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Abstract 

 

This paper analyses issues related to weak exogeneity in a financial point process. 

We extend the Hausman test of weak exogeneity in a time series model and propose 

three cases in which weak exogeneity conditions will break down. The simulation 

study suggested that a failure of the exogeneity assumption implied biased estimators. 

The bias is very large in the third case non-weak exogeneity, which makes the 

econometric inferences on the parameters unreliable or even misleading. We then 

derive an LM test for weak exogeneity. The LM test is attractive because it only 

requires estimation of the restricted model. The empirical results indicate that the 

weak exogneity of duration is often rejected for frequently traded stocks, but is less 

likely to be rejected for infrequently traded stocks. 

 

Key words: Weak exogeneity, ACD model, LM test, point process, market 

microstructure 
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1 Introduction 

High frequency data is widely used in analysis of market microstructure theory. 

Typical high frequency data, for example Trades and Quotes (TAQ) dataset in NYSE, 

consists trade time, trade volume, bid-ask price and other indicators. Such high 

variables are naturally irregularly spaced in time; they are usually considered as 

financial point processes. To capture their stochastic dynamics, the so-called 

Multiplicative Error Model (MEM) has been proposed (Engle 2000). The basic idea is 

to model the positive-valued indicator in terms of the product of a (conditional 

autoregressive) scale factor and an innovation process with nonnegative support (i.e. 

GARCH-like process). The best known univariate MEM model is the Autoregressive 

Conditional Duration (ACD) model of Engle and Russell (1998) for the financial 

durations. However, when modelling financial duration and other market indicators 

(marks) jointly, the directly use of multivariate MEM model is restricted since joint 

probability distributions for nonnegative valued random variables are often not 

available in the literature. 

The commonly used strategy is to decompose the joint distribution of duration and 

market marks into the product of the marginal density of duration and the conditional 

density of marks given duration. In estimation, if the weak exogeneity of duration is 

valid, then the marginal density of duration the conditional density of marks can be 

estimated separated equation-by-equation. This approach simplifies the estimation 

procedure and is generally adopted in the empirical literature; see, for example, Engle 

(2000),Dufour and Engle (2000), Manganelli (2005), Engle and Sun (2007). However, 

if the parameters in the conditional density depend on some of the parameters of the 

marginal process (e.g., the weak exogeneity condition fails), the estimators would be 

inefficient or even inconsistent, leading to invalid inference; c.f White (1981,1982).   

In this paper, we consider three cases in which the weak exogeneity condition will 

break down and we use a Monte Carlo simulation to study the consequences of the 

failure of weak exogeneity. The simulation study suggested that a failure of the 

exogeneity assumption implied biased estimators. The bias is very large in the third 

case non-weak exogeneity. In empirical analysis, we derive an LM test which is 

similar to Dolado, Rodriguez-Poo et al. (2004). However, we use a more fruitful 

specification of the conditional mean, which implies that the rejection of null is less 
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likely due to the misspecification of conditional mean. Using two groups of high 

frequency data, we test both the weak exogeneity of duration and the joint weak 

exogeneity of duration and volume in empirical analysis and find that the assumption 

of weak exogeneity is often rejected. 

The remainder of the paper is structured as follows. Section 2 reviews the related 

literature on weak exogeneity. Section 3 introduces the notion of weak exogeneity and 

methodology. Section 4 presents a simulation study to examine the consequences of 

ignoring non weak exogeneity. Section 5 derives an LM test for weak exogeneity. 

Section 6 contains an empirical application. And section 7 is the conclusion.  

2 Relevant literature reviews  

Different definitions of exogeneity are clarified by Engle, Hendry et al. (1983); for 

example, weak exogeneity, strong exogeneity, super exogeneity and invariance. Weak 

exogeneity is proposed as an answer to the question of under what conditions can one 

estimate the parameters of conditional density without loss of information from 

neglecting the marginal process. The idea of weak exogeneity is be expressed simply 

by saying that estimation and inference on the parameters of the marginal density and 

the conditional density can be undertaken separately, without loss of efficiency, if the 

endogenous variable in the marginal density is weakly exogenous for parameters in 

the conditional density. Engle and Hendry (1993) develop the different classes of tests 

of weak exogeneity. In particular, if the marginal processes are constant, the 

Wu-Hausman test is commonly used for testing weak exogeneity. The original 

Hausman test (Hausman 1978) contrasts two estimates obtained from different 

estimators (unconstrained and constrained parametric models). Under a null 

hypothesis, both of these estimators are consistent while only the second estimator is 

efficient. Under the alternative hypothesis of endogeneity, the first estimator is 

consistent while the second is not. This Hausman statistic has, under the null 

hypothesis, an asymptotically chi-squared distribution with the number of degrees of 

freedom equal to the number of endogenous regressors. An alternative to the 

Hausman contrast test is the two-stage Wald version test, originally derived by Wu 

(1973). In the first stage, by careful construction
1
, a reduced form model (marginal 

                                                

   
1
 See Terza, Basu and Rathouz (2008) for the conditions of choosing IV.  

http://en.wikipedia.org/wiki/Chi-square_distribution
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model) is specified for the endogenous variables which are estimated consistently. 

Then, the fitted values of the endogenous variables are computed and in the second 

stage, the conditional model is augmented by plugging in the fitted values as 

additional regressors. If the fitted values of the endogenous variables are jointly 

significant in the conditional model, the null hypothesis of weak exogeneity is 

rejected. A simple Wald statistic can be used to test the joint significance. Effectively, 

this two-stage Wald version test leads to a test which is asymptotically equivalent to 

the Hausman contrast test [an algebraic derivation of this result can be found in the 

Davidson and MacKinnon (2004, Section 8.7)]. Using Monte Carlo simulation, 

Chmelarova (2007) shows, under a series of different conditions, that the Wald 

version of the Hausman test often has better properties that the contrast version.  

