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Manuel Forster* Ana Mauleon' Vincent J. Vannetelbosch?
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Abstract

We investigate the role of manipulation in a model of opinion formation.
Agents repeatedly communicate with their neighbors in the social network,
can exert effort to manipulate the trust of others, and update their opinions
about some common issue by taking weighted averages of neighbors’ opinions.
The incentives to manipulate are given by the agents’ preferences. We show
that manipulation can modify the trust structure and lead to a connected
society. Manipulation fosters opinion leadership, but the manipulated agent
may even gain influence on the long-run opinions. Finally, we investigate the

tension between information aggregation and spread of misinformation.

Keywords: Social networks; Trust; Manipulation; Opinion leadership;
Consensus; Wisdom of crowds.
JEL classification: D83; D85; Z13.

1 Introduction

Individuals often rely on social connections (friends, neighbors and coworkers as well
as political actors and news sources) to form beliefs or opinions on various economic,
political or social issues. Every day individuals make decisions on the basis of these
beliefs. For instance, when an individual goes to the polls, her choice to vote for one

of the candidates is influenced by her friends and peers, her distant and close family
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members, and some leaders that she listens to and respects. At the same time, the
support of others is crucial to enforce interests in society. In politics, majorities are
needed to pass laws and in companies, decisions might be taken by a hierarchical
superior. It is therefore advantageous for individuals to increase their influence
on others and to manipulate the way others form their beliefs. This behavior is
often referred to as lobbying and widely observed in society, especially in politics.!
Hence, it is important to understand how beliefs and behaviors evolve over time
when individuals can manipulate the trust of others. Can manipulation enable a
segregated society to reach a consensus about some issue of broad interest? How
long does it take for beliefs to reach consensus when agents can manipulate others?
Can manipulation lead a society of agents who communicate and update naively to
more efficient information aggregation?

We consider a model of opinion formation where agents repeatedly communicate
with their neighbors in the social network, can exert some effort to manipulate the
trust of others, and update their opinions taking weighted averages of neighbors’
opinions. At each period, first one agent is selected randomly and can exert effort to
manipulate the social trust of an agent of her choice. If she decides to provide some
costly effort to manipulate another agent, then the manipulated agent weights rela-
tively more the belief of the agent who manipulated her when updating her beliefs.
Second, all agents communicate with their neighbors and update their beliefs using
the DeGroot updating rule, see DeGroot (1974). This updating process is simple:
using her (possibly manipulated) weights, an agent’s new belief is the weighted aver-
age of her neighbors’ beliefs (and possibly her own belief) from the previous period.
When agents have no incentives to manipulate each other, the model coincides with
the classical DeGroot model of opinion formation.

The DeGroot updating rule assumes that agents are boundedly rational, failing
to adjust correctly for repetitions and dependencies in information that they hear
multiple times. Since social networks are often fairly complex, it seems reasonable
to use an approach where agents fail to update beliefs correctly.? Chandrasekhar
et al. (2012) provide evidence from a framed field experiment that DeGroot “rule
of thumb” models best describe features of empirical social learning. They run a
unique lab experiment in the field across 19 villages in rural Karnataka, India, to

discriminate between the two leading classes of social learning models — Bayesian

1See Gullberg (2008) for lobbying on climate policy in the European Union, and Austen-Smith

and Wright (1994) for lobbying on US Supreme Court nominations.
2Choi et al. (2012) report an experimental investigation of learning in three-person networks and

find that already in simple three-person networks people fail to account for repeated information.
They argue that the Quantal Response Equilibrium (QRE) model can account for the behavior

observed in the laboratory in a variety of networks and informational settings.



learning models versus DeGroot models.® They find evidence that the DeGroot
model better explains the data than the Bayesian learning model at the network
level.* At the individual level, they find that the DeGroot model performs much
better than Bayesian learning in explaining the actions of an individual given a
history of play.?

Manipulation is modeled as a communicative or interactional practice, where the
manipulating agent exercises some control over the manipulated agent against her
will. In this sense, manipulation is illegitimate, see Van Dijk (2006). Agents only
engage in manipulation if it is worth the effort. They face a trade-off between their
increase in satisfaction with the opinions (and possibly the trust itself) of the other
agents and the cost of manipulation. In examples, we will frequently use a utility
model where agents prefer each other agent’s opinion one step ahead to be as close
as possible to their current opinion. This reflects the idea that the support of others
is necessary to enforce interests. Agents will only engage in manipulation when
it brings the opinion of the manipulated agent sufficiently closer to their current
opinion compared to the cost of doing so. In our view, this constitutes a natural
way to model lobbying incentives.

We first show that manipulation can modify the trust structure. If the society is
split up into several disconnected clusters of agents and there are also some agents
outside these clusters, then the latter agents might connect different clusters by
manipulating the agents therein. Such an agent, previously outside any of these
clusters, would not only get influential on the agents therein, but also serve as a
bridge and connect them. As we show by means of an example, this can lead to a
connected society, and thus, make the society reaching a consensus.

Second, we analyze the long-run beliefs and show that manipulation fosters opin-
ion leadership in the sense that the manipulating agent always increases her influence
on the long-run beliefs. For the other agents, this is ambiguous and depends on the
social network. Surprisingly, the manipulated agent may thus even gain influence
on the long-run opinions. As a consequence, the expected change of influence on
the long-run beliefs is ambiguous and depends on the agents’ preferences and the

social network. We also show that a definitive trust structure evolves in the society

3Notice that in order to compare the two concepts, they study DeGroot action models, i.e.,
agents take an action after aggregating the actions of their neighbors using the DeGroot updating
rule.

4 At the network level (i.e., when the observational unit is the sequence of actions), the Bayesian

learning model explains 62% of the actions taken by individuals while the degree weighting DeGroot

model explains 76% of the actions taken by individuals.
At the individual level (i.e., when the observational unit is the action of an individual given a

history), both the degree weighting and the uniform DeGroot model largely outperform Bayesian

learning models.



and, if the satisfaction of agents only depends on the current and future opinions
and not directly on the trust, manipulation will come to an end and they reach a
consensus (under some weak regularity condition). At some point, opinions become
too similar to be manipulated. Furthermore, we discuss the speed of convergence
and note that manipulation can accelerate or slow down convergence. In partic-
ular, in sufficiently homophilic societies, i.e., societies where agents tend to trust
those agents who are similar to them, and where costs of manipulation are rather
high compared to its benefits, manipulation accelerates convergence if it decreases
homophily and otherwise it slows down convergence.

Finally, we investigate the tension between information aggregation and spread
of misinformation. We find that if manipulation is rather costly and the agents un-
derselling their information gain and those overselling their information lose overall
influence (i.e., influence in terms of their initial information), then manipulation re-
duces misinformation and agents converge jointly to more accurate opinions about
some underlying true state. In particular, this means that an agent for whom ma-
nipulation is cheap can severely harm information aggregation.

