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Data-Driven Optimal Decomposition of Time Series

Siegfried Heiler Yuanhua Feng

University of Konstanz

Abstract

A data-driven optimal decomposition of time series with trend-cyclical and seasonal
components as well as the estimation of derivatives of the trend-cyclical is considered.
The time series is smoothed by locally weighted regression with polynomials and tri-
gonometric functions as local regressors. Two variates for the selection of the optimal
bandwidths and the order of the polynomials are proposed with a particular approach
for the estimation in the boundary areas of the time series. The second of these proce-
dures can also be used for the selection of optimal bandwidths if only one component
is considered. The smoothing of a time series without seasonal variations is just a
special case for these procedures. The rate of convergence in the second procedure
for this special case is discussed. A by-product of this work is the development of a
seasonal-difference-based method to estimate the variance in a seasonal time series.

Keywords: Time Series Decomposition, Bandwidth Selection, Locally Weighted Re-
gression.

1 Introduction

Decomposing economic time series into unobservable trend-cyclical and seasonal components
has a long tradition. There exists a large number of different methodical approaches and
also ready-made software systems to perform this. The method used by the German Federal
Statistical Office, the Berlin-Method (BV: Berliner Verfahren) is one of the well known ones.
In this approach a traditional nonparametric method, local regression, is used. Including a
local fit of polynomials and trigonometric functions makes it possible to estimate the trend-
cyclical and the seasonal components in a unified approach (Heiler, 1966). Recently Heiler
and Michels (1994) (see also Heiler 1994, 1995) proposed a weighted version of BV based
on the idea of locally weighted regression (LWR) introduced by Stone (1977) and Cleveland
(1979). The main result of the present paper is a new data-driven version of this approach.
A different procedure for time series decomposition with LWR is proposed by Cleveland et
al. (1990), where seasonal fluctuations are treated in a different way and robustness weights
are used.

Nadaraya and Watson introduced in 1964 the nonparametric kernel regression. Compared
with kernel regression local regression has a very long tradition (see Cleveland and Loader,
1995 for a historical review and more references). LWR is also a kernel based method
and can be interpreted as another type of kernel regression. Lejeune (1985) and Miiller
(1987) discussed the asymptotic equivalence between LWR and kernel regression. Based on
these results it is possible to adapt some results for kernel regression to LWR. For finite
samples LWR works better than kernel regression with its intuitional definition and model
unbiasedness (see the next section). For details of the advantages of LWR compared with
kernel regression see Hastie and Loader (1993) and Cleveland and Loader (1995). Recent
researches show that LWR is a very attractive smoothing technique. We think that it is



also a powerful method for nonparametric estimation of many other econometric functionals
discussed in Ullah (1988, 1989).

Some parameters, such as the bandwidths (/_), orders of the polynomials (p) and the
selected kernel function, which control the smoothness of the estimate have to be selected
for decomposing time series with LWR. A data-driven method for selecting these parameters,
especially for selecting the bandwidth and the order of the polynomials is very important in
order to get an objective best estimation. Quite a few data-driven selection procedures for
the bandwidth are proposed for kernel regression (see for instance Rice, 1983, 1984, Gasser
et al.,1991, Hardle et al.,1992). Cleveland and Devlin (1988) and Cleveland et al. (1988)
proposed a M-plot procedure for selecting bandwidth and the order of the polynomials for
LWR. Fan and Gijbels (1992) and Ruppert et al. (1994) proposed some plug-in procedures
for bandwidth selection for LWR based on asymptotic considerations. All of these proposals
are for LWR with polynomials only. In this paper the bandwidth selection for time series
decomposition with LWR is discussed. The R-statistic of Rice (1983, 1984) and the Double-
Smoothing procedure of Hardle et al. (1992) (but without subjective pilot bandwidth) are
adapted to this problem.

A very important problem is the estimation of the course of the components at the actual
boundary (right end points) of the time series. We treat this problem in a natural way by
selecting a left bandwidth hi and a right bandwidth hT pointwise for a moving average with
given symmetrical (hi = hT) or asymmetrical (hi > hr) weights for each point in the right
boundary area which are then used symmetrically for the left boundary area. The optimal
order of polynomial is also selected pointwise by comparing the criteria for different p. In
this paper we do not discuss the selection of the weight function (kernel). See Fedorov, Hackl
and Miiller (1993a, b) for researches in this direction.

In the next section we introduce the method of time series decomposition with LWR and
discuss the finite sample properties of the estimates. Section 3 discusses the criteria for
bandwidth selection and the estimation of variance. The data-driven procedures are descri-
bed in section 4 while some real examples decomposed with these procedures are presented
in section 5. Section 6 contains some concluding remarks.

2 Time Series Decomposition with LWR

We consider an equidistant time series Yt, i _ I, where I = {1,2, . . . ,T} is the time index
set. It is assumed that Yt follows an additive components model

Yt = G(t) + S(t) + eu - = 1,2, . . . ,T, (1)

where et are assumed to be i.i.d. random variables with E(et) — 0 and var(et) = cr2. G(t)
is the trend-cyclical component, S(t) is the seasonal component and fi(t) = G(t) + S(t) is
the nonrandom mean function. The proposed weighted version of BV to estimate /_(-), G(t)
and S(t) is described here briefly, for more details see Heiler (1994, 1995) and Heiler and
Michels (1994).

