
Ray, Debraj; Vohra, Rajiv

Working Paper

The farsighted stable set

Working Paper, No. 2013-11

Provided in Cooperation with:
Department of Economics, Brown University

Suggested Citation: Ray, Debraj; Vohra, Rajiv (2013) : The farsighted stable set, Working Paper, No.
2013-11, Brown University, Department of Economics, Providence, RI

This Version is available at:
https://hdl.handle.net/10419/102634

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/102634
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


The Farsighted Stable Set: Online Appendix

Debraj Ray (New York University)

and

Rajiv Vohra (Brown University)

O.1. FARSIGHTED STABLE SETS: EXISTENCE AND SOME CONNECTIONS

The existence question was one that von Neumann and Morgenstern (1944) regarded as vitally
important:

There can, of course, be no concessions as regards existence. If it should turn
out that our requirements concerning a solution. . . are, in any special case, unful-
fillable, — this would certainly necessitate a fundamental change in the theory.
Thus a general proof of the existence of solutions. . . for all particular cases1 is
most desirable. It will appear from our subsequent investigations that this proof
has not yet been carried out in full generality but that in all cases considered so
far solutions were found. (Section 4.6.3.)

One presumes that von Neumann and Morgenstern were referring to transferable-utility games,
because it is quite easy to show that vNM stable sets do not exist over the entire domain of
all characteristic functions. Stearns (1964) constructed such an example, and we do something
analogous for the farsighted stable set in Example O.2 below. But the TU case proved to be
much harder to resolve, and the question was not settled until Lucas (1968) provided a ten-person
example of a TU game without a vNM stable set.

O.1.1. Two Examples. We reproduce the celebrated Lucas example here, as it will provide a
noteworthy instance of the role played by separability.

EXAMPLE O.1. A ten-player TU game (Lucas, 1968): v(N) = 5, v(1, 3, 5, 7, 9) = 4, v(3, 5, 7, 9) =
v(1, 5, 7, 9) = v(1, 3, 7, 9) = 3, ,v(3, 5, 7) = v(1, 5, 7) = v(1, 3, 7) = v(3, 5, 9) = v(1, 5, 9) =
v(1, 3, 9) = v(1, 4, 7, 9) = v(3, 6, 7, 9) = v(2, 5, 7, 9) = 2, v(1, 2) = v(3, 4) = v(5, 6) =
v(6, 7) = v(7, 8) = v(9, 10) = 1, and v(S) = 0 for all other coalitions S.

This is a game with a non-empty core but without a vNM stable set. Yet a farsighted stable set
exists.

Although this game is not superadditive, it has the property that any efficient payoff can be
achieved through the grand coalition.2 A payoff allocation u belongs to the core of this game if
and only if it satisfies the following two conditions:

(o.1) u1 + u2 = u3 + u4 = u5 + u6 = u7 + u8 = u9 + u10 = 1,

1In the terminology of games: for all numbers of participants and for all possible rules of the game.
2Indeed, as Lucas (1968) points out, the superadditive cover of this game also does not possess a stable set.
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and

(o.2) u1 + u3 + u5 + u7 + u9 ≥ 4.

As Lucas observed, this game admits allocations that solve (o.1) and (o.2), so the core is nonempty.
However, because v(S) = 1 for S consisting of adjacent pairs beginning with odd indices, e.g.,
{1, 2} or {5, 6}, it follows from (o.1) that the interior of the core is empty. At the same time,
there are core allocations that are separable. Consider any u in the core such that every odd
player receives ui > 0.8. For instance consider u∗ where

u∗i =

{
0.9 if i is odd
0.1 if i is even

It can be shown that the only coalitions that can achieve u∗ are coalitions that consist of pairs
of adjacent players starting with odd indices. Thus, if u∗ is feasible for a strict subpartition it
must be one in which each coalition consists of such adjacent pairs. But then, by the fact that the
subpartition is strict, the complement must contain at least one more such adjacent pair. For this
pair u∗ is feasible. Therefore u∗ is separable. By Theorem 2, [u∗] is a farsighted stable set.3

Yet we know from Lucas (1968) that this game admits no vNM stable set.