There is a large and growing literature on learning in social networks. Models
of social learning either use a Bayesian perspective or exploit some plausible rule of
thumb behavior.® We consider a model of non-Bayesian learning over a social net-
work closely related to DeGroot (1974), DeMarzo et al. (2003), Golub and Jackson
(2010) and Acemoglu et al. (2010). DeMarzo et al. (2003) consider a DeGroot rule
of thumb model of opinion formation and they show that persuasion bias affects
the long-run process of social opinion formation because agents fail to account for
the repetition of information propagating through the network. Golub and Jackson
(2010) study learning in an environment where agents receive independent noisy sig-
nals about the true state and then repeatedly communicate with each other. They
find that all opinions in a large society converge to the truth if and only if the in-
fluence of the most influential agent vanishes as the society grows.” Acemoglu et al.
(2010) investigate the tension between information aggregation and spread of misin-
formation. They characterize how the presence of forceful agents affects information
aggregation. Forceful agents influence the beliefs of the other agents they meet, but
do not change their own opinions. Under the assumption that even forceful agents

obtain some information from others, they show that all beliefs converge to a stochas-

6 Acemoglu et al. (2011) develop a model of Bayesian learning over general social networks, and
Acemoglu and Ozdaglar (2011) provide an overview of recent research on opinion dynamics and

learning in social networks.
"Golub and Jackson (2012) examine how the speed of learning and best-response processes

depend on homophily. They find that convergence to a consensus is slowed down by the presence
of homophily but is not influenced by network density.



tic consensus. They quantify the extent of misinformation by providing bounds on
the gap between the consensus value and the benchmark without forceful agents
where there is efficient information aggregation.® Friedkin (1991) studies measures
to identify opinion leaders in a model related to DeGroot. Recently, Biichel et al.
(2012) develop a model of opinion formation where agents may state an opinion
that differs from their true opinion because agents have preferences for conformity.
They find that lower conformity fosters opinion leadership. In addition, the society
becomes wiser if agents who are well informed are less conform, while uninformed
agents conform more with their neighbors.

We go further by allowing agents to manipulate the trust of others and we
find that the implications of manipulation are non-negligible for opinion leadership,
reaching a consensus, and aggregating dispersed information.

The paper is organized as follows. In Section 2 we introduce the model of opinion
formation. In Section 3 we show how manipulation can change the trust structure
of society. Section 4 looks at the long-run effects of manipulation. In Section 5 we
investigate how manipulation affects the extent of misinformation in society. Section

6 concludes. The proofs are presented in Appendix A.

2 Model and Notation

Let N' = {1,2,...,n} be the set of agents who have to take a decision on some
issue and repeatedly communicate with their neighbors in the social network. Each
agent i € N has an initial opinion or belief 2;(0) € R about the issue and an initial
vector of social trust m;(0) = (m;1(0),mi2(0), ..., m;,(0)), with 0 < m;;(0) < 1 for
all j € N and > jen mij(0) = 1, that captures how much attention agent i pays
(initially) to each of the other agents. More precisely, m,;;(0) is the initial weight
or trust that agent ¢ places on the current belief of agent j in forming her updated
belief. For ¢ = j, m;;(0) can be interpreted as how much agent i is confident in her
own initial opinion.

At period t € N, the agents’ beliefs are represented by the vector x(t) = (z(t),
22(t), ..., xn(t)) € R™ and their social trust by the matrix M (t) = (my;(t))ijen-’
First, one agent is chosen (probability 1/n for each agent) to meet and to have the
opportunity to manipulate an agent of her choice. If agent ¢« € N is chosen at ¢, she
can decide which agent j to meet and furthermore how much effort o > 0 she would

like to exert on j. We write E(t) = (i; j, &) when agent ¢ is chosen to manipulate at

8In contrast to the averaging model, Acemoglu et al. (2010) have a model of pairwise interac-
tions. Without forceful agents, if a pair meets two periods in a row, then in the second meeting

there is no information to exchange and no change in beliefs takes place.
9We denote the transpose of a vector (matrix) x by 2’.



t and decides to exert effort a on j. The decision of agent i leads to the following

updated trust weights of agent j:

m.(t+1):{mjk(t>/(1+ ) ifk’%i
Jk )

The trust of j in 7 increases with the effort ¢ invests and all trust weights of j are
normalized. Notice that we assume for simplicity that the trust of j in an agent
other than i decreases by the factor 1/(1 + «), i.e., the absolute decrease in trust is
proportional to its level. If 2 decides not to invest any effort, the trust matrix does not
change. We denote the resulting updated trust matrix by M (t+1) = [M(t)](7; j, ).

Agent i decides on which agent to meet and on how much effort to exert according

to her utility function

uz(M(t>7x(t>7.]7 Oé) = Uz([M<t)](Zaj7 a),x(t)) - Ci(.ja a),

where v; ([M (¢)](; j, ), (t)) represents her satisfaction with the other agents’ opin-
ions and trust resulting from her decision (j, @) and ¢;(j, o) represents its cost. We
assume that v; is continuous in all arguments and that for all j # 4, ¢;(j, ) is strictly
increasing in o > 0, continuous and strictly convex in a > 0, and that ¢;(j,0) = 0.
Note that these conditions ensure that there is always an optimal level of effort a*(j)
given agent 4 decided to manipulate j.19 Agent i’s optimal choice is then (5*, a*(j*))
such that j* € argmax;_; u; (M (t), z(t); j, (7))

Secondly, all agents communicate with their neighbors and update their beliefs

using the updated trust weights:
w(t+1) = [z(D)] (04, a) = M(t + D)x(t) = [M(8)](G; j, a)z(t).

In the sequel, we will often simply write (¢ + 1) and omit the dependence on the
agent selected to manipulate and her choice (j, a). We can rewrite this equation as
z(t+1) = M(t+ 1)z(0), where M(t +1) = M(t+1)M(t)--- M (1) (and M(t) = I,
for t < 1, where I,, is the n x n identity matrix) denotes the overall trust matriz.
Now, let us give some examples of satisfaction functions that fulfill our assump-

tions.

Example 1 (Satisfaction functions).

ONote that for all j, v;(M (i; j, ), x) is continuous in & and bounded from above since v;(-, z) is
bounded from above on the compact set [0, 1]*™ for all x € R™. In total, the utility is continuous
in @ > 0 and since the costs are strictly increasing and strictly convex in a > 0, there always exists

an optimal level of effort, which might not be unique, though.



(i) Let v € N and

o (M) 3,0),2(0) = ——= 3 () = (MG + 1) 2(0),)
ki

where M (t+1) = [M(t)](i; j, «). That is, agent i’s objective is that each other
agent’s opinion v periods ahead is as close as possible to her current opinion,

disregarding possible manipulations in future periods.

(i)

2
.. 1
ui([M®)](5;5,a), x(t)) = — (xi(t) - > an(t+ 1)) 7
n—1 4
k#i
where z.(t + 1) = ([M(t)](i; j, a)x(t)) . That is, agent ¢ wants to be close to
the average opinion in society one period ahead, but disregards differences on

the individual level.

We will frequently choose in examples the first satisfaction function with param-
eter v = 1, together with a cost function that combines fixed costs and quadratic

costs of effort.

Remark 1. If we choose satisfaction functions v; = v for some constant v and all
i € N, then agents do not have any incentive to exert effort and our model reverts
to the classical model of DeGroot (1974).

We now introduce the notion of consensus. Whether or not a consensus is reached

in the limit depends generally on the initial opinions.

