problem V̄ (.) depends on the initial conditions (b0, k0, s0, τ

K
0 ), which is why I use a

different notation for the initial value function.

A.2 Transformed Bellman equation

Given the ρ-transformation of the value function, v(z, k, s) ≡ V (z,k,s)1−ρ−1
(1−β)(1−ρ)

, the Bellman equation
takes the form

v(z, k, s) = max
c,h,k′,z′

s′
U(c, 1− h) + β

[∑
s′ π(s′|s)

(
1 + (1− β)(1− ρ)v(z′s′ , k

′, s′)
) 1−γ

1−ρ
] 1−ρ

1−γ
− 1

(1− β)(1− ρ)

subject to the transformed dynamic implementability constraint

z = Ω(c, h) + β
∑
s′

π(s′|s) [1 + (1− β)(1− ρ)v(z′s′ , k
′, s′)]

ρ−γ
1−ρ[∑

s′ π(s′|s)[1 + (1− β)(1− ρ)v(z′s′ , k
′, s′)]

1−γ
1−ρ
] ρ−γ

1−γ
z′s′

and to (21)-(23). The market value of the household’s wealth takes the form ω =
∑

s′ π(s′|s)m
′ ρ−γ
1−γ
s′ z′s′ ,

where m′s′ stands for the conditional likelihood ratio,

m′s′ ≡
V (z′s′ , k

′, s′)1−γ∑
s′ π(s′|s)V (z′s′ , k

′, s′)1−γ =

[
1 + (1− β)(1− ρ)v(z′s′ , k

′, s′)
] 1−γ

1−ρ∑
s′ π(s′|s)

[
1 + (1− β)(1− ρ)v(z′s′ , k

′, s′)
] 1−γ

1−ρ
.
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A.3 Initial period optimality conditions

Use the ρ-transformation of the time zero problem and let Φ0 and λ0 denote the multipliers
on the initial period implementability constraint and the resource constraint respectively. The
initial period optimality conditions are:

c0 : Uc0 + Φ0

[
Ωc0 − Ucc,0W0

]
= λ0 (A.6)

h0 : −Ul0 + Φ0

[
Ωh0 + Ucl,0W0 − Uc0(1− τK0 )FKH,0k0

]
= −λ0FH0 (A.7)

k1 : λ0 = β
∑
s1

π(s1|s0)m
ρ−γ
1−γ
1,s1

vk(z1,s1 , k1, s1)
[
1 + (1− β)(ρ− γ)η1,s1Φ0

]
(A.8)

z1,s1 : vz(z1,s1 , k1, s1)

+Φ0

[
1 + (1− β)(ρ− γ)vz(z1,s1 , k1, s1)η1,s1

]
= 0, (A.9)

where W0 =
[
(1− τK0 )FK(s0, k0, h0) + (1− δ)

]
k0 + b0, the household’s initial wealth and η1,s1

defined as in (30). The initial period first-order conditions for an economy without capital for
the variables (c0, h0, z1,s1), are (A.6),(A.7) and (A.9) with W0 = b0, FH0 = as0 , FKH ≡ 0.

B Sequential formulation

Let Xt ≡ M
ρ−γ
1−γ
t , X0 ≡ 1. Let v refer to the ρ-transformation of the utility criterion. The Ramsey

problem is

max v0({c}, {h})

subject to

∞∑
t=0

βt
∑
st

πt(s
t)Xt(s

t)Ω(ct(s
t), ht(s

t)) = Uc0W0 (B.1)

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)) (B.2)

Xt+1(st+1) = mt+1(st+1)
ρ−γ
1−γXt(s

t), X0 ≡ 1 (B.3)

vt(s
t) = U(ct(s

t), 1− ht(st))

+β

[∑
st+1

πt+1(st+1|st)
[
1 + (1− β)(1− ρ)vt+1(st+1)

] 1−γ
1−ρ
] 1−ρ

1−γ − 1

(1− β)(1− ρ)
, t ≥ 1 (B.4)
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where W0 ≡ RK
0 k0 + b0, (b0, k0, s0, τ

K
0 ) given, and mt+1 =

[
1+(1−β)(1−ρ)vt+1

] 1−γ
1−ρ

Et

[
1+(1−β)(1−ρ)vt+1

] 1−γ
1−ρ

.