Separability plays a key role here in establishing the existence of a single-payoff farsighted stable
set, even when there is no vNM stable set. As we’ve seen in Section 5, farsighted stable sets
do exist in a large class of games that have no separable allocation, or even a core allocation.
How general, then, is the existence property? Certainly, one cannot hope that the existence of a
farsighted stable set is invariably guaranteed:

EXAMPLE O.2. A three-player NTU “roommate game” (Lucas 1992, Banerjee et al. 2001,
Diamantoudi and Xue 2003, and Herings et al. 2011): V (S) = {v ≤ aS} for all S ⊂ N , where

a{12} = (3, 2), a{23} = (3, 2), a{13} = (2, 3)

and V (N) is the comprehensive hull of {a{12}, a{23}, a{13}}.

It is easy to see that this example has an empty core and does not possess either a vNM stable set
or a farsighted stable set.4

But this example is not entirely definitive, for the following reason. This very example is well-
known as an easy counterexample to the existence of the traditional vNM set for general NTU
games. But that did not prevent a search for a counterexample in the TU context, a question that

3Harsanyi stable sets exist as well, though these are very different from the farsighted stable set; more on this
contrast in Section O.4. Define ū by ūi = 0.8 if i is odd, and by ūi = 0.2 if i is even. ū is part of a Harsanyi
stable set as it satisfies the conditions of Béal et al. (2008); see also Diamantoudi and Xue (2005). Notice also that
ū is feasible for the five-player coalition consisting of all the odd numbered players but not for any coalition in the
complement. The state x = (ū, N) It is therefore not separable, and so by Theorem 2, it cannot be a farsighted stable
set for any effectivity correspondence satisfying Conditions (i) and (ii).

4It follows from Bhattacharya and Brosi (2011) that there do exist Harsanyi farsighted stable sets in this example
if imputations are defined as individually rational payoffs on the boundary of V (N). For example, (3, 2, 0) is a
singleton Harsanyi stable set. The farsighted objection from (0, 3, 2) to this imputation involves player 1 leaving
the grand coalition and assigning 0 to player 2 (moving to the imputation (0, 0, 2)), which leads 1 and 2 to move to
(3, 2, 0). This argument obviously does not work if the departure of 1 from the grand coalition results in (0, 3, 2).
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was finally settled after many years by Lucas (Example O.1 above). For the same reason, we
would like to know if there are corresponding counterexamples to the existence of the farsighted
stable set in TU games. Or does every TU game necessarily admit at least one such set? So far,
it appears from our analysis (see especially Section 5) that the answer is in the affirmative. But
the question remains open. In the remainder of this Section we consider some special cases in
which the existence issue can be approached by drawing a connection with the vNM stable set.

O.1.2. Main Simple Solutions and Farsighted Stability. Consider Example 3 in the main
text, which is a symmetric majority game, and suppose that there are just three players. It is
not difficult to verify that there is a farsighted stable set which consists of the three imputations
(0.5, 0.5, 0), (0.5, 0, 0.5) and (0, 0.5, 0.5) (and the accompanying winning coalitions). It also
happens to be a vNM stable set. In fact, this configuration is an example of what von Neumann
and Morgenstern (1944) called a main simple solution. Suppose there is a ∈ <N

+ such that∑
i∈S ai = 1 for every minimal winning coalition S. For every such S define uS to be the

imputation where uSi = ai for i ∈ S and aSi = 0 for i /∈ S. Then, the set of all such imputations
is a (finite) vNM stable set, and is called a main simple solution. von Neumann and Morgenstern
(1944) showed that such solutions exist for a class of simple games, which includes a subclass of
weighted majority games. (There are, however, games in which there is no such solution, such
as Example 2 in the main text.)

It can be shown that any main simple solution U with an associated vector a � 0 corresponds
to a farsighted stable set. Apart from the possible connection via discriminatory sets (also made
via Example 3), this is a second link between vNM stable sets and farsighted stable sets. More
precisely, suppose U ∈ 4 is a main simple solution in the sense of von Neumann and Morgen-
stern with vector a � 0. Consider the corresponding set of states: F ∗ = ∪u∈U [u]. We claim
that F ∗ is a farsighted stable set. To see that it satisfies external stability consider a state x such
that u(x) /∈ U . Then there exists a minimal winning coalition T such that ai > ui(x) for all
i ∈ T and

∑
i∈T ai = 1. Let y be the state with T as the winning coalition and aT as the payoff

to T . Clearly, there is an objection (in one step), via coalition T , from x to y. To prove inter-
nal stability, suppose x, y ∈ F ∗ and there is a farsighted objection leading from x to y. Since
u(x) ∈ U , there is a minimal winning coalition T such that ui(x) = ai > 0 for all i ∈ T and
ui(x) = 0 for i /∈ T . Since ui(x) = ai > 0 for all i ∈ T , T ⊆ W (x). None of the players in
T can gain by moving to y: they will either receive 0 or ai at y. By Lemma 2 there must be a
coalition S ⊆ W (x) such that S ∩ T = ∅ and W (y)− S is losing. But that is impossible since
T ⊆W (x)− S is a winning coalition. This establishes the internal stability of F ∗.