Definition 1 (Consensus). We say that a group of agents G C N reaches a con-
sensus given initial opinions (z;(0));enr, if there exists z(oo0) € R such that

lim z;(t) = x(o0) for all i € G.

t—o0

3 The Trust Structure

We investigate how manipulation can modify the structure of interaction or trust in
society. We first shortly recall some graph-theoretic terminology.!! We call a group
of agents C C N minimal closed at period t if these agents only trust agents inside
the group, i.e., > ;o mi;(t) = 1 for all ¢ € C, and if this property does not hold for
a proper subset C! C C. The set of minimal closed groups at period t is denoted

C(t) and is called the trust structure. A walk at period ¢ of length K is a sequence

See Golub and Jackson (2010).



of agents 1,12, ...,ix+1 such that m; ;. (t) >0 forall k =1,2,..., K. A walk is
a path if all agents are distinct. A cycle is a walk that starts and ends in the same
agent. A cycle is simple if only the starting agent appears twice in the cycle. We say
that a minimal closed group of agents C' € C(t) is aperiodic if the greatest common

2 of the lengths of simple cycles involving agents from C' is 1.13 Note that

divisor!
this is fulfilled if m;(t) > 0 for some i € C'.
At each period ¢, we can decompose the set of agents N into minimal closed

groups and agents outside these groups, the rest of the world, R(t):

N= |J CuRQ@)

cec(t)

Within minimal closed groups, all agents interact indirectly with each other, i.e.,
there is a path between any two agents. We say that the agents are strongly con-
nected. For this reason, minimal closed groups are also called strongly connected
and closed groups, see Golub and Jackson (2010). Moreover, agent i € N is part of
the rest of the world R(t) if and only if there is a path at period ¢ from her to some
agent in a minimal closed group C ¥ i.

We say that a manipulation at period ¢ does not change the trust structure if
C(t+1) = C(t). It also implies that R(t + 1) = R(t). We find that manipulation
changes the trust structure when the manipulated agent belongs to a minimal closed
group and additionally the manipulating agent does not belong to this group, but
may well belong to another minimal closed group. In the latter case, the group of
the manipulated agent is disbanded since it is not anymore closed and its agents
join the rest of the world. However, if the manipulating agent does not belong to a
minimal closed group, the effect on the group of the manipulated agent depends on
the trust structure. Apart from being disbanded, it can also be the case that the
manipulating agent and possibly others from the rest of the world join the group of

the manipulated agent.
Proposition 1. Suppose that E(t) = (i;7,a), a > 0, at period t.

(i) Leti € N,j € R(t) ori,j € C € C(t). Then, the trust structure does not

change.

(it) Let i € C € C(t) and j € C" € C(H)\{C}. Then, C" is disbanded, i.e.,
Cit+1)= Ct)\{C'}.

(i1i) Leti € R(t) and j € C € C(t).

12For a set of integers S C N, ged(S) = max {k € N | m/k € N for all m € S} denotes the great-
est common divisor.
3Note that if one agent in a simple cycle is from a minimal closed group, then so are all.



(a) Suppose that there exists no path from i to k for any k € Ucrecwn oy C'-
Then, R'U{i} joins C, i.e.,

Ct+1)=Ct)\{CtU{CUR U{i}},
where R = {l € R(t)\{i} | there is a path from i to l}.

(b) Suppose that there exists C' € C(t)\{C} such that there exists a path from
i to some k € C'. Then, C is disbanded.

All proofs can be found in Appendix A. The following example shows that
manipulation can enable a society to reach a consensus due to changes in the trust

structure.

Example 2 (Consensus due to manipulation). Take N' = {1,2,3} and assume that

1

W (M0, 2(0:5,0) =~ 3 (5t) — ault + D) — (62 +1/10 - 1oy (o)
ki

for all i € M. Notice that the first part of the utility is the satisfaction function in
Example 1 part (i) with parameter v = 1, while the second part, the costs of effort,
combines fixed costs, here 1/10, and quadratic costs of effort. Let z(0) = (10,5, —5)’

be the vector of initial opinions and

8
MO)= | .4
0

© o W
_ o O

be the initial trust matrix. Hence, C(0) = {{1,2},{3}}. Suppose that first agent
1 and then agent 3 are drawn to meet another agent. Then, at period 0, agent 1’s
optimal decision is to exert o = 2.54'* effort on agent 3. The trust of the latter is
updated to

ms(1) = (.72,0,.28),

while the others’ trust does not change, i.e., m;(1) = m;(0) for i = 1,2, and the

updated opinions become
x(1) = M(1)z(0) = (9,7,5.76)".

Notice that the group of agent 3 is disbanded (see part (ii) of Proposition 1). In the
next period, agent 3’s optimal decision is to exert o = .75 effort on agent 1. This

results in the following updated trust matrix:

46 11 .43
M2)=|4 6 0
72 0 .28

14GQtated values are rounded to two decimals for clarity reasons.

9



Notice that agent 3 joins group {1, 2} (see part (iii,a) of Proposition 1) and therefore,
N is minimal closed, which implies that the group will reach a consensus, as we will
see later on.

However, notice that if instead of agent 3 another agent is drawn in period 1, then
agent 3 never manipulates since when finally she would have the opportunity, her
opinion is already close to the others’ opinions and therefore, she stays disconnected
from them. Nevertheless, the agents would still reach a consensus in this case due to
the manipulation at period 0. Since agent 3 trusts agent 1, she follows the consensus

that is reached by the first two agents.

4 The Long-Run Dynamics

We now look at the long-run effects of manipulation. First, we study the conse-
quences of a single manipulation on the long-run opinions of minimal closed groups.
In this context, we are interested in the role of manipulation in opinion leadership.
Secondly, we investigate the outcome of the influence process. Finally, we discuss
how manipulation affects the speed of convergence of minimal closed groups and

illustrate our results by means of an example.

4.1 Opinion Leadership

Typically, an agent is called opinion leader if she has substantial influence on the
long-run beliefs of a group. That is, if she is among the most influential agents
in the group. Intuitively, manipulating others should increase her influence on the
long-run beliefs and thus foster opinion leadership.

To investigate this issue, we need a measure for how remotely agents are located
from each other in the network, i.e., how directly agents trust other agents. For this
purpose, we can make use of results from Markov chain theory. Let (X s(t))iio denote
the homogeneous Markov chain induced by the transition matrix M (t). The agents
are then interpreted as states of the Markov chain and the trust of ¢ in j, m;;(¢), is
interpreted as the transition probability from state i to state 7. Then, the mean first
passage time from state i to state j is defined as E[inf{s > 0 | X9 = J} | X(()t) = 1.
Given the current state of the Markov chain is ¢, the mean first passage time to j is
the expected time it takes for the chain to reach state j.

In other words, the mean first passage time from ¢ to j corresponds to the average
(expected) length of a random walk on the weighted network M () from i to j that
takes each link with probability equal to the assigned weight.!® This average length

5More precisely, it is a random walk on the state space N that, if currently in state k, travels
to state [ with probability my;(t). The length of this random walk to j is the time it takes for it

10



is small if the weights along short paths from ¢ to j are high, i.e., if agent i trusts
agent j rather directly. We therefore call this measure weighted remoteness of j

from 1.

