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1 Introduction

Nonlinear dynamic macroeconomic and asset pricing models often imply a set of integral

equations that do not admit explicit solutions. The finite-state Markov chain approxi-

mation methods developed by Tauchen (1986a) and Tauchen and Hussey (1991) prove

to be an effective tool for reducing the complexity of solving these equations where

the state variables follow autoregressive processes (Burnside, 1999). However, it is well

known that these methods do not perform well for highly persistent autoregressive (AR)

processes or processes with characteristic roots close to unity (see, e.g., Tauchen, 1986a,

Tauchen and Hussey, 1991, and Floden, 2008). Although, the methods can generate

a better approximation at the cost of a finer state space, this type of approach is not

always feasible, especially in the multivariate case. The latter is important, as per-

sistent multivariate structural shocks have become an increasingly popular device in

accounting for business cycle fluctuations (e.g., Cúrdia and Reis, 2010, and Caldara,

Fernandez-Villaverde, Rubio-Ramirez and Yao, 2012).

The poor approximation of the methods by Tauchen (1986a) and Tauchen and

Hussey (1991) for strongly autocorrelated processes has spurred a renewed research

interest given the prevalence of highly persistent shocks in dynamic macroeconomic

models. Rouwenhorst (1995) proposes a Markov-chain approximation of an AR(1) pro-

cess constructed by targeting its first two conditional moments. Some recent advances

in the literature on Markov-chain approximation methods include Adda and Cooper

(2003), Floden (2008) and Kopecky and Suen (2010). While these methods provide

substantial improvements in approximating the first-order univariate autoregressions,

their extension to vector autoregressions (and higher-order autoregressive processes),

which is of great practical interest to macroeconomists, is not readily available and

possibly highly non-trivial. As a result, the method by Tauchen (1986a) continues
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to be employed almost exclusively by researchers for approximating multivariate pro-

cesses by finite-state Markov chains. The only alternative method that is available for

approximating multivariate processes is the method proposed by Galindev and Lkhag-

vasuren (2010) for models with correlated AR(1) shocks. Although this method can

be applied to vector autoregressions (VAR) by decomposing the latter into a set of

interdependent AR(1) shocks, the state space generated by the method is not finite,

except for the special case of equally-persistent underlying shocks. Therefore, to the

best of our knowledge, a general method for approximating VAR processes by a finite-

state Markov chain with appealing approximation properties over the whole parameter

region of interest (including highly persistent parameterizations) is not yet available in

the literature.

This paper fills this gap and proposes a moment-matching method for approximat-

ing vector autoregressions by a finite-state Markov chain. The main idea behind this

method is to construct the Markov chain by targeting conditional moments of the un-

derlying continuous process as in Rouwenhorst (1995), rather than directly calculating

the transition probabilities using the distribution of the continuous process as in the

existing methods. More specifically, we obtain the Markov-chain transitional proba-

bilities by mixing a set of probability mass functions associated with the conditional

distributions of finite-state univariate processes. To target the conditional moments in

constructing the Markov chain, we use key elements of the Markov chains generated

by the methods of Tauchen (1986a) and Rouwenhorst (1995). Therefore, the proposed

method extends the multivariate methods of Tauchen (1986a) and Tauchen and Hussey

(1991) to highly persistent cases and Rouwenhorst’s (1995) scalar method (see Kopecky

and Suen, 2010) to vector cases, while still maintaining a finite number of states.

Our method yields accurate approximations without relying on a large number of

grid points for the state variables. In particular, the method expands the finite-state
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Markov chain approximation to a much wider range of the parameter space. While

the largest gains of the proposed approach arise when the characteristic roots of the

underlying process are close to unity, it tends to outperform (in terms of bias and

variance) the existing methods even when the persistence is moderate or low. Finally,

the method can be readily adapted to accommodate other important features of the

conditional distribution of the continuous-valued process.

The rest of the paper is organized as follows. Section 2 presents the continuous- and

discrete-valued versions of the multivariate model and reviews the existing approxima-

tion methods. Our approximation method is introduced in Section 3. We show that

the approximation is achieved by matching the first two conditional moments of the

underlying process and describe the construction of the transition probability matrix

and the Markov chain. Section 4 investigates the numerical properties of the method in

the context of a stochastic growth model with technology and government expenditure

shocks. Section 5 discusses possible extensions of the proposed method. Section 6 offers

practical recommendations for the implementation of the method.

2 Model and Notation

2.1 Continuous VAR process

Let yt be an M × 1 vector containing the values that variables, y1, y2, · · · , yM , assume

at date t. We consider the following vector autoregressive (VAR) process:

yt = Ayt−1 + εεεt, (1)

where A (with a generic element ai,j) is an M×M matrix with roots that lie strictly out-

side (although arbitrarily close to) the unit circle and the M×1 vector εεεt is i.i.d. N (0,Ω)

with Ω = diag(ω2
1, ω

2
2, ..., ω

2
M) being a diagonal matrix. Extending the analysis to a non-

diagonal Ω and non-Gaussian errors is discussed later in the paper. Our focus on the
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zero-mean, first-order VAR is primarily driven by expositional and notational simplicity

and deterministic terms as well as higher-order dynamics can be easily incorporated at

the expense of additional notation. Let Σ be the unconditional covariance matrix of the

process yt and σi denote the unconditional standard deviation of yi for each i. Then,

the i-th diagonal element of Σ is given by σ2
i .

2.2 Finite-state Markov chain

Let ỹt denote the finite-state Markov chain that approximates yt in (1). Each compo-

nent ỹi,t takes on one of the Ni discrete values denoted by ȳ
(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i . Therefore,

at each point in time, the entire system will be in one of the N∗ = N1×N2× · · · ×NM

states. Let ȳ(1), ȳ(2), · · · , ȳ(N∗) label these N∗ states and Π denote the N∗ ×N∗ transi-

tion matrix whose [row j, column k] element πj,k measures the probability that in the

next period the system will be in state k conditional on the current state j. Our goal

is to construct a finite number of grid points for each element of ỹt and calculate the

associated transition probability matrix Π so that the characteristics of the generated

process closely mimic those of the underlying process y.