The trend-cyclical component is assumed to be a smooth function with existing derivative
of order p + 1, so that around a point t0 it can be developed in a Taylor series, yielding a
local polynomial representation of order p. In a similar way it is assumed that the seasonal
component with seasonal period s can be locally modeled by a Fourier series, i.e.

G(t) = Y, fri(*o)(* - to)\ S(t) = £ LM*o) cos X3(t - t0) + ̂ 3i(.o) sin X:(t - .„)], (2)
i=o j=i



where q < [_/2] ([x] denotes the greatest integer less than or equal to x), Aj = 2ir/s and
^j = J^i f° r 3 — 2, ••• ,q- When A, = w, the last sinusoidal has to be omitted. With the
vectors

to) = (A(to)', ft(*o)')', Xx(0 = (1, (. - _o), ..., (* - *o)P)

( . - .o) ,s inA1( . - .o) , . . . ,cosA,( . - .o) , [s inA,( . - .0)]) / , x(_) = (

(for A9 = 7r the [• • -]-terms have to be omitted) (2) can be written in the form

For . G I, the local regression parameters /?i(-o) and ^2(^0) are estimated by the locally
weighted least squares criterion

t=\

where K is a symmetrical density function (more precisely a kernel function of order 2) with
compact support [-1,1]. In order to cope with boundary problems we distinguish a left
bandwidth hi and a right bandwidth hT and put h = max(hi, hT). With the T x /-regressor

matrix X = (Xi:X2) with the rows x(t)', where / = p + 2q + [1] < hi -f hT + 1, as well as the
weight matrix K(_o) = (kij(t0)) = diag(ku(t0)) with

^ otherwise,

and the data vector y = (j/1? ... ,yr)' one immediately obtains the solution

= (X'K(_o)X)-1X'K(to)y

x;
^ x1 x2'K(t0)x2

and

)^(t0) = x(i)'(X'K(to)X)-1X'K(fo)y

where 0 denotes a vector of zeros of appropriate dimension. The final LWR estimations at
the point t = _0 are

fi(t) = w(£)'y, G(t) = ~W\(t)'y and S(t) = w2(i)'y, (5)

where w(i), wx(i) and w2(£) are defined in (4) with t = t0.

For t G [hi + l,T — hT] all elements of w(i), wx(i) and w2(.) with indices i g1 [. — hi,t + hr]
are zeros. The non-zero part of K(_), K = (kij(t)), i,j G [i — /i/,. + /«r], remains the same

3



and it can be shown that this is also true for the non-zero parts of the vectors w(_), Wj(i)
and w2(.) which for t —> t + 1 are shifted by one instant. Hence in the central part of the
time series with hi and hT fixed the estimations work as moving averages with symmetrical
weight systems (the non-zero parts of these vectors) for hi = hT or asymmetrical weight
systems for hi ^ hr. To estimate /_(.), G(t) and S(t) in the right boundary area one has to
take hr <T — t. In order to estimate [lit), Git) and Sit) in the left boundary area one has
to take hi < t — 1.

With the notation xj"}(_) = (0, _<"), ...,_"("))' (1 < v < p) for the i/-th derivative of xi(.)
we obtain the estimate of the i/-th derivative of the trend-cyclical component

where
w"(.)' = ( x ^ * ) ' , O')(X'K(t)X)-1X'K(t). (6)

&"'{t) works as a moving average, too.

In what follows we give some finite sample properties of the estimators discussed above.
For the weight systems (the active kernel functions following the terminology of Hastie and
Loader, 1993) w(£), w^.),- w2(_) and w"(.) (1 < v < p) with any p, hi and hT and any
kernel function it holds that

T T T T

w2i(t) = 0 and J^u£(_) = 0, 1 < f < p.

This is one of the so called moment conditions. The above weight systems satisfy yet more
general moment conditions.

Under the assumption of model (1) the variance factors (variance/cr2) of ft(t), G(t), S(t)
and G^(t) are

w(_)'w(_), wi(_)'w!(_), w2(t)'w2(.) and w"(_)V(_),

respectively. If one uses a k-nearest neighbour method, i.e. the total bandwidth, hj =
hi + hr -f 1, is fixed, the variance factor of G(t) is strongly growing in the boundary area
towards the ends of the time series. The variance factor of S(t) remains almost the same in
the boundary area and in the interior. In the interior it is about (s-1) times that of a kernel
smoothing with K(u). If s is large, for example s = 12, the variance factor of S(t) is much
larger than the variance factor of G(t) with p < 3. In this case the variance of S(t) is the
dominant term of the variance of fl(t).

The correlation coefficients between single estimations G(t) and S(t), G(t) and G(u'(t)
and S(t) and G^(t) are

" V(w1(_)'w1(.))(w2(<)'w2(.))'

and



respectively. These correlation coefficients are about zero if hi or hT is large, especially when
hi = hT. It can be shown that, under the assumptions of model (1), pgs —• 0 as hi —> oo or
hT —> oo. At an endpoint, t = 1 (or t = T), pgg»(t) and pgs(t) are always negative for finite
hT (or h{).