Definition 2 (Weighted remoteness). Take i,7 € N, i # j. The weighted remote-

ness at period t of agent j from agent 7 is given by
ry(t) = Elinf{s > 0 | X = j} | Xg” =],
where (th))g‘;o is the homogeneous Markov chain induced by M(t).

The following remark shows that the weighted remoteness attains its minimum

when ¢ trusts solely j.

Remark 2. Take i,j € N, i # j.

(i) riy(t) > 1,

(ii) 7;(t) < +oo if and only if there is a path from ¢ to j, and, in particular, if

i,jeCecC(t),
(iii) 7;(t) = 1 if and only if m;;(t) = 1.

To provide some more intuition, let us look at an alternative (implicit) formula
for the weighted remoteness. Suppose that i, j € C' € C(t) are two distinct agents in
a minimal closed group. By part (ii) of Remark 2, the weighted remoteness is finite
for all pairs of agents in that group. The unique walk from i to j with (average)
length 1 is assigned weight (or has probability, when interpreted as a random walk)
m;;(t). And the average length of walks to j that first pass through & € C\{j} is
rk; () + 1, ie., walks from ¢ to j with average length r4;(t) + 1 are assigned weight
(have probability) m(t). Thus,

rig(t) = mi(t) + Y ma(t)(ri(t) + 1) -

keC\{j}

Finally, applying >, . mx(t) = 1 leads to the following remark.

Remark 3. Take i,j € C' € C(t), i # j. Then,

() =14 D mu(t)re(t),

keC\{j}

to reach state j.

11



Note that computing the weighted remoteness using this formula amounts to
solving a linear system of |C|(|C| — 1) equations, which has a unique solution.

We denote by 7(C';t) the probability vector of the agents’ influence on the final
consensus of their group C' € C(t) at period ¢, given that the group is aperiodic and

the trust matrix does not change any more.!® In this case, the group converges to

2(00) = m(Cit) 2(t)|o = > m(Cit)aq(t),
ieC

where x(t)|, = (2(t))icc is the restriction of x(t) to agents in C. In other words,
mi(C;t), i € C, is the influence weight of agent i’s opinion at period t, x;(t), on
the consensus of C. Notice that the influence vector m(C;t) depends on the trust
matrix M (t) and therefore it changes with manipulation. A higher value of m;(C’ )
corresponds to more influence of agent 7 on the consensus. Each agent in a minimal
closed group has at least some influence on the consensus: m;(C;t) > 0 for all
ieCl

We now turn back to the long-run consequences of manipulation and thus, opin-
ion leaders. We restrict our analysis to the case where both the manipulating and
the manipulated agent are in the same minimal closed group. Since in this case the
trust structure is preserved we can compare the influence on the long-run consensus

of the group before and after manipulation.

Proposition 2. Suppose that at period t, group C' € C(t) is aperiodic and E(t) =
(i;4,0), 1,7 € C. Then, aperiodicity is preserved and the influence of agent k € C
on the final consensus of her group changes as follows,
m(Cit+ 1) — mp(Cst) =

a/(1+ a)m(Cst)m(Cit + 1) Elec\{i} mi(t)ry(t) if k=1

a/(1+ a)m(C;t)m(Cst + 1) (Zlec\{k} ()i (t) — nk(t)> ifk#i
Corollary 1. Suppose that at period t, group C € C(t) is aperiodic and E(t) =
(1;7,a), 1,7 € C. If a« > 0, then

(1) agent i strictly increases her long-run influence, m;(C;t+ 1) > m;(C; 1),

(i7) any other agent k # i of the group can either gain or lose influence, depending
on the trust matriz. She gains if and only if

> mu(t) (ru(t) = rin(t)) > mr(t)ra(t),

leC\{k,i}

16Tn the language of Markov chains, 7(C;t) is known as the unique stationary distribution of
the aperiodic communication class C'. Without aperiodicity, the class might fail to converge to

consensus.

17See Golub and Jackson (2010).
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(i7i) agent k # i,j loses influence for sure if j trusts solely her, i.e., m;,(t) = 1.

Proposition 2 tells us that the change in long-run influence for any agent k
depends on the effort agent i exerts to manipulate agent j, agent k’s current long-
run influence and the future long-run influence of the manipulated agent j. In
particular, the magnitude of the change increases with ’s effort, and it is zero if
agent ¢ does not exert any effort. Furthermore, notice that dividing both sides
by agent k’s current long-run influence, m(C;t), yields the relative change in her
long-run influence.

When agent £ = ¢, we find that this change is strictly positive whenever she
exerts some effort. In this sense, manipulation fosters opinion leadership. It is large
if the weighted remoteness of ¢ from agents (other than i) that are significantly
trusted by j is large. To understand this better, notice that the long-run influence
of an agent depends on how much she is trusted by agents that are trusted. Or, in
other words, an agent is influential if she is influential on other influential agents.
Thus, there is a direct gain of influence due to an increase of trust from j and an
indirect loss of influence (that is always dominated by the direct gain) due to a
decrease of trust from j faced by agents that (indirectly) trust . This explains why
it is better for 7 if agents facing a large decrease of trust from j (those trusted much
by j7) do not (indirectly) trust ¢ much, i.e., ¢ has a large weighted remoteness from
them.

For any other agent k =# 4, it turns out that the change can be positive or
negative. It is positive if, broadly speaking, j does not trust k£ a lot, the weighted
remoteness of k from ¢ is small and furthermore the weighted remoteness of k£ from
agents (other than i) that are significantly trusted by j is larger than that from
i. In other words, it is positive if the manipulating agent, who gains influence for
sure, (indirectly) trusts agent k significantly (small weighted remoteness of k from
i), k does not face a large decrease of trust from j and those agents facing a large
decrease from j (those trusted much by j) (indirectly) trust k less than i does.

Notice that for any agent k # 4, 7, this is a trade-off between an indirect gain
of trust due to the increase of trust that ¢ obtains from j, on the one hand, and
an indirect loss of influence due to a decrease of trust from j faced by agents that
(indirectly) trust k as well as the direct loss of influence due to a decrease of trust
from j, on the other hand. In the extreme case where j only trusts k, the direct loss
of influence dominates the indirect gain of influence for sure.

In particular, it means that even the manipulated agent j can gain influence. In
a sense, such an agent would like to be manipulated because she trusts the “wrong”
agents. For agent j, being manipulated is positive if her weighted remoteness from

agents she trusts significantly is large and furthermore, her weighted remoteness
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from ¢ is small. Hence, it is positive if the manipulating agent (indirectly) trusts her
significantly (small weighted remoteness from i) and agents facing a large decrease
of trust from her (those she trusts) do not (indirectly) trust her much. Here, the
trade-off is between the indirect gain of trust due to the increase of trust that
obtains from her and the indirect loss of influence due to a decrease of trust from
her faced by agents that (indirectly) trust her. Note that the gain of influence is
particularly large if the manipulating agent trusts j significantly.

The next example shows that indeed in some situations an agent can gain from

being manipulated in the sense that her influence on the long-run beliefs increases.