Define

hi(j, l) = Pr(ỹi,t = ȳ
(l)
i |ỹt−1 = ȳ(j)) (2)

for i = 1, 2, · · · ,M , l = 1, 2, · · · , Ni and j = 1, 2, · · · , N∗. For any i, let Li be an

integer-valued function such that ỹi,t = ȳ
(Li(j))
i when the system is in state j at time

t. Since the components of εεεt are independent, the transition probability πj,k can be

written as the product of the individual transition probabilities:

πj,k =
M∏
i=1

hi(j, Li(k)). (3)

This means that, for each pair (i, j), we need to construct Ni transition probabilities

Hi(j) = {hi(j, 1), hi(j, 2), · · · , hi(j,Ni)} (4)
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over the grid points ȳ
(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i . Since
∑Ni

l=1 hi(j, l) = 1 for each (i, j), Hi(j) can

be regarded as a probability mass distribution defined over the discrete values ȳ
(1)
i , ȳ

(2)
i ,

· · · , ȳ(Ni)
i .

For any i and j, let µi(j) denote the expected value of process yi,t+1, conditional on

yt = ȳ(j), i.e.,

µi(j) = ai,1ȳ
(L1(j))
1 + ai,2ȳ

(L2(j))
2 + · · ·+ ai,M ȳ

(LM (j))
M . (5)

The method that we propose below targets the first and second conditional moments of

the process yt by minimizing the distance of the following moment conditions (for i =

1, · · · ,M and j = 1, · · · , N∗)
Ni∑
l=1

hi(j, l)ȳ
(l)
i − µi(j) (6)

Ni∑
l=1

hi(j, l)(ȳ
(l)
i − µi(j))2 − ω2

i (7)

from zero, subject to some restrictions on the transition probabilities. Thus, the ap-

proach that we adopt in this paper requires that the Markov chain adequately ap-

proximates the conditional mean and variance of the continuous-valued process yt. In

this respect, we give our method a moment-matching interpretation and refer to it as

moment-matching (MM) method.

More specifically, our proposed method generates a set of discrete distributions using

the Rouwenhorst (1995) method and mixes these distributions to construct conditional

distributions while targeting the conditional mean and conditional variance of each ỹi at

each j. Thus, the MM method deals with M×N∗ conditional distributions and 2M×N∗

conditional moments given by equations (6) and (7). With 2M ×N∗ free parameters,

this gives rise to an over-identification problem and, in general, the conditional mean

and variance cannot be both perfectly matched.
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2.3 Existing methods

The existing finite-state methods for approximating vector autoregressions by Tauchen

(1986a) and Tauchen and Hussey (1991) share the common feature that they use con-

tinuous probability distribution functions for calculating the transition probabilities de-

fined over discrete grids. As mentioned in the introduction, the finite-state extension to

multivariate processes of the recently proposed methods for improving the Markov chain

approximation in near-nonstationary region of univariate AR processes is not readily

available. In what follows, we consider explicitly the method proposed by Tauchen

(1986a) as a representative of the existing methods since, according to Floden (2008),

it tends to be more robust to the parameters of the underlying process than its version

in Tauchen and Hussey (1991).

There are two free parameters that underlie the approximation accuracy of Tauchen’s

(1986a) method: the number of grid points Ni and a parameter mi which is positively

related to the distance between the grid points. Specifically, the distance between two

consecutive nodes of ỹi in Tauchen’s (1986a) method is 2miσi/(Ni−1) for some mi > 0,

where σi denotes the unconditional standard deviation of yi. First, if the the number

grid points Ni is relatively large, then the conditional distribution of ỹi,t given state j

at time t− 1 is expected to approximate closely (in the sense of weak convergence) the

conditional distribution of yi,t given yi,t−1 = µi(j). However, calculating the transition

probabilities using the continuous distribution functions does not always deliver a de-

sirable approximation. Specifically, Tauchen’s (1986a) method fails to approximate the

variability in yt as one or more of the roots of the underlying continuous-valued VAR

process yt approach the unit circle. This problem arises because Tauchen’s (1986a)

method targets only the first conditional moment of the continuous-valued process yt.

Figure 1 illustrates this point numerically. It shows that as the persistence of the
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underlying process increases, Tauchen’s (1986a) method fails to generate sufficient vari-

ability in y2 (an online appendix provides a formal discussion of this issue). It should be

noted that despite some numerical and methodological differences across the existing

finite-state Markov-chain approximations for the vector case, all these methods suffer

from the same problem since they calculate the transition matrices using distribution

functions around the first conditional moment. In other words, regardless of the way

the grid points are constructed, there is a non-zero distance between any two grid points

and the above issue always arises in these methods.

Second, the choice of parameter mi involves a sharp trade-off (especially in the

presence of high persistence) between targeting unconditional variance and conditional

variance and the quality of the approximation appears to be highly sensitive to the

value of mi (Kopecky and Suen (2010)). If the value of mi is too small (say mi = 2),

the resulting truncation of the grid space can be quite severe and Tauchen’s (1986a)

method performs poorly for approximating the unconditional variance, as well as other

higher-order moments, of the underlying process. On the other hand, if the value

of mi is too large, the distance between the grid points increases which reduces the

quality of approximating the conditional variance of the underlying process. In contrast,

our proposed method breaks the tight link between the conditional and unconditional

variance which is inherent in the existing finite-state VAR methods.

3 A Moment-Matching Markov Chain Method

3.1 Probability mass functions

Before constructing the Markov chain, we introduce the following notation. Let yt =

(yt,1, ..., yt,i, ..., yt,M)′ and consider the scalar zero-mean AR(1) process yt,i with persis-

7



tence parameter ρi and unconditional standard deviation σi, i.e.,

yt,i = ρiyt−1,i + εt,i, (8)

where |ρi| < 1, εt,i is i.i.d. N (0, (1− ρ2
i )σ

2
i ) and σ2

i = Var(yt,i). Let ỹi(Ni, ρi, σi) be the

Ni-state symmetric Markov chain process, constructed by the method of Rouwenhorst

(1995), that approximates the AR(1) process equation (8). Furthermore, let ȳi(Ni, σi) =

{ȳ(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i } denote the grid points and Π(Ni, ρi) be the probability transi-

tion matrix of ỹi(Ni, ρi, σi) which is the i-th Ni × Ni block on the diagonal of matrix

Π. Suppose that the [row k, column l] element of Π(Ni, ρi), πk,l(Ni, ρi), denotes the

probability that the Ni-state process switches from ȳ
(k)
i to ȳ

(l)
i .