LWR estimations are model unbiased, i.e. G(t) is unbiased for a polynomial trend-
cyclical component of order not larger than p, and &u\t) is unbiased for its i/-th (v < p)
derivative. S(t) is unbiased for a constant seasonal component. If hi = hT, G(t) (or S(t))
with a polynomial of even order p and of order p + 1 are the same. If the seasonal component
is constant, Sit) is unbiased while the bias for fj,(t) and G(t) is the same. In this case one
can obtain similar asymptotic results as for LWR with polynomials only, but this will not
be discussed here.

Further fi(t), G(t), &^(t) and S(t) are optimal in the sense of weighted variances, i.e.
the sums

t + hr t + hr

E
t+hT

) 2w2i(t) jki(i) and
i=t — h{ i—t—hi

are minimal in the class of all linear model unbiased local smoothers. Proofs of these pro-
perties are omitted. The proof of the properties of w(_) for LWR without seasonal can be
found in Miiller (1987) and Lejeune (1985).

3 Estimations of the MASE and a2

As selection criterion for the parameters we use the mean averaged squared error (MASE)
as a distance between /_(.) and fJ.(t),

M = M(hh hr) := Tf.1 Y EW) ~ M*)]2,
tei*

where I* is a subset of the time index set I on which the smoothing with hi and hT is possible
and Ti* is the number of observations in I*. Because hi/T —> 0 and hTjT —• 0 as T —• oo it
holds that T/./T —> 1 as T —> oo. It is well known that the MASE splits up into a variance
part and a bias part. The variance part of M(hi, hT) is given by

T

V - V(hi, hT) = Tf.1 V i,nr\n(f^] = n2T7X S^ V^ mAF' E E
At each point the bias is defined by

The systematic bias part is B — B(hi, hT) = Tf.1 Y^tei* K^Y- T° estimate B(hi, hT) we define
a general estimator of b(t) by

6(0 = A'(_)y, (7)



where A(_) = {a!, a2, . . . , a r } ' is a weight vector with X_Li a«' = 0- Then we estimate

It is easy to show that there is a variance term in this estimate, Tf}a2 ^tei* YM=\ ai{t)2->
that should be allowed for. Therefore by subtracting this variance term, we estimate B by

tei* t=i

where a2 is an estimator of a2. The variance part V is estimated by

tei* 1=1

Hence the final estimate of M is

T

M(ht, hT) = V + B- T?a2 Y E fl'(02 = V + Bt. (8)

In practice it can occur that B\ becomes negative. Hence it seems more reasonable if
one uses a slightly different estimator M(hi,hr) instead of the estimator M(hi,hr), where
M(hi, hT) = M(hh hT) if A > 0 and M(hh hr) = V if Bx < 0.

Two special cases of (8) are the R-statistic procedure proposed by Rice (1983, 1984) and
the Double-Smoothing procedure proposed by Hardle et al. (1992) for the kernel regression.

In the R-statistic the bias b(t) at each point t is estimated by

T

bR(t) =

where
W{(t), for i ^ t,
W{(t) — 1, for i = t,

and

tei*

Note that for fixed hi and hT the estimate fi(t) is a moving average. We obtain the R-statistic
from (8):

R(hh hT) = Tf.1 E(£W - Vt)2 + (2MO - l)°\ (9)
tei*

where t* can be any observation time point in I*. R(hi,hT) is an unbiased estimator
of M(hi,hr). The optimal bandwidths following this criterion are defined as the pair
HR = {h[,hT} which minimizes (9). Discussions about the asymptotic properties of such an
estimator for kernel regression can be found in Rice (1984) and Hardle et al. (1988).
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Following the Double-Smoothing idea of Hardle et al. (1992) the bias b(t) at the point
t G I* is estimated by means of a pilot smoothing fig(t) with given pilot bandwidths g =
{gi,gT} and weights wig(t) by

T T T

MO = YW^^U) ~ £_(0 = E ^ 7 * ^ ) = EaiX>2/l'
j=l j=l • t = l

where the Wj(t) are the weights for a smoothing with bandwidths hi and hr and

T

aiD(t) =

The systematic bias term is estimated by

tei*

The term T^a2 Ylnei* _i-<;=i °«.D(02 causes an additional bias of the estimation of the band-
widths. It is more difficult to calculate than BD itself. The calculation of each an)(t)
involves the convolution of two weight systems, Wj(t) and u>ig(j). But in order to obtain BD

A

we do not actually need to calculate a,£>(£) (see the formula of 6D(.))- The larger the pilot
bandwidths compared to the selected bandwidths the smaller is the influence caused by this
term. This term plays a similar role as the so called nonstochastic term in Sheather and
Jones (1991) and Jones et al. (1991). One can use the idea proposed there, i.e. leave this
term in M(h[, hr). We write these two cases (with or wihtout this term) in one formula by
introducing an indicator variable A

MD(hi, hr) = V + BD-(l

where A =0 or 1. If A = 0 (10) is the same as in Hardle et al. (1992), if A = 1 (10) is
similar to the proposal of Miiller (1985). The computational advantage with A = 1 is clear
while the calculation of (10) for A = 1 is as easy as the calculation of (9) if the fig(i) are
known. The rate of convergence of the bandwidth selector with A = 1 is sometimes slightly
slower than that with A = 0. But with a properly selected pilot bandwidth one can get a
faster rate of convergence with A = 1. See Heiler and Feng (1995) for more general cases.