The Hausman test has been widely used in various areas, such as macroeconomics, 

health economics, and international trade. For example, Fischer (1993) and Boswijk 

and Urbain (1997) test the weak exogeneity of Swiss money Demand. Terza, Basu et 

al. (2008) address the endogeneity in an econometric model of health. Staub (2009) 

tests for the exogeneity of a binary explanatory variable in a count data regression 

model. Darrat, Hsu et al. (2000) test export exogeneity in Taiwan. However, Hausman 

tests suffer from three problems when applied to a market point processes and MEM 

models. Firstly, Hausman set is initially developed for a test of cross section model, 

whereas the MEM/ACD model is a time-series model and the dynamics of 

endogenous variables should also be considered. Secondly, the test is developed in a 

Gaussian/linear framework, whereas the market point process usually belongs to the 

exponential family. Thirdly, correct specification of the conditional mean is a 

fundamental assumption underlying the test, since the rejection of the null hypothesis 

could be due either to the absence of weak exogeneity or to the misspecification of the 

conditional mean. Dolado, Rodriguez-Poo et al. (2004) consider the latter two 

problems and propose a LM test for weak exogeneity under the pseudo-maximum 

likelihood condition. They analyze the relationship between trade size and trade 

duration and find that the hypothesis of weak exogeneity of trade duration if often 

rejected.  

We address the first problem in this paper and discuss three cases of where the 

weak exogeneity condition may break down, for which we extend the Hausman test of 
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exogeneity in a time series model. A Monte Carlo simulation study is used to examine 

the consequences of the failing of weak exogeniety. In empirical analysis, we derive 

an LM test, which is similar to Dolado, Rodriguez-Poo et al. (2004). However, we use 

a more powerful specification of the conditional mean and test both weak exogeneity 

of duration and jointly weak exogeneity of duration and volume.  

3 Methodology 

3.1 Formal Definition of Weak Exogeneity 

As in Engle, Hendry et al. (1983) and Engle and Hendry (1993), we start with a 

bivariate stochastic process { , }t tx y  and the joint density ( , ; )t t tf x y   , where t  

is the information set which includes lags and other important variables. Commonly, 

the joint density ),( tt yx  can be factorized into the product of the marginal density tx   

and conditional density of ty  given tx  

 ( , ; ) ( ; ) ( , ; )x y

t t t x t t t t ty x
f x y f x f y x     

 
(1) 

where ),( yx  . Let )( f  be the parameters of interest, which are assumed 

to be present only in the conditional density. The key issue, addressed by Engle, 

Hendry et al. (1983),is to know under what conditions it is possible to estimate   

just as function of y and without loss of information. In other words, that all the 

information needed for estimation of  is
y x

f .  

Engle, Hendry et al. (1983) define a variable of ix  as weakly exogenous for a set 

of parameters of interest   if: 

i) )( f ,   is a function of parameters y  alone, and  

ii) y  and x  are variation free, i.e. 
yxyx ),(  . 

Consequently, if ix  is weakly exogenous for , there is no loss of information 

about   from neglecting the process determining ix . Otherwise, the estimation of  

y  would be inefficient or even inconsistent.  
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In econometric, the marginal density might also be interested. Weak exogeneity is 

also expressed simply by saying that estimation and inference on x and y can be 

undertaken separately without loss of information, if ix is weak exogenous for y . 

Engle, Hendry et al. (1983) further introduce the notation of ―sequential cut‖ and 

―cross-restriction‖ to illustrate weak exogeneity, saying that ix is weak exogenous for 

y , if [ ( ; ), ( , ; )]x y

x t t t t ty x
f x f y x    operates a sequential cut on ( , ; )t t tf x y   , or 

if x and y is not subject to ―cross-restriction‖.  

3.2 Different Types of Weak Exogeneity in Financial Point Processes 

Manganelli (2005) proposes a framework for the joint dynamics of trading 

duration, volume and price volatility. This model incorporates both causality and 

feedback effect among variables of interested and thereby can explain the various 

strategic models in the market microstructure literature. So we take Manganelli 

(2005)’s model for specification the dynamics of financial point process. To simplify, 

we only consider the jointly distribution of duration and volume. Define{ , }t td v ,

1, ,t T  as the two-dimensional time series associated with intraday trading 

duration and trading volume. In particular, duration is defined as the time elapsing 

between consecutive trades, volume is the trade size associated with each transaction. 

The bivariate trading process- duration, volume - can be modelled as follows:  

 { , } ( , | ; )t t t t td v f d v                        (2) 

where t  denotes the information available up to period t  and   is a vector 

incorporating the parameters of interest.  

In Manganelli (2005)’s framework, the joint distribution is decomposed into the 

product of marginal density of durations and the conditional density of volumes given 

durations:  

 { , } ( | ; ) ( | , ; )t t t t d t t t vd v g d h v d    .                      (3) 

Manganelli (2005) specifies the following univariate MEM model for duration and 

volume: 

 2

2

( ; ) , ~ . . .(1, ).

( ; , ) , ~ . . .(1, ).

t t d t t t u

t t v t t t t

d u u i i d

v d i i d 

  

    

 

 
                      (4) 
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where ( , )t t  are the conditional expectations of duration and volume,
 

( , )d v    

is a vector of s parameters of interest. The innovation terms are uncorrelated with 

each other by construction.  

The log likelihood can be expressed as: 

         
)];,(log);([log),(

1





T

t

v

ttt

d

tt

dv dvhdgL  . (5) 

Follows Manganelli (2005), the density of duration and the density of volume 

conditional on duration are expressed as:  

);( d

ttdg      ~     
0 1 1 2 1 3 1 4 1

( ; ) ,

.

t t d t t

t t t t t

d

a a d a v a

  

     

 

    
 

( , ; )v

t t th v d    ~    
0 1 1 2 1 3 1 4 1 5

( ; , ) ,

.

t t v t t t

t t t t t t

v d

b b d b v b b b d

  

     

 

     
 

(6) 

 

It is well know that estimation and inference on the parameters characterising each 

density can be undertaken separately, without loss of efficiency, if two of following 

condition hold: a) weak exogeneity, and b) the respective densities are correctly 

specified. Consequently, failing of weak exogeneity would result in inefficient or 

even inconsistent estimators c.f White (1981,1982), leading to unreliable inferences.  

In the econometrics literature, the Hausman specification is usually used to test 

weak exogeneity. As explained by Engle, Hendry et al. (1983) , if none of the 

parameters in the marginal model appear in the conditional model, then weak 

exogeneity is valid. Therefore, testing weak exogeneity implies testing the 

significance of the predictor from the marginal model, in the conditional model. 

However, Hausman set is initially developed for a test of cross section model, 

whereas the MEM/ACD model is a time-series model and the dynamics of 

endogenous variables should also be considered. In this section, we extend the 

Hausman test of weak exogeneity in a time series model and propose three cases in 

which the weak exogeneity condition will break down. We use the so called ―non 

weak exogeneity‖ thereafter to express the notation that weak exogneiety condition 

breaks down.  