Assign multipliers Φ̄, βtπtλt, βtπtνt and βtπtξt on (B.1), (B.2), (B.3) and (B.4) respectively. The
derivatives of the utility function are ∂v0

∂ct
= βtπtXtUct and ∂v0

∂ht
= −βtπtXtUlt. The first-order

necessary conditions are

ct, t ≥ 1 : Xt(s
t)Uc(s

t) + Φ̄Xt(s
t)Ωc(s

t) + ξt(s
t)Uc(s

t) = λt(s
t) (B.5)

ht, t ≥ 1 : −Xt(s
t)Ul(s

t) + Φ̄Xt(s
t)Ωh(s

t)− ξt(st)Ul(st) = −λt(st)FH(st) (B.6)

kt+1(st), t ≥ 0 : λt(s
t) = β

∑
st+1

πt+1(st+1|st)λt+1(st+1)[1− δ + FK(st+1)] (B.7)

Xt(s
t), t ≥ 1 : νt(s

t) = Φ̄Ωt(s
t) + β

∑
st+1

πt+1(st+1|st)mt+1(st+1)
ρ−γ
1−γ νt+1(st+1) (B.8)

vt(s
t), t ≥ 1 : ξt(s

t) = (1− β)(ρ− γ)Xt(s
t)φt(s

t) +mt(s
t)
ρ−γ
1−γ ξt−1(st−1), (B.9)

where

φt(s
t) ≡ Vt(s

t)ρ−1νt(s
t)− µt(st)ρ−1

∑
st

πt(st|st−1)mt(s
t)
ρ−γ
1−γ νt(s

t),

and ξ0 ≡ 0. The optimality conditions with respect to the initial consumption-labor allocation
are (A.6) and (A.7).

I will show now the mapping between the sequential formulation and the recursive formu-
lation in the text and in particular the relationship between the time-varying Φt and ξt. Solve at
first (B.8) forward to get

νt = Φ̄Et

∞∑
i=0

βi
Xt+i

Xt

Ωt+i

and therefore νt = Φ̄UctWt = Φzt, i.e. νt – the shadow value to the planner of an increase in
Xt– is equal to wealth (in marginal utility terms) times the cost of taxation Φ̄. Thus, φt –the
“innovation” in the multiplier νt– is equal to a multiple of ηt, φt = Φ̄ηt. Furthermore, define the
scaled multiplier ξ̃t ≡ ξt/Xt, ξ̃0 ≡ 0 and note that it follows the law of motion
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ξ̃t = (1− β)(ρ− γ)φt + ξ̃t−1

= (1− β)(ρ− γ)
t∑
i=1

φi = (1− β)(ρ− γ)
t∑
i=1

ηiΦ̄

Turn now to the multiplier in the text which, when solved backwards, delivers Φt = Φ0/(1+

(1 − β)(ρ − γ)
∑t

i=1 ηiΦ0), where Φ0 is the multiplier on the initial period implementability
constraint. Thus, by setting Φ0 = Φ̄ we have

Φt =
Φ̄

1 + ξ̃t
, (B.10)

or, in terms of the non-scaled ξt, Φt = Φ̄Xt/(Xt + ξt). Therefore, the time-varying excess
burden of taxation captures the additional channel of continuation utilities in intertermporal
marginal rates of substitution. Consider now the multipliers λt in the sequential formulation
and their relationship to their counterparts in the text. Given (B.10), their relationship is λt =

(Xt + ξt)λ
R
t , where λRt stands for the multipliers for the recursive formulation. Thus,

λt+1

λt
=

Xt+1 + ξt+1

Xt + ξt

λRt+1

λRt
=
Xt+1

Xt

Φ̄Xt
Xt+ξt

Φ̄Xt+1

Xt+1+ξt+1

λRt+1

λRt

= m
ρ−γ
1−γ
t+1

λRt+1

λRt

Φt

Φt+1

,

which delivers the optimality condition with respect to capital (39).