Example 3 (Being manipulated can increase influence). Take N' = {1,2,3} and

assume that

25 25 5
MO)=|5 5 0
4 5 1

is the initial trust matrix. Notice that N is minimal closed. Suppose that agent
1 has the opportunity to meet another agent and decides to exert effort &« > 0 on

agent 3. Then, from Proposition 2, we get

«
1+«

7T3(N; 1) — 7T3(N; 0) = 7T3(N; O)ﬂ'g(N; 1) Z mgl(O)Tlg(O) — 7'13(0)

1=1,2
o

7
= 1 +a73(N, 0)7T3(N, 1)1_0 > 07

since m3(N;0),m3(N;1) > 0. Hence, being manipulated by agent 1 increases agent
3’s influence on the long-run beliefs. The reason is that, initially, she trusts too
much agent 2 — an agent that does not trust her at all. She gains influence from
agent 1’s increase of influence on the long-run beliefs since this agent trusts her.
In other words, after being manipulated she is trusted by an agent that is trusted

more.

Furthermore, we can use Proposition 2 to compare the expected influence on the
long-run consensus of society before and after manipulation when all agents are in
the same minimal closed group.'® For this result we need to slightly change our
notation. We denote the decision of agent ¢ € N when she is selected to meet
another agent by (j(i), a(i;j(4))), i.e., agent i decides to exert effort a(i; j(i)) on
agent j(1).

8Notice that if not all agents are in the same minimal closed group, then the group in question

could be disbanded with some probability and hence would not anymore reach a consensus.
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Corollary 2. Suppose that at period t, C(t) = {N} and that N is aperiodic. Then,
aperiodicity is preserved and, in expectation, the influence of agent k € N on the

final consensus of the society changes as follows from period t to t + 1,
E[me(N;t+ 1) — mpe (N ) | M(2),z(t)] =
Nt i
A5 ()it ) st -

no | S \1+a(ii) o

a(i; (i)
; mﬂj(i) (N5t + 1)7“ik(t)] )

Notice that an agent gains long-run influence in expectation if and only if the
term in the square brackets is positive. For this to hold, it is necessary that
a(i;7(7)) > 0 for some i € N at period t. Moreover, it follows from Corollary
1 part (i) that a(k;j(k)) > 0 and a(z;j(i)) = 0 for all ¢ # k at period ¢ (i.e., only
agent k would manipulate if she was selected at t) is a sufficient condition for that
she gains influence in expectation. The reason is that agent k gains influence for sure
when she manipulates herself, and since no other agent manipulates when selected,
she gains in expectation. Notice that by dividing both sides by agent k’s current
long-run influence, 7, (C;t), we get the expected relative change in her long-run

influence.

4.2 Convergence

We now determine where the process finally converges to. First, we look at the case
where all agents are in the same minimal closed group. Given the group is aperiodic,
we show that if the satisfaction level only depends on the opinions (before and after
manipulation), i.e., a change in trust that does not affect opinions does not change
the satisfaction of an agent, and if there is a fixed cost for exerting effort, then
manipulation comes to an end, eventually. At some point, opinions in the society
become too similar to be manipulated. Second, we determine the final consensus

the society converges to.

Lemma 1. Suppose that C(0) = {N'} and that N is aperiodic. If for all i,j € N
and o > 0,

(i) vi(M(3;4,0),x) —vi(M(i;4,0),2) = 0 if |2(3; 5, @) — 2(3;5,0)[| = 0, and
(ZZ) Ci(ja O{) 2 c> O;

then, there exists an almost surely finite stopping time 7 such that from periodt = T
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on there is no more manipulation, where ||-|| is any norm on R™.1Y The society

converges to the random variable
z(00) = w(N;7) M(T —1) x(0).

Now, we turn to the general case of any trust structure. We show that after
a finite number of periods, the trust structure settles down. Then, it follows from
the above result that, under the beforementioned conditions, manipulation within
the minimal closed groups that have finally been formed comes to an end. We also

determine the final consensus opinion of each aperiodic minimal closed group.
Proposition 3.

(1) There exists an almost surely finite stopping time T such that for all t > T,

C(t) =C(7).
(i7) If C € C(7) is aperiodic and for alli,j € C, a > 0,

(1) vi(M(i; 5, ), ) —vi(M(i;5,0), ) = 0 if [|2(3; 5, @) —2(3; 4,0)[| = 0, and
(2) ¢(j,a) = c>0,

then, there exists an almost surely finite stopping time T > 7 such that at all
periods t > T, agents in C' are not manipulated. Moreover, they converge to

the random variable

w(o0) = m(C;7) M(T = De M(T = 2)|¢--- M(1)|¢ 2(0)]¢-

In what follows we use 7 and 7 in the above sense. We denote by 7;(C;t) the
overall influence of agent ¢’s initial opinion on the consensus of group C' at period
t given no more manipulation affecting C' takes place. The overall influence is

implicitly given by Proposition 3.

Corollary 3. The overall influence of the initial opinion of agent i € N on the

consensus of an aperiodic group C € C(T) is given by

sy = | ECA ME =Dl ME=2)lo- M), FieC
ifi ¢ C
It turns out that an agent outside a minimal closed group that has finally formed

can never have any influence on its consensus opinion.

In our context, this means that 7 is a random variable such that the event 7 = ¢ only depends
on which agents were selected to meet another agent at periods 1,2,...,t, and furthermore 7 is

almost surely finite, i.e., the event 7 < +00 has probability 1.
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4.3 Speed of Convergence

We have seen that within an aperiodic minimal closed group C' € C(t) agents reach a
consensus given that the trust structure does not change anymore. This means that
their opinions converge to a common opinion. By speed of convergence we mean the

time that this convergence takes. That is, it is the time it takes for the expression
|zi(t) — 2i(c0)]

to become small. It is well known that this depends crucially on the second largest
eigenvalue Ay (C'; t) of the trust matrix M(t)|,, where M (t)|, = (mi;(t))i jec denotes
the restriction of M(t) to agents in C. Notice that M (t)|, is a stochastic matrix
since C' is minimal closed. The smaller the eigenvalue in absolute value, the faster
the convergence to consensus (see Jackson, 2008).

Thus, the change in the second largest eigenvalue due to manipulation tells
us whether the speed of convergence has increased or decreased. In this context,
the concept of homophily is important, that is, the tendency of people to interact

relatively more with those people who are similar to them.?°

Definition 3 (Homophily). The homophily of a group of agents G C N at period
t is defined as

1
Hom(G; t) @ %:G mi;(t) ieG%G m;(t)

The homophily of a group of agents is the normalized difference of their trust in
agents inside and outside the group. Notice that a minimal closed group C' € C(t) at-
tains the maximum homophily, Hom(C;t) = 1. Consider a cut of society (S,N'\S),
S CN,S #0, into two groups of agents S and N\ S.?! The next lemma establishes
that manipulation across the cut decreases homophily, while manipulation within a

group increases it.

Lemma 2. Take a cut of society (S,N\S). If i € N manipulates j € S at period
t, then

(i) the homophily of S (strictly) increases if i € S (and Y, smir(t) < 1), and

(i) the homophily of S (strictly) decreases if i ¢ S (and )y, s mji(t) > 0).