 

Case 1: The first case of non weak exogeneity is directly motivated by Manganelli 

(2005)’s model.  
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2

2

( ; ) , ~ . . (1, ).

( ; , ) , ~ . . (1, ).

t t d t t t

t t v t t t t

d i i d

v d i i d





    

    

 

 
 

0 1 1 2 1 3 1 4 1

0 1 1 2 1 3 1 4 1 5

,

.

t t t t t

t t t t t t

a a d a v a

b b d b v b b b d

  

  

   

   

    

     
 

(7) 

Writing it in matrix form as: 

 

 

0 1 3 4 11 2

50 1 2 1 3 4 1

0 0
.

0

t t t t

t t t t

a d a a da a

bb b b v b b v

 

 

 

 

             
                

            

 (8) 

Both the parameters in marginal density and conditional density are interested. In 

order to optimize the two processes separately, the assumption of weak exogeneity 

has to be imposed. The condition for weak exogeneity is 4 30, 0b   , since only 

under this condition can )];,(),;([ v

ttt

d

tt dvhdg    operate a sequential cut on 

);,( ttt vdf   whereupon there is no cross-section restrictions between marginal and 

conditional density (Engle, Hendry et al. 1983). 

If we look at it in another way and assume:  

 2

1

2

2

~ . . (0, )

~ . . (0, ),

t t t

t t t

d i i d

v i i d





  

  

 

 
 

(9) 

then the above becomes
2
 

0 1 3 2 4 1 1 3 4 1 1

50 1 3 2 4 1 2 3 4 2 1

0 0
.

0

t t t t t

t t t t t

d a a a d d a a

bv b b b b b v v b b

   

 

 

 

                 
                    

                  
 (10) 

Again, the condition of weak exogeneity is that 4 30, 0b   , since only under 

such condition can d and v be variation free and subject to no cross equation 

restrictions. Generally, if any lagged expected (or fitted) value from marginal model is 

present in the conditional model, or any lagged expected (or fitted) value from 

conditional model is present in marginal model, the weak exogeneity condition will 

break down. 

 

Case 2: The second case of non weak exogeneity is based on the Hausman 

specification. As explained by Engle, Hendry et al. (1983), Hausman test for weak 

exogeneity implies testing the significance of the predicted variable from the marginal 

model, in the conditional model. In the MEM/ACD models, it is natural to use the 

                                                

   
2
 See Appendix 1 for proof.  
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conditional expected value instead of predicted value, since the conditional 

expectation of duration is directly measured. Assuming the first case of weak 

exogeneity is satisfied, the joint distribution of duration and volume as specified in Eq. 

(6) has the following Hausman specification: 

 2

2

( ; ) , ~ . . (1, )

( ; , ) , ~ . . (1, )

t t d t t t

t t v t t t t

d i i d

v d i i d





    

    

 

 
 

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4 5 .

t t t t

t t t t t t

a a d a v

b b d b v b b d b

 

  

  

  

   

     
 

(11) 

Under assumption that the parameters of interest depend solely on the parameters 

of the conditional distribution,  i.e. 0 1 2 3 4( , , , , )f b b b b b   and supposing that the 

expected duration t  is estimated from the marginal model, then in order to test 

weak exogeneity of duration, it suffices to test the significance of t in the 

conditional distribution. In such a case, the parameters of interest are not subject to 

cross equation restrictions and   are variation free with respect to the parameters of 

the duration process. And it is sufficient to test 5b =0 in Eq.(11) in order to test weak 

exogeneity in this case. 

If we look at in another way and assume  

 

)~,0(..~

)~,0(..~

2

2

2

1









diiv

diid

ttt

ttt




 (12) 

Eq.(11) then becomes
3
  

 
0 1 1 2 1 3 1 1

1 1 2 1 3 1 4 5 2( )

t t t t t

t o t t t t t

d d a v

v b b d b v b b b d

   

 

  

  

    

      
 (13) 

where 2 5 1 2t t tb      .Therefore, 2

1 2 5 1 5( , ) var( )t t tCov b b         . The condition 

for weak exogeneity is that 0),( 21 
ttCov   because in such a case, the parameters of 

interest v  are not subject to cross equation restrictions and are variation free with 

respect to the parameters from duration equation d .  

The Hausman specification test might also take another form, see for example 

Dolado, Rodriguez-Poo et al. (2004). They specify the following functional form for 

testing weak exogeneity: 

                                                

   
3
 See Appendix 2 for derivation.   
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0 1 1 2 1 3 1 4 5

( ; , )

( ) .

t t v t t t

t t t t t t

v d

b b d b v b b b d

  

    

 

     
 (14) 

Generally with the Hausman test for weak exogeneity, if any linear or nonlinear 

forms of expected duration enter the conditional model, the weak exogeneity of 

duration will break down
4
.   

 

Case 3: Motivated by the case 2 of non weak exogeneity, we may consider a more 

restrictive case of non weak exogeneity. Let’s look at the following model of duration 

and volume: 

 ( ; ) ,

( ; , ) ,

t t d t t

t t v t t t

d

v d

  

  

 

 
 ~ . . .( , )

t

t

i i d




 
  

 
 

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4

t t t t

t t t t t

a a d a v

b b d b v b b d

 

 

  

  

   

    
 

(15) 

where  is the unit vector, ( , ) , 0t tcorr      .  

If the error terms from the marginal and conditional model are correlated, the 

weak exogeneity condition will breaks down, since the parameters of volume equation 

v  are subject to cross equation restrictions and are not variation free with respect to 

parameters from the duration equation v . The condition of weak exogeneity in this 

case is that t  and t are uncorrelated. In empirical analysis, directly testing the 

correlation between t  and t is difficult. Instead, Hausman specification test of 

weak exogeneity is applied. As illustrated in case 2, Hausman specification (case 2 

non weak exogeneity) can be viewed a special case of the case 3 non weak 

exogeneity. 

 

Summary of conditions for weak exogeneity 

a) Any lagged expected (or fitted) value from marginal model is not present in 

the conditional model, or any lagged expected (or fitted) value from 

conditional model is not present in marginal model.  

b) The expected (or fitted) value from marginal model does not enter the 

conditional model 

                                                

   
4
 Since the nonlinear term can be linearized as )2()()()( ptttt Off   . 

The proof thereafter is the same as is done in the Hausman test.    



11 

 

11 
 

c) The errors from the marginal and conditional models are uncorrelated. 

The violation of either one of the above conditions will result in non weak exogeneity. 