For small pilot bandwidths one should take A = 0. In the special case gi = gT = 0,
i.e. no smoothing in the pilot step, we have Mo(hi,hT) = R(hi,hr). If gi > 0 or gr > 0
Mi)(hi,hT) is a biased estimator of M with a smaller variance than that in R(hi,hr). The
optimal bandwidths HD — {hi,hr} following this criterion are the minimizers of (10). The
rate of convergence of the Double-Smoothing bandwidth selector depends on the choice of
the pilot bandwidth and the orders of the so called equivalent kernels in the pilot smoothing
and the main smoothing (see section 4.2, Hardle et al., 1992 and Heiler and Feng, 1995).
Sometimes it can even achieve the best convergence rate, T~?. The convergence rate of hR

is as slow as J1-1/10. A disadvantage of the Double-Smoothing method is that it requires
a pilot smoothing or pilot bandwidths gi and gT. In the next section a Double-Smoothing



procedure with good asymptotic properties is proposed which does not require a subjective
pilot smoothing. The pilot smoothing is obtained by using a R-statistic procedure.

The selectors of optimal bandwidths discussed above are all defined for a general linear
smoother and can be used for selecting bandwidths of time series decomposition with LWR
(In fact it is easy to show that the M-plot procedure proposed by Cleveland and Devlin
(1988) and Cleveland et al. (1988) for LWR is just the same as the R-statistic procedure.)
If we have pilot estimations of G(t), S(t) and G^(t) we can also select bandwidths for
these components with a Double-Smoothing procedure, respectively. Though other CV-like
bandwidth selection procedures described in Rice (1983, 1984) and Hardle et al. (1988) are
shown to be asymptotically equvalent to the R-statistic procedure, most of these criteria
should not be used for time series decomposition with LWR, because some of them achieve
a trivial minimum at the "no smoothing" point, where fi(t) = yt, while some others become
negative for small bandwidths.

To estimate M(hi, hT) in (9) or (10) one also needs a nonparametric estimator of the un-
kown variance a2. Rice (1984) proposed an estimator based on a local constancy assumption.
This estimator is

^ l-\) £ (K+i-tt)2- (11)
' tei*,t+iei*

Further Gasser et al. (1986) proposed another estimator of the variance based on a local
linearity assumption which is given by

E (yt+i-E (yt+i-kyt + yt+2))2. (12)

This idea has been extended to a general definition of a so called difference-based estimation
of variance in nonparametric regression with a given difference-sequence by Hall et al. (1990).
A difference sequence of order m is a real sequence Dm — {do, d\, ..., dm} such that

j=0 and E < ? = 1) m = *' 2 ' '" "
3=0 ' 3=0

The estimation of the variance based on Dm is

t,...,t+mel* 3=0

For any m cr^I*) is always a root-T consistent estimator of a2 (Hall et al., 1990). The
estimators in (11) and (12) are two special cases of <7^(/*) with m=l and m=2, respectively.

In order to estimate the variance of a time series with seasonal component the seasonal
fluctuations must be allowed for as well as the trend-cyclical movements. Therefore we define
a seasonal-difference-sequence Dms = {dj}, j = 0, 1, ... ,m which in addition to (13) also
satisfies the condition

St =
3=0

where s is the seasonal period and

c j 1, if (j — i)/s is an integer,
tJ 1 0, otherwise.



For s = 12 two simple examples of seasonal-difference-sequences are

' Dl
ms = ^ { - 1 , 2,-1,0,0,0,0,0,0,0,0,0,

1,-2, 1}

and

DL =T2{ - 1 , 2,-1,0,0,0,0,0,0,0,0,0,

2 , -4 , 2,0,0,0,0,0,0,0,0,0,

- 1 , 2 , - 1 } ,

where c\ and c2 are two constants defined by (13). With D]ns (or Z?^s) we can obtain a
root-T consistent estimation of a2 under the assumptions of model (1) and the assumption
that the seasonal is locally constant. If for finite samples S(t) = \(S(t — s) -\- S(t + _))
holds, t — s + 1,..., T — s, then D2

ms is better. Other proposals for nonparametric variance
estimation in LWR based on residuals can be found in Ruppert et al. (1994) and Fan and
Gijbels (1992, 1995).

4 The proposed Data-driven Procedures

In this section two data-driven procedures for selecting optimal bandwidths and order of
polynomials are proposed. The first one is based on the R-statistic with a special solution of
the boundary problem. The second one consists of two stages. At the first stage one gets pilot
estimation of the optimal bandwidths based on the R-statistic with a polynomial of a fixed
(higher) order and the pilot estimations fig(t), Gg(t), Sg(t) and Gg (t). At the second stage
one uses the pilot estimations in the Double-Smoothing criterion (10) in order to select the
optimal bandwidths and proper orders of the polynomials for the trend-cyclical component
and the seasonal as well as a second estimation of bandwidths and orders of the polynomials
for fi(t). One can estimate the optimal bandwidths for G^'(t), too. The algorithm for the
second procedure is the same as for the first one but with Jl_p(/i|, /ir) instead of R(hi,hr).

A A A . .

The Mean Averaged Squared Errors of G(t), S(t) and G^'(t) are estimated analogously as
in (10). Hence we describe only the algorithm for the first procedure in detail.