Now consider the k-th row of Π(Ni, ρi):

πk(Ni, ρi) = {πk,1(Ni, ρi), πk,2(Ni, ρi), · · · , πk,Ni
(Ni, ρi)}. (9)

The key observation is that this row can be interpreted as a probability mass function

associated with the nodes {ȳ(1)
i , ȳ

(2)
i , · · · , ȳ(Ni)

i }. It is easy to show that E(ỹt,i|ỹt−1,i =

ȳ
(k)
i ) = ρiȳ

(k)
i and Var(ỹt,i|ỹt−1,i = ȳ

(k)
i ) = (1− ρ2

i )σ
2
i so that the mean and the variance

of the probability mass distribution are ρiȳ
(k)
i and (1−ρ2

i )σ
2
i , respectively. Note that the

conditional mean and variance of the Markov chain is independent of the number of grid

points. This stands in sharp contrast with the existing methods (including Tauchen’s

(1986a) method) which are very sensitive to the number of grid points, especially in

approximating near unit root processes.

On the other hand, the grid points ȳi(Ni, σi) and the transition matrix Π(Ni, ρi)

are directly determined by the input parameters: Ni, ρi, and σi. Specifically, let l ∈

{0, 1, · · · , Ni−1}. For each l, consider the following Ni−1 probabilities: {ql,j(ρi)}Ni−1
j=1 ,

where ql,j(ρi) = (1 +ρi)/2 if j ≤ l or ql,j(ρi) = (1−ρi)/2 otherwise. Then, the elements

of Π(Ni, ρi) are given recursively by πl+1,1(Ni, ρi) =
∏Ni−1

j=1 (1− ql,j(ρi)), and

πl+1,k+1(Ni, ρi) =
1

k

k∑
n=1

(−1)n−1dl,n(Ni, ρi)πl+1,k−n+1(Ni, ρi), (10)
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k = 1, 2, · · · , Ni − 1, where dl,n(Ni, ρi) =
∑Ni−1

j=1

(
ql,j(ρi)

1−ql,j(ρi)

)n
.

The grid points ȳi(Ni, σi) are given by the following Ni equally-spaced points:

ȳ
(k)
i = −σi

√
Ni − 1 + 2σi

k − 1√
Ni − 1

(11)

for k = 1, 2, · · · , Ni. Therefore, using different combinations of grid points and tran-

sition matrices constructed by the method of Rouwenhorst (1995), one can generate a

class of probability mass functions with a wide range of means and variances. Below,

we discuss how to construct the Markov chain of the VAR process in equation (1) by

mixing these univariate probability mass functions.

3.2 Markov chain construction

For a given i, A, Ω and Σ, equation (5) holds for each j ∈ {1, 2, · · · , N∗}. Assume

that 0 < ρi < 1 and let ρi =
√

1− ω2
i /σ

2
i . Below, we consider two cases: µi(j) ∈

[ρiȳ
(1)
i , ρiȳ

(Ni)
i ] and µi(j) /∈ [ρiȳ

(1)
i , ρiȳ

(Ni)
i ].

1. In the typical case, µi(j) ∈ [ρiȳ
(1)
i , ρiȳ

(Ni)
i ]. Let ri,j denote a strictly positive

number below one: 0 < ri,j < 1. For now, set ri,j = ρi. Then, consider the

following mixture distribution

π̃(Ni, ri,j) = λ(ri,j)πk(Ni, ri,j) + (1− λ(ri,j))πk+1(Ni, ri,j), (12)

where k is such that ri,j ȳ
(k)
i ≤ µi(j) ≤ ri,j ȳ

(k+1)
i and λ(ri,j) =

ri,j ȳ
(k+1)
i −µi(j)

ri,j ȳ
(k+1)
i −ri,j ȳ

(k)
i

. The

mean and variance of this mixture distribution are, respectively, µi(j) and

ω̃2(ri,j) = σ2
i (1− r2

i,j) + σ2
i r

2
i,j

4λ(ri,j)(1− λ(ri,j))

Ni − 1
. (13)

Note that the restrictions above ensure that λ(ri,j) ∈ [0, 1] and we consider the

boundary case (λ(ri,j) = 0 or 1) and the case of 0 < λ(ri,j) < 1 separately. In

the boundary case when µi(j) = ri,j ȳ
(k)
i or µi(j) = ri,j ȳ

(k+1)
i , we set Hi(j) ≡

πk(Ni, ri,j) or Hi(j) ≡ πk+1(Ni, ri,j) and both the conditional mean µi(j) and

conditional variance ω2
i are matched.
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In the more common situation when 0 < λ(ri,j) < 1, the second term on the right

hand side of equation (13) is positive. Therefore, although the mean of the mixture

distribution π̃(Ni, ri,j) hits the target µi(j), the variance of the distribution is

greater than the targeted conditional variance ω2
i . It should be noted that since

ri,j < 1 and λ(ri,j)(1− λ(ri,j)) ≤ 0.25, the second term on the right-hand side of

equation (13) converges to zero as the number of grid points increases. Hence, if

the number of grid points is large, ω̃2(ri,j) is close to ω2
i and the procedure can

be terminated at this step by setting Hi(j) ≡ π̃(Ni, ri,j). In fact, experimentation

shows that for a moderate number of state space (e.g., Ni = 9), setting Hi(j) ≡

π̃(Ni, ri,j) already provides a reasonable quality of approximation. Alternatively,

one could further improve the quality of approximation by minimizing the distance

|ω̃2(ri,j)− ω2
i | over ri,j ∈ (ρi, 1) as in step 1(a) below.

1(a). Let r∗i,j = arg minri,j∈(ρi,1) |ω̃2(ri,j) − ω2
i |. Let π̃(Ni, r

∗
i,j) be the mixture dis-

tribution obtained by substituting the value of r∗i,j for ri,j in equation (12).

Then, setting Hi(j) ≡ π̃(Ni, r
∗
i,j) matches the conditional mean while achiev-

ing the best possible value for the conditional variance.

2. In the case when µi(j) /∈ [ρiȳ
(1)
i , ρiȳ

(Ni)
i ], we set Hi(j) ≡ π1(Ni, ρi) if µi(j) < ρiȳ

(1)
i

or Hi(j) ≡ πNi
(Ni, ρi) if µi(j) > ρiȳ

(Ni)
i . In both situations, the conditional

variance ω2
i is matched exactly while the conditional mean attains the value closest

to µi(j) given the grid points.