20Notice that we do not model explicitly the characteristics that lead to homophily.
2IThere exist many different notions of homophily in the literature. Our measure is similar to

the one used in Golub and Jackson (2012). We can consider the average homophily (Hom(S;¢) +
Hom(N\S;t))/2 with respect to the cut (S, NV'\S) as a generalization of degree-weighted homophily

to general weighted averages.
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Now, we come back to the speed of convergence. Given the complexity of the
problem for n > 3, we consider an example of a two-agent society that suggests that

homophily helps to explain the change in speed of convergence.

Example 4 (Speed of convergence with two agents). Take N' = {1,2} and suppose
that at period ¢, N is minimal closed and aperiodic. Then, we have that A\y(N;t) =
ma1(t) —moy(t) = maa(t) —mia(t). Therefore, we can characterize the change in the

second largest eigenvalue as follows:

|>\2(N;t+ 1)| S |)\2(N, t)| = |m11(t+ 1) — mgl(t—F 1)| < |m11(t) —mgl(t)l

& [maz(t +1) — maz(t + 1)[ < [maa(t) — maa(t)]-

It means that convergence is faster after manipulation if afterwards agents behave
more similar, i.e., the trust both agents put on agent 1’s opinion is more similar
(which implies that also the trust they put on agent 2’s opinion is more similar).
Thus, if for instance

maa(t) > (1 + a)ma(?), (1)

then agent 1 manipulating agent 2 accelerates convergence. However, if magy(t) <
mia(t), it slows down convergence since manipulation increases the already existing
tendency of opinions to oscillate. The more interesting case is the first one, though.

We can write (1) as
(1+ o)Hom({1},t) + Hom({2},%) > «,

that is, manipulation accelerates convergence if there is sufficient aggregated ho-

mophily in the society and agent 1 does not exert too much effort.

The example shows that manipulation can speed up or slow down the convergence
process. More important, it suggests that in a sufficiently homophilic society where
exerting effort is rather costly, manipulation reducing homophily (i.e., across the
cut, see Lemma 2) increases the speed of convergence. Notice that manipulation
increasing homophily (i.e., within one of the groups separated by the cut) is not
possible in this simple setting since both groups are singletons. However, it seems

plausible that it would slow down convergence in homophilic societies.??

4.4 Three-agents Example

Finally, let us consider an example with three agents to illustrate the results of this

section. We use a utility model that is composed of the satisfaction function in

22In the above example, increasing homophily is attained by increasing the weight of an agent
on herself, which leads to an increase of the second largest eigenvalue in sufficiently homophilic

societies.
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Example 1 (i) and a cost function that combines fixed costs and quadratic costs of
effort.

Example 5 (Three-agents society). Take N/ = {1,2,3} and assume that

(M), 20):7,0) =~ 3 (1) ault + D)~ (02 + 1/10- 1oy (0)
ki

for all i € N. Let 2(0) = (10,5, 1) be the vector of initial opinions and

6 2 2
MO)=|.1 4 5
0 6 4

be the initial trust matrix. Notice that this society is connected. The vector of
initial long-run influence — and of long-run influence in the classical model without
manipulation — is w(N; 0) = mq = (.12, .46, .42)" and the initial speed of convergence
is measured by Ag(N;0) = Ag.q = .55. At period 0, any agent selected to exert effort
would do so. It is either F(0) = (1;3,1.46),(2;1,.6) or (3;1,1.4). In expectation, we
get E[r(N;1)] = (.2, .41,.39) and E[A2(N;1)] = .21. So, on average agent 1 profits
from manipulation. Since initially the other agents almost did not listen to her and
also her opinion was far apart from the others’ opinions, she exerts significant effort
when selected. In particular, the society is homophilic: taking the cut ({1}, {2,3}),
we get

Hom({1},0) = .2 and Hom({2,3},0) = .9.

So, since with probability one the manipulation is across the cut, the strong decrease
in the (expected) second largest eigenvalue supports our suggestion from Section 4.3
that manipulation reducing homophily (i.e., across the cut) increases the speed of
convergence.

At the next period, there is only manipulation if at the last period an agent
other than agent 3 was selected to manipulate. In expectation, we get E[r(N;2)] =
(.22,.41,.38)" and E[M\2(N;2)] = .17. Again, agent 1 profits on average from ma-
nipulation, but only slightly since opinions are already closer and since she is not
as isolated as in the beginning. The convergence gets, on average, slightly faster as
well.

Manipulation ends here, that is, with probability one no agent exerts effort from
period 2 on, i.e M(t) = M(2) for all ¢t > 2. Hence, the expected influence of the

agents’ initial opinions on the consensus is
E[F(N;2)] = E[r(N;2) M(1)] = E[x(N;2) M(1)] = (.21, .41,.38).
Thus, the expected consensus that society reaches is

Elz(c0)] = E[F(N;2)]2(0) = 4.53.
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Compared to this, the classical model gives xq(oc0) = m,2(0) = 3.88 and hence,
our model leads to an average long-run belief of society that is closer to the initial
opinion of agent 1 since she is the one who (on average) gains influence due to

manipulation.

5 The Wisdom of Crowds

We now investigate how manipulation affects the extent of misinformation in society.
In this section, we assume that the society forms one minimal closed and aperiodic
group. Clearly, societies that are not connected fail to aggregate information.?® We
use an approach similar to Acemoglu et al. (2010) and assume that there is a true
state = (1/n)>_,c 2:(0) that corresponds to the average of the initial opinions
of the n agents in the society. Information about the true state is dispersed, but
can easily be aggregated by the agents: uniform overall influence on the long-run
beliefs leads to perfect aggregation of information.?* Notice that, in general, agents
cannot infer the true state from the initial information since they only get to know
the information of their neighbors.

At a given period t, the wisdom of the society is measured by the difference
between the true state and the consensus they would reach in case no more manip-

ulation takes place:
1
AWt 20) — = 3 (RN - 1) 0
1eEN

Hence, ||T(N;t) — (1/n)I|l2 measures the extent of misinformation in the society,

where I = (1,1,...,1)" € R" is a vector of 1s and |[[z]2 = /D ,cp |Tk|* is the

standard Euclidean norm of x € R™. We say that an agent ¢ undersells (oversells)
her information at period ¢ if 7;(N;t) < 1/n (7;(N;t) > 1/n). In a sense, an agent
underselling her information is, compared to her overall influence, (relatively) well

informed.

Definition 4 (Extent of misinformation). A manipulation at period ¢ reduces the

extent of misinformation in society if
TNt +1) — (/)2 < [[FN5E) — (1/n)L]2,

otherwise, it (weakly) increases the extent of misinformation.

23However, as in Example 2, we can observe that manipulation leads to a connected society and

thus such an event can also be viewed as reducing the extent of misinformation in the society.
24We can think of the initial opinions as being drawn independently from some distribution with

mean p. Then, uniform overall influence leads as well to optimal aggregation, the difference being

that it is not perfect in this case due to the finite number of samples.
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The next lemma describes, given some agent manipulates another agent, the

change in the overall influence of an agent from period ¢ to period t + 1.

Lemma 3. Suppose that C(0) = {N'} and that N is aperiodic. Fork € N, at period
t,

(Nt—i—l)—?Tth Zmlk 7'('th+1)—71'1(/\[ t))

In case there is manipulation at period t, the overall influence of the initial
opinion of an agent increases if the agents that overall trust her gain (on average)
influence from the manipulation. Next, we provide conditions ensuring that a ma-
nipulation reduces the extent of misinformation in the society. First, manipulation
should not be too cheap for the agent who is manipulating. Second, only agents
underselling their information should gain overall influence. We say that 7(N;t) is
generic if for all k € N it holds that 7, (N;t) # 1/n.