4.1 Data-driven procedure based on R-statistic

The main results of the proposed procedure are a bandwidth hm with p for the estimations
in the central part t 6 [hm + 1, T — hm] (defined after the selection of hm) with hi = hr = hm

and bandwidths {hi(t), hT(t)} for the estimation at a point t in the right boundary area,
t — T — hm,T — hm + 1, ...,T, with proper order of the polynomial, p(t). The estimation
at a point t in the left boundary area is effectuated symmetrically with the bandwidths
{hi(T - t + 1), hr(T - t + 1)} and a polynomial of order p(T -t + 1). All bandwidths are
selected following a similar iterative procedure.

At the beginning one has to put three parameters: the type of the difference sequence, the
kernel function and the maximal order of the polynomials. As alternatives for the difference



sequences the procedures provide (11) and (12) for s=l (without seasonality) and Dl
ms and

D2
ns for s > 3. Which one of them should be used depends on the data on hand. For example,

if it is assumed that the trend-cyclical is locally linear and the seasonal is locally constant,
then one should choose Dl

ms (Note that this does not mean that one has to take p = 1).
The choice of kernel function plays a more important role for time series decomposition with
LWR than for kernel regression but we do not discuss this question here. In the procedures
four kernel functions of the type CM(1 — u2)" are provided as alternatives for fi — 0,1,2,3.
They are the Rectangular Kernel, the Epanechnikow Kernel, the Bisquare Kernel and the
Triweight Kernel, respectively. In the examples in this paper the difference sequence Dx

ms

and the Bisquare Kernel (/_ = 2) are used. When the variance a2 compared with the bias
term is very small, a polynomial of high order (p > 3) should be better following the criteria
in section 3. Therefore a maximal order of polynomials, pm , is given beforehand, for example
pm = 3, and only orders of the polynomials which are not larger than pm are considered.

4.1.1 Selection of hm and p in the central part:

In this step ht — hT = h and the weight systems are symmetrical. The basic idea is to search
an optimal bandwidth hm(p) for a given p in an interval h G [hmin, hmax) on a support t G F ,
where hmin is close to the possible smallest bandwidth. In the proposed procedures we use
hmin = [|(s + p)] + 1, for instance for _ = 12 and p = 2 we have hmin = 8. hmax is a given
maximal bandwidth. In the proposed procedures hmax = [T/4] is used at the beginning with
which the used observations for LWR is about one half of all observations. The support
I* = [hmax +.1, T - hmax] is used to search an optimal bandwidth for given hmax. This is the
largest support on which the smoothing with the bandwidths hi = hT = hmax is possible. It
is clear that the selected optimal bandwidth depends on the support I*. This is shown in
figure 1. Figures 1 exhibits R(h) (solid line) as well as V (dots and dashes) and Br (dots)

1? 15 2(1 24 K 3? 36

(A) (B)
Figure 1: The estimated R(t) (solid line), V(t) (dots and dashes) and B(t) (dots) for a data
set STROM (T = 300) with two different hmax: (a) hmax - 75 and (b) hmax = 23.

estimated by the R-statistic for a data set STROM (T = 300, Schlittgen and Streitberg,
1991, page 65). Figure l(a) shows these estimations with p = 2, /imtn = 8, hmax = 75
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and the support I* = [76,225]. There are two local optima in figure l(a): hml — 23 and
hm2 = 34. hm2 = 34 is the optimal bandwidth on I* = [76,225]. In figure l(b) another
maximal bandwidth hmax — 34 (the optimal one in (a)) is used, now only one optimum at
hm — 19 occurs. We see that h = 34 could not be a global optimal bandwidth.

We define hm(p) for a given p as a stable global optimal bandwidth in the central part, i.e.
hm is optimal on some supports I*' = [h'm-\-l, T — h'm) with h'm > hm as well as on the support
I* = [hm + 1, T - hm] itself. For the STROM data with p = 2 the bandwidth hm = 19 is such
an optimal bandwidth. In fact hm = 19 is optimal for all supports I*' = [h'max + 1,T — h'max]
with 19 < h'max < 53.

In the following the proposed automatic iterative procedure to select hm and a proper
p is discribed. At the beginning we put p = pm if pm is even or p = pm — 1 if pm is odd,
because G(t), S(t) and /_(_) are the same for p = pm and p = pm — 1 if pm is odd. The value

= [\T] is used at this stage.

1. Select an optimal bandwidth hmo with given p and hmaxo on the support IQ = [hmax0 +

2. Put hmaxi := hmo + 1 + [\(hmaxo — hm0)]. Then select a new optimal bandwidth hm\
on the support 1̂  = [hmax\ + 1, T — hmaxi]. If hm\ is stable, then goto step 3, otherwise
put hmax0 := hmaxl, hm0 = hmi and repeat this step;

3. Put hmax2 := hmi + 1 and select a new optimal bandwidth hm2 on the support 1^ =
[hmax2 + 1, T — hmax2\. If hm2 is also stable, then goto step 4, otherwise put hml = hm2

and repeat this step;

4. Put hmaX3 := hm2 and select a new optimal bandwidth on the support I3 = \hmax3 +
l,T — hmax3\. If hm3 is stable, too, put hm(p) = hm3 and goto step 5. If hm3 is not
stable, put /iml = hm3 and go back to step 3;

5. If p — 2 < 0, then goto step 6, otherwise put hmaxo := [1.2hm(p)], p := p — 2 and go
back to step 1;

6. Select the smallest bandwidth (called hm) from all hm(p). hm, the respective p and
R(hm,p) are the outcomes of this procedure in the central part.