O.1.3. The Demand Bargaining Set and Farsighted Stability. For games that possess a main
simple solution there is also an interesting connection with the demand bargaining set of Morelli
and Montero (2003). One of the important differences between this solution concept and the
traditional bargaining set is that there is a given vector of demands for each player and a coun-
terobjecting coalition is required to meet these demands for each of its players. These demands
are suggestive of a connection with the vector of payoffs associated with a main simple solution.
Indeed, Morelli and Montero (2003) show that in all constant sum simple games that admit a
main simple solution, the unique imputation corresponding to the demand bargaining set is pre-
cisely the main simple solution. It follows from our earlier discussion that it also corresponds to
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a farsighted stable set. There is one noteworthy difference, however. While the (unique) demand
bargaining set coincides with the main simple solution of such games, there may well be other
vNM stable sets and farsighted stable sets, as in Example 3.

O.1.4. Pillage Games and Farsighted Stability. Pillage games, introduced in Jordan (2006),
provide another interesting case in which farsightedness doesn’t modify the myopic notion of
a stable set. These are games in which the ability of a coalition to change a given allocation
depends on its power, and power itself depends on the current allocation. Given an allocation
u ∈ 4, the power of coalition S is denoted π(S, u), where π(S, u′) ≥ π(S, u) if u′S ≥ uS
and π(S, u′) > π(S, u) if u′S � uS . It is also assumed that expanding a coalition does not
reduce its power. A coalition can change an allocation through pillage if it has more power than
those who stand to lose. Formally, in our framework, let 4 be the set of states and define the
effectivity correspondence to be such that S ∈ E(u, u′) if and only if π(S, u) > π(L, u), where
L = {i ∈ N | u′i < ui}. Applying the standard notion of domination, say that an allocation u′

dominates u if there is a coalition S such that u′S � uS and S ∈ E(u, u′).

Note that S can be taken, without loss of generality, to be W = {i ∈ N | u′i > ui}. The implicit
assumption is that those who have nothing to gain or lose remain neutral. The core and the vNM
stable set can be defined as in Section 2.2. This is so even though a pillage game is not specified
in terms of a characteristic function. While a coalition that pillages is reminiscent of a winning
coalition in a simple game, in that it can expropriate the resources of the less powerful, its power
to do so depends on the current allocation.

Jordan (2006) shows that the core of a pillage game is often empty, or nonempty in uninteresting
ways. He then characterizes the stable set for a variety of different power functions. At first sight
it appears that the stable set in this context is also subject to the Harsanyi critique. However, as
Jordan (2006) demonstrates, properly accounting for the behavior of otherwise neutral players,
through a consistent expectations function, preserves the stability of the stable set even in a
farsighted sense. This feature of the vNM stable set in pillage games can be shown directly in
our framework as follows.

In defining farsighted dominance we should assume that all players are farsighted, including
those who see no change in their payoff in a single step of a farsighted move. With this in mind,
say that u′ farsightedly dominates u if there is a collection of allocations u0, u1, . . . , um (with
u0 = u and um = u′) and a corresponding collection of coalitions, S1, . . . , Sm, such that for all
k = 1, . . .m:

π(Sk, uk−1) > π(L′, u), where L′ = {i ∈ N | u′i < ui}
and

u′Sk � uk−1
Sk .

Observe that S1, which initiates the farsighted move, has more power than those who eventually
lose. This implies that S1 could have moved directly from u to u′, which can also be expressed
more succinctly as:

π(W ′, u) > π(L′, u) where W ′ = {i ∈ N | u′i > ui}.