4 Consequences of Incorrectly Assuming Weak Exogeneity- 

a Simulation Study 

Based on the three cases of non weak exogeneity above, we will study the 

consequences of ignoring weak exogeneity in this section. We examine the 

consequences if one estimates the model under the assumption of weak exogeneity 

when there is none. To do so, we use a simulation study.  

The experiments were designed as follows. The joint distribution of duration and 

volume is chosen as the benchmark model. The data is generated based on the fact 

that duration is not weak exogeneous. In particular, we generate the duration and 

volume data in accordance with each of the three cases of non weak exogeneity 

discussed in section 3.  

Case 1  The lagged expected (or fitted) value from the marginal model is present in 

the conditional model and the lagged expected (or fitted) value from the conditional 

model is present in the marginal model. (Eq. (7)) 

Case 2  The expected (or fitted) value from the marginal model is present in the 

conditional model. (Eq. (11)) 

Case 3  The errors from the marginal and conditional models are correlated. 

(Eq.(15)) 

We then estimate each model by two approaches. In the first approach, we assume 

the weak exogeneity condition is valid. The marginal process of duration and 

conditional process of volume given duration are estimated separately. We denote this 

estimation method the conditional MLE. In the second approach, we estimate the 

model under the fact of non weak exogeneity. The duration and volume processes are 

estimated jointly. We call this latter approach the full MLE. After estimation, we 

compare the estimation results of conditional MEL with those from the full MLE. In 

particular, we focus on a comparison of the bias/inconsistency and efficiency of the 

estimators.   

We chose the sample sizes at N =2000, 5000, and 10000 respectively and the 

number of simulations S equals 2000. In the first two cases of non weak exogeneity, 
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we use an exponential distribution with mean value 1 to generate the random 

disturbances t and t individually. In the third case, we use a bivariate exponential 

distribution with correlations 0.1  and 0.5  to generate the random disturbances 

t and t  jointly. Table 1, Table 2, and Table 3 report the simulation results for the 

three cases.  
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Table 1: Case 1 simulation summary Statistics.  Estimated parameters 

  N=2000  N=5000  N=10000  

 Conditional MLE  Full MLE Conditional MLE  Full MLE Conditional MLE  Full MLE 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a0 

a1 

a2 

a3 

a4 

0.132 

0.038 

0.054 

0.759 

0.048 

0.018 

0.013 

0.067 

0.106  

0.048  

0.051  

0.846 

-0.050 

0.032 

0.017 

0.012 

0.062 

0.035 

0.125 

0.038 

0.053 

0.767 

0.026 

0.011 

0.008 

0.036 

0.102  

0.049  

0.051  

0.849 

-0.051 

0.020 

0.011 

0.007 

0.038 

0.020 

0.124 

0.039 

0.053 

0.767 

0.018 

0.007 

0.006 

0.026 

0.101  

0.050  

0.051  

0.849 

-0.050 

0.013 

0.007 

0.005 

0.026 

0.014 

b0 

b1 

b2 

b3 

b4 

b5 

0.088 

0.057 

0.045 

  

0.771 

0.100 

0.035 

0.039 

0.016  

 

0.046 

0.033 

0.103  

0.052  

0.048 

-0.046  

0.795  

0.101 

0.049 

0.036 

0.016 

0.098 

0.053 

0.032 

0.084 

0.056 

0.046  

 

0.774 

0.100 

0.020 

0.024 

0.010  

 

0.027 

0.021 

0.100  

0.051  

0.049 

-0.047  

0.798  

0.100 

0.030 

0.022 

0.010 

0.061 

0.032 

0.020 

0.083 

0.055 

0.047  

 

0.775 

0.100 

0.014 

0.017 

0.007  

 

0.019 

0.015 

0.100  

0.050  

0.049 

-0.048  

0.799  

0.100 

0.020 

0.015 

0.007 

0.041 

0.021 

0.014 

 

Model: 
),1(..~,),;(

),1(..~,);(

2

2









diidv

diid

ttttvtt

tttdtt




 

       

0 1 1 2 1 3 1 4 1

0 1 1 2 1 3 1 4 1 5

t t t t t

t t t t t t

a a d a v a

b b d b v b b b d

   

  

   

   

    

     
 

The population parameter values;  

      1.000  ba , 05.011  ba , 2 2 0.05a b   

      3 0.85a  , 4 0.05a   , 3 0.05b   , 4 0.80b  , 1.05 b  

The parameters values are chosen partly from the empirical work of Manganelli (2005).   
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Table 2: Case 2 simulation summary statistics.  Estimated parameters 

  N=2000  N=5000  N=10000  

 Conditional MLE  Full MLE Conditional MLE  Full MLE Conditional MLE  Full MLE 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a0 

a1 

a2 

a3 

0.111 

0.049 

0.052 

0.842 

0.041 

0.014 

0.018 

0.038 

0.107  

0.049  

0.051  

0.846 

0.029 

0.013 

0.016 

0.026 

0.104 

0.049 

0.051 

0.847 

0.022 

0.009 

0.011 

0.022 

0.103  

0.049  

0.051  

0.848 

0.018 

0.008 

0.010 

0.017 

0.103 

0.050 

0.051 

0.848 

0.015 

0.006 

0.008 

0.015 

0.102  

0.049  

0.051  

0.849 

0.012 

0.005 

0.007 

0.012 

b0 

b1 

b2 

b3 

b4 

b5 

0.034 

0.062 

0.042 

0.715 

0.100 

0.018 

0.022 

0.017 

0.033 

0.019 

0.108  

0.051  

0.048  

0.802  

0.100 

-0.107 

0.040 

0.024 

0.016 

0.049 

0.018 

0.048 

0.033 

0.061 

0.043 

0.716 

0.099 

0.011 

0.014 

0.011 

0.020 

0.012 

0.103  

0.051  

0.050  

0.799  

0.100 

-0.101 

0.022 

0.014 

0.010 

0.028 

0.012 

0.027 

0.033 

0.061 

0.043 

0.716 

0.099 

0.008 

0.010 

0.007 

0.014 

0.008 

0.102  

0.050  

0.050  

0.800  

0.100 

-0.101 

0.014 

0.010 

0.007 

0.019 

0.008 

0.017 

 

Model: 
),1(..~,),;(

),1(..~,);(

2

2









diidv

diid

ttttvtt

tttdtt




 

      

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4 5

t t t t

t t t t t t

a a d a v

b b d b v b b d b

  

  

  

  

   

     
 

The population parameter values: 