The definition of hmax in step 2 and 3 ensure that a larger optimal bandwidth can also
occur in the next step. One can put different values for hmax in step 2, 3 or step 5. It might
cause a difference in the computing time, but it does not cause any change in the results.
For a given p the minimal bandwidth /imtn remains the same in all steps. In all steps it
must be hmax « [T/2] such that there are enough observations in the support I*. In this
procedure we put hmax < [T/i]. Since the assumption of constant variance often does not
hold exactly for real data sets, the variance on a support I* = [a, b] is estimated on a related
support I* = [a', b'] where b' = min(T, b + [y]) and a' = max(\, b' — m — b + a), where m
is the order of the difference-sequence. The details of this iterative procedure can partly be
seen in figure 1 and the corresponding explanations.

Sometimes the iterative optimal bandwidth for a given p does not converge to a hm(p)
but pendulates between a hv

m and hv
m + 1. In this case the proposed procedure is an endless

loop and if this happens either hv
m or hv

m + 1 is taken automatically as hm(p) .
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4.1.2 Selection procedure in the right boundary part:

After selection of hm the treatment boundary parts are clear. The right boundary part is
then given by the interval [T — hm-\-l,T]. The considered bandwidths at a point t in the right
boundary part are limited to pairs {hi, hT} with either hi = hT or hi > hr and hT = (T — t).
For t < T a pair of bandwidths {hi, hr} with hi ^ hT and hr < (T — t) is also possible, but
we do not consider this situation here. Under this limitations the selection of a pair {hi, hr]
is equivalent to the selection of A;.

Now the minimal value of/i;(p) is given by /_m,-n = ma:r([|(._+p)] + l, s-fp+1 — (T—t)), hmax

is given as the maximal value of hi used at step one. The comparative support determined
by hmax is now I* = [hmax + l,t] if t > T — hmax or the same as in the central part if

A A

t < T — hmax. The procedure to select hi is the same as for hm. But since hi ̂  hT is now
frequent, one should use p = pm at the beginning and p — 1 at step 5 for the next iteration,
respectively. The selection of hmaxo at each point is also changed.

The time series is then decomposed with the selected bandwidths and orders of the po-
lynomials. If the time series does not have seasonal variation, the seasonal period s takes
the value 1. In this case the procedure works automatically as a usual optimal smoothing
procedure of a time series with LWR.

4.2 The Data-driven Double-Smoothing procedure

The selection of the pilot bandwidth for the Double-Smoothing procedure is an unresolved
problem in Hardle et al. (1992). Our proposal is to select pilot bandwidths using the
procedure proposed above with a fixed pilot order of the polynomial pp. Then one uses these
bandwidths (or multiplied by a factor a&(T)) to get the pilot smoothing p-g(t). The second
stage of the Double-Smoothing procedure is exactly the same as the procedure based on the
R-statistic. But now the criterion M(hi, hT) is calculated from (10). The bias at a point t is
estimated by 6D(-) = St__i aiftAs(0 with the pilot estimation fig(i).

In the sequel we explain why the pilot bandwidths can be selected with the R-statistic
and discuss the rate of convergence of the selected bandwidths with the proposed Double-
Smoothing procedure for time series without seasonality shortly. If we talk about the order
of a bandwidth it always means a relative one i.e. the absolute one divided by T. We assume
that one uses a fixed order of polynomial p at the second stage, too (say pp and p are both
odd, to simplify). In this case the equivalent kernel function is of order s = pv + 1 at the first
stage and of order r = p + 1 at the second (main) stage. If pp (or p) is even the equivalent
kernel functions are of order _ = pp + 2 and r = p + 2 in the central part and of order
s = pp + 1 and r = p -f 1 at the end point t = T.

Selecting a pilot bandwidth for the Double-Smoothing procedure with the R-statistic is a
good starting point. It is well known that the selected bandwidth g based on the R-statistic
is alreday of order T " ^ 1

 a n d the optimal bandwidth h0 is of order T~2r^ . When A = 0
one can obtain the asymptotically optimal order of the pilot bandwidth by keeping the two
terms containing g in theorem 1 of Hardle et al. (1992) in balance. These two terms are
of order (T~2g~(4r+1)y/2 and gs, respectively. The asymptotically best choice of the pilot

bandwidth gopt is to take it of order J1"4^2^1 . It holds that

9opt __ o ( r - i^n- ) = gao(T),
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where ao(T) = 0(T^+^+iW+i7). It is easy to show that h0/gopt -> 0 as T —> oo. The case
A = 1 is a special case of Heiler and Feng (1995) with A = 1 and 6 = 0. Following theorem
1 in Heiler and Feng (1995) the asymptotically best choice of the pilot bandwidth is

where a^T) = O(T<-2r+'+1K2*+1)).