C Proof of proposition 3

Proof. For ρ = γ, the Bellman equation becomes

v(z, k, s) = max
c≥0,h∈[0,1],k′≥0,z′

s′∈Z(s′,k′)

[
U(c, 1− h) + β

∑
s′

π(s′|s)v(z′z′ , k
′, s′)

]
subject to z = Ω(c, h) + β

∑
s′ π(s′|s)z′s′ and the resource constraint (21). Since the value

function is not appearing anymore in the dynamic implementability constraint, the first-order
condition with respect to z′s delivers −vz(z′s′ , k′, s′) = Φ. Thus, after solving for the optimal
initial value of the state z1, we get a constant Φ̄. The rest of the first-order conditions become
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c : Uc + Φ̄Ωc = λ

h : −Ul + Φ̄Ωh = −λFH(s, k, h)

k′ : λ = β
∑
s′

π(s′|s)λ′s′(1− δ + FK,s′),

where I already used the envelope condition with respect to capital, (34). Note that if we knew
Φ̄, then the optimality conditions above together with the resource constraint (21) would allow
us to derive the policy functions for (c, h, k′) as functions of (k, s) and the fixed value Φ̄. In
other words, the dynamic implementability constraint is necessary for the determination of
the solution only through the excess burden of taxation, i.e. through the shadow cost that
additional wealth is imposing. Since for the case of expected utility this cost is constant to some
value Φ̄ independent of (z, k, s), as along as the planner takes into account how Φ̄ affects the
household’s utility, he does not need to keep track of z, but only of the state variable (k, s) (or s
in an economy without capital). In order to see that clearly, proceed as in Chari et al. (1994) and
solve the problem

vCCK(k, s; Φ̄) = max
c≥0,h∈[0,1],k′≥0

[
Ū(c, h; Φ̄) + β

∑
s′

π(s′|s)vCCK(k′, s′; Φ̄)
]

subject to the resource constraint (21), where Ū(c, h; Φ̄) ≡ U(c, 1 − h) + Φ̄Ω(c, h). Note that
the period return function is augmented so that it takes into account the relevant part of the
implementability constraint Ω and the fixed value Φ̄. The solution to the above problem delivers
policy functions for (c, h, k′) as functions of (k, s) and Φ̄ from period one onward.32

D Details about the illustrations

D.1 Economy without capital

I am assuming that the period utility function is such so that it is always optimal to tax (Ucl ≥ 0

is sufficient for that as we saw in the text) and consider the risk-sensitive case in order to show
that the analysis does not depend on the functional form of U , except for the above restriction.

32A full characterization requires solving the initial period problem

max
{c0,h0,k1}

[
Ū(c0, h0; Φ̄)− Φ̄Uc0W0 + β

∑
s1

π(s1|s0)vCCK(k1, s1; Φ̄)
]

subject to the initial resource constraint. Note that the initial policy functions are functions of Φ̄, the initial con-
ditions (b0, k0, s0) and the fixed τK0 . The final step is to adjust appropriately Φ̄ so that the intertemporal imple-
mentability constraint is satisfied.
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The two values that the excess burden of taxation is taking at period one can be found from Φi
1 =

Φ0

1+σηi1Φ0
, i = H,L, where ηi1 = zi1−ω0, i = H,L, and ω0 = πmH

1 z
H
1 +(1−π)mL

1 z
L
1 , the market value

of the government’s portfolio which is the mean of z1 under the continuation-value adjusted
measure. The likelihood ratios depend on continuation values asmi

1 = exp(σV i
1 )/(π exp(σV H

1 )+

(1−π) exp(σV L
1 )), i = H,L. In order to determine the relationship between ΦH

1 and ΦL
1 we need

to find the debt positions of the government.
Consider consumption which, by using (44) and the resource constraint, can be expressed

as function of the shock and the time-varying Φt, ct = c(gt,Φt) (so labor is ht = h(gt,Φt) =

c(gt,Φt) + gt and the tax rate τt = 1 − Ul/Uc = τ(gt,Φt)). At the initial period we have
c0 = c(gL,Φ0). Since Φt does not revert to Φ0, for the high-shock history we have cHt = cH2 =

c(gL,Φ
H
1 ),∀t ≥ 2 and for the low-shock history cLt = cL2 = c(gL,Φ

L
1 ), ∀t ≥ 1. For g1 = gH

we have cH1 = c(gH ,Φ
H
1 ). Thus, continuation values are V H

1 = U(cH1 , 1 − hH1 ) + βV H
2 , V H

2 =

U(cH2 , 1−hH2 )/(1−β), V L
1 = U(cL1 , 1−hL1 )/(1−β). The tax rates are τ0 = τ(gL,Φ0), τH1 = τ(gH ,Φ

