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O. INTRODUCTION

This paper contributes to the decision-theoretical

foundation of migration behavior. Following an old

tradition in microeconomic theory, past economic studies in

migration theory did not distinguish between personal and

family decisions. One important exception is the analysis

of Mincer (1978).

The main conclusion in Mincer's paper are: There exists an

influence of family ties on migration, and such ties result

in negative personal externalities that are usually

internalized by the family and thus tend to discourage

migration. "Tied persons" in the family are "those whose

gains from migration are (in absolute value) dominated by

gains (or losses) of the spouse", (Mincer (1978),; p. 753).

Moreover such ties tend to reduce the employment and

earnings of those wives who do migrate and to increase the

employment and earnings of their husbands. Increased labor

force participation rates of women cause an increase in

migration ties, which results both in less migration and

more marital instability. Mincer's results were supported

by his own empirical findings, and by those of Graves and

Linneman (1979) and Sandell (1977) as well.

Unfortunately Mincer's paper is lacking of a satisfactory

theoretical base. He utilizes the well-known

(deterministic) "Human Capital Model" of migration (see

Sjaastad (1963), Cebula (1979)), modified by a "divorce

constraint" which has been introduced by G. Becker into

Human Capital models of marriage. According to our

viewpoint there are two points missing in Mincer's sketchy

theoretical analysis:

- Typically imperfect inform about the destination

region and thus costs of acquiring information (in a very



broad sense) play a crucial role in the migration

decision: (this point has been emphazised recently by

several authors e.g. David (1972), McCall/McCall (1984),

Meyer (1984); see for this point also

Berninghaus/Seifert-Vogt (1987)) .

- A migration decision in a household consisting of more

than one person who is authorized to decide is typically

the solution of a conflict situation, at least in those

cases where the net gains of migration for these persons

are not all positive. (According to Mincer this is the

real interesting aspect in the analysis of the influence

of family ties on migration. But Mincer does not use the

convenient analytical tool for analysing such conflict-

situations, namely game theoretical methods.)

In this paper we will make a first step towards a game

theoretical foundation of the household migration decision.

In this paper we omit the imperfect information aspect -

for analytical convenience. An analysis taking regard of

both of the above mentioned aspects will be deleted to a

subsequent paper.

More precisely we will analyze the following decision

problem: Consider a couple living in region h. Suppose the

husband gets a job offer from a foreign country g. Then the

husband has to decide~~. whether to stay in h or to leave h

for working in g. In case of migration the wife has to

decide whether to join her husband for g or to stay in h.

As it has been noticed before we will suppose complete

information about all relevant economic variables in g and

h.

Our goal then is to determine -the (game theoretical)

solution of this two-person decision problem, and to study

the effects of varying exogenous parameters on this

solution. Therefore we need a careful analysis of the



household's consumption decisions in the different

situations: In the dissolution case we must specify how the

income is divided between the two persons; given the

respective income fractions each-person will choose then a

consumption plan which maximizes his individual utility

subject to the relevant budget restriction. In the two

marital cases the household is assumed to decide for a

common consumption plan after some bargaining process; (our

model follows the approaches of Manser and Brown (1980) and

McElroy and Horney (1981)). Concerning this issue we met an

unexpected diffictilty which to overcome in a satisfactory

way we were unfortuantely not able, namely to obtain

definite comparative static results for the (Nash-)

bargaining solution outcomes. (Only in a very special

symmetric case we will show that this solution yields

increasing (rsp. decreasing) utilities for increasing

income (rsp. prices).)

We claim that our contribution yields a sound theoretical

foundation of the above mentioned works on family migration

decisions, above all of the analysis of Mincer. Thus our

analysis has the following advantages:

- The crucial role of the dissolution threat can be made

explicit in the game theoretical framework, and it can be

shown, under which conditions such a threat stabilizes or

destabilizes the household.

- A microeconomic foundation of the causes of family ties

is given by distinguishing personal (or private) goods

and household (or - within the household - public) goods,

and allowing externalities in the individual utility

functions.

- The influence of the intra-household income relation

(which is an indicator of the labor force participation

of the woman under some circumstances) on migration

behavior and marital stability is made precise.

- Whereas all articles „ on family migration known to us



describe interesting empirical facts, completed by some

more or less sketchy theoretical considerations (in this

respect Mincer's work is no. exception in our view) our

model and results make, it possible to deduce hypotheses

of empirical content.

The rest of this paper.is organized as follows: In section

A we present a general model. - the A-model - of the

household migration decision and characterize the game

theoretical solution in its most general form. In section B

a more restrictive form of the A-model - the B-model - is

introduced to obtain more detailed results concerning the

effects of altering the basic economic parameters (price

and income proportions) on the household migration

decision. In section C we specialize the B-model by

introducing specific . utility functions of the Cobb-Douglas

type: this enables us to deduce hypotheses about the

household migration decision which would be empirically

testable. A concluding section summarizes the main results

of the paper, stresses its limitations and gives hints for

further research in the field. - Some often used

mathematical results, and above all, many of the sometimes

tedious proofs of statements in the text are collected in a

mathematical appendix at the end of the paper.

A. A GENERAL MODEL OF HOUSEHOLD MIGRATION DECISIONS

A.I The Migration Game

In this section we will specify, the rules and outcomes of

the general model of the migration game. First of all we

need a specification of the economic environment in region

g and h, and a specification of the rules according to

which the consumption decisions of the household in these

economies is taken-to satisfy, the needs and wishes of its



members. Finally the individual behaviour in the various

socio-economic contexts must be specified.

(Al) a) The household consists of two persons i=l,2 who

can decide about, consumption and migration.

b) The migration decision is supposed to be the first

stage M of a three-stage- game M* .

c) The second and third stage of M* models the

consumption decision of the household in each of

the possible outcomes of the migration decision.

At first we will specify now the rules of the first stage

game M.

(A2) The migration decision game M is given in extensive

form by the following game tree

Figure 1

The tree of game M

The interpretation of this game tree is the following.

First person 1 (husband) must decide between

gi = 1 stays in g

hi = 1 migrates to h. .

Only in the case of l's choice hi, person 2 (wife) has to

decide between:

g2 = 2 stays separate in g

h2 = 2 migrates together with 1 to h

The endpoints of the game tree indicate the outcomes

resulting from the respective decisions.

Before we are able to specify. theconsumption decision



_g.ame s_at thp pndpnint.R of thp £i rsiL-Sfcage—of M* , we_inus-t_

y 1-hp prnnnTnic pnvirnninen^S in region g and h,

(A3) a) Tn sarh economy thpre are thrpp fypps nf

Typp ft'. Thp rnmrnnflit-ips which can hp rnnsnmpH by

persons _of -th.e_househald- together.: .these

are— anaLyti ca 11,y treated—as._-pnblic_ goods

- within the :household». There are no such

pub-Li c~ gaods .

Type -i: (d=l._2.)_: These, commodities .can.— only.

be consumed by person i.

..._. separately; they are analytically

trea-teri as pri.vate_goods f or.— person i .

There.:are . m s u c h ..private goods

The-.respe.cti ve. -commodity-, bundles -are. denoted—hy__

..... xo ..-=-—txa-r-r-. ,-Xou.a-l- a n d xi = txi 1 , ,xim.)..;.

furthermarfi—we__wxite x _=—( xa.,. xu^C3.)

b.) The consumption space Xj ... for .each., type-3=0 ,1,2

..of—commodity. vectoxs._is_.the—nonnegative-orthant-.oJ_

R"J .

-c) The economies in_g and Jo. differ with respect to

the commodity_pricp__vectors- pi.r ... (j=.0.,..L,.2;

r=g,h). and the-jnoney-incomes...yi.r. (i=l, 2; r=g,h) .

These..are...for both—persons-exogenous.ly_given, by

Pj r > 0-(j=0fl(.2;r=g,hl

L +2 ̂ r=g_ h.)

^̂ ^ „ are-typically

irLterpreted to be—energy, housing, car, radio, TV.,...

newspapers , ..books etcu and -_i.f_..ther.e. are. children, in. the

household - all. private, goods, and services. for the

.children,. - whereas the _ "private goods" typically . are

clothing, food etc The._ nonnegativity of Xj and the

.assumption, of — s.tr±at-pr>si_tiv_ity—-of_ commodity. - prices, and

.money incomes seems-to-be. not. very restrictive. Concerning

the -money.—iacomes-jit s,houLd-_be remarked__ here ..that__.we



suppose inelastic labor supply in both regions.

Consequently differences in money incomes are generated

exclusively by wage differences.

The disposable income of the househould in r now is defined

as

yr := yi>~ + y2r

If a dissolution of a household is at debate the economic

consequences will play a crucial role. We must distinguish

three cases of dissolution;

Case r: The household dissolves at region r, because 1 and

2 cannot reach any agreement how to spend the

disposable income yr such that each of the two's

needs and wishes would be satisfied as good as

possible; (r=g,h).

Case 0: The household dissolves as result of the migration

decision (hi,g2).

Next we have to specify the economic consequences of the

dissolution of the household.

(A4): By law and/or institution there are given proportions

Tg , Th , and To such that in "case k" (k=g,h,0) for the

household with disposable income yk person 1 rsp. 2

gets the income
kyi = Tk yk rsp. ky2 = (1-TU) y

with 0 s Tk < 1

Next we specify the needs and wishes of the household's

persons.



(A5) a) Each person i has a preference relation on the

space of all "lotteries" on

X = Xi x X2 x X3

which can be represented by a von Neumann and

Morgenstern utility function ui

b) For the restriction of ui on X (which we will

denote by ui again) the following holds

- ui is continuous on X

- ui is increasing in all components of (x0 ,xi )

- ui is strictly concave

- ui (0) = 0

Remark: The first part of (A5) is needed for the

application of traditional game theoretical reasoning to

the game M* (In this context a "lottery" is a discrete

probability measure on X with only finitely many points of

non-zero probability) .... The second part is in accordance

with traditional household theory.

Now we are prepared to specify the second and eventually

arising third stage of the game M* .

(A6) a) Both persons are informed about the outcome of the

first stage game M.

b) - At the node (hi ,g2) each person i must choose -

independently of the other - a consumption bundle

(1xofxi) from his "dissolution" budget set,

Bi (pr , ° yi ) =: { (xo , xi ) e Xo x Xi : po r xo + pi r xi

< ° yt I

i- h for i=l

with r = |

L g for i=2

The outcome is then the consumption bundle

(1xo,xi,O) for 1 rsp. (2Xo,0,X2) for 2.
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c) At the node r (r = (gi rg2) or r = (hi ,hal)-the

two

persons must bjirgain for a common consumption

vector in X according to the following rules:

- Both persons propose-independently of each other

a consumption vector xx rsp. 2x within the common

budget set

B (pr ,yr ) : = {x e X: por xo + pir xi + p2r X2 <, yr I

- The outcome is then

r-1x = 2 x = : x , if the two proposals coincide

I
L case r , otherwise

d) If in the second stage of M* the case r (r=g,h)

occurs, there is a third stage of M*. This

consists of:

- both persons are informed, that "case r" has

occured;

- each person i must choose (independently of the

other) a consumption bundle from the dissolution

budget set

B (pr ,r yi ) = { (xo ,xt ) e Xo x Xi :

pi r xo + pi r xi < r yi }

- the choices (1xo,xi) rsp. (2xo,X2) lead to the

outcomes (1xo,xi,O) rsp. (2xo,0,X2) for 1 rsp. 2.