Selecting the pilot bandwidth gopt = ga&(T) is asymptotically optimal up to a very
complicated constant term which does not affect the rate of convergence. In the central
part with A = 0 the rate of convergence of the Double-Smoothing bandwidth selector with
the pilot bandwidth gopt = gao(T) is T~4r+2s+1 if s < 2r or T~2 (a root-T estimator) if
s > 2r + 1. For the latter a slightly weak condition is given in Hardle et al. (1992), remark
2. For example for pv — 5 and p = 3, i.e. s = 6 and r = 4, the rate of convergence is T~™ . If
g is used simply as the pilot bandwidth we obtain the slower one of the two rates T" 2 ^ 1 and

4(.« — r)+l

T 4s+2 . This is slower than the rate of convergence by using gopt = gao(T) and is always
1 9

slower than T~2. When s = 6 and r = 4 the rate of convergence is T~™. If A = 1 the
resulting rate of convergence with the polit bandwidth gopi = goti(T) is T~2r+>+1 which is a
little slower than that with A = 0. Again if g is used simply as the pilot bandwidth we obtain
the slower one of the two rates T~2s^ and T~ 2s+* . For example the rate of convergence
in the special case s = 6 and r = 4 with g as the pilot bandwidth is T~™. This rate of
convergence can be achieved with A = 0 and r = _ = 2 (i.e. usual kernel regression) by
taking the optimal pilot bandwidth gopt of order T~™ (Hardle et al., 1992). For given r the
larger 5 the higher is the rate of convergence. Furthermore a Double-Smoothing bandwidth
selector by using a pilot bandwidth of the form g = CTuhs as in Jones et al. (1991) with
8 = — — and correctly specified C and v yields a much higher rate of convergence. For
example, if _ > r the bandwidth selector is always root T consistent (Heiler and Feng,
1995).

If we use a pilot bandwidth g = gi(T) with gr = 0 for the bandwidth selection at the right
end t = T the theorem 1 in Hardle et al. (1992) and its extension in Heiler and Feng (1995)
also hold and the rate of convergence of the bandwidth selector hi(T) remains the same as
the one discussed above. For example if we choose pp = 5, p = 2 and A = 1 and use gi(T)
as the pilot bandwidth, here _ = 6 and r = 3, the rate of convergence of hi(T) is T~^. This
rate is faster than that in the central part. We see, with a polynomial of even order the
regression function n(T) is harder to estimate at the end points but the optimal bandwidth
ho(T) is easier to select, the similar phenomenon has been touched upon in Hardle et al.
(1988).

To estimate the optimal bandwidths of the trend-cyclical component or the seasonal
component one should only use the pilot estimation and the pilot weight system (when
A = 1 the pilot weight system is even not needed ) for G(t) or S(t) in (10), respectively. The
time series decomposition with these selected bandwidths is only optimal for the considered
component, it is not optimal for the overall estimation p,(t) or for the other component.

5 Examples with real Data sets

In this section we give some examples of time series decomposed with the proposed proce-
dures. All of the data sets mentioned here are provided by the IFO-Institut for economic
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Table 1: Selected Parameters for the Time Series of the
Gross Domestic Product in Germany (1968-1994, Quarterly)

Observation
point

(0
T

T-\
T-2
T-3
r-4
r-5
r-6
r-7
r-8
r-9

Parameters selected
by R-statistic

h,(t)
8

13
12
12
12
12
8
9

11
9

hT(t)
9

15
15
16
17
18
15
17
20
19

P(t)
1
3
3
3
3
3
2
2
2
2

Parameters selected
by Double-Smoothing
h,(t)

8
14
13
13
8

13
9

10
10
9

hT(t)
9

16
16
17
13
19
16
18
19
19

i>(t)
1
2
3
3
2
3
2
3
2
2

Notes: hi(t), h(t) and p(t) are selected left bandwidth, total bandwidth and order of polynomial
at a point t, respectively. The results are listed from the right endpoint (t = T) to the central
part (t =T-9).

research, Miinchen, Germany. The first example is the time series of the quarterly gross
domestic product in Germany from 1968 to 1994 (billion DM, at current prices). As men-
tioned above the parameters are selected in the central part and at each point in the right
boundary area. The bandwidths hi(t) and the orders of the polynomials p(t) (here and in
the following pm = 2 in the central part and pm = 3 in the boundary area) for p,(t) selected
by the R-statistic and by the Douple-Smoothing procedure with A = 1, respectively, are
given in table 1. pp = 5 is used in the pilot smoothing. The selected bandwidths g are used
as pilot bandwidths for the Double-Smoothing. The selected right bandwidth hr(t) at any
point . in the boundary area is always T — t and is hence omitted. The total bandwidth,
hj(t) = hi(t) + hT(t) + 1, is also given in table 1.

From table 1 we can see that for this example the bandwidths as well as the orders of po-
lynomials in the central part selected by the R-statistic (denoted as hR and pR, respectively)
and by the Double-Smoothing procedure (denoted as JID and pp, respectively) are the same.
But the bandwidths as well as the orders of polynomials selected by these two procedures
at a point in the boundary area are often different. The orders of polynomials at different
points also differ from each other.

Table 2 exhibits the same results as in table 1 for the time series of quarterly privat
investment in equipment in Germany from 1968 to 1994 (billion DM, at the price in 1991).
For this example the bandwidths in the central part selected by R-statistic and bei Double-
Smoothing respectively, i.e. hR and ho, are different.