The probability mass functions {Hi(1), Hi(2), · · · , Hi(N
∗)}Mi=1 are then obtained by

repeating this procedure for i = 1, 2, · · · ,M . The asymptotic validity of the method for

approximating conditional expectations of general nonlinear functions that often arise

in economic models is provided in an online appendix.
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4 Application: Stochastic Growth Model

4.1 Main setup

To evaluate the method, we consider a version of the simple stochastic growth model

of Christiano and Eichenbaum (1992) that allows the technology and demand shocks

to be correlated.1 Suppose that the social planner chooses streams of consumption

services and capital stock, {Ct, Kt+1}∞t=0, to maximize the expected utility function

E0

∑∞
t=0 β

t ln(Ct) subject to Ct + Gt + Kt+1 = exp(zt)K
α
t + (1 − δ)Kt, where zt is

the aggregate technology shock and Gt is the government expenditure at time t and

the parameters β, α, δ are the time discount factor, the share of capital income in

total output and the depreciation rate, respectively. Let Yt denote the output at time

t: Yt = exp(zt)K
α
t . Moreover, let gt = ln(Gt/Ḡ), where Ḡ > 0 is the government

expenditure at the steady state.

We assume that yt = (zt, gt)
′ evolves according to the VAR process given by equa-

tion (1) for M = 2. Let F (·, ·|z, g) denote the implied bivariate distribution of (zt, gt)

given zt−1 = z and gt−1 = g, i.e., F (z′, g′|z, g) = Pr(zt < z′, gt < g′|zt−1 = z, gt−1 = g).

Then, the social planner’s problem is given by the following functional equation:

V (K, z, g) = max
K′

{
ln
(
exp(z)Kα + (1− δ)K −K ′ − exp(g)Ḡ

)
+

+ β

∫
V (K ′, g′)dF (z′, g′|z, g)

}
.

(14)

4.2 Parameters and shock dynamics

In the numerical analysis, we use the following values of the structural parameters α, β, δ

and Ḡ. The share of capital income and the discount factor are set to α = 0.283 and β =

0.986, respectively, as in Gomme and Rupert (2007). The value for the depreciation rate,

1For studies that use a finite-state Markov chains for solving stochastic dynamic models with
multivariate persistent processes, see, for example, Burnside (1999), Bayer and Juessen (2012), Caldara
et al. (2012), and Lkhagvasuren (2012).
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δ = 0.0183, is obtained as a weighted average of the depreciation rates for (i) market

structures and (ii) equipment and software, constructed by Gomme and Lkhagvasuren

(2013) for the period 1954:Q1-2010:Q4. To calibrate the government expenditure at

the steady state Ḡ (obtained when zt = gt = 0 for all t in the model), we use quarterly

U.S. federal government current expenditures and U.S. gross domestic product over

the period of 1948:Q1-2010:Q4 from the U.S. Bureau of Economic Analysis. We then

target the average expenditure-to-output ratio (0.253), computed from the data, for

the steady state expenditure-to-output ratio in the model which gives Ḡ = 0.594.

The parameters of the driving process for aggregate technology and government

expenditure are estimated from fitting a VAR(1) with a constant and a linear trend to

the U.S. data of the period 1948:Q1-2010:Q4. We scale government expenditures by

the U.S. civilian non-institutionalized population aged 16 and over and convert it into

real terms using the consumption deflator (Gomme and Rupert (2007)). The logarithm

of real per-capita expenditure is used for gt. The Solow residual series zt is obtained as

in Gomme and Lkhagvasuren (2013).

The estimated VAR(1) model for zt and gt, using a bootstrap bias-corrected proce-

dure, is given by zt

gt

 =

 0.9809 0.0028

0.0410 0.9648


 zt−1

gt−1

+

 ez,t

eg,t

 , (15)

where ez,t and eg,t are mean-zero, iid random variables with standard deviations of

0.0087 and 0.0262, respectively. Given equation (15), the unconditional covariance

matrix of the process yt = (zt, gt)
′ is

 σ2
z σzg

σzg σ2
g

 =

 0.00235 0.00241

0.00241 0.01274

 and the

implied correlation coefficient of the two shocks is ρz,g = 0.4347.
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4.3 Approximation of the VAR process

In this section, we assess numerically how well our proposed MM method works in

terms of approximating the autoregressive process in equation (15) for various degrees

of fineness of the discrete space. Let ỹt = (z̃t, g̃t), for t = 1, ..., τ, denote the simulated

time series either from the Markov chain approximation by Tauchen (1986a) or the MM

method proposed in this paper. In order to shed additional light on the performance

of the moment-matching method and illustrate the value added from each of its imple-

mentation steps, we report two versions of the method: (i) the baseline version of the

method that does not include the minimization step 1(a) in section 3.2 (denoted by

MM0) and (ii) the full version of the method that includes the minimization step 1(a)

in section 3.2 (denoted by MM).

4.3.1 Unconditional moments

First, the evaluation of the accuracy of the two approximations is based on some un-

conditional moments and parameters of the underlying process in equation (1) and the

simulated processes. The parameters of interest are the unconditional variances of zt

and gt (denoted by σ2
z and σ2

g), the correlation coefficient between zt and gt (denoted

by ρz,g), and the persistence measures 1 − ς1 and 1 − ς2, where ς1 and ς2 are the two

roots (eigenvalues) of matrix A associated with equation (15). As in Tauchen (1986a)

and Tauchen and Hussey (1991), the simulated counterpart of A, Â, is obtained by

fitting the VAR model in equation (1) to {ỹt}τt=1. The evaluation of the approximation

accuracy is based on 1,000 simulated series of length τ = 2, 000, 000, with the first

200,000 observations of each sample being discarded to remove the effect of the initial

condition. As in Tauchen (1986a), we choose nine grid points for each component:

N̄ = N1 = N2 = 9. We also consider other cases in which the state space is much

finer: N̄ = 15 and N̄ = 21. When using Tauchen’s (1986a) method, we use, for each
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i, equispaced grid points on the interval [−miσi,miσi], where mi = 1.2 lnNi (Floden,

2008).2

Table 1 reports the root mean squared error (RMSE), bias and standard deviation of

these parameters relative to their true values. The results suggest that our MM method

dominates the method by Tauchen (1986a) in terms of bias and RMSE for all parame-

ters of interest across all three levels of fineness. For example, the relative bias for N̄ = 9

of the estimated 1− ς1, σ2
1 and σ2

2, using data generated by Tauchen’s (1986a) method,

is more than 30%, whereas the corresponding biases for the MM method are approx-

imately 1%. Increasing the number of grid points from 9 to 15 and 21 improves the

performance of Tauchen’s (1986a) method but its numerical properties remain rather

poor. The version of our proposed method that does not include the minimization step

1(a), MM0, significantly outperforms Tauchen’s (1986a) method and delivers accurate

approximations. However, the advantages of performing this additional minimization

step become obvious in removing the bias in the estimates of σ2
z and σ2

g .