The specification of the bargaining situation under c) may

seem rather restrictive at a first glance, since it

supposes that the two persons must agree - if any - already

in the first bargaining round. It would seem more realistic

to model some sort of a sequential bargaining process with

a sequence of offers and replies made over time in the

course of negotiations. In a series of recent papers on

bargaining - starting with a paper of Rubinstein, (1982) -

the sequential bargaining approach is discussed

exhaustively. This sequential approach must be contrasted
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with the socalled axiomatic approach to bargaining,

initiated by Nash, (195o); (for a survey of axiomatic

models see Roth, (1979) and Peters,(1986)).

In the axiomatic approach a two-person bargaining game is

usually defined as a pair (S,d) with a compact subset S of

the nonnegative orthant in R2 and an element d e S.1 Here S

represents the set of feasible utility payoffs to the

players, and d the vector of utility payoffs corresponding

to the disagreement outcome of the bargaining situation. A

possible interpretation of such a bargaining game is: each

player must propose - independently of the other - an

element 1s rsp, 2s of S yielding the outcome s := 1s = 2 s ,

if the two proposals coincide or to the outcome d

otherwise.

We may apply this definition in our context by setting

Sr := u(B(pr ,y ) ) , (r=g,h);

i.e. the image under u = (ui ,U2) of the common budget set,

and specifying dr as the vector of utility payoffs of the

certain outcome of the third stage subgame occuring in case

r.

Now we refer to Sutton (1986) and Binmore et al. (1986),

who have pointed out, that the sequential approach to

bargaining and the axiomatic approach are "complementary"

in the sense that the model of a bargaining game in the

latter approach can be viewed as the 'normal form1 of the

model of a sequential bargaining game. Thus - loosely

speaking - the relation between the two approaches is an

analogous one as that between an extensive form game and

its induced normal form.

We consider this relation as a justification to use here

the nonsequential approach.

1 Usually the convexity of S1 is still supposed. We may

omit this, for reasons explained in the remark preceding

Theorem 2 in the Appendix. .
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At the present stage of our formal argument we cannot give

a full specification of what would be the disagreement

point d. - Intuitively we could expect that this should be

the utility vector corresponding to the solution of the

third-stage subgame specified under, d ) . But for this

specification to be meaningful we still must introduce two

important assumptions of game theoretical content.

(A7) Each person is completely informed about

a) the decision structure as modelled by the game M*

b) the utility functions ui and U2

c) the price vectors pr

d) the incomes yir and y2r

e) the institutional parameters Tk.

This assumption makes M* a game of complete information.In

our opinion above all the points c) and d) here are at

issue. Especially regarding y2h it seems very hard, since

it practially supposes that the wife also could receive a

job offer from region h, but this will typically not be the

case for the situation we try to model here where there is

a decisive assymmetry between the two partners.

Finally we must specify the behaviour of the persons in the

modelled decisions process.

(A8) Each person i behaves according to

EUH : the Expected Utility Hypothesis

SP : the Concept of Subgame Perfectness

N : the Nash Bargaining Theory

MR : the Hypothesis of Mutual Rationality

EUH asserts that person i, confronted with the choice of an

element of a subset of the set of all lotteries will choose

such a lottery which maximizes his utility ui in this

subset. The concept SP2 requires that the solution of M*

2 It was introduced by Selten (1965).
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must prescribe for each person a strategy in M* which, if

restricted to the various subgames of M*, obeys the same

standards of optimality as the original strategy in M*,

More specifically this implies a backward solution

procedure for M*:

The Nash Bargaining Theory N requires that the solution of

a bargaining game (S,d) obeys a list of axioms which are

(compare e.g. Roth (1979)):

Individual Rationality, (strong) Pareto Optimality,

Invariance with respect to positive affin-linear

Transformations of the utility functions, Independence

of Irrelevant Alternatives, and Symmetry.

Finally the Hypothesis MR asserts that each player of a

game - i.e. in our case: each person i of the household -

knows for certain that the other players - i.e. here: the

partner of i in the household - behaves according to the

postulated rationality axioms. This hypothesis is a crucial

one for every noncooperative solution concept; it relates

the player of a game to each other. It means some tacit

agreement between the players, but one which is enforced

only by the players self-interest to solve the conflict

modelled in the game; it needs no external institutional

rule to enforce that agreement.

A.2 A General Characterization of the Household Migration

Decision

In this subsection we will give a first characterization of

the Household Migration Decision in the framework of the

general model as given by the assumptions (Al),...,(A8).

First we define:

Definition 1: The Household Migration Decision (= HMD), as

predicted by the Household Migration Decision Game M*,

specified by (Al),...(A8), is the solution of the

truncated game MT of M* .
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Figure 2a:

The truncated game MT

The game MT differs from the first stage M of M* in so far

as for the endpoints (g), (hi,g2) rsp. (h) the payoff

vectors sg, d° and sh are inserted. These are obtained

using SP - by applying the backward solution procedure,

namely

1. The solution (1xor,xir) of the third stage games

occuring in case r - see (A6)d) - and the solutions

(1xor,xi°) of the second stage game specified in

(A6)b) are determined for i = 1,2. According to EUH

these solutions are those commodity bundles in the

budget sets Bi (pr ,ryi ) rsp. Bi (pr ,°yi ) which maximize

ut in the respective budget set. By continuity and

strict concavity of ui these solutions (1xok,xik), (k

= 0,g,h, i = 1,2) are uniquely determined as the

respective budget set are compact and convex. For the

• respective solution payoffs we introduce the notation

dk := (dik,d2k) (k=0,g,h)

r Vi (p
r ,ryi ) for r = g,h, i = 1,2

dik := j Vi(ph,°yi) for k=0, i=l

L V2 (p
g ,0y2 ) for k = 0, i = 2

where

Vi(pk,kyi) = ui (1xok ,xik ,0) and

V2(p
k,kyi) = U2 (2X0k ,0,X2k ) .

2. The outcomes dr (r=g,h) yield the complete spe-

cification of the bargaining games (Sr,dr) of the

second stage (specified in (A6)c)).According to N we

obtain then the Nash solution

sr := (sir ,S2r )

with si r :=Ui(p r,y r) := ui (x(pr ,y ) )
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where x(pr,yr) is the solution of the following

optimization problem:3

max N(x;pr,yr) s.t. x t B(pr,yr)

where the Nash function N(.;pr,yr) : X — > R is given

by

N(x;pr,yr) := (ui (x)-Vi (pr ,ryi ) ) (u2 (x)-V2 (p
r ,r y2 ) )

(It was shown first by Nash that x(pr,yr) is the only

solution fulfilling the axioms mentioned at the end of

A.I in connection with N of (A8), and that exists for

any bargaining game (S,d).

3. According to SP the solution of M* is then the

solution of the truncated game MT of Figure 2:

Thus for the purpose of characterizing the HMD the second

and eventually third stages of the game M* are only,

instruments for determining the possible outcomes of any

Household Migration Decision.

Obviously the game M* and a fortiori the truncated game MT

depend on pr and yir ( r=g,h, i=l,2). It will be convenient

to make this dependence obvious at least in the solution of

MT .

Definition 2: The solution function

L : PxY — > { (gi ,g2 ) ,hi ,g2 ) , (hi ,h2 ) } with

P := {p=(p9 ,ph ) ; pr sRn , pr>0, r=g,hM

Y := {y=(yi8,y2a ,yih,y2h); yir > 0,r=g,h, i=l,2}

is a mapping, wich assigns to each feasible price-income-

combination (p,y) the HMD L(p,y) of the truncated game

MT , if the underlying prices and incomes are given by

(P,Y)•

3 Strict concavity of the ui guarantees the uniqueness of

the Nash solution.
4 n = no +m
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Now we are prepared to formulate the first result

concerning the HMD.

Propositon 1: Given the assumptions (Al),...,(A8) the

solution function L is well-defined, i.e. the HMD

exists for all (p,y) e P x Y. Furthermore the

following three inequalities are decisive for the

form of L:

(1) U2 (p
h ,yh ) > U2 (p

3 ,°y2 )

(2) Ui (p» ,yg ) > Ui (ph , yh )

(3) Ui (pg ,yg ) > Ui (ph ,°yi ) ;

more precisely:5

r (g^g
2) iff (1) and (2) or (I1) and (3)

L(p,y) = j (h*,g2) iff (1)' and (3)' hold

L (hi,h2) iff (1) and (2)' hold.

Proof: The proof of the existence of the HMD will be

constructive by establishing the asserted shape.of

the solution function H.

Applying SP we must first solve the subgame MT 2 ,

given by the tree

Figure 2b

The tree of the

subgame MT 2

By EUH the solution of MT 2 is equal to h2 rsp.

iff (1) rsp. (1)' hold.

3 We assume here and in the following that only strict in-

equalities will hold, because equalities between utility

payoffs are highly improbable. By (.)' of a relation (.)

we denote the strict reverse of (.), i.e. "not (.) and

equality excluded".
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Let us first consider the case (1)': Then applying

SP and EUH we can conclude that 1 will choose gi

rsp. hi iff (3) rsp. (3)' holds. Thus in the case

considered

r (gi,g2) iff (3)

L(p,y) = |

L (hi ,g2) iff (3) '

Second we consider the case (1): Then again by SP

and EUH we can conclude that 1 will choose gi rsp.

hi iff (2) rsp. (2)' holds. Thus in this case we

obtain:

r (gi ,g2) iff (2)

L(P,Y) = |

L (hi ,h2) iff (2) '

By puzzling together these results, we get

r (gi,g2) iff (I)
1 and (3) or (3) (1) and (2)

L(p,y) = | (hi,g2) iff (1)' and (3)'

L (hi,h2) iff (1) and (2)•

i.e. the asserted conditions are necessary and

sufficient for the form of L(p,y).

It seems to be instructive, to reconsider the intuitive

content of the proof: Obviously there would be no migration

of the household, if region g would be more attractive to

person 1 than h, i.e. if (2) would hold. On the other side,

if (2)' holds, person 2 could deter the household to

migrate provided she could credibly threat to dissolve the

household (i.e. if (1)' holds ) and this threat would be a

decisive argument for 1, (i.e. simultanously (3) holds). In

all other cases, person 1 would migrate to h, and

dissolution of the household or common migration to h would

depend on person 2's preferences between (hi,g2) and

(hi,hz), i.e. on the validity of (1).
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Unfortunately without further specification of the model we

cannot obtain more decisive results concerning the solution

function L which characterizes the HMD. Therefore we will

try to get some more detailed results by.specializing our

general model in the next section.