Proposition 4. Suppose that C(0) = {N}, N is aperiodic and that T(N;t) is
generic. Then, there exists @ > 0 such that E(t) = (i;j,«), a > 0, reduces the

extent of misinformation if
(1) a <@, and

(11) S k() (MmNt + 1) — m(N5t)) > 0 if and only if k undersells her infor-

mation at period t.

Intuitively, condition (ii) says that (relatively) well informed agents (those that
undersell their information) should gain overall influence, while (relatively) badly
informed agents (those that oversell their information) should lose overall influence.
Then, this leads to a distribution of overall influence in the society that is more
equal and hence reduces the extent of misinformation in the society — but only
if 7 does not exert too much effort on j (condition (i)). Otherwise, manipulation
makes some agents too influential, in particular the manipulating agent, and leads
to a distribution of overall influence that is even more unequal than before. In
other words, information aggregation can be severely harmed when for some agents
manipulation is rather cheap.

We now introduce a true state of the world into Example 5. On average, manipu-
lation reduces the extent of misinformation in each period and the society converges

to a more precise consensus.

Example 6 (Three-agents society, cont’d). Recall that N” = {1,2,3} and that

u (M(t),z(t); j,a) = _% > (wilt) — wn(t+ 1)* = (o +1/10 - 1{as0)(a))
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for all i € N. Furthermore, x(0) = (10,5,1)" and

M(0) =

O = o
o o
~ Ot DN

Hence, u = (1/3) >,c 2i(0) = 5.33 is the true state. The vector of initial overall
influence is T(N;0) = 7(N;0) = (.12,.46,.42). Recall that in expectation, we
obtain E[m(N;1)] = E[r(N;1)] = (.2,.41,.39), E[T(N;2)] = (.21, .41, .38)" and that
there is no more manipulation from period 2 on. Thus,

7N 0) — (1/3)T||, = 268 > [|E[F(N; 1)] — (1/3)I]|, = .161
> |E[RWN;2)] — (1/3)I]]; = .158.

So, in terms of the expected long-run influence, manipulation reduces the extent
of misinformation in society. And indeed, the agents reach the expected consensus
E[z(00)] = 4.53, which is closer to the true state p = 5.33 than the consensus they
would have reached in the classical model of DeGroot, z.(c0) = 3.88.

This confirms the intuition that manipulation has the most bite in the begin-
ning, before potentially misleading opinions have spread. Furthermore, this example
suggests that manipulation can have positive effects on information aggregation if

agents have homogeneous preferences for manipulation.

6 Conclusion

We investigated the role of manipulation in a model of opinion formation where
agents have beliefs about some question of interest and update them taking weighted
averages of neighbors’ opinions. Our analysis focused on the consequences of manip-
ulation for the trust structure and long-run beliefs in the society, including learning.

We showed that manipulation can modify the trust structure and lead to a
connected society, and thus, to consensus. Furthermore, we found that manipulation
fosters opinion leadership in the sense that the manipulating agent always increases
her influence on the long-run beliefs. And more surprisingly, this may even be the
case for the manipulated agent. The expected change of influence on the long-run
beliefs is ambiguous and depends on the agents’ preferences and the social network.

We also showed that the trust structure of the society settles down and, if the
satisfaction of agents does not directly depend on the trust, manipulation will come
to an end and they reach a consensus (under some weak regularity condition). To
obtain insights on the relation of manipulation and the speed of convergence, we pro-

vided examples and argued that in sufficiently homophilic societies where manipula-
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tion is rather costly, manipulation accelerates convergence if it decreases homophily
and otherwise it slows down convergence.

Regarding learning, we were interested in the question whether manipulation is
beneficial or harmful for information aggregation. We used an approach similar to
Acemoglu et al. (2010) and showed that manipulation reduces the extent of misin-
formation in the society if manipulation is rather costly and the agents underselling
their information gain and those overselling their information lose overall influence.
Not surprisingly, agents for whom manipulation is cheap can severely harm infor-
mation aggregation. Furthermore, our main example suggests that homogeneous
preferences for manipulation favor a reduction of the extent of misinformation in
society.

We should notice that manipulation has no bite if we use the approach of Golub
and Jackson (2010). They studied large societies and showed that opinions converge
to the true state if the influence of the most influential agent in the society is
vanishing as the society grows. Under this condition, manipulation does not change
convergence to the true state since its consequences are negligible compared to the
size of the society. In large societies, information is aggregated before manipulation
(and possibly a series of manipulations) can spread misinformation. The only way
manipulation could have consequences for information aggregation in large societies
would be to enable agents to manipulate a substantial proportion of the society
instead of only one agent. Relaxing the restriction to manipulation of a single agent
at a time is left for future work.

We view our paper as first attempt in studying manipulation and misinforma-
tion in society. Our approach incorporated strategic considerations in a model of
opinion formation a la DeGroot. We made several simplifying assumptions and de-
rived results that apply to general societies. We plan to address some of the open
issues in future work, e.g., extending manipulation to groups and allowing for more

sophisticated agents.

A Appendix

Proof of Proposition 1

(i) Follows immediately since all minimal closed groups remain unchanged.

(ii) If agent ¢ manipulates agent j, then m;;(t + 1) > 0 and thus, since C" 3 j
is minimal closed at period t, there exists a path at t + 1 from [ to ¢ for all
[ € C'. Since C is still minimal closed, it follows that R(t + 1) = R(t) U C",
ie, C(t+1)=C@)\{C"}.

23



(iii) (a) If agent ¢ manipulates agent j, then it follows that » ;e o gy mu(t+1) =1

for all k € C since C is closed at t. Furthermore, since by assumption
there is no path from i to k for any &k € Ugrec)\cyC’ and by definition
of R, 3 coumupy mm(t +1) = 1for all k € R"U {i}. Hence, it follows
that > ccopugy mu(t+1) =1forall k € CUR U{i}, ie., CUR U{i}
is closed.
Note that moreover, since by assumption there is no path from ¢ to k£ for
any k € Ugree\cyC’, there is a path from ¢ to j (otherwise R'U {i} was
closed at t). Thus, since C' is minimal closed and i manipulates j, there
is a path from k to [ for all k,1 € C'U{i} at t + 1. Then, by definition
of R/, there is also a path from k to [ for all k € C U {i} and | € R'.
Moreover, again by assumption and definition of R’, there exists a path
from k to [ for all £ € R’ and all [ € C (otherwise a subset of R’ was
closed at t).

Combined, this implies that the same holds for all k,l € C'U R' U {i}.
Hence, C'U R U {i} is minimal closed, i.e., C(t+ 1) = C(t)\{C} U {C U
R U{i}}.

(b) If agent ¢ manipulates agent j, then mj;(t+1) > 0 and thus, since C' 3 j
is minimal closed at period ¢, there exists a path at £+ 1 from [ to ¢ for all
[ € C. Hence, by assumption there exists a path from agent j to k, but
not vice versa since C’ 5 k is minimal closed. Thus, R(t+1) = R(t)UC,
which finishes the proof.