     
1.000  ba , 05.011  ba , 2 2 0.05a b   

     3 0.85a  , 3 0.80b  , 4 0.1b  , 5 0.1b  
 

The parameters values are chosen partly from the empirical work of Manganelli (2005).   
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Table 3: Case 3 simulation summary statistics . Estimated parameters (only conditional MLE is reported) 

  0.1   
  0.5    

  N=2000 N=5000 N=10000 N=2000 N=5000 N=10000 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a0 

a1 

a2 

a3 

0.108 

0.048 

0.051 

0.847 

0.033 

0.014 

0.012 

0.025 

0.104 

0.049 

0.050 

0.848 

0.021 

0.009 

0.007 

0.015 

0.102 

0.050 

0.050 

0.849 

0.014 

0.006 

0.005 

0.011 

0.110 

0.048 

0.051 

0.847 

0.030 

0.016 

0.012 

0.022 

0.103 

0.049 

0.051 

0.849 

0.018 

0.010 

0.008 

0.014 

0.102 

0.050 

0.050 

0.849 

0.012 

0.007 

0.005 

0.009 

b0 

b1 

b2 

b3 

b4 

0.090 

-0.098  

0.040  

0.790  

0.279 

0.041 

0.042 

0.015 

0.035 

0.037 

0.086 

-0.101  

0.041  

0.792  

0.279 

0.025 

0.026 

0.009 

0.021 

0.023 

0.084 

-0.102  

0.041  

0.793  

0.280 

0.018 

0.019 

0.007 

0.015 

0.017 

0.050 

-0.515  

0.021  

0.749  

0.796 

0.067 

0.096 

0.018 

0.088 

0.049 

0.041 

-0.528  

0.019  

0.765  

0.794 

0.044 

0.059 

0.012 

0.053 

0.031 

0.036 

-0.534  

0.019  

0.772  

0.794 

0.018 

0.036 

0.008 

0.028 

0.022 

 

Model:  

      
( ; ) ,

( ; , ) ,

t t d t t

t t v t t t

d

v d

  

  

 

 
~ . . . ( , )

t

t

i i d




 
  

 
,  ( , ) , 0t tcorr       

   

0 1 1 2 1 3 1

0 1 1 2 1 3 1 4

t t t t

t t t t t

a a d a v

b b d b v b b d

  

 

  

  

   

    
 

The population parameter values: 

      
1.000  ba , 05.011  ba , 2 2 0.05a b   

   3 0.85a  , 3 0.80b  , 4 0.1b   

The parameters values are chosen partly from the empirical work of Manganelli (2005).

 



 

 

From Table 1(the first case of non weak exogeneity), the means of the full MLE 

are all close to the population means. As the number of observations increases, the 

standard deviation of the full MLE gets smaller and the performance generally 

improves. In general, the conditional MELs are less efficient than those from the full 

MLEs, but the efficient loss is not very significant in most of cases. The full MLEs 

work well as a whole. On the other hand, the performance of the conditional MLE is 

somewhat different to that of the full MLE. In the duration process, both 1a and 3a

are smaller than the population values. And the sum of 1a and 3a  is downward 

biased towards smaller persistence when using the conditional MLE. The same result 

is also hold for the conditional distribution, where the sum of 1b and 4b  is downward 

biased towards smaller persistence for volume. The conditional MLEs of 2a and 1b  

are larger than those from the full MLEs. It suggests the impact of duration on volume 

is over evaluated if case 1 of weak exogenetiy is ignored. However, the conditional 

MLE of 5b  is unbiased and consistent in this case, and the standard deviation is 

slightly bigger than that from full MEL. It can be seen that the same characteristics of 

the conditional MLEs continue to hold when N= 2000, 5000 and 10000. The poor 

performance of the conditional MLE seems to be due to the fact that the information 

from the marginal distribution contains some of the information of the conditional 

distribution.  

From Table 2 (the second case of non weak exogeneity), we get similar results for 

the full MLE approach. The means of the full MLE are all close to the population 

values and the full MLE works well as a whole. The performance of the conditional 

MLE is different to that of the full MLE. For marginal distribution, the means of the 

conditional MLEs are unbiased and consistent in general. And the standard deviations 

of conditional MLEs are slightly larger than that of full MLEs, suggests an efficient 

gain when duration and volume are estimated jointly. For the conditional distribution, 

the sum of 2b and 4b  is again downward biased towards smaller persistence for 

volume. However, the bias is even larger in this case. The conditional MLE of 1b is 

greater than its population means, suggesting the impact of duration on volume is over 

estimated if case 2 of weak exogenetiy is ignored. And the conditional MLE of 5b  is 

unbiased and consistent. As the number of observations increases, the performance of 

the conditional MLEs generally improves. However, the same characteristics of 
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conditional MLE continue to hold. It seems that when second weak exogeneity 

condition breaks down, the conditional MLEs for marginal distribution work fine, 

where the conditional MLEs for conditional distribution are biased.  

Table 3(the third case of non exogeneity) only reports the results from conditional 

MLE. The full MLE requires the multivariate non-negative distribution, which is not 

directly available in the literature. We address this issue in our next Chapter. The 

conditional MLEs of the marginal distribution are unbiased and consistent in this case, 

even if the correlation between the marginal distribution and conditional distribution 

is high. The means of conditional MLEs are all close to the population means. In the 

conditional distribution, the conditional MLE of 3b  is unbiased and consistent when 

the correlation of errors between the marginal distribution and the conditional 

distribution is relatively small ( 0.1  ), and it gets slightly biased and inconsistent 

when the correlation is relatively high ( 0.5  ). The great differences are observed 

for the conditional MLEs of 1b and 4b , which evaluate the impact of duration on 

volume. It can be seen that the conditional MLE of 1b is negative in this case, and the 

negative size increases drastically as the correlation of the errors increases. The 

conditional MLE of 4b  is much larger that its population mean. As the correlation of 

the errors increases, the conditional MLE of 4b  gets larger. Thus, the incorrectly 

assuming case 3 weak exogeneity has severe consequences on the estimation results, 

which makes the inferences on the parameters unreliable or even misleading.  