B.I THE HOUSEHOLD MIGRATION DECISION IN A MORE RESTRICTIVE

MODEL.

In this section we will study the influence of variations

of the economic variables (p,y) on the HMD in more detail,

i.e. we will try some kind of comparative static. For this

we will first specialize the model of section A in some

respects.

B.I The special model of a Household Migration Decision

Game

To clarify the relations between the special model used in

this section B and the more general discussed in section A

we will label the constitutive assumtions by (B.).

The assumptions (BI,B2,B4,B6,B7,B8) are the same as

(A1,A2,A4,A6,A7,A8).

(B3) : (A3) and additionally

There is some positive real a such that

ph = a p3

Thus we suppose now, that all commodity prices in h differ

from all commodity prices in g by the same proportion. By

this assumption we can reduce the numbers of the parameters
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of the model and concentrate on the relative income

changes. In other words: the intended use of the model of

this section is the analysis of the impact of real income

differences on the HMD.

(B5) : (A5) and additionally

a) ui is twice continuously differentiable and

unbounded above...

b) The optimal solutions of

- max ui (lxo ,xi ,0) s.t. pok * xo + pik xi < kyi

(k= 0,g,h)

- m a x U 2 ( 2 x o , 0 , X 2 ) s . t . p o k 2 x o + P 2 k X2 < k y 2

( k = 0 , g , h )

- max N(x,p r,y) s.t. pr x < y (r= g,h)

belong to the interior of Xo x Xi rsp. Xo x X2

rsp. X, for all (p,y) e P x Y.

c) The Nash solution utilities behave "normally"

with respect to income, i.e. for all (p,y) e P x

Y, r= g,h:

Ui(pr,yr) is continuously differentiable w.r.

to income y

- DyU1 (pr ,yr ) > 06

- Ui(p r,y)—>0 (y r—>~) and U i ( p r , y ) — > ~

Parts a) and b) of (B5) are regularity assumptions to

facilitate the application of usual calculus. In our view

they are not really restrictive.

The character of c) is entirely different: Unfortunately we

are not able to find plausible and enough general

sufficient conditions which would guarantee c ) . The problem

with the optimization problem

6 For a dif f erentiable function f (cci ,...,ocm) we denote by

Dakf(ai,...,am) the partial derivative of f w.r. to ak at

(oti , . . . , am ) .
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max N (x; pr , y ) s. t. pr x ^ y

is the objective function N(.;pr,y) which depends on the

parameters pr and y , via the disagreement outcomes. This

twofold dependence of the Nash solution and thus of the

respective utilities Ui(pr, y ) seems to make it impossible

to derive definitive conclusions about the comparative

static behaviour of Ut on a level of generality comparable

with that usually assumed in the microeconomic theory of

consumption and demand. (This problem has also been

observed by Elroy/Horney, (1981).)

In this paper, it suffices to assume "normal" behaviour of

the Nash solution w.r. to the income component. (In the

appendix it will be shown that c) and additionally normal

behaviour w.r. to prices is satisfied,, if we assume

complete symmetry between the persons of the household and

exclude external effects, i.e. if we assume

r Ui = U2

( * ) j Dx 2 ui (xo , xi , X2 ) = Dx i U2 (xo , xi , X2 ) = 0

L pi = p2 .

Finally we need a technical assumption which will be shown

to be fulfilled for an important class of examples in the

Appendix.

(B9) : The quotient

DyV2 (p» ,°y
2 )/(DyU2 (p

h ,yh ) )

is equal to a constant d for all (p,y) e P x Y such

that:

- ph = ap3 with some a > 0, (compare B3),

- U2 (p
h ,yh ) = V2 (p

3 ,°y2 )

The quotient in (B9) measures the relation between the

marginal utilities of person 2 with respect to income

changes for the (individual) utility maximizing outcome, if

the household dissolves by ... separate migration of 1 to
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region h, and ti Nash solution outcome, if both migrate to

h. Now if the < fference of commodity prices in g and h is

proportional fo: all commodities, and if the respective

utilities are • ual (i.e. the constellation of (p,y) is

such that neiti r (1) nor (1)' holds), then this quotient

does not depend n (p,y).

Remark: Using 5) we can conclude that the quotient d of

(B9) must be po: tive.

B.2 Analysis o the HMD in the s p e c i a l model

For given (p,y) P x Y we i n t r o d u c e the new paramete rs

bi := y ; / y i g ( i = . 1 , 2 ) , c := y 2 9 / y i g ,

in : = y i ! , q : = pg

i m p l y i n g :

r
 3 = ( l + c ) m . , yh = ( b i + cb2)m

(4).._ . , . ZrTrj y i = T g ( i + c ) m Y g y 2 = ( l - T g ) ( l + c ) m

| yi = Tg(bi+cb2)m , h y 2 = (1-Tg ) (bi+cb2 )m

L yi = T°(bi+c)m , 0y2 = (1-To ) (bi+c)m

Furthermore we < f ine z := (q ,a ,c ,m)

Our goal then i to analyze the following:

PROBLEM 1: For < ven z determine the ranges G(z) rsp. D(z)

rsp. H ) in the (bi ,b2)-plane, i.e.in the non-

negati orthant of R2 where the HMD will be

(gi ,g2 rsp. (hi,g2) rsp. (hi ,h2 ) .

PROBLEM 2: What an be said about the dependence of these

ranges (z) r s p . D(z) r s p . H(z) on z ?

Therefore we w: 1 analyze a t f i r s t the "boarder l i n e s " of

the i n e q u a l i t i e (1 ) , (2 ) and ( 3 ) .

Define Z := fz Rn • 3 : zj > 0 (j= l , . . . , n + 3 ) J

Bt : = C e R , b i £ 0 1 ( i = 1 , 2 )

B : = Bi B2 .
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and the functions Fi ,F2 : B — > R , F3 : Bi — > R

with

Fi ( b , z ) : = U2 ( a q , ( b i + c b 2 )m) - V2 ( q , ( 1 - T o ) ( b i + c ) m )

F 2 ( b , z ) : = Ui ( q , ( l + c ) m ) - Ui ( a q , ( b i + c b 2 )m)

F 3 ( b i , z ) : = Ui ( q , ( l + c ) m ) - Vi ( a q , T 0 ( b i + c ) m )

T h e r e f o r e we may r e w r i t e t h e i n e q u a l i t i e s ( 1 ) , ( 2 ) , ( 3 ) :

( 1 ) F i ( b , z ) > 0

( 2 ) F 2 ( b , z ) > 0

( 3 ) F 3 ( b , z ) > 0

and the boarder lines of these inequalities are for given z

t Z defined as:

Bk (z) := (b e B: Fk(b,z) = 01 . (k= 1,2)

B3 (z) := {b e :F3 (bi ,z) = 0 }

Our main result concerning PROBLEM 1 will be prepared by

some lemmata the proof of which are given in the Appendix.

Lemma1: The functions Fk may be written as:

Fi (b,z) = U2 (q,bi+cb2 )m/a) - V2 (q, (1-To ) (bi +c) m)

F2(b,z) = Ui (q, (l+c)m) - Ui (q, (bi+cb2 ) m/a)

F3 (bi ,z) = Ui (q, (l+c)m) - Vi (q,To (bi+c)m/a)

Lemma2: Define Z3 := (z t Z: B3 (z) is nonempty!. Then

a) For z e Z3 the set B3 (z) is a straight line in

B parallel to the b2-axis, and for bi above

(rsp. below) B3 (z) the inequality (3)'

(rsp.(3)) holds.

b) For z t Z3 the inequality (3)' holds for all bi

e Bi

c) Tg =£=0 implies: Z3 is non-empty.

Lemma3: For all z e Z:

a) B2 (z) is a straight line in B intersecting the

interior B1 of B and given by the equation

bi +cb2 = a(l+c)

b) For b e B such that bi+cb2 > a(l+c) rsp. (<

a/l+c)) the inequality (2)' (rsp. 2) holds.
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Lemma4: For all z e Z:

a) Bi(z) is a straight line in B intersecting the

interior B' of B and given by the equation

o(z)«bi -b2 = 3(z)

where

a(z) := (da(l-To)-l)/c with d from (B9)

and

P(z) is implicitly given by Fi(0,-p(z),z) = 0

(implying 3(z) £ 0)

b) For b e B such that a(z)«bi-b2 > 3(z) (rsp. <

3(z)) the inequality (1)' (rsp. (1)) holds.

Next we will introduce some other useful notations:

Bk(z;>) := {b e B: Fk(b,z) > 0}, (k = 1,2,3).

bi(z) := the intercept of B3 (z) with the bi-axis.

Bik(z) := projiBk(z)={bi e Bi. there is some b2 e B2

s.t. (bi ,b2) e Bk (z)} (k = 1,2)

fk(*;z): Bik(z) — > B2 defined by

fi ' (bi ;z) := c(z)«bi-p(z)

f2 ' (fcv, ;z) := (a(l+c)-bi )/c

(i.e. fk'(*;z) is a functional representation of Bk (z));

and finally:

fk(*;z) : Bi — > B2 , defined by

r- fk ' (bi ,z) , bi e Bi k (z)

fk (bi ,z) := I

L 0 , otherwise

Lemma 5: For all z t Z and bi in the interior of

Bi 1 (z). fl B12 (z) the relation

Dbi fi ' (bi ;z) > Dbi f2 ' (bi ;z)

holds with strict inequality for To < 1.

Lemma 6: We get the following equivalences:

a) bi < bi(z) <=> (3) holds <=> b s B3 (z;>) for

all b2 t 62

b) b2 > fi(bi;z) <=> (1) holds <=> b e Bi(z;>)

c) b2 < f2(bi;z) <=> (2) holds <=> b t B2(z;>)
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Lemma 7: For all z z Z the relation

-p(z) • (1-Th ) < a(l-To )

holds.

Lemma 8: If for z = (q,a,c,m) the relation

a* Tg > c • To / (1+c)

holds, then z e Z3.

Lemma 9: Increasing a leads for fixed q,m,c to:

a) an increase of bi (z) ; especially a -> •» implies

bi (z) -> -

b) a parallel shift to above of B2 (z)

c) an increase of o(z) and a decrease of 3(z).

Now we are prepared to formulate a Proposition which yields

an answer to Problem 1. For this it is convenient to denote

the solution function L(p,q) by L(b,z).

Proposition 2: Let (B1,...,B9) hold. Then the HMD-solution

function L is given by:

r (gi,g2) iff (5) or (6) and (7),

L(b,z) = I (hi;g2) iff (6) and (7)',

L (hi ,h2) iff (8) ,

hold where

(5) fi (bi ,z) < b2 < f2 (bi ,z)

(6) b2 < fi (bi ,z)

(7) bi < bi (z)

(8) b2 < e(bi,z) := max (f 1 (bi , z) , f 2 (bi , z) ) .