Proof of Proposition 2

Suppose w.l.o.g. that C(t) = {N}. First, note that aperiodicity is preserved since

manipulation can only increase the number of simple cycles. We can write
M(t+1)=M()+e;z(t),

where e; is the j-th unit vector, and

(mi(t)) / (L + a) — myi(t) if k #i
—ampp(t)) (1+a) ifk#i
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From Hunter (2005), we get
TNt + 1) — mp(N3t) = —mp(N5 )7 (Nt + 1) Zzl(t)nk(t)
1k
[ af (L @) N Om N 1) Dm0t it =i
| o/ (L4 ) TN ) (Nt + 1) <Zl;£k m (t)ru(t) — m(ﬂ) if k#i

which finishes the proof.

Proof of Corollary 1

We know that m(C;t), m(C;t + 1) > 0 for all £ € C. Note that if i manipulates
J, i.e., a > 0, then it must be that m;;(t) < 1 since otherwise [M(t)](i;j,a) =
[M(t)](i;7,0) and thus the agent would not have exerted effort. Thus, by Remark
2, Y ieoniy Mat(H)r(t) > 0 and hence m; (N5 ¢+ 1) > m;(AN;t), which proves part (i).
Part (ii) is obvious. Part (iii) follows since my,(¢) = 1 implies ;o 4y M (8)7u(8) =
0, which finishes the proof.

Proof of Lemma 1

By Proposition 1, we know that C(t) = {N} for all ¢ > 0, and furthermore, also
aperiodicity is preserved. First, we show that the opinions converge to a consensus
x(00). Therefore, suppose to the contrary that the opinions (with positive prob-
ability) do not converge. This implies that there exists a periodic trust matrix
M* € R™" such that for some sequence of agents {i*(t)}+>o chosen to manipulate,
M(t) — M* for t — co. Denote the decision of i*(¢) at period t by (j*(¢), a*(%)).
Notice that since M (t) is aperiodic for all ¢ > 0, i.e., M(t) # M* for all ¢ > 0, this
is only possible if there are infinitely many manipulations. (2)

Denoting by x*(¢) the opinions and by M*(t) the trust matrix at period ¢ in the

above case, we get

[l @) (1) 57 (1), o (1)) — =" ()] (i (£); 57(2), 0) |
=|[[M ) (" (1) 57 (1), o (1)) 2" () — M*(t)a* (1) |

— 0 for t — oo,
and thus, by assumption,
v ([ME (O] (7 (0); 57 (8), (1)), 27 (1)) — v (M) (@ (1):57(2),0), 27(t))
— 0<c<c¢(4°(t),a"(t)) for t — oo,

which is a contradiction to (2). Having established the convergence of opinions,
it follows directly that |[|[z(t)](7; 7, ) — [2(2)](3;4,0)]] — 0 fort — oo, any i se-
lected at ¢ and her choice (j, ). Hence, by assumption, v;([M (¢)](i; j, @), z(t)) —
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v ([M(8)](i;7,0),2(t)) = 0 < ¢ < ¢i(j,a) for t — oo, any i selected at ¢ and her

choice (j, ), which shows that there exits an almost surely finite stopping time 7

such that for all t > 7, E(t) = (4;-,0) for any ¢ chosen to manipulate at ¢.
Furthermore, since M(7) is aperiodic and no more manipulation takes place,

agents reach a (random) consensus that can be written as

z(00) = 7(N;7)2(7)

T(N;7)M(T)z(r — 1)
(N5 M(r —1)M (7 —2)--- M(1)z(0)
m(N;7)'M (T = 1)2(0),

where the second equality follows from the fact that 7(N; 7) is a left eigenvector of

M (1) corresponding to eigenvalue 1, which finishes the proof.

Proof of Proposition 3

Suppose that the sequence (73)52; of stopping times denotes the periods where the
trust structure changes, i.e., at ¢ = 7, the trust structure changes the k-th time.
Notice that 7, = +o0 if the k-th change never happens. By Proposition 1, it follows
that when 7, < +o00, either

(a) 1< |C(me +1)| < [C(r)| and |R(m, + 1)| > |R(y)], or
(b) [C(rs + 1) = |C(7,)] and 0 < |R(ry + 1)| < |R(7)]

holds. This implies that the maximal number of changes in the trust structure
is finite, i.e., there exists K < +oo such that there are at most K changes in the
structure and thus, almost surely 7441 = +oo. Hence, 7 = max{m, +1 | 7, <
+00} < 400, where 79 = 0, is the desired almost surely finite stopping time, which
finishes part (i). Part (ii) follows from Lemma 1. The restriction to C' of the matrices
M (t) in the computation of the consensus belief is due to the fact that M(t)|, is a
stochastic matrix for all ¢ > 0 since C' is minimal closed at ¢ = 7, which finishes the

proof.
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Proof of Lemma 2

Suppose that i € S. Since 3, o mk(t) — 3 opag myr(t) < (<)1, it follows that

> T m(t) =Y m(t)

kes k¢S

< (<) (Z me(t) =Y mjk(t)> /(14 a)+a/(1+a)

kesS k¢S

= > mu() = > mut) | /(1 +a) + (my(t) + @)/ (1 + )

keS\{i} k¢S

= my(t+1) =Y my(t + 1)

kes k¢S
and hence Hom(S;¢ + 1) > (>)Hom(S;t), which finishes part (i). Part (ii) is anal-

ogous, which finishes the proof.

Proof of Lemma 3

We can write

TNt +1) = imzk(t)m(./\/’;t—k 1)
—Zmlk 7T1N t+ )—Wz(N;t))+Zmlk(t)ﬂl(./\[;t)

—Zmlk 7T1Nf}+ )—Wz(./\[;t))+imlk(t—1)ﬂl(/\[;t),

N

:ﬁ;:(?\/;t)
where the last equality follows since w(N;t) is a left eigenvector of M (t), which
finishes the proof.

Proof of Proposition 4

Let N, C N denote the set of agents that undersell their information at period
t. Then, the agents in N* = N\N, oversell their information and additionally,
N,, N* # (). By Proposition 2, we have 7 (N;t + 1) — mx(N;t) — 0 for « — 0 and
all k € N and thus by Lemma 3 we have

TeNGt+1) =T (N;t) = 0 for « — 0 and all k € N. (3)

Let k € N,, then by (ii) and Lemma 3, Tx(N;t + 1) > 7T (N;t). Hence, by (3),
there exists @(k) > 0 such that

I/n>7pN;t+1) > T (N t) for all 0 < a < a(k).

27



Analogously, for k € N*, there exists @(k) > 0 such that
I/n <7 (N5t +1) <TR(N;t) for all 0 < a < a@(k).
Therefore, setting @ = mingen @(k), we get for 0 < o <@

TN ) = (1/n) T3 = ) [m(N3t) — 1/nf?

keN
=Y W) = UnP+ > [FeWN ) — 1/nf
RENs S Witr)—1/n2 FENT Sm Witr 1) 1/nf2
> mNt+1) = 1/n)
keN

= 7Nt +1) — (1/n) - 1|3,

which finishes the proof.
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