Thus, u′ farsightedly dominates u if and only if it (myopically) dominates u.
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O.2. A REMARK ON HEDONIC GAMES

In a hedonic game, the payoff to every individual is well-defined once we know the particular
coalition to which she belongs. That is, a hedonic game is fully described by a collection of vec-
tors {aS}, one for every coalition S, such that V (S) = {v ∈ IRS | v ≤ aS}, and V̄ (S) = {aS}.
As we have already observed in the main text, hedonic games are particularly well suited for
studying farsighted stability, since such games are free of any ambiguity about how the forma-
tion of a coalition affects outsiders. Banerjee et al. (2001) and Bogomolnaia and Jackson (2002)
provide several conditions under which the core partition (or the coalition structure core) of a
hedonic game is non-empty. Diamantoudi and Xue (2003) show that if all players have strict
preferences across coalitions, then every core partition yields a single-payoff farsighted stable
set.

This result can be obtained as a corollary of Theorem 2 by observing that every core allocation
of a hedonic game with strict preferences is separable.5 To see this consider a hedonic game
described by the collection {aS}. Suppose further that players have strict preferences across
coalitions, so that if i ∈ S ∩ T and S 6= T , then aSi 6= aTi . Suppose y = (u, π) ∈ C(N,V,E).
Let S(i) denote the coalition in π that contains i; then u = (a

S(i)
i )i∈N . Suppose uT ∈ V (T )

for every T in some strict subpartition T . If every T ∈ T is in π, then u trivially satisfies
separability. Otherwise, there is a coalition T ∈ T such that T /∈ π, which means that T 6= S(j)

for every j ∈ T . Because uT ∈ V (T ), aTj ≥ a
S(j)
j for all j ∈ T . By the assumption of

strict preferences, all these inequalities must be strict. But this contradicts the hypothesis that
y ∈ C(N,V,E).

One condition that has been shown to be sufficient for the non-emptiness of the core partition
in a hedonic game is the top coalition property. For a subset Q of N , coalition S is said to
be a top coalition of Q if for every i ∈ S and T ⊆ Q such that i ∈ T , aSi ≥ aTi . A game
(N,V ) has the top coalition property if every Q ⊆ N has a top coalition. Banerjee at al. (2001)
show that if preferences are strict, this property implies the existence of a unique core partition.
Diamantoudi and Xue (2003) prove that in this case the unique core partition is also the unique
farsighted stable set. That yields a complete characterization of farsighted stable sets in hedonic
games with the top coalition property. Another instance of hedonic games in which the only
farsighted stable sets are single-payoff core/separable allocations is provided by Mauleon et al.
(2011) who prove this for a matching game with strict preferences. We don’t yet know if such a
characterization holds more generally for hedonic games with a non-empty core.

O.3. A FURTHER RESTRICTION ON THE EFFECTIVITY CORRESPONDENCE

We introduce a mild additional restriction on the effectivity correspondence that will be used
in the analysis below. Recall that Conditions (i) and (ii) in the main text dealt with coalitional
sovereignty for untouched and deviating coalitions. Condition (iii), introduced for simple games,
went a step further to consider “affected” coalitions. It stated that if a subcoalition of a winning

5If preferences are not strict, it is possible that a core allocation in a hedonic game does not satisfy separability
(see Example 3 in Diamantoudi and Xue (2003)), and is therefore not a single-payoff farsighted stable set.
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coalition were to break away, leaving behind a residual that is still winning, then no individual in
that residual can be made immediately worse off by the deviation. That condition made perfect
sense, as there would be the same surplus left for a smaller coalition, but of course it only holds
for simple games. What follows is an extension to a more general class.

Let T move. Consider a residual coalition W ; i.e., W = S − T for some S ∈ π(x), where
S ∩ T 6= ∅. We want to assign a “default payoff” to W immediately following T ’s departure
(as emphasized earlier, this can change in subsequent stages). The idea we wish to formalize
is that when a coalition moves it cannot control the payoffs accruing to the residual players;
there is an exogenously specified, unique default payoff to the residuals. Formally, a default
function fW maps payoffs v in RW to fresh payoffs fW (v) on the coalitional frontier V̄ (W ).
The interpretation is that W is a residual after some members from a larger coalition have left.
W was enjoying a payoff of v just before that move (i.e., v = uW (x), where x was the “earlier”
state), and fW (v) is the payoff vector that it receives just after the move.6

A default function fW is monotonic if for every v ∈ RW , either fW (v)i > vi for all i ∈ W ,
or 0 < fW (x)i < vi for all i ∈ W with vi > 0, or fW (x)i = vi for all i ∈ W . In words,
immediately following the move, the payoffs to every residual member either uniformly go up,
or go down relative to what they were getting before, or they don’t change at all.