Proof : It must be shown that:

(i) : (5) is equivalent to (1) and (2)

(ii) : (6) is equivalent to (1)'

(iii) : (7) is equivalent to (3)

(iv) : (8) is equivalent to (1) and (2)';

because then the assertion follows immmediately

from Proposition 1. Now the equivalence (i) is a
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consequence of Lemma (6), (b) and (c); the equiva-

lence (ii) follows from Lemma (6) , (b), (iii) from

Lemma 6, (a), and finally (7) again from Lemma 6

(b) and (c) .

In the following figures we give graphical representations

of the different ranges of income-differential combinations

b=(bi,b2) with bi=yih/yig for different z=(q,c,a,m) with

c=y2
g/yig, q=pg and ph=aq. At this, we denote

\7/"/^ := G(z) = {b e B: L(b,z) = (gi,g2)l

jyv̂gf := D(z) = {b t B: L(b,z) = (hi rg2 ) I

\ H= := H(z) = {b e B: L(b,z) = (hi,h2)}

Figure 3: The HMD-ranges of income proportions bi and

b2 for normal z; i.e. such z where (10) and/or (11)

holds.
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- O,\1) I

-*•!.-

Figure 4: The HMD-ranges of income proportions bi and

b2 for unnormal z, i.e. z \, Z3 ( a),b),c) ) and/or z

fulfilling (9) .

From Proposition 2 we may conclude some important results;

(compare the figures 3 and 4):

Corollary 1: G(z) is empty iff z z Za and the relation

(9) a(l+c) 5 -cp(z)

holds.

Proof: 1) If z e Z3, then (3)* rsp. (7)1 always hold,

according to Lemma 2. Furthermore (9) together with

Lemma 5 implies that fi(bi,z) > f2(bi,z) for all bi ,

i.e. that (5) cannot hold. Thus G(z) must be empty.

2) Now assume G(z) empty. Since according to Lemma 4

there is a neighbourhood of the origin in R2 such that

for all b in the intersection of this neighbourhood

and B the relation (6) holds, we can conclude from

Lemma 2, that z cannot be an element of Z3, because

otherwise (6) and (7) would hold.- Since furthermore

the relation a(l+c) > -cp(z) implies f2(bi,z) >

fi(bi,z) for some-bi , it follows from (4) ' that the
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opposite, namely a(l+c) ^ -c|3(z) is necessary for G(z)

to be empty.

Illustrations of Corollary 1 are given in Figures 4a) and

b)

Corollary 2: Each of the. following relations is sufficient

for G(z) Jp <D:

(10) To > Th , or

(11) Tg > To and a > 1

Proof: (10) implies, that 1-To £ 1-Th. Therefore it follows

from Lemma 7, that -3(z) < a, which implies that the

relation (9) of Corollary 1 cannot hold, thus G(z) is

non-empty.

(11) implies that (c(1+c)•(TO/T3)) < 1. Therefore a>l

and Lemma 8 imply, z e Z31 ; thus again by Corollary 1

G(z) must be non-empty.

The most interesting aspect of these results seems to be,

that equality of the dissolution parameters To=Th implies

the non-emptiness of G(z), i.e. implies that there are

always some income proportions bi and b2 thus that the

household will stay together in g.

Corollary 3: a) The set G(z) is always bounded.

b) If z e Z3, then all b near zero belong to

G(z)

c) If z does not belong to Z3 and (9) holds,

then to each bi near 0 there exists a b2

such that b=(bifba) e G(z).

Proof: a) If G(z) is empty, it is bounded by definition.

Thus assume G(z) non-empty. Now G(z) is the union of

Bi(z;>) D B2(z;>) and Bi(z;<) n B3(z;>). B2(z;>) is

bounded, because Db1f2 (bi,z) < 0, and similary Bi(z;<)

is bounded because Db1f1 (bi ,z) < 0. Thus G(z) is

bounded..

b) If z e Z3 , then <D ̂  A := Bi (z; <) n B3 (z; >) is a

subset of G(z) and A is contained in some bounded
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neighbourhood of the origin.

c) If z does not belong to Z3 , but (8) holds, then <t> =J»

G(z) = Bi(z;>) n Ba(z;>). Then we distinguish two

cases: a) there is .some bi..' such that fi ' (bi ' ,z) =

fj ' (bi ',z); (i.e. Bi-(z) and B2 (z) intersect); 3) : not

a). In case a) for— each- bi < bi ' we get the relation

fi (bi ,z) < f2 (bi , z), i.e. there is some b2 such that

(5) holds, rsp. such that(bi,b2) e G(z). In the case

3) for all bi < bi 2 (z), where bi 2 (z) is defined by

f2 ' (b2 1 (z) ;z) = 0,. the . relation fi(bi,z) < f2(bi,z)

holds, i.e. there is some b2 such that(bi,b2) z G(z).

This corollary asserts, economically that for small (bi,b2)

we could expect that the household stays together in region

g. The only exception is the case where z does not belong

to Z. Then there exists for small bi some other small b2

where the household will dissolve because of migration of

the husband. Such b would, bel.ong to Bi (z;>) i.e. for such b

the wife would threat with dissolution, but because of (3)'

the husband cannot be deterred to migrate by this threat.

According to our model in this case .2's decision is caused

by the small bi and b2 whereas 1's decision is essentially

caused by the small a < (c/l+c) (TO/rg ) where the critical

bound for a is increasing in.c. and To and decreasing in Tg;

(compare Figure 4c) for this exceptional case).

Obviously there are cases where G(z) is non-convex. That

these cases are not nearly so atypical follows from:

Corollary 4: G(z) is convex, iff (9) or (9)' and (12) or

(9)' and (13) hold, where

(12) : {bi (z) 1 = Bi (z) n B2 (z)

(13): Bi (z) n B2 (z) = <D and bi (z) >

3(z)/a(z)
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Remark: Since (10) implies (9)', we can conclude: if the

dissolution parameters To and Th are equal, there remains

only the case of condition (13) as a relevant case of

convex G(z), illustrated, in Figure 3c); (but see section

C).

Proof: 1) Let (9) hold: then fi(0;z) > f2(0;z), implying

that G(z) = Bi (z;<) n B3 (z;>) , which is convex. Let

(9)' and (12) hold: thenG(z) = {b e B: bi < bi(z), b2

< f2 (bi;z)}, which is convex.

If (9)' and (13) hold, then G(z) = B2 (z;>) n B3 (z;>),

which is convex.

2) We distinguish the following cases: a) fi(bi,z) >

f2 (bi , z) for., all. bi 3) Bi-(z) and B2 (z) intersect, -[-)

f2(bi,z) > fi (bi ,z). Case, a) is equivalent to (9) ' ,

and this is equivalent- to the convexity of G(z).

Assume now 3) and let bi '(z) be given by fi ' (bi ' (z),z)

= f2 ' (bi ' (z).z) . If bi • (z) < bi (z) , then G(z) = {b z B:

bi 5 bi'(z), bV £ f2(bi,z)} U{b e B: bi'(z) < bi £

bi (z), b2 < fi (bi ,z)}r which is convex. If bi '(z) >

bi(z), then for e... small enough the points (bi(z)-

e,fi(bi(z),z)-e) and (bi'(z)-e,fi(bi'(z);z)+z) belong

to G(z) whereas the straight line connecting these two

points intersects D(z), i.e. G(z) is non-convex. Thus

in case 3) only bi ' (z) = bi (z) is compatible with G(z)

convex. Finally assume -p) . Then Bi (z) n B2 (z) = <t> and

G(z) = {be B: bi <,", b2 <. f2(bi,z)l U{b e B: bi >

bi (z) , fi (bi ,z) < b2 < f2 (bi , z) } . If then the second

set in this union is. non-empty (i.e. if bi (z) <

3(z)/o(z)) then we could again construct a line

connecting a point in the first with a point in the

second set, which would intersect D(z), a

contradiction to the convexity of G(z).

The most striking example of non-convex G(z) is that

illustrated in Figure 3d): Starting from income proportions

(bi ,b2) where the household .stays together in g, we could
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alone by an increase of bi , say to bi+ti attain some-income

proportions (bi+ti,bi) where the household migrates

together to h, and by another increase bi+ti+t2 we would

again attain some incomeproportions (bi+ti+t2,bi) where

the household stays in region g, whereas we then could find

some t3 such that for all- - t £. t3 the income proportions

(bi+ti+t2+t,b2) would cause a dissolution of the household.

How this seemingly - surprising result can be explained

within the model: Obviously the. starting point (bi,b2) is

one where the household stays in g, because of l's

preferences for g against h, which dominates in this case

2's preferences for h against dissolution. Now increasing

bi to bi+ti leads to a situation where this domination does

not longer hold since, now 1 prefers h to g. But increasing

bi+ti to bi+ti+t2 leads- to situation where now 2 prefers

dissolution to h; (an - explanation of this follows later) ;••

but at this bi+ti+t2 the dissolution threat deters person 1

from migration, such that they stay both in g. Only if the

income proportion for1 increases-further, the dissolution

of the household will occur,if not b2 increases also above

some level.

What is the most surprising aspect of the above

consideration is: Given b e H(z) there are b' £ b and b" >

b such that b1 e G(z) and b" z D(z). The reason for this is

the positive slope of fi («,z)...... Therefore next we will

analyse this slope in more detail.

At this consider the relations

(14) d-a«(1-To) < 1

(15) d«a»(1-TO) = 1

(16) d-a-(1-To) > 1

Obviously we get for the slope of fi («;z)

r < 0 , iff (14)

Dbifi (• ;z) | = 0 , iff (15)

L > 0 , iff (16)
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Fixing d and To, where d depends essentially on the.shape

of the utility function U2, we can state that the slope of

fi(«;z) is negative (rsp. positive) for small (rsp. large)

values of a, i.e. roughly speaking for a lower (rsp.

higher) price level in h compared with that in g.

Corollary 5: The non-positivity of the slope of

fi(•;z)(i.e.(14) or (15)) is equivalent to

the following condition:

b z H(z), b' > b imply: b1 z H(z).

Proof: 1) Let (14) or (15) hold and bi' > bi, b2 ' > b2,

then b2 ' > f2 (bi ';z) and b2 ' > fi (bi ',z); therefore b
1

e H(z), according to relation (8) of Proposition 2. If

bi' = bi and b2 ' > b2 , then (8) is again fulfilled,

i.e. b' e H(z) again.

2) Assume now that neither (14) nor (15) holds which

is equivalent to assuming (16). If we then choose bi'

= bi+m with a natural number m large enough, and b2 ' =

b2, we can show that b2' < fi (bi ';z), i.e. that b1 e

H(z).

The shape of the dissolution set D(z) is also closely

connected with the relations (14) to (16); more precisely:

Corollary 6: Given z e Z; then D(z) is bounded iff (14)

holds.