To summarize, incorrectly assuming weak exogeneity has particularly effects on 

the conditional distribution, where the persistence of volume will be biased and the 

impact of duration on volume will be over (or under) evaluated. The bias is very large 

in case 3 non-weak exogeneity, which makes the econometric inferences on the 

parameters unreliable or even misleading. In addition, the failure of the weak 

exogeneity implies that conditional MLEs are inefficient although the efficiency loss 

is relatively small. This result is consistent with White (1981, 1982). It is therefore 

necessary to conduct a test for weak exogeneity before estimation in empirical 

analysis. 
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5 An LM Test for Weak Exogeneity in Financial Point 

Processes 

In this section, we will derive a Langrage-multiplier (LM) or efficient score test 

for weak exogeneity. It proves to be particularly useful since it only requires 

estimation of the restricted model.  

In test of weak exogeneity, correct specification of the conditional mean is a 

fundamental assumption for the validity of the test since the rejection of the null 

hypothesis could be due to either the rejection of weak exogeneity or the result of 

misspecification of the conditional mean. To take account of this we introduce an 

Augmented ACD (AACD) model (Fernandes and Grammig 2006) for the 

specification of the conditional mean of duration and volume. The AACD model of 

Fernandes and Grammig (2006) is given by 

ttdttd  );( 
 

where  t  is i.i.d with mean value 1, and  

1
1 1 1

1 1
* * [ ( )] .vt t

t t tb c b
 

 
     

 


  

 
       

The AACD model then obtained by rewriting as  

   1111 )]([   t

v

tttt bcb
 

(16) 

where 1*    and *   

The AACD model provides a flexible functional form and permits the conditional 

duration process { t } to respond in distinct manners to small and large shocks. The 

shock impact curve 
v

tti bcbg )]([)( 11    incorporates such asymmetric 

responses through the shift and rotation parameters b and c, respectively. The shape 

parameter v  plays a similar role to  , which determines whether the Box-Cox 

transformation is concave ( 1 ) or convex ( 1 ). 

Appendix 3 summarizes the typology of ACD models which can be nested by the 

AACD model. Since the AACD model provides a flexible functional form and 

encompasses most of the current ACD models, the rejection of the null is less likely to 

be due to misspecification of the conditional mean. Because of the inherent 

complexity of the AACD model, the LM or efficient score testing principle proved to 

be particularly useful for this purpose, since it requires estimation under the null 

hypothesis only.  
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As illustrated in section 3, Hausman specification (second case of non weak 

exogeneity) is a special case of the case 3 non weak exogeneity. The rejection of case 

two weak exogeneity is also the rejection of case three weak exogeneity. To illustrate 

the test principle, only second case of non weak exogeneity is discussed in the LM 

test and in empirical analysis. The first case of non weak exogeneity can be derived in 

the same way. 

Let us specify the duration and volume as represented by the AACD and 

Augmented ACV (AACV) models respectively with the errors belonging to the 

exponential distribution family (exponential, Burr or Weibull distribution); for 

example 

 

 



1111111111 )]([

);(

 



t

v

tttt

ttdtt

bcb

d

 

2 2 1 1 2 2 1 2 2 1 0 1

( ; , )

[ ( )] .

t t v t t t

v

t t t t t t t

v d

b c b a d a  

  

           

 

       
 

(17) 

As explained in section 3, it suffices to test 0H  : 01 a  in order to test for weak 

exogeneity of duration. In such a case, the parameters of interest are not subject to 

cross equation restrictions and are variation free with parameters from marginal 

model.  

As has been noted, the LM test is particularly useful for this purpose, since it 

requires estimation under the null hypothesis only.  

Under 0H      

 

2 2 1 1 2 2 1 2 2 1 0

( ; , )

[ ( )] .

t t v t t t

v

t t t t t t

v d

b c b a d  

  

          

 

      
 (18) 

Under 1H  

 

2 2 1 1 2 2 1 2 2 1 0 1

( ; , )

[ ( )] .

t t v t t t

v

t t t t t t t

v d

b c b a d a  

  

           

 

       
 (19) 

Assuming that the densities are correct, the general theory of ML leads to a simple 

score test for 01 a .Given correctly specified duration and volume models, the quasi 

log-likelihood function is  

 

1

(log / log / ).
T

t t t t t t

t

L v d   


      (20) 

The quasi log-likelihood MLE approach is most suitable since it allows for a wide 

range of different distributions capturing all possible supports of the point process.  
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Moreover, under 0H  of weak exogeneity, the AACD and AACV model can be 

estimated separately. Then, the score/LM test has the familiar form 

 )(ˆ)()(ˆ 111 1

c

a

cc

a
iIiS  




 
(21) 

where 








L
i c

a
)(ˆ 1


  and  









L
I c )(1


 are the components corresponding to  

1a  in the empirical score and Hessian from constrained model. Under mild regularity 

conditions it is well known that, the score test has an asymptotically )1(2  

distribution under 0H .

 

5.1 Testing Joint Weak Exogeneity 

The above testing approach enables a test of weak exogeneity of duration for one 

market mark (volume or volatility). In market microstructure theory, sometimes there 

are more than two market variables (duration, volume, volatility, bid-ask spread, et.al) 

of interest which need to be modelled jointly. In such a case, a joint weak exogeneity 

test is necessary. We propose the joint weak exogeneity test principle in this section. 

We take the model from Manganelli (2005), where duration, volume and volatility are 

modelled jointly. But the methods can be extended to other multivariate frameworks.  

  ( , , ) ~ ( , , ; ) ( ; ). ( , ; ). ( , , ; ).d v r

t t t t t t t t t t t t t t t td v r f d v r g d h v d k r d v         (22) 

The log likelihood can be expressed as: 

 
1

( , , ) [log ( ; ) log ( , ; ) log ( , , ; )].
T

d v r d v r

t t t t t t t t t

t

L g d h v d k r d v     


       (23) 

As illustrated before, we allow for a more flexible functional form for duration, 

volume and volatility process. This results in a LM score test. The conditional 

duration and volume are assumed to follow an AACD and AACV process and the 

conditional volatility are assumed to follow an Asymmetric Power APGARCH 

process (Ding, Granger et al. 1993), which is similar to the AACD specification. Then 

the volatility model has the following form: 

3 3 1 1 3 3 1 3 3 1 01 11 02 12

( ; , , ) , ~ . . (0,1)

[ ( )] .

t t v t t t t t

v

t t t t t t t t t

d v i i d

b c b a d a a v a  

    

            

 

         
 (24) 

For the same reason, it suffices to test that 01211   in order to test jointly 

the weak exogeneity of duration and volume. So under the null hypothesis, the 

constrained model is:  
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Under 0H
 

 

3 3 1 1 3 3 1 3 3 1 01 02

( ; , , ) , ~ . . (0,1)

[ ( )] .

t t v t t t t t

v

t t t t t t t
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The density for both the AACD and AACV models is the exponential while for 

the APGARCH model it is a standard normal distribution. Assuming that the densities 

are correct, the general theory of ML leads to a simple Score test for 01211  . 