It is clear that the selected bandwidth should be large if the variance in the time series
is relatively large, and it should be small if the variance is relatively small. Further the
bandwidth depends also on the form of the trend-cyclical component. As a descriptive
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Table 2: Selected Parameters for the Time Series of the Privat
Investment in Equipment in Germany (1968-1994, Quarterly)

Observation
point

(t)
T

r-i
r-2
r-3
r-4
r-5
r-6
r-7
r-8
T-9

Parameters selected
by R-statistic

hi(t)
7

12
10
10
11
10
7
7

hT(t)
8

14
13
14
16
16
14
15

Pit)
1
2
3
3
3
3
2
2

Parameters selected
by Double-Smoothing
hi(t)

7
13
13
13
12
13
14
8

10
9

hT(t)
8

15
16
17
17
19
21
16
19
19

Pit)
1
3
3
3
3
3
3
3
2
2

Notes: hi(t), h(t) and p(t) are selected left bandwidth, total bandwidth and order of polynomial
at a point t, respectively. The results are listed from the right endpoint (t = T) to the central
part (t = T — 7 by R-statistic and t = T — 9 by Double-Smoothing, respectively).

measure we use a noise to curvature ratio (NCR), defined as

1/2

NCR = £___.(* - rf
£L(A2G(0)2.

where rt are the residuals and A2G(t) = G(t) — 2G(t — 1) + G(t — 2) are the second differences.
The estimations used in NCR are obtained with the bandwidths and orders of polynomials
selected by the R-statistic. For example this ratio is equal to 2.16 for the time series of
the monthly unemployment rate in Germany from January 1977 to April 1995 (see Figure
2(A)). Here we obtain hR = 17. But for the time series of indices of domestic orders received
in Germany from January 1978 to December 1994 (1985 = 100) (see Figure 2(B)) NCR is
8.08, that is about four time as large as for the unemployment series. In this case hR = 32
is selected.

The Double-Smoothing procedure is also used to select the bandwidths and orders of
polynomials for a single component. The result shows that the optimal bandwidths for the
S(t) are larger than the ones for fi(t) and with lower orders of polynomials while the optimal
bandwidths for the G(t) are smaller than the ones for fi(t).

As an example the results of the decomposition for the time series of quarterly privat
investment in equipment with the bandwidths and the orders of the polynomials selected by
the Double-Smoothing procedure are shown in figure 3. Figure 3(a) shows the estimations of
the trend-cyclical with the original data, figure 3(b) shows the estimations of the seasonal,
while G'(t), the first derivative, is shown in figure 3(c).

Insert figure 2 and figure 3 near here
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6 Some Remarks

The procedures proposed here are based on the assumption that et are uncorrelated. If tt are
autocorrelated, both the estimation method of the variance and the criteria themself must
be adapted. If the autocorrelation functions are known it is not difficult to obtain a new
estimator of a2 and new criteria for the R-statistic procedure and the Double-Smoothing
procedure. But if the autocorrelation functions are unknown one has to estimate them
nonparametrically. A modified R-statistic is proposed by Hart and Wehrly (1986) by using
repeated measurements data (see also Azzalini, 1995).

In the procedures all seasonal frequences are used in the model. For a simple seasonal
component one might only need to use a proper subset of all seasonal frequences in the
model. Similar to the order of the polynomial a smaller subset of the seasonal frequences
causes a smaller variance but a larger bias while a larger subset of the seasonal frequences
causes the opposite. The variance of the estimation caused by the S(t) is about 2qi — 1 times,
if \q = 7T and it is in the model, or 2<?i times, otherwise, of the variance for a normal kernel
regression, where q\ is the number of the seasonal frequences used in the model. Similar to
the choice of p one can choose a subset of the seasonal frequences by comparing the minimia
of the criterion for all possible subsets. Our experiment shows that for most economic time
series all seasonal frequences should be used in the model.

For LWR without seasonality the optimal weight system is the Epanechnikow Kernel
(Miiller, 1987). But this is probably not true for the time series decomposition model
because the correlation between G(t) and S(t) depends on the kernel function as well as
on the order of the polynomial. In this paper the problem of forecasting is not considered.
However forecasting is also possible by LWR or other nonparametric methods (see e.g. Cao
et al., 1992, Fedorov, Hackl and Miiller, 1993b and Heiler and Michels, 1994). As far as we
know, the problem of selecting the bandwidths for a single component is for the first time
considered here. This paper is only a first step in this direction.
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19
Monthly Unemployment Rate in Germany from January 1977 to April 1995

Indices of Domestic Orders Received in Germany from January 1978 to December 1994

Figure 2. Two examples of seasonal time series: (A) time series with small noise to curva-
ture ratio (NCR) and (B) time series with large NCR. The bandwidths selected by
the R-statistic in the central part are 17 and 32, respectively.



The Data and the Trend-cyclical Component 20

The Seasonal Component

The Derivative of First Order of the Trend-cyclical Component

(C)

Figure 3. The decomposition results of the time series of quarterly privat investment in
equipment in Germany with the bandwidths and orders of polynomials selected by
the Double-Smoothing procedure (Pp=5, Pm=3 and the Bisquare Kernel is used).