Proof: (14) is equivalent to o(z) < 0 rsp. Dbifi (*;z) < 0,

and this in turn is equivalent to the boundedness of

the set Bi(z;<). Since D(z) =Bi(z;<) nB 3(z;<), (14)

is thus sufficient for D(z) bounded, (eventually

empty). Assume next, that (14) does not hold, i.e.

that o(z) £ 0, and chose a b e D(z), characterized

according to Proposition -2 by bi > bi 3 (z) and b2 <
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fi(bi,z). Then obviously bm := (bi+m,b2) fulfills-the

relations (6) and (7)1 too, for all natural m, i.e.

D(z) is not bounded.

There are cases, where the model predicts that for no

income proportions the household will dissolve, i.e. where

D(z) will be empty:

Corollary 7: The dissolution set D(z) is empty iff (14)

and

(17) bi(z) ^ 3(z)/o(z)

hold; (compare Corollary 4 and Figure 3c))

Proof: 1) Let (14) and (17) be given, then obviously for

all b c Bi(z;<) we get... b e B3(z;>); i.e. D(z) is

empty.

2) If (14) does not hold, then we can always, find a b

e B fulfilling (6) and (7)', i.e. in this case D(z).

cannot be empty. Similarily, if (17) does not hold,

there exists bi such that bi (z) < bi and fi (bi;z) > 0,

i.e. we can find a b with 0 < b2 < fi(bi;z). Then

(bi,b2) is an element of D(z).

The relation (17) says: the income proportion yih/yig where

the husband would be indifferent between staying in g and

migrating alone to h is at least as great as the income

proportion yih/yig where the wife would be indifferent

between migrating together to h and staying alone in g,

(if(!) she would g e t n o income in h; i.e. b2=0). This

condition together with not too large prices in h compared

with that in g implies that, independent of the actual

income proportions bi and b2, the dissolution will never be

the HMD.

Finally we mention:
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Corollary 8: a) For z z Z: H(z) is non-empty, convex and

unbounded.

b) For all z e Z: D(z) non-empty implies:

D(z) convex.

Proof: a) The convexity of H(z) follows, because of the

convexity of the boarder-line e(*;z). -^ Since

Dbifi (*;z) is always finite, and Dmf2 (*;z) is always

negative, we can conclude from relation (8), that

there is always some b e H(z), i.e. H(z) is non-empty.

Furthermore, if (14) or (15) holds, then (bi+m,b2+m)

belongs to H(z) for all natural m, implying that H(z)

is unbounded in these cases. If (16) holds, i.e. o(z)

> 0, then b2+o(z) • (m+1) > fi(bi+m;z) > f2(bi+m;z),

i.e. (bi+m,b2+o(z) (m+1)). belongs to H(z) for all

natural m, implying, that H(z) is unbounded in this

case too.

b) Obvious.

Next it would be interesting to study the effects of

varying z on the HMD, i.e. to solve Problem 2.

Unfortunately this cannot be done without further

assumptions, except for the case of a seperate variation of

a. Since in our opinion the assumptions we would need for

the general variation of the other components of z would be

qualitively more restrictive than that of this section B we

consider here only the variation of a, deleting the other

variations to the example we will give in the next section

C.

Proposition 3: Let (B1,...,B9) be given. Then an increase

of a would make it "more probable" that the household

stays together in region g; i.e. more precisely:

a) Given b and z = (q,a,c,) such that b e D(z), then

there is an a' > a such that b e G(z') for z1 =

(q,a*,c,m).
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b) Given b and z = (q,a,c,m) such that b z H(z)-r then

there is an a' > a such that b e G(z') for z1 =

(q,a',c,) .

Proof : a) b e D(z) is equivalent to b2 < o(z)bi~3(z) =

fi (bi ;z) and bi > bi (z) , according to Proposition 2.

Increasing a to a' > a leads to: bi (z1) > bi (z) and

fi (bi ;z) < fi (bi ;z'.) , by Lemma 9. Therefore - again by

Lemma 9 - we can choose a' large enough such that

bi(z') > bi. Then b e G(z'), because for (b,z') the

relations (6) and (7) hold.

b) b e H(z) is equivalent to b2 > fi (bi;z) and b2 >

f2 (bi ;z), according to Proposition 2. By Lemma 9 it

follows that increasing a to a1 > a leads to: f2 (bi;z)

> f2 (bi ;z') and ft (bi;z' ) > fi (bi,z). This implies

that there is some a' > a such that either fi(bi;z') <

b2 < f2(bi;z') or b2 < fi(bi;z'), i.e. such that

either (5) or (6) holds. If (5) holds, b. e'G(z'). If

(6) holds, then b e D(z'), and we can apply the

argument of a) to . show the existence of some a" > a

such that b e G(z").

The economic

plausible.

content of Proposition 3 seems highly

C: AN EXAMPLE: THE HMD IN THE SYMMETRIC COBB-DOUGLAS-MODEL

In order to illustrate the results of section B and - more

urgently - to give a complete solution for PROBLEM 2 too,

we consider in this section a special example of the

restricted model of section B... .
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C.I The Specification of the symmetric Cobb-Douglas-Model

The assumptions of this section are labeled by (C.) in a

way to make it comparable with these of section A rsp. B.

The assumptions (Cl,C2,C6,C7,C8) are the same as

(A1,A2,A6,A7,A8)

(C3): (B3) and additionally

a) no = ni = n2 = 1 v

b) pir = P2r (r=g,h)

(C4): The dissolution parameters Tg and Th of (A4) satisfy

Tg = Th = 1/2

(C5): (A5)a) and additionally

a) ui (xo , x i , X2 ) = xo a ° x i a 1 , U2 (xo , x i , X2 ) =

X o a o X 2 a 2 w i t h 0 < a o , a i , a 2 < 1

b) a i = a2

c) ao + a i = ao + a2 < 1

For short we name the model of this section given by the

assumption (C1,...,C8) the C-model, in contrast to the A-

rsp. B-model of sections A rsp. B.

The C-model is introduced for two reasons: The main

incentive is to prove the "normal" characterizations of the

Nash solution by the application of its symmetry property

and to give a complete solution to PROBLEM 2. Therefore we

model the household's persons with identical tastes, equal

income division in the dissolution case in g and h, and

equal private good prices. This makes it necessary to

exclude external effects between the private good

preferences (see(C5)a)); for if we wanted to have symmetry

with externalities we could only assume ui(xo ,xi,X2) =

U2 (xo ,xi ,X2 ) = xo a ° xi a 2 X2 a 2 i but this would have the

unreasonable consequence, that the private good of 1 is for
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1 equally important as for 2, and vice versa. It shouLd be

pointed out, that the utility, functions ui of (C5) are only

concave but not more strictly concave, in spite of (C5)c).

In the A- rsp. B-model we used, the strict concavity of the

ui to guarantee the uniqueness of the Nash solution. But it

will turn out that this..uniqueness, is also given in, the C-

model; (see Lemma 10).

The assumption (C3)b) of equal positive good prices could

be defended by the-argument, that commodity bundles xi and

X2 will not be too different., if the respective preferences

are identical (as assumed by (C5)b).).

Finally the assumption (C3)a) and the special functional

Cobb-Douglas form of the utility functions serves for the

second purpose of this C-model: to give an analytical

illustration of the implications of the general model.

Furthermore by assuming special elasticities ao and ai we

can derive predictions from the.model which are empirically

testable - at least in principle. Observe that the relation

between the elasticities ao and ai has effects on the

strength of the family ties.

C.2 Analysis of the HMD in the symmetric Cobb-Douglas-Model

In the example we can give explicit formulas for the

functions U := Ui = U2 rsp. V := Vi = V2

Lemma 10: For all prices po,pi > 0 and incomes y > 0 the

following formulas hold:

(18) V(po ,pi ,y) = (y/a)a (ao/po ) a 0 (ai/pi ) a l

( 1 9 ) U ( p o , p i , y ) = ( y / a ) a ( a o / p o ) a 0 ( a i / ( 2 p i ) ) a *

w i t h a : = a o + a i

The proof is given in the Appendix.

Obviously the Nash solution utilities are normal in the

sense of (B5), and even more:
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Lemma 11: a) In the C-model the assumptions (B5) and (B9)

are fulfilled, with

d = 2a 11 a

b) Dp j U(po ,pi ,y) < 0 for all po ,pi > 0, y > 0, j

= 0,1.

The proof of b) is obvious by (19), whereas that of a) may

be found in the Appendix again.

In section B we could give no explicit formulas for 3(z)

and o(z) the parameters of the straight line Bl(z) - see

Lemma 4 -, and for bi (z), the intercept of B3 (z) with bi-

axis - see Lemma 2. In the C-model we obtain

Lemma 12: Let d be given by Lemma 11; then:

a) the parameters of the straight lines Bi (z) and

B3(z) are given by:

(20) 3(z) = -(l-To)a-d

\-\ fi-T0) (21) o(z) = (d«a- H^e4-l)/c

(22) bi(z) = a-(l+c)/(d«To)-c

b) if Bi(z) and B2 (z) intersect in B, then the bi-

value of the intersection point is given by:

(23) bi'(z) = (l+c)/(d-(1-TO))-C

(see the Appendix for the proof).

These formulas in connection with the results of section B

enable us to determine the possible HMD-solution-ranges in

the (bi,b2)-plane quantitatively for fixed numerical values

of z = (q,a,c,m). It should be remarked:

Proposition 4: In the C-model the solution function L(b,z)

does not depend on q and m:

Proof: Obvious.

Let us choose for examples:

a) ao = a i = 0 . 5 , To = 0 . 5 , c = l , a = 1

b) ao = ai = 0.5 , To = 0.5 , c = 1 , a = 1,8

c) ao = ai = 0.5 , To = 0.5 t c = 0.5 , a = l
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We get then (approximately)

a) d = 1.4 , 3(z) = -0.7 , o(z) = -0.3 , bi(z) =

1.8 , bi'(z) = 1.8 ,

b) d = 1 . 4 , 3(z) = -1.3 , o(z) =0.3 , bi(z) =

4.1 , bi'(z) = 1.8

c) d = 1.4 , 3(z)= -0.7 , o(z) = -0.6 , bi(z) =

1.6 , bi'(z)= 1.6

This leads to the following figures:

= A

Figure 5: The HMD-ranges of income proportions bi and b2

for specific numerical values of c and a.

Remark: It is a general result, that for To = 1/2 and a =1

the intersection of Bi.(z) and B2 (z) , if it exists in

B, lies on B3 (z), as in figure 5a) (see (22) and

(23)). i.e. in this case the condition (12) for G(z)

convex in Corollary 4 is fulfilled.