4.3.2 Conditional moments

Potentially important information about the quality of the approximation is also con-

tained in the conditional moments. Hence, it would be interesting also to report the

approximation accuracy of the first two moments, conditional on the state of the pro-

cess.

Given the constructed grid points and transition probabilities, the implied condi-

tional mean and variance are µ̂i(j) =
∑Ni

l=1 hi(j, l)ȳ
(l)
i and ω̂2

i (j) =
∑Ni

l=1 hi(j, l)(ȳ
(l)
i −

µ̂i(j))
2, where i ∈ {1, 2, · · · ,M} and j ∈ {1, 2, · · · , N∗}. Then, for each i and j, the

distances between the true and the generated conditional moments can be measured

2In an online appendix, we adjust these grid points by targeting unconditional variances as in
Kopecky and Suen (2010). Our numerical results suggest that when the persistence is low, adjusting
the unconditional variance improves the approximation of the conditional moments. However, in the
case of high persistence, this adjustment tends to compromise the approximation accuracy of the
conditional variance.
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by |µ̂i(j)− µi(j)| and |ω̂2
i (j)/ω

2
i − 1|. To assess the overall accuracy of the conditional

moments, we consider weighted averages of these distances across the N∗ states using

the frequencies of each state as weights. The weights are constructed from a simulated

process of length τ = 1, 800, 000. The results are presented in the lower panel of Table 1

and show that the MM method performs extremely well across all parameterizations.

Again, this is not surprising since, by construction, this method targets the first two

conditional moments of the underlying process. More importantly, the results show that

calculating the transition probabilities using the conditional distribution as in Tauchen

(1986a) generates a substantial bias in the second conditional moment. These numer-

ical results lend support to our discussion in section 2.3. The MM0 method partially

correct the bias in the second conditional moments of Tauchen’s (1986a) approximation

while the MM method (that includes the minimization step 1(a)) completely eliminates

the bias.

4.4 Planner’s problem

Next, we consider the performance of the MM and Tauchen’s (1986a) methods for

solving the planner’s problem in equation (14).

4.4.1 Solution with finite-state shocks

The Bellman equation of the social planner is solved over the discrete space for K, z

and g. Given equation (15), let D2 be the N1×N2 bivariate discrete grid for (z, g) used

in the Markov chain approximation by Tauchen (1986a) or the method proposed in this

paper. Following Coleman (1990), for the capital stock, we consider a discrete grid,

denoted by K, of fifty (equispaced in logarithmic scale) points that span the interval

(0.7Kss, 1.3Kss), where Kss is the steady state capital stock.

Solving the discrete analog of the Bellman equation requires finding the optimal

choice of the capital stock at each point of the trivariate grid D2 × K, while replacing
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the conditional distribution F (., .|z, g) by the transition matrix Π. The decision rule

is computed iteratively by using the solution from the previous iteration to evaluate

the conditional expectation. For capital stock values that do not belong to K, we

use univariate interpolation along K. The iterations are repeated until the algorithm

reaches the convergence criterion such that the gap between the decision rules obtained

from two consecutive iterations become negligibly small at each point of the discrete

space D2 × K. Once the policy function is obtained, the simulation of the economy

amounts to generating a time series of capital (using univariate interpolation along K)

for the sequence of shocks simulated by section 4.3.

4.4.2 Solution with continuous shocks

Kopecky and Suen (2010) show that the appropriate way to evaluate finite-state ap-

proximation methods is to compare the numerical results for these different methods

with those obtained from a highly accurate, albeit computationally demanding, method.

Following their approach, we evaluate the above finite-state methods by considering an

alternative solution method that takes explicitly into account the continuous nature

of the shocks. Unfortunately, the presence of two shocks in our case does not allow

us to solve the Bellman equation over a grid as fine as the one used in Kopecky and

Suen (2010). Given this important limitation, we first find the policy rule on a coarse

trivariate discrete grid (similar to D2×K), while performing numerical integration using

the continuous conditional distributions, and then interpolate the rule to a continuous

process directly generated by equation (15). Since the numerical integration and simu-

lated processes are the two key elements of any finite-state approximation method, this

alternative method serves as an efficient benchmark for accuracy of the above meth-

ods. Moreover, as shown below, the alternative method is remarkably robust to the

coarseness of the grid points.

For the shocks of z and g, we use N1 and N2 equispaced grid points on the intervals
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(−3σz, 3σz) and (−3σg, 3σg) (Coleman, 1990; Gomme and Rupert, 2007), respectively,

and for the capital stock, we consider the same grid as in the previous case. We cal-

culate the numerical integration using a bivariate Gauss-Hermite quadrature rule with

9× 9 quadrature nods for (z, g) (see, for example, Judd, 1998, for the quadrature nods

and associated weights of the rule). Note that both calculating the conditional ex-

pectation and generating the capital stock are now computationally more demanding.

Specifically, they require trivariate interpolation along (K, z, g), as opposed to univari-

ate interpolation along K in the finite-state method. For brevity, this method will be

referred to as the continuous method.

4.4.3 Results

After solving equation (14) using the transition matrices constructed by the two meth-

ods, we simulate the time series of output, capital, consumption and government ex-

penditure for τ = 2, 000, 000. We also generate a sequence of length 2,000,000 using the

actual VAR(1) process. As before, the first 10 percent of the observations are discarded.

The basic results are presented in the upper panel of Figure 2. It shows that the

MM method is less sensitive to the number of grid points compared with Tauchen’s

(1986a) method. More importantly, as the number of grid points increases, the moments

generated by Tauchen’s (1986a) method approach those obtained by the continuous

and MM methods. This suggests that the simulated data obtained by the MM method

describes more accurately the underlying dynamics of the variables.3

It is important to note that differences in moments obtained by the two methods

arise not only because of differences in the simulated shocks, but also due to differences

3The computing times of solving the full model (using Matlab on a 3.4 GHz, 64-bit Intel PC) for
Tauchen’s (1986a) and MM methods with N̄ = 9 (N̄ = 21) are 890.8 (4757.5) seconds and 867.5
(4820.5) seconds, respectively. Note, however, that the degree of accuracy for the MM approximation
for N̄ = 9 is much higher than the degree of accuracy of Tauchen’s (1986a) method for N̄ = 21 (see
panel A of Figure 2). This suggests that the computational advantages of the MM method could be
substantial for the same level of approximation error.
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in the decision rules. For example, panel B of Figure 2 plots the optimal policy rules

for capital (as a function of technology and government expenditure shocks) for the

different solution methods. Figure 2 shows that the decision rule obtained by the MM

method tracks very closely the decision rule obtained by the continuous method. On

the other hand, the decision rule from Tauchen’s (1986a) method appears to be much

less susceptible to the two shocks as indicated by the relatively flatter curves generated

by the method.