Now we can formally state our additional restriction on the effectivity correspondence:

(iv) There exists a monotonic, continuous default function fW defined for every subcoalition
W such that whenever there is a move from x to y, u(y)W = fW (u(x)W ) for every residual
coalition W .

It is easy to check that Condition (iv) implies Condition (iii) for the special class of simple games
studied in the main text.

O.4. PROOF OF THE ASSERTION PERTAINING TO EXAMPLE 1

The stable sets of Theorem 2 are essentially singletons, as in the case of the Harsanyi sets. But
the two collections couldn’t be more different. Our stable sets are entirely “compatible” with the
core, in the sense that every farsighted stable set of Theorem 2 contains a payoff allocation that
belongs to the coalition structure core. (Some non-separable core allocations are excluded, but
these are boundary exceptions: every interior core allocation is separable and therefore compat-
ible with far-sighted stability.) In contrast, a Harsanyi set cannot contain any allocation in the
interior of the core.

Example 1 in the main text is designed to emphasize the difference between the two sets. We
reproduce that example here:

EXAMPLE O.3. A three-player TU convex game: v(S) = 3 for S such that |S| = 2, and
v(N) = 6. The set of efficient allocations is depicted in Figure O.1. The core is the convex hull
of (3, 3, 0), (0, 3, 3) and (3, 0, 0), shown as the inverted central triangle in Figure O.1.

6The default could, in general, depend both on the pre-move state as well as the identity of the moving coalition.
It simplifies the exposition to assume that the default payoff depends only on the pre-move payoff profile to W .
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(6, 0, 0)

(3, 3, 0)

(0, 6, 0) (0, 0, 6)

(3, 0, 3)

(0, 3, 3)

FIGURE O.1. COMPARISON OF STABLE SETS

In the main text, we assert that “under a weak additional condition on the effectivity correspon-
dence, there are no other farsighted stable sets in this example, single-payoff or otherwise.” The
following Observation formalizes this assertion:

OBSERVATION 1. Suppose that the effectivity correspondence satisfies Conditions (i), (ii) and
(iv). Then F is a farsighted stable set of the game in Example O.3 if and only if F = {(N, u)},
where u is an imputation in the interior of the core.

To prove this Observation we shall rely on a Lemma.

LEMMA O.1. Suppose (N, v) is a three-person, superadditive TU game with v(N) > v(S) for
all S ⊂ N . If default functions are continuous and monotonic, then any state in a farsighted
stable set must consist of the grand coalition and an imputation. Moreover, there is at least one
such state in which all players receive a strictly positive payoff.

Proof. We begin by showing that if F is a farsighted stable set then it cannot include a state x′

where u(x′) = 0. Suppose not. This implies that no state x such that u(x) � 0 can belong to
F . Any such x must therefore be farsightedly dominated by some y ∈ F , with u(y)i = 0 for
some i ∈ N . Note that every coalition that forms in the move form x to y must provide a strictly
positive payoff to all its players.7 The last coalition to form must therefore be a doubleton, i.e.,
π(y) = ({i, j}, {k}) with u(y)i > 0 and u(y)j > 0. But then y dominates x′, contradicting the
supposition that x′ ∈ F .

Next, we show that no state with an intermediate coalition structure can be in F . Suppose, to the
contrary, that there is a state xi = (πi, ui) ∈ F , where πi = ({j, k}, {i}). The case in which
v({j, k}) = 0 has already been covered, so there are two cases that remain:

7After all, each player must find it strictly profitable to participate in the final move.
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(i) (uij , u
i
k) � 0. Consider x = (N, u) where u � ui and f{j,k}(x) = (uij , u

i
k). In other

words, if from state x player i were to form a singleton coalition, the resulting payoffs are
precisely ui. This is possible because the default function is monotonic and continuous.8 Because
xi ∈ F , it follows from internal stability that x /∈ F . So there exists a farsighted objection,
initiated by some coalition S from x to x1, leading eventually to y ∈ F . If S = {i}, then, since
f{j,k}(x) = (uij , u

i
k), x1 = xi ∈ F and there cannot be any further change. But this cannot be

a farsighted objection since S receives 0 at xi. Thus S 6= {i} and it must include either j or k.
Without loss of generality, suppose j ∈ S. Let S′ be the coalition in π(y) that contains j. Since
uj(y) > uj(x) > 0, S′ must be either a doubleton or the grand coalition. Moreover, all players
in S′ must receive positive payoffs at y. Suppose j were to stand alone at state xi, precipitating
the coalition structure of singletons, resulting in a 0 payoff to each player. From this state, S′ can
now form and implement y. Since uj(y) > uj(x) > uj(x

i), we have constructed a farsighted
objection leading from xi to y ∈ F , which contradicts the hypothesis that xi ∈ F .