Next we are interested in the effects of varying the

proportion c = y2g/yig on the solution function L(b,z). For

this we need a further result (which will be proved in the

Appendix too): -
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Lemma 13: For fixed a increasing (rsp.decreasing) c

implies:

a) Bi(z) becomes more flat (rsp. more steep) with

fixed intercept on the b2-axis. (For c -> <» it

approaches the parallel line b2 = ~3(z) and for

c -> 0 it approaches the b2-axis).

b) B2 (z) becomes more flat (rsp. more steep) with

fixed point b* = (a,a). (For c -> ~ it

approaches the parallel line b2 = a, and for c

-> 0 it approaches the b2-axis).

c) bi(z) increases (rsp. decreases) iff a > dTo

and decreases (rsp. increases) iff a < dTo.

(bi (z) tends to •» for c -> ~ and to a/(dTo) for

c -> 0 if a > dTo, and to 0 for c -> a/(dTo-a)

and to a/(dTo) for c -> 0 if a < dTo).

Part c) of Lemma 13 suggests now to distinguish the cases a

> dTo and a < dTo. Since furthermore the sign of the slope

of fi, i.e. the inequality o(z) > (<) 0 (compare (14),(15)

rsp.(16) in section B ) , will play a decisive role for the

direction of the effects of an increased c, we will analyze

separately the following four cases:

(I) : a < min (ai , a2 )

(II) : ai < a < ct2

(III) : a2 < a < ai

(IV): max(ai,a2) < a

where ai := d*(l-To))-l , a2 := dTo.

Notice, that for ao = ai = 0 . 5 and To = 0 . 5 , as it was

supposed in the numerical example underlying Figure 5, 02 <

ai, which implies that there case (II) cannot occur.

Proposition 5: Let the C-model be given and assume z =

(q,a,c,m) e Z3 such that (I) holds. Then:

a) If b e G(z) and b2 < ~3(z), there is a c1 > c such

that b e D(z') for z1 = (q,a,c',m)

b) If b e D(z) and bi < a, there is a c1 < c such

that b e G(z') for z' = (q,a,c',m).
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Proof: a) b e G(z) implies fi(bi;z) < b2 < f2 (bi. ;z).. or b2 <

fi (bi;z) and bi < bi (z). In the second case there is

some c' > c such that b2 < fi (bi ;z) < fi (bi;z) and

bi(z') < bi < bi(z),—according to Lemma 13a) and b ) .

Thus b e D(z'). In the first case there is again a c'

> c such, that b2 < fi (bi ;z') ; if then bi • > bi (z' ) , b z

D(z'); otherwise- we. can- find another c' > c, greater

than the first, such bi > bi (z1) and a fortiori b2 <

fi (bi ;z ' ) , i.e. b e- D (z ' )- too.

b) b e D(z) implies b2 < fi (bi ;z) and bi (z). There is

some 0 < c' < c such that bi < bi(z 1), and since bi <

a this implies that c1 may be chosen small enough so

that b2 < f2 (bi ;zf ),-whence it follows that b e G(z').

It can easily be s e e n b y . examples that without the

additional restrictions on b, namely b2 < -p(z) rsp. bi <

a, the conclusions need not- hold.

Proposition 6: Let the C-model be given and assume z =

(q,a,c,m) e Z3 such that (II) holds. Then:

a) Like Proposition 5,a).

b) I f b e D ( z ) , bi < a / a 2 , t h e r e i s a c 1 < c s u c h

t h a t b e G ( z ' ) f o r . z ' = ( q , a , c ' , m ) .

Proof: a) follows immediately from the proof of Proposition

5,a), since there the presupposition a < ai was not

needed.

b) b e D(z) implies b2 < fi (bi ;z) and bi > bi (z) .

Because of bi < a/a2 there is some 0 < c' < c such

that bi < bi(z 1), according to Lemma 13c) and b2 <

fi (bi ;z) < fi (bi ; z ' ) , by Lemma 13a), thus b e G(z') .

Without the additional assumption bi < a/a2 in b ) , it could

happen, that bi(z') < bi for all c'.
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Proposition 7: Let the C-model be given and assume z =

(q,a,c,m) such that (III) holds; (notice that a > a2

implies z e Z3 ) . Then:

a) If b e H(z) and b2 < ~3(z), there is a c1 > c such

that b e G(z') for z1 = (q,a,c',m).

b) If b e G(z) and bi > a, there is a c' < c such

that b e H(z- )-for z1 = (q,a,c',m).

c) If b e D(z), there is a c1 > c such that b e G(z')

for z' = (q,a,c' ,1).

d) If b £ G(z) and bi > a/a2 , there is a c1 < c such

that b £ D(z') for z1 = (q,a,c',m).

Proof: a) b £ H(z) implies b2 > fi (bi ;z) and b2 > f2 (b2 ;z) .

Since o(z) < 0 and b2 < ~3(z), there is some c1 > c

such that b2 < fi (bi;z') - according to Lemma 13a) -

and this c1 may be chosen large enough such that bi <

bi(z') - according to Lemma 13c). Thus b e G(z').

b) b e G(z) implies fi (bi ;z) < b2 < f2 (bi ;z) or bi <

bi (z) and b2 < fi (bi ; z ) . In the first case there is a

c1 < c such that b2 > •. f2 (bi ;z') , because of bi > a,

and b2 > fi(bi;z'), implying b £ H(z'). In the second

case there is again a c1 > c such that fi (bi;z') < b2

and f2(bi;z') < b2 , implying b £ H(z').

c) b £ D(z) implies bi > bi(z) and b2 < fi(bi;z). Then

according to Lemma"13a) and c) there is some c' > c

such that bi < bi (z' ) and b2 < f 1 (bi ; z' ) , i.e. b £

G(z') .

d) Again it is easily seen that there is some c1 < c

such that bi > bi (z' ) and b2 < fi (bi ;z' ) , i.e. b z

D(z') .

Again there can easily be constructed examples such that

none of the above conclusions would hold without the

additional restrictions in the respective "if"-parts.

Finally we get:
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Proposition 8: Let the C-model be given and assume z =

(q,a,c,m) such that (IV) holds (implying z e Z3

again). Then:

a) If b £ G(z) and b2 > a, there is a c' > c such

that b £ H(z') for z1 = (q,a,c',m).

b) If b £ H(z) and bi < min(a,a/a2), there is a c1 <

c such that-b. £ G(z') for z' = (q,a,c',m).

c) If b £ D(z) and b2 > max(a,-3(z)), there is c' > c

such that b £ H(z').

d) If b e H(z) and a/a2 < bi , there is a c' < c such

that b £ D(z') for z1 = (q,a,c',m).

Proof: a) b £ G(z) implies either fi (bi;z) < b2 < f2 (bi ;z)

or bi < bi (z) and b2 < fi (bi ;z). In the first case

there is a c1 > c such that b2 > f2 (bi;z') and b2 >

fi (bi;z') (since b2 > a and .o(z) > 0; according to

Lemma 13b) and a)). Thus in this case b £ H(z'). The

second case can be reduced to the first since there

exists some c' > c such that b2 > fi (bi;z'), and for

this c1 we get either b2 > f2(bi,*z'), (implying b E

H(z')), or b2 < f2(bi;z') such that the situation of

the first-case appears.

b) b2 > f2 (bi ;z) , b2 > fi (bi ;z) and bi < a imply that

there is a c1 < c such that either fi (bi ;z') < b2 <

f2(bi;z') (i.e. b e G(z')) or b2 < fi(bi;z'); now

because of bi < a/m for all c' : bi < bi (z 1), yielding

in the second case b e G(z') too.

c) bi > bi(z), max(a,~3(z)) < b2 < fi(bi;z) imply that

there is a c1 > c such that b2 < max(fi (bi ;z'),a),

whence it follows: b £ H(z').

d) bi > a/a2 and b2 > fi (bi ;z) imply that there is c1

< c such that bi > bi(z') and b2 < fi(bi;z), i.e. b £

H(z').

For the conclusions of Proposition 8 too examples could be

given which would show that the respective restrictions in

the "if"-parts were necessary.
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Summarizing the Propositions 5 to 8 the following can be

said roughly:

- There are two decisive points on which the direction of

the effect of increasing rsp. decreasing the proportion c

between the wifes and the husbands income in g depends:

namely whether for the price-ratio a between h and g a <

ai and for a < 02 holds. Here a < a2 or a > 02 determines

whether the boarder lineB3 (z) of inequality (3) is

decreasing or increasing in c, i.e. whether it becomes

less or more probable that the husband prefers "staying

together in g" or "migrating alone to h". The inequality

a < ai or a > ai determines the sign of the slope of the

boarder line Bi (z) of inequality (1): for a < ai this

sign is negative, which implies that for increasing c it

becomes more probable that the wife prefers "staying

alone in g" to "migrating together to h", (if the income

proportion b2 does not increase a certain limit, namely -

3(z)); for a > ai the sign of Bi(z)'s slope is positive,

which implies that for increasing c it becomes more

probable that the wife prefers "migrating together to h"

to "staying alone in g".

- Then it can be shown (compare Prop. 5 and 6) that if a <

a2 by increasing (rsp. decreasing) c the dissolution case

becomes more rsp. less probable compared with the case of

staying together in g. I.e. if the prices in h are low

enough compared with those in g, the dissolution threat

of the wife cannot prevent the husband to migrate, and

this is the more like the greater the wife's proportion

in the households common income. - It should be pointed

out, that this results depend crucially on restrictions

for the income proportions, like b2 < ~3(z) = a/ai and/or

bi < a rsp. a/a2, and that for these restrictions

necessarily bi and b2 must be less or not essentially

greater than 1.

- In contrast (see Prop. 7): If 02 < a < ai, then the

opposite relation between the dissolution and the staying

together in g case appears Furthermore in this case by
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increasing (rsp. decreasing) c "staying together ing"

becomes more (rsp. less) probable as "migrating together

to h" - provided the—wife's income proportion b2 is not

greater than a/ai again -Irsp—- the husbands income

proportion bi not smaller than a).

- Finally (see Prop. 8): If a > max(ai,a2), i.e. if the

price ratio is sufficiently large, increasing (rsp.

decreasing) c leads tohigher (rsp. lower) probability

for "migrating together to h" compared with the

probability either of "staying together in g" or of

"dissolving of the household" - provided the wife's

income proportion b2 is greater than a or even a/ai (rsp.

the husbands income proportion is either less than a and

a/a2 or greater than a/a2).

Thus even in the special C-model the effects of varying the

proportion c are by no means unambigous. Our analysis

suggests to be careful when discussing the impacts of a

policy^ which is designed to improve the economic

emanzipation of the wife by an increase of her individual

income, and by this way to strengthen the family ties such

that the household would prefer staying in g.

D. CONCLUDING REMARKS

As pointed out in the introduction the model and its

analysis in this paper should be seen as a first step

towards a decision theoretical explanation of observed

international migration behavior of households and the role

family ties.