H
1 ),

τHt = τH2 = τ(gL,Φ
H
1 ), t ≥ 2, τLt = τL1 = τ(gL,Φ

L
1 ), t ≥ 1.

For the high-shock history, the government budget constraints read bH1 = τH1 h
H
1 − gH + pH1 b

H
2

and bHt = τH2 h
H
2 −gL+pHt b

H
t+1, t ≥ 2. Prices are pH1 = βUc(c

H
2 , 1−hH2 )/Uc(c

H
1 , 1−hH1 ), pHt = β, t ≥ 2.

Thus bHt = bH2 =
τH2 hH2 −gL

1−β , t ≥ 2. For the low-shock history, we have pLt = β, t ≥ 1 and bond

positions bLt = bL1 =
τL1 h

L
1−gL

1−β , t ≥ 1.
Consider now the initial period. The budget constraint reads 0 = τ0h0 − gL + pH0 b

H
1 + pL1 b

L
1 ,

where pH0 = βπmH
1 Uc(c

H
1 , 1−hH1 )/Uc(c0, 1−h0) and pL1 = β(1−π)mL

1Uc(c
L
1 , 1−hL1 )/Uc(c0, 1−h0). If

gL = 0, we have bL1 > 0 and since at the initial period the government is running a surplus τ0h0,
we have bH1 < 0. Furthermore, in this case we also have bH2 > 0 and therefore from the budget
constraint at g1 = gH we conclude that the government is running a deficit, τH1 hH1 − gH < 0.

For the utility function of the example we have Ω(c, h) = 1 − ahh
1+φh and τt = τ(Φt) =

Φt(1 + φh)/(1 + Φt(1 + φh)), which holds for t ≥ 0 since the initial debt is equal to zero. We can
solve for the optimal allocation and the excess burden of taxation by using a double loop:

• Inner loop: Fix Φ0 and make a guess for Φi
1, i = H,L. Given the guess calculate the induced

debt positions, the continuation utilities and the innovations η1. Use η1 and update the
guess for Φi

1 from the law of motion for the excess burden of taxation and iterate till
convergence.

• Outer loop: After convergence of the inner loop is achieved, calculate the initial allocation
and the residual from the initial budget constraint, adjust Φ0 and go back to the inner
loop in order to find the corresponding Φi

1. Stop when Φ0 is such so that the initial budget
constraint is satisfied.
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D.2 Economy with capital

The period utility function is the same as in the example without capital. The labor tax formula
holds only for t ≥ 1 due to the presence of the initial wealth W0. The procedure to solve the
problem involves again a double loop for the determination of Φi

2, i = H,L and Φ0. Here are
the details:

• Inner loop: Fix Φ0 and make a guess for (ΦH
2 ,Φ

L
2 ). Given these two values of the excess

burden of taxation, the problem from period t = 3 onward for both histories behaves as a
deterministic Ramsey taxation problem, but with different Φ’s depending on the high- or
low-shock history. For the high-shock history, for t ≥ 3 solve the “CCK” Bellman equation
referred to in the proof of proposition 3,

v(k) = max
c,h,k′

Ū(c, 1− h; ΦH
2 ) + βv(k′)

subject to c+k′−(1−δ)k+gL = kαh1−α, with the modified return function Ū(c, 1−h; ΦH
2 ) =

ln c− ah h
1+φh

1+φh
+ ΦH

2 (1− ahh1+φh). For the low-shock history, for t ≥ 2, solve the same Bell-
man equation but with the return function Ū(c, 1− h; ΦL

2 ).