Table 2 summarizes other moments of the simulated data such as volatility, persis-

tence and correlation with the current and lead value of output. The main results that

emerge from this exercise are consistent with our previous findings. Tauchen’s (1986a)

method provides a poor approximation to key moments of the underlying process and

the approximation errors for some moments remain relatively large even for N̄ = 9. In

contrast, the approximation by the MM method tends to be extremely reliable across

moments and different grids.

4.5 GMM estimation

In this section, we use 10,000 simulated series for Kt, Yt and Ct (t = 1, ..., T ) from

the model to estimate the true structural parameters β = 0.986, α = 0.283 and δ =

0.0183 by generalized method of moments (GMM). We consider empirically relevant

sample sizes, T = 120 and T = 240, which correspond to 30 and 60 years of quarterly

observations. The goal of this exercise is to see whether differences in the simulated data

from the MM and Tauchen’s (1986a) approximation methods will translate in differences

in the estimates (and their associated variability) of the structural parameters.

We first turn our attention to the properties of the simulated data obtained from the

MM and Tauchen’s (1986a) methods with N̄ = 9, along with the continuous method

as a benchmark. Table 3 reports the standard deviations of the variables Ct+1/Ct and
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Yt+1/Kt+1 that are used in the subsequent analysis as well as the correlation between

Ct+1/Ct and Yt+1/Kt+1. While both (MM and Tauchen’s (1986a)) methods appear to

provide a good approximation to the variability of the output-capital ratio, the MM

method’s approximation of std(Ct+1/Ct) and Corr(Ct+1/Ct, Yt+1/Kt+1) is much closer

to the corresponding statistics for the continuous method.

The Euler equation for the stochastic growth model is given by

Et

[
β
Ct
Ct+1

(
α
Yt+1

Kt+1

+ (1− δ)
)
− 1

]
= 0, (16)

where Et[·] denotes the expectation conditional on the information set at time t. In

what follows, we fix the depreciation parameter at its true value and estimate only

(α, β)′. Furthermore, we use zt = (1, Yt/Kt)
′ as instruments and transform (by the

law of iterated expectations) the above conditional restriction into two unconditional

restrictions which gives rise to the following just-identified system of equations:

1

T − 1

T−1∑
t=1

[
β
Ct
Ct+1

(
α
Yt+1

Kt+1

+ (1− δ)
)
− 1

]
zt = 02. (17)

The values α̂ and β̂ that solve these two equations are the GMM estimates. Since

this is a just-identified model, the choice of a weighting matrix is irrelevant. We also

note that the choice of this particular set of instruments and estimated parameters is

made to sidestep some identification issues that arise in this model. Table 3 shows that

although the differences in the average estimates for the three methods are fairly small,

the MM method produces up to 8–9% less volatile estimates than Tauchen’s (1986a)

method.4 This finding reinforces the practical relevance of the proposed MM method

for macroeconomic and econometric analysis.

4Unreported results reveal that as the sample size increases, the upward bias of α̂ shrinks towards
zero and the differences in the variability of the GMM estimates between the MM and Tauchen’s
(1986a) methods become even larger.
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5 Extensions

5.1 Non-diagonal covariance matrix

While the procedure in Section 3 is developed under the assumption of a diagonal

covariance matrix Ω, the proposed method can be easily extended to the case of a

non-diagonal covariance matrix. Suppose now that the underlying continuous-valued

process follows

xt = b+Bxt−1 + ηt, (18)

where ηt is i.i.d. (0,Ψ) and Ψ is a non-diagonal matrix (see also Terry and Knotek

II, 2011). Let D be a lower triangular matrix such that Ω = DΨD−1 is a diagonal

matrix. Define the transformations (Tauchen, 1986b), xt → D[yt − (IM − B)−1b],

B → A = DBD−1 and ηt → Dεt. Then, we have the same model as in equation (1).

After computing the discrete Markov-chain approximation for this modified model, we

reverse the transformations above in order to obtain the discrete process corresponding

to equation (18). We should note that since any stationary AR(p) process can be

expressed in a companion form as a VAR(1) process, our method effectively extends

the method by Rouwenhorst (1995) to higher-order scalar autoregressive processes.

5.2 Targeting higher-order moments

The normality (and log-normality, in the case of modeling shocks with stochastic volatil-

ity as in Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez and Uribe, 2011 and

Caldara et al., 2012) assumption is routinely used in describing the properties of the

shocks in macroeconomic models. Nevertheless, in some applications, the normality

assumption of the error term in equation (1) may seem restrictive.

In general, targeting higher-order conditional moments requires a much finer state

space. The reason is that due to the finite-state approximation itself, the innovation
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of the finite-state process takes on a finite number of values. For example, when the

conditional mean is close to the upper and lower bounds of the grid, the conditional

distribution function is highly asymmetric and the overall skewness of the error term

is distorted. Moreover, when the persistence is high, the probability that the current

state repeats itself increases. As a result, the innovation will be highly concentrated at

zero and will jump to another state within a finite distance with low probability, which

gives rise to a leptokurtic distribution. Hence, non-zero skewness and excess kurtosis

inherently arise in any finite-state approximation. Therefore, to obtain a reasonable

approximation of higher-order conditional moments, one has to employ a much larger

number of grid points. Keeping this in mind, we make the following modifications to

our procedure in Section 3.2 that allow us to target skewness and excess kurtosis.

To generate non-zero conditional skewness, we use the first row of the transition

matrix Π(Ni, ρi):

π1(Ni, ρi) = {π1,1(Ni, ρi), π1,2(Ni, ρi), · · · , π1,Ni
(Ni, ρi)}, (19)

where Ni ≥ 3. Since this probability mass distribution is associated with the lowest

discrete value of the scalar AR(1) process and ρi > 0, it is positively skewed. Moreover,

the skewness increases with ρi.