Now let us first briefly review this under the aspect how

the model could easily be modified without changing its

theoretical kernel, in order to enlarge its empirical

content.
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In the A-model we were able to construct the solution of

the household migration decision problem, using very simple

game theoretical arguments. To get some insights into the

dependence of this solution on the relevant dates of the

economies in g and h the more restricted B-model was

designed. Two crucial assumptions, were introduced at this:

A restriction on the variety of the underlying utility

functions, above all to guarantee some normal comparative

static results of the Nash solution outcomes, and a

restriction on the variability of the prices: only over-all

proportional changes between prices in g and in h were

allowed. In our view to dispense with the normality

assumption would be an interesting theoretical challenge.

But since the normality of the Nash solution is met for

symmetric household partners (according to Theorem 3 in the

Appendix), there is some empirical evidence supporting this

assumption. On the other side it should be remarked that it

must be expected that more serious kinds of asymmetry are

additional causes for family ties under some circumstances

alone, because for the allowance of external effects

between the persons private consumption plans the utility

functions cannot be modelled symmetrically; (we suggest to

study this in more detail by some numerical experiments).

The restriction ph = apg simplifies the analytical task for

solving PROBLEM 1 and 2 considerably; compare Lemma 1), but

it excludes the possibility to study a further determinant

for a (household) migration decision of some empirical

importance: that in one region some prices may be higher

(rsp. lower) and other prices may be lower (rsp. higher)

than in the other region. Concerning family migrations

essentially differing price ratios between the public goods

and the private goods must be expected to play some strong

causes for family ties. Utilizing the facilities of

computer machineries it will- be possible to relax this

proportionality restriction and to gain some useful
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insights in the effects of differing weights'in the price

proportions between g and h on the household migration

decision.

The highly special C-model finally was introduced to

demonstrate how the model could be used to deduce

predictions about household migrations which could be

tested by, econometric methods. Furthermore in this model

one primary cause of family ties, namely the relation

between the elasticities of public and private goods in the

utility function can be studied explicitely. (The quotient

d is increasing in ai for fixed ao, and decreasing in ao

for fixed ai; compare Lemma 11). - Again by the aid of

computer machineries it would be possible to choose other

examples of C-models (other utility functions) to cover a

wider range of empirical applications.

Finally let us discuss the in our view most serious

limitations of the model, and give some hints for further

research: The model is of the Arrow-Debreu type, more

specifically it is static and deterministic. Thus two

important facts of observed (international) migration

behavior, especially of guest-workers, cannot be captured

by the model:

1. Often households dissolve by migration, typically of the

husband, to another destination, but with the

expectations that the dissolution is only for some years,

and that the migrant will return into the family after

this time - an expectation which is fulfilled in a lot of

cases. During the dissolution period the migrant tries to

remit a fraction of his income gained in h, partly for

the expenditures of the rest of his family in g, partly

for saving assets for the time after his return. The

dissolution case 0 in our model can be only a rough

approximation to this fact, first because it must be

expected that the utility of the migrant then depends on

that part of the remitted- income which can really be
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saved and second because the remittance rate typically

will be the result of an economic decision of the

migrant, i.e. it ought be.determined endogenously by an

utility maximizing approach. - In this respect we refer

to a paper of DjajiC (1986) , where the author designs a

dynamic model which would be.able to incorporate some of

the above aspects. While DjajiC's approach is individual

utility maximizing without explicit regard of . family

migration, we suppose that it could be broadened to a

dynamic family migration model.

2. If one of the persons in the household, e.g. the husband

gets a job offer from another region h, neither he nor

the spouse will be perfectly informed about the

consumption possibilities, . the prices and the spouse's

income opportunities in h. The best what can be expected

is that the household can reduce uncertainty about this

by some process of information gathering. Thus the

following scenario could be imagined: The husband decides

to accept the offer and migrates alone to h, but first

for one or two periods of time, utilizes this time for

the acquisition of relevant information for him and the

wife. Equipped with some information (typically imperfect

yet always) the present final household migration

decision takes place after this information gathering

period.

At best, our model could capture this final decision

stage. But it would be by far more satisfactory to design

a model in which the first decision of the above scenario

could be the result of some rational reflections about

the possible opportunities. - For this we should have a

stochastic dynamic model, the construction and analysis

of which will be the task of another paper.
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APPENDIX

Here first some general results concerning individual and

household demand theory are given, and then in the second

part the Lemmata 1,...,13 of the main text are proven.

1. Individual and Household Demand Theory

Let Xo,Xi,X2 denote the non-negative orthant of some

Rn0,Rnl,Rn2, and set X := Xo x Xi x X2 . Furthermore assume

utility functions ut : X -> R+ with:

(UI) ui is increasing in all components of (xo,xi)

£ Xo xXi

(U2) ui is strictly concave

(U3) ui is twice continuously differentiable

(U4) ui (0) = 0

Finally define for each z £ Z := {(p,m) £ X x R : p > 0 and

m > 0} the budget sets:

B(z) := {x e X : px < ml

Bi (z) : = { (xo , xi , 0) e X : po xo +pi xi < mi }

where

r Tm, i = 1

mi = I
L (l-T)m, i = 2

for 0 < T < 1, (i = 1,2)

Then it is possible to define the indirect utility

functions

Vi : Z -> R, Vi (z) := max {ui (x) : x e Bi (z) } .
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Theorem1: Given (U1,U2,U3). Then

1) Vi is well-defined for all z e Z

2) For all z E Zt := {z £ Z : Vt (z) 4= 0} Vt is

continuously differentiable.

3) For the partial derivatives of Vi we get:

r > 0, for t = m

Dt Vi (z) = I ="" 0, for t = pjk, k = l,...,nj, j =

I 1,2, j + i
L < 0, for t = pik, k = l,...,ni

4) If ui is unbounded, thenVi is unbounded.

Proof: 1) follows immediately from (U2) and (U3). - Since

the budget sets Bi (z) are independent of pj (j ̂  i ) ,

we get DtVt(z) = 0 for all t = pjk, k = l,...,nj (j ^

i ) . Now consider the restricted utility function u't :

Xo x Xi -> R given by u'i (xo ,xi ) := ui (xo ,xi ,0) . Then

Vi (z)" = max {u'i (xo,xi) : po xo+pi xi < ml. Therefore Vi

can be interpreted as an usual indirect utility

function, implying by (UI),(U2),(U3) that 2 ) , 3) and

4) are well-known results of (individual) demand

theory; (see e.g. Katzner (1970), section 3 ) .

Next we consider the optimiziation problem which yields the

Nash solution for the bargaining game (u(B(z)),V(z)), with

u = (ui,U2), V = (Vi,V2). At this the Nash product function

N:XxZ -> R with

N(x,z) := (ui(x)-Vi(z))(u2 (x)-V2 (z))

must be maximized subject to x £ B(z).

The solution x(z) can be characterized as the solution of

the following equation system for x(z) E B ( Z ) and lambda(z)

e R, using the Lagrangean method
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r Dxj ui (xi (z) ) (u2 (x(z) )-V2 (z) )+Dxju2 (x(z) ) (ui (x(z) )

(N) | -Vi(z)) = lambda(z)pj ,

| j=l, . . . , no , no +1, . .. , no + m , no +ni +1, , . . , no + m +n2 )

L px(z) = m.

Typically this equation system cannot be solved explicitely

because of . its complex non-linearity, for any reasonable

utility functions.

But let us use now these equations for the analysis of the

Nash solution U : Z -> R+2 , U = (U1,U2) with

Ui (z) := ui (x(z) ) .

Remark: Ui (z) is well-defined because of strict concavity

of ui and U2. - It should be stressed at this occasion,

that we did not follow the strict theory of Nash

bargaining, in so far as for this, we should have assumed

that S(z) is the image under u of the set of all lotteries

on B(z), which would guarantee that S(z) is convex - an

usual requirement in Nash's theory. But since strict

concavity of the ui implies that the Nash solution is a

degenerated lottery, representable by an x(z) £ B(z) - the

main reason for this is that the Pareto frontiers of the

old S(z) and the new S(z) coincide, and that the Nash

solution must lie on this frontier - we considered it

permissible to relax the convexity assumption.

2: Assuming that the solution x(z) of (1) and (2)

is continuously differentiable w. r. to z we get:

D m U l ( Z ) ( U 2 ( Z ) - V 2 ( Z ) ) + D m U 2 ( Z ) ( U i ( Z ) - V i ( Z ) ) > 0

D p j U i ( z ) ( U 2 ( z ) - V 2 ( z ) ) + D P j U 2 ( z ) ( U i ( z ) - V i ( z ) ) < 0

f o r a l l j = l , . . . , n := no + m
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Proof: By the Envelope-Theorem (see e.g. Varian (1985) ,

A.13) we get for M(z) := N(x(z),z) with t = m or = pj

and ej = 1 for t = m rsp. £J = -xj for t = pj :

DtM(z) = DtN(x(z),z) + lambda (z)ej =

= (Dxjui (x(z) )pj/ej - Dt Vi (z) ) (U2 (z) -V2(z))

+ (Dxj u2 (x(z) )pj /EJ - Dt V2 (Z) ) (UI (Z) - VI (z) ) .

By differentiating M(z) directly we get on the other side:

DtM(z) = (DtUi(z) - Dt Vi (z) ) (U2 (z) -V2(z))

+ (DtU2 (z) - Dt V2 (z) ) (Ui (z) - Vi (z) ) .

Combining these two equations yields the asserted

inequalities, since Dxjui(x(z))pj/EJ is positive rsp.

negative for EJ = 1 rsp. EJ = -xj , and Ui (z) > Vi (z) by the

Individual-Rationality-Property of the Nash solution.

Thus generally we cannot state that the Nash solution

utilities behave normally. But let us consider now ah

important special case, the s..Y.m.Mle..t̂i'c c..a.s.e• This is given

by the following properties:

j-z £ Z1 := {z £ Z : z = (p,m), pi = p2 I

(S) |

L For all x £ X : ui (xo ,xi ,X2 ) = U2 (xo ,X2 ,xi )

Theorem 3: Assuming that the solution function x(z) of (N)

is continuously differentiable w.r. to z e Z', and let

(S) hold, then:

DraUl ( Z ) > 0 ( i = 1 , 2 )

D P j U i ( z ) < 0 ( i = l , 2 )

P r o o f : F o r z E Z ' w e g e t V i ( z ) = V2 ( z ) a n d , a c c o r d i n g t o

( S ) : ( s i , S 2 ) £ u ( B ( z ) ) i f f ( S 2 , s i ) e u ( B ( z ) )
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Therefore we get a symmetric bargaining game, and the

Symmetry-Property of the Nash solution yields: Ui(z) =

U2 (z), and of course DtUi (z) = DtU2 (z) . Thus the asserted

inequalities are obvious consequences of Theorem 2.

2) Here we present the proofs,oftheLemmata 1,...,13 in

the main text:

Proof of Lemma ^. T h e prQof consists of six,steps:

1) For all a > 0, q > 0, m7 > 0, i = 1,2:

Vi (aq,m) = Vi (q,m/a).