To determine the wealth positions zi2 and the respective innovations that allow the up-
date of the guesses for Φi

2, proceed as follows: Fix kH3 and consider the respective Euler
equation:

1

cH2
= β

1

cH3

[
1− δ + α

(kH3
hH3

)α−1]
Given kH3 and the policy functions we found from solving the Bellman equation, the right-
hand side is known, determining therefore cH2 . Furthermore, use the intratemporal wedge

condition for g2 = gH to get hH2 =
[

(1−τH2 )(1−α)

ahc
H
2

] 1
α+φh k

α
α+φh
2 , where τH2 = τ(ΦH

2 ). Plug the
expression for labor in the resource constraint at g2 = gH , cH2 + kH3 − (1 − δ)k2 + gH =

kα2 (hH2 )1−α to get one equation in the unknown k2 and use a non-linear solver to determine
it. Furthermore, use the policy functions for t ≥ 3 to determine V H

3 and zH3 . Utilities are
calculated with the original period utility function (and not with the modified Ū ). Finally,
use (cH2 , h

H
2 ) to get V H

2 = U(cH2 , 1 − hH2 ) + βV H
3 and zH2 = Ω(cH2 , h

H
2 ) + βzH3 . Use now the

policy functions for the low-shock history to determine V L
2 and zL2 at k2. Having the utility

values and the wealth positions at t = 2 allows us to calculate mi
2, i = H,L, the market

value of the wealth portfolio ω1 = πmH
2 z

H
2 + (1 − π)mL

2 z
L
2 and therefore the innovations
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ηi2 = zi2 − ω1, i = H,L, given the guess for Φi
2. Use the innovations ηi2 to update the guess

for Φi
2, Φi

2 = Φ0

1+σηi2Φ0
, i = H,L and iterate till convergence.

• Outer loop: After we reach convergence for Φi
2, calculate the rest of the allocation for t =

0, 1 given the initial Φ0. In particular, the Euler equation for k2 is

1

c1Φ0

= βπmH
2

1

cH2 ΦH
2

[
1− δ + α

(
k2

hH2

)α−1 ]
+ β(1− π)mL

2

1

cL2 ΦL
2

[1− δ + α

(
k2

hL2

)α−1 ]
.

The right-hand side is known, which delivers c1. Express now labor at t = 1 as h1 =[
(1−τ1)(1−α)

ahc1

] 1
α+φh k

α
α+φh
1 , τ1 = τ(Φ0) and use this expression to solve for k1 from the resource

constraint. Calculate furthermore z1 = Ω(c1, h1) + βω1. The initial period requires a dif-
ferent treatment due to the presence of initial wealth W0 = b0 +

[
(1 − τK0 )α(k0/h0)α−1 +

1 − δ
]
k0. Use the Euler equation for capital to get the initial value of the multiplier λ0,

λ0 = β
c1

[1 − δ + α(k1/h1)α−1]. Then use the first-order conditions for (c0, h0), (A.6)-(A.7)
and the resource constraint at t = 0 to get a system in three unknowns (c0, h0, k0) to be
solved with a non-linear solver. Update Φ0 by calculating the residual in the initial bud-
get constraint, I ≡ Ω(c0, h0)+βz1− 1

c0
W0. If I > (<)0 decrease (increase) Φ0 and go back to

the inner loop to redetermine Φi
2, i = H,L given the new Φ0. Stop when the initial budget

constraint holds, I = 0.

The solution method for the outer loop is based on a fixed value kH3 , which delivers in the
end an initial value of capital k0. I experimented with kH3 so that the endogenous initial capital
takes the value mentioned in the text.

There is plethora of methods for solving the Bellman equation. I use the envelope condition
method of Maliar and Maliar (2013). I approximate the value function with a 5th degree poly-
nomial in capital and I use 100 grid points. Furthermore, since the steady-state capital depends
on Φi

2, I re-adjust the bounds of the state space for each calculation of the value function in
order to focus on the relevant part of the state space. For the high-shock history, I set the lower
bound as K = 0.95 ·min(kH3 , k

H
ss) and the upper bound K̄ = 1.05 ·max(kH3 , k

H
ss). In the same vain,

for the low-shock history, I set K = 0.95 ·min(k2, k
L
ss) and K̄ = 1.05 ·max(k2, k

L
ss). The variables

kiss, i = H,L denote the respective steady states.
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