Given that the Augmented GARCH, AACV and AACD models are correctly 

specified, the quasi log-likelihood function is 
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Moreover, under 0H  of weak exogeneity, the APGARCH and the AACD and 

AACV models can be estimated separately. The score/LM test has the familiar form 
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L
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
 are, respectively, the components of 

the empirical score and Hessian from unconstrained model corresponding to 11 .and 

12 . Under mild regularity conditions it is well known that, the score test has an 

asymptotic )2(2  distribution under 0H . 

5.2 Power of the test 

How powerful is this test for weak exogeneity? How many observations do we 

need to have for this test? To answer these questions, we need to conduct an 

investigation of the statistical power of the test. We begin with a simple model below: 
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(28) 

 
0H : 04 b  

1H : 04 b  
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Choosing a 5% significance level, the simulation results indicate that the empirical 

significance level is 6.7% for sample size n=10000, 7.2% for sample size n=5000 and 

8.9% for sample size n=2000.  

To explore the power of the test, we generate data under the alternative hypothesis 

and estimate the model under null hypothesis
5
. Under the alternative hypothesis the 

parameter 4b varies between -0.2 to 0.2 with step 0.025. Given the sample size and 

empirical test size, the power of the test is the probability of rejecting a hypothesis 

when it is false. The results of the LM test for different sample sizes and empirical 

significance level are listed in Table 4.   

Table 4: Percentage rejections of the LM tests at empirical significance level for 

testing 04 b against 04 b   

4b  
Power of test 

N=2000 N=5000 N=10000 

-0.200 

-0.175 

-0.150  

-0.125  

-0.100  

-0.075 

-0.050  

-0.025  

0.000  

0.025 

0.050  

0.075  

0.100  

0.125  

0.150  

0.175  

0.200 

0.825 

0.736 

0.614 

0.457 

0.354 

0.232 

0.149 

0.084 

0.052 

0.041 

0.054 

0.105 

0.164 

0.260 

0.414 

0.547 

0.642 

0.989 

0.977 

0.933 

0.803 

0.610 

0.403 

0.210 

0.093 

0.051 

0.057 

0.120 

0.277 

0.458 

0.684 

0.848 

0.924 

0.970 

1.000 

1.000 

0.999 

0.972 

0.878 

0.600 

0.347 

0.141 

0.051 

0.098 

0.236 

0.502 

0.781 

0.938 

0.987 

0.997 

1.000 

 

As the sample size increases, the power of LM test increases. It can also be seen 

when 4b decreases to 0, the power tends to be 5%. The test power grows quickly to 1 

as 4b  move away from zero. They are plotted in Figure 1. They are appropriately 

symmetric. The simulation shows that the LM test has good power to test for weak 

exogeneity in a financial market point process. 

  

                                                

   
5
 To avoid present of negative value of volume, we use logarithmic version of 

ACD model (see e.g., Bauwens and Giot 2000) for DGP process and estimation. 
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           N=2000                         N=5000 

 
              N=10000 

 
Figure 1: Power of the test  

 

6 Empirical Analysis 

In this section, we use the method discussed in section 5 to test weak exogeneity 

of duration for two groups of high frequency data. The empirical analysis starts with 

the joint distribution of the three variables: duration, volume and return volatility. 

These three variables are key factors in analysing market microstructure. Specifically, 

we will test weak exogeneity of duration for the conditional distribution of volume 

and volatility. We also test the joint weak exogeneity of duration and volume for the 

conditional distribution of volatility. 
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6.1 Data 

We use the data from the Trades and Quotes (TAQ) dataset at NYSE. The TAQ data 

consists of two parts: the first reports the trade data, while the second lists the quote 

data (bid and ask data) posted by the market maker. The data were kindly provided by 

Manganelli (2005). He constructed 10 deciles of stocks covering the period from Jan 

1,1998 to June 30, 1999, on the basis of the 1997 total number of trades of all stocks 

quoted on the NYSE. We randomly selected 5 stocks from the eighth decile 

(frequently traded stocks) and 5 from the second decile (infrequently traded stocks) 

covering the period from Jan 1,1998 to June 30, 1999. The tickers and names of the 

ten stocks are reported in Table 5. 

Before the analysis began, we adopted Manganelli (2005)’s strategy to prepare the 

data. First, all trades before 9:30 am or after 4:00 pm were discarded. Second, 

durations over night were computed as if the overnight periods did not exist. For 

example, the time elapsing between 15:59:50 and 9:30:05 of the following day is only 

15 seconds. We keep overnight duration because our samples for infrequently traded 

stocks are very small. Eliminating this duration would cause the loss of important data 

for these stocks. Third, all transaction data with zero duration are eliminated. These 

transactions are treated as one single transaction, and the related volumes are summed. 

Fourth, to deal with the impact of dividend payments and trading halts, we simply 

deleted the first observation whose price incorporated the dividend payment or a 

trading halt. Fifth, to adjust the data for stock splits, we simply multiplied the price 

and volume by the stock split ratio. Sixth, the price of each transaction is calculated as 

the average of the prevailing bid and ask quote. To obtain the prevailing quotes, we 

use the 5 second rule used by Lee and Ready (1991) which liniks each trade to the 

quote posted at least 5 seconds before , since the quotes can be posted more quickly 

than trades are recorded. This procedure is standard in microstructure studies. Seventh, 

the returns were computed as the difference of the log of the prices. To obtain a return 

sequence that is free of the bid-ask bounce that affects prices (see Campbell et al., 

1997, chapter 3), we follow Ghysels, Gourieroux et al. (1998) in using the residuals of 

an ARMA(1,1) model estimated on the return data. 
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 Table 5: Stock used in this analysis 

A. Frequently traded     B. Infrequently traded 

TRN TRINITY INDUSTRIES    ABG GROUPE AB S A ADS 

R RYDER SYSTEM INC  OFG ORIENATAL FINL GRP HOLD CO 

ARG AIRGAS INC    LSB LSB INDUSTRIES INC 

FMO FEDERAL-MOGUL CORP  HTD HUNTINGDON LIFE S.G. 