This follows because of

Vi (aq,m) = max {ui {l xo ,xi , 0) : aqo 1 Xo +aqi Xi <, m}

= max {ui ('xo ,xi ,0) : qo -1 xo +qi xi < m/a} =

Vi(q,m/a),

and analogously for V2.

2) From 1) we get the validity of the formula for F3 .

3) For all a > 0, q > 0, m > 0, x e X:

N(x;aq,m) = N(x;q,m/a)

This is established by using 1) in the formula for

the Nash product:

4) Obviously for all a > 0,q > 0 , m > 0 for the

common budget sets holds:

B(aq,m) = B(q,m/a)

5) Finally we obtain for all a > 0, q > 0, m > 0:

Ui (aq,m) = Ui (q,m/a)

for Ui(aq,m) = ui(x(aq,m)) where x(aq,m) is the

solution of

max N(x;aq,m) s.t. x e B(aq,m).

Because of 3) and 4) this optimization problem is

equivalent to

max N(x;q,m/a) s.t. x e B(q,m/a)

7 This m must not coincide with the m in the main text.
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with solution x(q,m/a) which must be equal to

x(aq,m).

Therefore ui(x(aq,m)) = ui(x(q,m/a)) = Ui(q,m/a).

6) From 5) the asserted formulas for Fi and F2

follow.

ProofofLemma2:

a) Since Vi(q,*) is strictly increasing, for z e Z3 the

equation F3 (bi ,z) = 0 possesses exactly one solution

bi(z), and since this solution is independent of b2 ,

B3 (z) = {(bi,b2) : bi = bi(z)} is a straight line in B

parallel to the b2-axis. For bi > bi(z) it follows by

DyVi > 0 that F3(bi,z) < 0, i.e. (9) holds, and

analogously for bi < bi(z) the inequality (9) follows.

b) Let us assume to the contrary that there is some bi such

that F3 (bi,z) > 0. Since by Theorem 1 Vi is increasing in

bi and unbounded we may choose b'i > bi large enough such

that F3 (b'i,z) < 0. By continuity then there must exist

some bi (z) such that F3 (bi (z),z) = 0. But this would

imply z £ Z3, in contradiction to the assumption that z

does not belong to Z3.

c) Choosing z := (q,a,c,m) with a = To/Tg and q,c,m at

pleasure it follows that F3 (bi ,z) = Ui (q,(l+c)m)

Vi(q,(bi+c)mTg) > 0 for bi = 1, because of Individual

. Rationality of the Nash solution. Applying the same

argument as under b) we may find some bi (z) such that

F3 (bi (z),z) = 0, i.e. z E Z3.

Pro of of Lemma 3:

a) Using the formula for F2 in Lemma 1 we get because of

DyUi =j= 0 (according to (B5) ) the equivalence F2 (b,z) = 0

iff bi+cb2 = a(l+c), as asserted.

b) For bi > (rsp. <) a(l+c)-cb2 the assumption DyUi > 0

implies F2(bi,b2,z) < (rsp. >) 0, i.e. implies (2)' (rsp.

(2)).
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Proof o f L e m m a 4 :

a) Because of Dy U2 ={= 0 for each q the inverse function vq :

U2 (q,Y) -> Y of U2(q,*) exists. Therefore the function fi

: Bi x Z -> R given by

fi (bi , z) := vq (V2 (q, (1-To ) (bi +c)m) )a/cm - bi /c

is well defined. For its partial derivative w.r. to bi we

get

Db 1 f 1 (bi , z) = Dv q (V2 (...)) Db 1 V2 (...) a/cm - 1/c

= (DyU2 (aq,y
h ) )"1DyV2 (q,°y2 ) (1-To )a/c - 1/c

implying by (B9): Dbifi(bi;z) = o(z), which is indepen-

dent of bi .

Therefore the graph of fi(«;z) is a straight line in B.

Now it is obvious that this graph of fi(*;z) is equal to

Bi (z) .

Since fi (bi ,z) = o(z)bi + fi (0;z)

and fi(O;z) = vq(V2(q,(l-To)cm)a/cm = - 3(z)

the assertion follows

b) If for b £ B : o(z)bi~3(z) > b2 (rsp. < b2 ) , then Dy U2

> 0 implies Fi (b,z) < 0 (rsp. > 0), i.e. the inequality

(1)' (rsp. (1)).

of Lemma5:

The assertion follows immediately from

Dbif'2(bi,z) = - 1/c, Dbifi(b,z) = o(z) = (da (1-To )-1)/c

and da(l-To) > 0 with strict inequality for To < 1.

P r o o f o f L e m m a 5 .

Obvious, by inserting the above definitions and using the

results of Lemmata 2,3 and 4.

P r o o f o f L e m m a 7 :

- 3(z) is defined as the solution of

U2 (q,-c3(z)m/a) = V2 (q,(1-To)cm).

This implies because of Individual Rationality of the Nash

solution: V2 (q,(1-To)cm > V2 (q,(1-Th)(-c3(z))m/a), and this

the asserted inequality, because V2 (qi ) is increasing.
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P r o o f o f L e m m a 8 :

Assume z does not belong to Z3 , i.e. Ui (q, (l+c)m) <

Vi (q,To (bi+c)m/a). Then again Individual Rationality of the

Nash solution implies that for all bi > 0 :

Vi (q,To (bi+c)m/a) > Vi (q,Tg (1+c)m) rsp. because of Vi (q,•)

increasing: To(bi+c)m/a > Tg(l+c)a, contradicting the

presupposed inequality.

Proof of Lemma 9:

a) Increasing a implies a decrease of Vi(q,To (bi+c)m/a) and

thus an increase of F3 (bi ,z). Since F3 (*,z) is decreasing

in bi , increasing a leads to an increase of bi (z), with

F3 (bi (z) ,z) = 0, and a -> «> implies bi (z) -> ~.

b) follows immediately by the definition of B2 (z).

c) Obviously o(z) is incrasing in a. - Using the proof of

Lemma 4 we know that ~3(z) = fi (0,z) = ka/cm, where k is

the positive value vq (q,(1-To)cm), whence it follows,

that 3(z) is decreasing in a.

P r o o f o f L e m m a ^ 9 :

ad (18): V(po ,pi ,y) = ui (x' 0 , x' 1 ) where x'0,x'1 are the

solutions of

D x o U l ( X ' o , X ' i ) p i = D x 1 U l ( x ' o , X ' i ) p o

p o x ' o + p i x ' i = y

Solving these equations for ui given by (C5) we obtain:

x'j = (aj /a) (y/pj ) , (j = 0,1). Inserting this in ui

yields (18) .

a d ( 1 9 ) : Specializing the equation system (N) for the Nash

solution in the symmetric case (S) with no = m = n2 = 1

we obtain (since U = Ui = U2 and V = Vi = V2):

(i) (DxoUi (x(z) )+Dxou2 (x(z) ) ) (U(z)-V(z) ) =lambda(z)po

(ii) (DxiUi (x(z) )+Dxiu2 (x(z) ) ) (U(z)-V(z) ) = lambda (z)pi

(iii) (Dx2Ui (x(z) )+Dx2U2 (x(z) ) ) (U(z)-V(z) ) =lambda(z)pi

(iv) poxo (z)+pi (xi (z)+X2 (z) ) = y
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I n t h e C o b b - D o u g l a s - c a s e of (C5) t h e s e e q u a t i o n s y i e l d :

x i ( z ) = X2 (z) (from ( i i ) and ( i i i ) ) ,

2ao pi XoaO~ 1 Xi.a 1 = ai p o x o a 0 x i a x - 1

(from ( i i ) , ( i i i ) and ( i ) ' )

and poXo (z) + 2pi Xi (z) = y

T h i s g i v e s : xo (z) = ( a o / a ) (y/po ) and xi (z) =

( a i / a ) (y /2p i ) , i m p l y i n g (19) by U ( p o , p i , y ) =

U i ( X o ( Z ) , X i ( Z ) ) .

p . ...9..? _J±.PA... .i.§J.
(B5)a)b) and c) are obvious. It remains to show that (B9)

holds:

U2 (ph ,yh ) = V2 (pg , °y 2 ) i s e q u i v a l e n t t o

U(aqo , aq i , (bi+cb2 )m) = V (qo ,q i , (1-To ) (b i+c)m) ,

and t h i s i s e q u i v a l e n t t o (by Lemma 1 0 ) :

( (b i+cb 2 ) m / a a ) a (ao/qo ) a 0 ( a i / 2 q i ) a l

= ( (1-To ) (bi + c ) m / a ) a (ao /qo ) a 0 (ai / q i J3.1

r s p .

(bi+cb2) = 2
al'aa(l-To ) (bi+c) .

This implies

DyV2 (pg , °y 2 )/DyU2 (ph ,yh ) =

= 2 a l ( ( 1 - T O ) ( b i + c j m / a ) 3 " 1 / ( ( b i+cb 2 ) m / a a ) a ~ 1 = d

P r o o f o f L e m m a 1 2 :

(21) i s c l e a r .

a d ( 2 0 ) : 3 ( z ) i s d e f i n e d by t h e e q u a t i o n

Fi ( 0 , - 3 ( z ) , z ) = 0 r s p .

( - c 3 ( z ) m / a a ) a - ( ( 1 - T o ) c m / a ) a 2 a 1 = 0

i m p l y i n g ( 2 0 ) .

ad ( 2 2 ) : bi (z) i s t h e s o l u t i o n of Fi (bi ( z ) , z ) = 0 r s p .

( ( l + c ) m / a ) a = ( (bi (z)+c)mTo / a a ) a 2 a l ,

i m p l y i n g ( 2 2 ) .
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ad (23) : Equating f'i (bi ,z) = f'2 (bi ,z) yields b'i (z). Thus

we must solve

o(z)bi - b2 = 3(z)

bi + cb2 = a(l+c)

for bi = b'i (z). Obviously this yields (23).

Proof ofLemma13:

a) Since 3(z).is independent of c (see (20)), and |o(z)| is

decreasing in c, and o(z) -> 0 (rsp. -> ±~) for c -> »

(rsp. -> 0), the assertion follows.

b) Obviously bi = a, b2 = a lies in B2 (z) for all c. And

since b2 = f'2. (bi,z) = -(bi/c) + a(l+c)/c is the explicit

representation of B2 (z), the asserted properties of B2 (z)

follow immediately.

c) Using (22) we see

Dcbi (z) = a/(dTo)-c <> 0 iff a <> dTo,

therefore the first part of the assertion is established.

Again by (22) it follows that: for a > dTo and c -> « :

bi (z) -> ~; for a > dTo and c -> 0 : bi (z) -> a/(dTo)

from above; for a < dTo and c -> a/(dTo-a) : bi(z)-> 0;

and for a < dTo and c -> 0: bi (z) -> a/(dTo) from below.
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