Now let us consider Ñi > Ni grid points constructed by Rouwenhorst’s (1995)

method for an autoregressive process with unconditional variance σ2
i . Then, the transi-

tion matrix associated with these grid points is constructed using π1(Ni, ρi). Specifically,

we set the k-th row of the Ñi × Ñi matrix Π̃(Ñi, ρi) to

π̃k(Ñi, ρi) =

 (0′k−1 π1(Ni, ρi) 0′
Ñi−Ni−k+1

) if k ≤Ñi −Ni + 1,

(0′
Ñi−Ni

π1(Ni, ρi)) otherwise,
(20)

where k = {1, 2, · · · , Ñ} and 0k denotes a k×1 zero vector. Note that by reversing the

order of the elements of π̃k(Ñi, ρi), one can target negative skewness. It can be seen

that the transition matrix Π̃(Ñi, ρi), along with the grid points, yields a scalar Markov
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chain whose conditional distribution has the same skewness as the mass distribution

function (19). Therefore, to construct the probability transition functions Hi(j) as in

Section 3.2, one can use Π̃(Ñi, ρi) instead of Π(Ni, ρi).

To generate a conditional distribution with excess kurtosis, one can use a mix-

ture distribution approach. More specifically, let π(1)(Ni, ρi) and π(2)(Ni, ρi) be two

discrete probability distributions defined over Ni equally-distanced grid points that

have a common mean but different variances σ2
1 and σ2

2. Consider now the mixture

π̃1(Ni, ρi) = λ̃π(1)(Ni, ρi) + (1 − λ̃)π(2)(Ni, ρi), where 0 ≤ λ̃ ≤ 1. Setting both σ1/σ2

and 1− λ̃ to low values would result in excess kurtosis for the conditional distribution

π̃1(Ni, ρi). Then, substituting this conditional distribution for π̃1(Ni, ρi) in (20) gives

the k-th (k = 1, 2, ..., Ñi) row of the desired transition matrix Π̃(Ñi, ρi).

6 Conclusions and Practical Recommendations

We conclude with some remarks and recommendations regarding the implementation

of our proposed method. First, several interesting observations regarding the compu-

tational costs associated with the different approximation methods emerge from our

numerical analysis. When the largest roots of the process are much closer to one as

in the case at higher (monthly) frequency, Tauchen’s (1986a) method requires an ex-

tremely large number of states in order to achieve the level of accuracy comparable to

that of the MM method with far fewer states. This means that as the roots of the

process approach the nonstationary boundary, the number of grid points for Tauchen’s

(1986a) method must increase sharply. Consequently, the computation involved be-

comes prohibitively time consuming or even infeasible (see Figure 1) and this curse

of dimensionality (Burnside, 1999) becomes even more severe for non-linear dynamic

models. In contrast, the accuracy of approximation of the MM method is less sensitive

to the number of grid points. For instance, Figure 2 shows that the quality of the ap-
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proximation obtained by the MM method using N1 = N2 = 9 is much higher than the

one obtained by Tauchen’s (1986a) method using N1 = N2 = 21. More importantly,

unlike Tauchen’s (1986a) method, the MM method can always generate a time-varying

process (see Figure 1).

Second, the computational gains of the MM method do not come at the cost of in-

creased complexity in the implementation of our approximation. The practical recom-

mendations for implementing the proposed MM method can be summarized as follows.

The number of grid points N∗ can be determined by selecting Ni (i = 1, ...,M) for each

individual series depending on the properties of the data. For highly persistent data,

Ni = 9 tends to provide a very precise approximation of the underlying process while

for less persistent data, Ni = 5 appears to be a reasonable choice. However, it should

be emphasized that in approximating multivariate processes, adjusting the number of

grid points of the individual components of ỹ to accommodate their persistence is not

always the best approach. The reason is that, unlike in the scalar case, one must also

target the cross correlations between the different components which are reflected in

the conditional mean of the process (see equation (5)). Therefore, the number of grid

points for one component of ỹ will affect the conditional moments of the other variables.

The choice which version of our proposed method should be employed is mainly

dictated by the trade-off between speed and accuracy. If the main goal is the quality

of approximation for a given number of grid points, the full version of the MM method

that includes the minimization step 1(a) is the preferred option. On the other hand, if

the computational costs are of primary concern, especially for large dimensional VAR

processes, the baseline version of the proposed method without the minimization step

1(a) will deliver a simple, fast and reliable approximation for the same number of grid

points. In order to improve the degree of approximation, the baseline version of the MM

method requires a much finer grid of nodes which will increase the computing time. To
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put it differently, while the minimization step 1(a) involves additional computations,

it effectively reduces the number of grid points that are needed to achieve the same

quality of approximation.
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Table 1: Approximation Accuracy: The Shock Process

N̄ = 9 N̄ = 15 N̄ = 21
Tau. MM0 MM Tau. MM0 MM Tau. MM0 MM

Root mean squared error
σ̂2
z 0.433 0.099 0.009 0.410 0.081 0.008 0.314 0.068 0.009
σ̂2
g 0.363 0.139 0.010 0.306 0.114 0.007 0.218 0.095 0.007

ρz,g 0.040 0.023 0.011 0.011 0.012 0.009 0.017 0.011 0.009
1− ς̂1 0.323 0.016 0.011 0.048 0.009 0.009 0.009 0.009 0.009
1− ς̂2 0.160 0.006 0.006 0.016 0.005 0.005 0.005 0.006 0.005

Bias
σ̂2
z 0.433 0.099 -0.005 0.410 0.080 0.000 0.313 0.068 0.001
σ̂2
g 0.362 0.138 -0.007 0.306 0.114 0.000 0.217 0.094 0.000

ρz,g -0.038 -0.022 -0.006 0.006 -0.008 0.000 0.015 -0.005 0.000
1− ς̂1 -0.323 0.013 0.007 -0.048 0.001 0.000 -0.003 -0.001 -0.001
1− ς̂2 -0.160 0.003 0.002 -0.016 0.000 0.000 0.000 0.000 0.000

Standard deviation
σ̂2
z 0.012 0.008 0.008 0.011 0.009 0.008 0.011 0.009 0.008
σ̂2
g 0.008 0.007 0.006 0.008 0.007 0.007 0.008 0.008 0.007

ρz,g 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.009
1− ς̂1 0.006 0.009 0.009 0.008 0.009 0.009 0.009 0.009 0.009
1− ς̂2 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.006 0.005

Distance between simulated and true conditional moments
10× µ̂z 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
10× µ̂g 0.006 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
(ω̂z/ωz)