(ii) xi = (πi, ui) ∈ F , where π = ({j, k}, i), uij > 0, uik = uii = 0. Note that k can induce
the finest coalition structure. As we have already argued, this state cannot be stable; there must
be a farsighted objection leading to a state in F . If k is part of any coalition in such a move it
must end up with more than 0. But then k could precipitate such a farsighted move from xi by
first inducing the finest coalition structure, which contradicts the hypothesis that xi ∈ F . Thus,
the only farsighted move from the finest coalition structure must involve players i and j, both of
whom must end up with strictly positive amounts in the end. But this is not possible as we have
already ruled out, in the previous paragraph, the possibility of there being a state in F consisting
of a doubleton coalition with strictly positive payoffs.

Since every stable state involves the grand coalition, dominance of states outside the farsighted
stable set can only come from (stable) states in which all players receive a strictly positive payoff.
And there must be at least one such state. Otherwise it will be impossible for a farsighted stable
state to block any state, in particular one with a strictly positive payoff allocation.9

Proof of Observation 1.

It follows from Theorem 2 that {(N, u)} is a farsighted stable set for every imputation u ∈
C̊(N, v). Suppose there is a farsighted stable set F which does not fit this description. Lemma
O.1 tells us that every state in F must consist of the grand coalition and an imputation. Since
no farsighted stable set can contain another, F must consist only of imputations that are not in
C̊(N, v). By Lemma O.1 there is at least one such state x = (N, u) ∈ F such that u � 0 and,
because u /∈ C̊(N, v), ui ≥ 3 for some i ∈ N . Without loss of generality, suppose u1 ≥ 3.
Consider a state y where π(y) = ({2, 3}, {1}) and (u2(y), u3(y)) ≥ (u2, u3). Such a state exists
because u2 + u3 ≤ 3. Of course, by Lemma O.1, y /∈ F . Neither 2 nor 3 have any interest in
moving from y to x, which implies that x does not farsightedly dominate y. So there must be

8The argument is the following. Let u′ be an imputation where u′
j > ui

j > 0 and u′
k = ui

k > 0. Since
u′
j + u′

k > v({j, k}), and (u′
j , u

′
k) � 0, by monotonicity, f{j,k}(u′)k < ui

k. Similarly, for an imputation u′′ with
u′′
j = ui

j and u′′
k > ui

k, monotonicity implies that f{j,k}(u′′)j < ui
j . It now follows from the continuity of the default

function that there is some imputation, u, on the line segment between u′ and u′′ such that f{j,k}(u) = ui
{j,k}.

9This is analogous to the fact that in simple game a farsighted stable set must include a regular state.
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some other z ∈ F which does, where π(z) = N and u(z)� 0. Either player 2 or player 3 have
to be part of the first coalition that moves from y to z. Without loss of generality, suppose this
coalition includes player 2, and therefore u2(z) > u2(y) ≥ u2. Now there are two possibilities:

(i) u1(z) ≥ 3. Since u � 0 and u1 ≥ 3, we know that u1 + u3 > 3. By monotonicity, this
implies that if player 2 were to stand alone at x, 1 would be left with a payoff strictly less than
3 (recall that v({1, 3}) = 3). And then player 1 can do better by standing alone, precipitating 0
for everyone, and finally having the grand coalition move to z. We have therefore constructed a
farsighted objection leading from x to z, which contradicts internal stability.

(ii) u1(z) < 3. If u3(x) ≥ u3(z), then player 1 can initiate a farsighted move from z to x. The
argument is similar to that used above: player 1 stands alone, counting on player 3 to do the
same, followed by a final move by N to x. If u3(z) > u3(x), then it is easy to see that players 2
and 3 can leave sequentially to make a move from x to z. In either case we have a contradiction
to the supposition that x, z ∈ F .

Thus, we have shown that there is no farsighted stable set F which doesn’t conform to the
description in Theorem 2.