VTS VERITAS DGC INC  HUN HUNT CORP 

 

The second issue to be addressed prior to the analysis concerns the intraday 

pattern in the data. It is well known that duration, volume and volatility exhibit strong 

intraday periodic components, with a high trading activity at the beginning and end of 

the day. To adjust for this, we make use of a method used by Engle (2000). We 

regress the durations, volumes and returns squares on a piecewise cubic spline with 

knots at 9:30, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00, 15:30 and 16:00. The original 

series are then divided by the spline forecast to obtain the adjusted series. Error! 

Reference source not found. depicts the nonparametric estimate of daily pattern of 

duration and return square for one typical stock ARG. Generally, less frequently 

traded stocks do not exhibit any regular intraday pattern. More frequently traded 

stocks typically show the inverted U pattern for duration, the L pattern for return 

squares, and no regular pattern for volume.  
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Figure 2: Nonparametric estimate of daily pattern of transaction durations. 

 

Figure 3: Nonparametric estimate of daily pattern of return square. 
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Table 6: Summary statistics for the 10 stocks. 

 Obs Mean  LB(20) 

Duration Volume  Duration Volume Variance 

TRN 55582 157.86 1369.43  3780.09          1383.35 3769.80          

GAS 101332   86.54 3118.12  5951.85           2338.08           4073.09          

TCB 55208 158.94 1855.20  4171.36  2644.11 2925.82 

R 69702 125.67 2492.98  14072.3  7276.91 23685.7 

ARG 33850 259.2 1280.70  3780.09  1383.35 3769.80 

                   

ABG 2074 4214.88 5259.05  120.28  225.07 146.00 

OFG 7212 1214.58 833.86  523.16  1343.43 738.09 

LSB 2962 2962.19 1971.61  481.41   435.69 523.58 

HUN 5887 1483.73 1070.02  2431.00  660.60 788.81 

JNS 3949 2215.94 2748.60  268.52  682.92           297.01 

6.2 Testing for weak exogeneity - empirical results   

Table 7 reports the LM test statistics. The first and second rows are the LM statistics 

for weak exogeneity of duration in conditional distribution of volume and volatility 

respectively. The third row is the LM statistics for jointly weak exogeneity of duration 

and volume in conditional distribution of volatility. 

Table 7: Weak Exogeneity Test -- LM Test Statistics 

 TRN      R     ARG   VTS      FMO  ABG   OFG    LSB                                HUN                                 HTD                               

            

Volume 2.78 20.2 15.8 74.5 >100  0.72 2.00 4.20 8.91 3.02 

Volatility >100 >100 0.51 9.81 >100  >100 >100 2.14 41.0 3.78 

            

Volatility-J 31.9 >100 >100 >100 >100  >100 >100 >100 >100 >100 

Note:  Critical values 
05.0

2 )1( =3.84, 05.0

2 )2( =5.99 

                 01.0

2 )1( =6.63, 01.0

2 )2( =9.21 

Let’s look at the frequently traded stocks. In both the volume equation and the 

volatility equation, the null hypothesises that duration is weakly exogenous are 

rejected in 4 out of 5 cases, while the null hypothesis that duration and volume are 

jointly weakly exogenous is rejected for all the stocks in the volatility equation.  A 

different picture emerges for infrequently traded stocks. In the volume equation, the 

null of weak exogeneity of duration is not rejected in 4 out of 5 cases (under 1% level). 

And in the volatility equation, the null is not rejected for 2 out of 5 stocks. The joint 

weak exogeneity of duration and volume, on the other hand, is again rejected in all the 

5 cases. The different results found for frequently traded stocks compared to 
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infrequently traded stocks are striking. In general, the null of weak exogeneity is 

rejected for frequently traded stocks, while it is less likely to be rejected for 

infrequently traded stocks. However, the joint weak exogeneity of duration and 

volume is rejected in both of the cases (Manganelli 2005).  

Our LM test results indicate that that the empirical model of Engle (2000) and 

Manganelli (2005)on market microstructure analysis, in which duration and marks are 

estimated separately, may only be suitable for infrequently traded stocks. It is more 

efficient to estimate duration, volume, and price volatility jointly for frequently traded 

stocks.      

7 Conclusion  

A common practice when modelling several financial point processes jointly is to 

factor the joint density into the product marginal density of duration and conditional 

density of marks given duration. In estimation, the assumption of weak exogeniety of 

duration is made in order to estimate the marginal density and conditional density 

separately. This paper analyses the issues related to weak exogeneity in financial point 

processes. We propose three cases of non weak exogeneity, which extends the 

application of the Hausman test of weak exogeneity to a time series model. We then 

do a simulation to study the consequences of ignoring the weak exogeneity in 

estimation. We find that incorrectly assuming weak exogeneity implied biased 

estimators. Particularly, the persistence of volume will be biased and the impact of 

duration on volume will be over (or under) evaluated. The bias is very large in case 3 

non-weak exogeneity, which makes the econometric inferences on the parameters 

unreliable or even misleading. 

In empirical analysis, we derive a test for weak exogeneity based on LM test 

principles. The LM test is attractive because it only requires estimation of the 

restricted model. A simulation study suggests that the LM test has good power. We 

apply the method to two groups of high frequency data. The empirical results indicate 

that weak exogeneity of duration is often rejected for frequently traded stocks, but is 

less likely to be rejected for infrequently traded stocks.   
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Appendix  

Appendix 1: Proof of Case 1 weak exogeneity 

Using matrix form 
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Using the same method, the above model can be transformed into: 
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Appendix 2: Proof of Hausman test 
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Using matrix form for the two equation 
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Appendix 3: Typology of ACD models 

Augmented ACD  

    
  1111 )]([   t

v

tttt bcb  

Asymmetric power ACD ( v ) 

    
  1111 )]([   ttttt bcb  

Asymmetric logarithmic ACD ( 0  and 1v ) 

   111 log)]([log   tttt bcb  
 

Asymmetric ACD ( 1 v ) 

   111 )]([   tttt bcb  
 

Power ACD ( v  and b=c=0) 

      11   ttt x  

Box-Cox ACD ( 0  and b=c=0)               Dufour and Engle(2000) 

    11 loglog   ttt 


 

Logarithmic ACD type I ( 0, v  and b=c=0)      Bauwens and Giot’s (2000) 

    11 logloglog   ttt x   

Logarithmic ACD type II ( 0 , 1v  and b=c=0)  Bauwens and Giot’s (2000) 

    11 loglog   ttt   

Linear ACD ( 1 v  and b=c=0 )                Engle and Russell(1998) 

    11   ttt x   

 

 