2 0.100 0.106 0.000 0.319 0.080 0.000 0.310 0.066 0.000
(ω̂g/ωg)

2 0.269 0.163 0.000 0.304 0.122 0.000 0.205 0.101 0.000

Notes. This table reports key moments of the finite state process associated with the
bivariate VAR(1) model in equation (15). The root mean squared error, the bias and the
standard deviation are relative to their true values. “Tau.” denotes the approximation
obtained by the method of Tauchen (1986a), whereas “MM” denotes the Markov chain
approximation method developed in this paper. “MM0” denotes the version of the
method that does not include the minimization step. N̄ stands for the number of grid
points used for each component, i.e. for z and g. σ̂2

z and σ̂2
g denote the simulated

unconditional variance of z and g. ρz,g is the correlation coefficient between z and g,

while ς̂1 and ς̂2 are the eigenvalues of matrix Â. For each x ∈ {z, g}, the numbers in
row 10 × µ̂x are the weighted average of 10 × |µ̂x(j) − µx(j)| which uses the realized
frequencies of states j = 1, 2, ..., N∗ as weights. The frequencies are constructed using a
simulated process of length τ = 1, 800, 000. Similarly, for each x ∈ {z, g}, the numbers
in row ω̂2

x/ω
2
x are the weighted average of |ω̂2

x(j)/ω
2
x−1| which uses the same frequencies.

The numbers that are smaller than 0.0005 are denoted by 0.000.
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Table 2: Approximation Accuracy: Key Economic Variables

N̄ = 9 N̄ = 15 N̄ = 21
Tau. MM Tau. MM Tau. MM

Volatility

Std(ln(Yt)) 0.210 0.018 0.193 0.005 0.149 0.001
Std(ln(Kt)) 0.209 0.028 0.187 0.009 0.152 0.003
Std(ln(Ct)) 0.283 0.015 0.189 0.003 0.151 0.003
Std(ln(Gt)) 0.167 0.009 0.135 -0.003 0.092 -0.004

Persistence

1− Corr(ln(Yt), ln(Yt−1)) -0.391 -0.034 -0.070 -0.012 -0.012 0.000
1− Corr(ln(Kt), ln(Kt−1)) -0.250 0.000 0.000 0.000 0.000 0.000
1− Corr(ln(Ct), ln(Ct−1)) -0.194 -0.048 -0.049 -0.016 -0.066 -0.016
1− Corr(ln(Gt), ln(Gt−1)) -0.083 -0.018 0.015 0.004 0.007 0.007

Correlation with current output

1− Corr(ln(Yt), ln(Kt)) -0.245 -0.035 -0.080 -0.011 -0.043 -0.008
1− Corr(ln(Yt), ln(Ct)) -0.143 -0.023 -0.114 -0.014 -0.094 -0.010
1− Corr(ln(Yt), ln(Gt)) 0.039 -0.014 -0.025 -0.005 0.001 0.005

Correlation with lead output

1− Corr(ln(Yt+1), ln(Kt)) -0.237 -0.035 -0.082 -0.011 -0.044 -0.007
1− Corr(ln(Yt+1), ln(Ct)) -0.139 -0.024 -0.112 -0.015 -0.092 -0.009
1− Corr(ln(Yt+1), ln(Gt)) 0.040 -0.014 -0.026 -0.005 0.000 0.005

Notes. The approximation measure is calculated as the percentage difference be-
tween the moments generated by the discrete and continuous methods. For example,
the numbers close to zero mean a better approximation. When evaluating the ap-
proximation quality of a correlation coefficient, say Corr(ln(Yt), ln(Yt−1)), we consider
1− Corr(ln(Yt), ln(Yt−1)). This is for the purpose of capturing the differences between
correlation coefficients that are inherently very close to one. The numbers that are
smaller than 0.0005 (i.e. approximation errors less than 0.05%) in absolute terms are
denoted by 0.000 with their appropriate signs.
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Table 3: Moments of Economic Variables and GMM Estimates

T = 120 T = 240
Cont. Tau. MM Cont. Tau. MM

Moments

std(Ct+1/Ct) 0.0081 0.0093 0.0080 0.0082 0.0094 0.0081
std(Yt+1/Kt+1) 0.0031 0.0031 0.0031 0.0036 0.0036 0.0036
Corr(Ct+1/Ct, Yt+1/Kt+1) 0.3347 0.2994 0.3342 0.3203 0.2849 0.3206

Estimates of structural parameters

β = 0.986 0.9827 0.9819 0.9821 0.9825 0.9820 0.9823
(0.0130) (0.0140) (0.0129) (0.0112) (0.0121) (0.0111)

α = 0.283 0.3162 0.3219 0.3195 0.3176 0.3207 0.3181
(0.1178) (0.1263) (0.1162) (0.1017) (0.1094) (0.1002)

Notes. Standard deviations are in parentheses.
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Figure 1: Continuous Process and Discrete Approximation Methods

Panel A. Low Persistence
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Panel B. High Persistence
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Notes. The left column of the figure plots the scatter diagram of y1,t and y2,t in equa-
tion (1) (M = 2) for cases of low and high persistence. The middle and right columns
plot the scatter diagrams of ỹ1,t and ỹ2,t using Tauchen’s and MM methods, respectively.
The number of grid points used for each component is nine, i.e., Ni = 9, i ∈ {1, 2}.
The less persistent case is the VAR process considered by Tauchen (1986a). The more
persistent case is obtained by replacing the matrix A of the less persistent case (see
equation (1)) by Ah where A100

h = A. In both cases, the true variances of y1,t and y2,t

are normalized to unity. The diagrams are based on a series of 50,000 periods. For
legibility purposes, heavier dots are used for the discrete methods.
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Figure 2: Stochastic Growth Model

Panel A. Volatility

10 15 20

0.07

0.08

0.09

σK

N

10 15 20

0.07

0.08

0.09

σC

N

Panel B. Policy Rule
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Notes. Panel A plots the volatility of the logarithm of the capital stock and consump-
tion. The horizontal axis is the number of grid points used for each of the two underlying
shocks. The moments are calculated using simulated series of τ = 2, 000, 000 periods.
Panel B shows the policy rules obtained under different solution methods for a set of
states. For all cases considered here, the current capital stock, K, is set to the steady
state capital stock Kss. The lower left diagram shows the optimal capital stock, K ′,
(relative to Kss) as a function of the technology shock z when g = 0. Similarly, the
lower right diagram shows the same variable as a function of the current expenditure
shock g while setting z = 0.
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