O.5. ANOTHER PERTURBATION OF A SIMPLE GAME WITH VETO

We consider a three-person version of the simple game studied in Section 5 of the main text.
Here, Player 1 is a veto player, but needs at least one other player to win. This is exactly Example
2 in the main text, reproduced here as:

EXAMPLE O.4. N = {1, 2, 3}, v(N) = v({1, 2}) = v({1, 3} = 1 and v(S) = 0 for all other
S. Player 1 can be viewed as the veto player. The coalition structure core has the single payoff
(1, 0, 0).

This is a non-oligarchic simple game, with S∗ = {1}, and with N − S∗ = {23} as the minimal
veto coalition. So Corollary 1 in the main text applies, and we have a full characterization of
farsighted stable sets. Each such set must provide a fixed payoff to player 1, strictly smaller than
1, with the remaining surplus split in all divisions between players 2 and 3.

Theorem 3 in the main text implies that if this game were to be changed to one that is oligarchic,
so that we switch v({1}) to equal 1, then there is just one farsighted stable set, consisting of the
single payoff (1, 0, 0).10 The purpose of this section is to exhibit an even smaller perturbation
to produce a game with separable allocations, and to show that all the farsighted stable sets
described above disappear as soon as the perturbation is in place; the only farsighted stable sets
that remain are the single-payoff sets corresponding to each of the separable allocations.

EXAMPLE O.5. Change Example 2 by setting v(N) = 1 + δ for any δ > 0. (Think of δ as
small.) Now the interior of the core is non-empty; see the shaded area in Figure O.2.

10Strictly speaking, Theorem 3 cannot be applied directly because this modification violates zero-normalization.
However, it is easy to see that the proof still applies to this particular example.



10

�(1+   , 0, 0)

(0, 0, 1+   )(0, 1+   , 0)� �

v v
12 13

FIGURE O.2. PERTURBED VETO GAME

This isn’t a simple game any more, but the perturbation is “finer” because δ can be made arbi-
trarily small. Moreover, because every interior core allocation is separable, Theorem 2 is back in
force again. So every interior core allocation, partnered with the grand coalition, is a farsighted
stable set. At the same time:

OBSERVATION 2. Under Conditions (i), (ii) and (iv) on the effectivity correspondence, the only
farsighted stable sets in Example O.2 are the single-payoff sets described by Theorem 2. In
particular, the continuum of stable sets of Example 2 described in Corollary 1 of the main text
must entirely disappear.

If there is a farsighted stable set that is not a single-payoff state in the interior of the core, then
as we saw in the proof of Observation 1, it must be disjoint from C̊(N, v) and must include a
strictly positive payoff state with the grand coalition. In an argument that parallels the proof of
Lemma 1, it can be shown, that the only such candidates for farsighted stability are collections of
states that all generate the same payoff for individual 1. However, now these sets cannot stretch
from one end of the payoff simplex to the other, as they did for the pure veto game. In particular,
neither player 2 nor 3 can be given a payoff lower than their marginal contribution to the grand
coalition, which is δ. See Figure O.3 for a depiction of the possible sets that remain as potential
candidates.

The argument for this claim will be familiar from the proof of Observation 1. Suppose that player
3 is pushed below δ in some farsighted stable state y containing all three players, and unilaterally
leaves the arrangement. The overall payoff available to players 1 and 2 is now strictly less than
u1(y) + u2(y). By monotonicity, the resulting default payoff must be lower for both 1 and 2.
Next, suppose 1 leaves {12}, precipitating the singletons with zero payoff. In the final step the
grand coalition can make an improvement by moving to a point on the horizontal line segment
shown in Figure O.3. We have constructed a farsighted objection to y, starting with a departure
by player 3, followed by player 1, and then the grand coalition.
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FIGURE O.3. POSSIBLE CANDIDATE FOR FARSIGHTED STABLE SET

But such “truncated” segments cannot be powerful enough to meet the external stability require-
ment. Consider the left-most extremity of the line segment in Figure O.3, which is a payoff
allocation of the form p = (c, 1 − c, δ). Let z be a state such that π(z) = ({1, 2}, {3}) and
u(z) = (c, 1 − c, 0). By Lemma O.1 z cannot be stable. However, farsighted dominance of z
must come from some imputation on the truncated line segment. But that is not possible since 1
and 2 will not participate in any such move and player 3 cannot unilaterally make such a change.

Proof of Observation 2.

Suppose there is a farsighted stable set F which does not conform to the description in Theorem
2. Then, as noted in the proof of Observation 1, F must consist only of imputations that are not
in C̊(N, v). Moreover, there is at least one such state x = (N, u) ∈ F such that u� 0. For the
remainder of the proof, fix a stable set F and x = (N, u) ∈ F such that u� 0.

Claim 1. For any other z ∈ F , u1(z) ≥ u1(x), and if (u2(z), u3(z))� 0, u1(z) = u1(x).

Because player 1 must be part of every coalition with a positive worth, this follows from the
same argument that we used in proving Lemma 1. Note that by Lemma O.1, π(z) = N for every
z ∈ F , which implies that if z is a stable state that farsightedly dominates some other state, then
all players must participate in such a move and u(z)� 0. For such z, therefore u1(z) = u1.11

Claim 2. If u3 < δ (or u2 < δ), then x is the unique state in F that provides each player a strictly
positive payoff.

Suppose u3 < δ and there is y ∈ F such that y 6= x and u(y) � 0. By Claim 1, u1(y) = u1.
This implies that either u3(y) < u3 or u3(y) > u3. In the former case, we can construct a
farsighted objection from y to x as follows. Suppose player 3 leaves the grand coalition at state
y. Because u3(y) < u3 < δ, u1(y) + u2(y) > 1. Since u � 0, this implies, by monotonicity,

11We have not ruled out the possibility that there may be z ∈ F where some players receive 0, but this will not be
relevant for the remainder of the proof.
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that 3’s departure causes 1’s payoff to fall below u1. Next, suppose player 1 leaves {1, 2},
precipitating zero payoffs. The grand coalition can then make a final move to x, restoring 1’s
payoff to u1. Thus x farsightedly dominates y, a contradiction. If u3(y) > u3, player 3 can
trigger a similar farsighted objection, this time leading from x to y. (The case u2 < δ is similar).

Claim 3. min{u2, u3} ≥ δ. (The supposition in Claim 2 does not hold).

Suppose u3 < δ, which means that u1 +u2 > 1. Since u /∈ C̊(N, v), this implies that u1 +u3 ≤
1. Thus, there exists a state z = ({1, 3}, {2}, w) where (w1, w3) ≥ (u1, u3) (and w2 = 0).
By Lemma O.1, z /∈ F and there must be a farsighted objection that leads from z to a stable
state in which all players receive a strictly positive payoff. By Claim 2, the only such state is x.
However, x cannot not farsightedly dominate z. Players 1 or 3 cannot gain in having z replaced
with x, so they cannot be part of any coalition that initiates a move from z. And since player 2
is in a singleton, she cannot on her own change the state. This proves that u3 ≥ δ. A similar
argument shows that u2 ≥ δ.

Claim 4. Every state y with π(y) = N , u1(y) = u1 and min{u2(y), y3(y)} ≥ δ belongs to F .

Suppose not. Then there is y satisfying the stated properties but farsightedly dominated by
z ∈ F . By Claim 2, u1(z) = u1(y) = u1. Thus, the interests of 2 and 3 are opposed in
the move from y to z; both cannot gain. So {23} cannot be the joint first mover. Therefore,
it is either 2 or 3 who must be the first mover. Say it is 2; then u2(z) > u2(y). But then
u3(z) < u3(y). Moreover, because u2(y) ≥ δ to begin with, the departure of player 2 does not
decrease the aggregate payoff available to {13}. By monotonicity, both players 1 and 3 must
then enjoy an intermediate payoff no smaller than what was available under y. So neither 1 nor
3 will participate in further moves. That eliminates this possibility.

We have shown that if there is farsighted stable set that is not as described in Theorem 2, it
must consist of a truncated line segment depicted in Figure O.3 (and possibly some points on
the edges of the simples where player 1 gets more than u1). The left-most extremity of this line
segment is a payoff allocation of the form p = (c, 1 − c, δ). Now, consider the state z where
π(z) = ({1, 2}, {3}) and u(z) = (c, 1 − c, 0). If there is y ∈ F which farsightedly dominates
z, u(y) � 0 and y must be on the line segment. Neither player 1 nor 2 can gain from such
a move, so they cannot be part of any coalition that initiates the move from z. But player 3
cannot unilaterally make a change, which leads us to conclude that there cannot be a farsighted
domination of z from any state in F , i.e., z ∈ F . But this contradicts Lemma O.1.


