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Abstract 

Guided by a macroeconomic model in which non-energy commodity prices are 
endogenously determined, we apply a new factor-based identification strategy to 
decompose the historical sources of changes in commodity prices and global economic 
activity. The model yields a factor structure for commodity prices and identification 
conditions that provide the factors with an economic interpretation: one factor captures 
the combined contribution of shocks that affect commodity markets only through 
general-equilibrium forces. Applied to a cross-section of commodity prices since 1968, 
the theoretical restrictions are consistent with the data and yield structural interpretations 
of the common factors in commodity prices. Commodity-related shocks have contributed 
modestly to global economic fluctuations. 

JEL classification: E3, F4 
Bank classification: Economic models; International topics 

Résumé 

À partir d’un modèle macroéconomique dans lequel les prix des produits de base non 
énergétiques sont déterminés de façon endogène, les auteurs appliquent une nouvelle 
stratégie d’identification factorielle pour décomposer les éléments à l’origine des 
variations des prix des produits de base et de l’activité économique mondiale observées 
par le passé. Le modèle génère une structure factorielle des prix des produits de base, 
ainsi que des conditions d’identification permettant de donner aux facteurs examinés une 
interprétation économique : un facteur unique rend compte de l’incidence combinée de 
chocs dont l’influence sur les marchés des produits de base s’exerce uniquement par 
l’entremise des effets d’équilibre général. Appliquées à un échantillon représentatif des 
prix des produits de base depuis 1968, les contraintes théoriques sont conformes aux 
données et cadrent avec une interprétation structurelle des facteurs communs influant sur 
les prix de ces produits. Les auteurs constatent que les chocs liés aux produits de base ont 
pesé modestement sur les fluctuations de l’économie mondiale. 

Classification JEL : E3, F4 
Classification de la Banque : Modèles économiques ; Questions internationales 
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1 Introduction 
Between January 2003 and July 2008, the prices of most major commodities grew rapidly: wheat by 120%, 
corn by 122%, copper by 363%, aluminum by 100% and nickel by 138%. Many observers concluded that the 
simultaneous rise in prices across such a broad cross-section of commodities reflected a common cause—an 
increase in the global demand for commodities due to growth in emerging Asia and especially China. Other 
episodes of widespread co-movement in commodity prices have similarly suggested that global demand is a 
common source of movements in commodity prices, such as those in the early 1970s or in the late 1990s. But 
this is not necessarily the only explanation: exogenous changes in the prices of oil and other energy products 
could simultaneously drive the prices of many non-energy commodities because of the important role played 
by transportation costs in their distribution. In addition, changing preferences on the part of consumers could 
shift the demand for commodity-intensive products, as could technological changes that affect the relative 
importance of raw materials in the production of consumption goods. Decomposing the sources of commodity 
price co-movement is therefore inextricably linked to identifying the sources of global business cycle 
fluctuations. 
 In this paper, we develop and implement a new methodology for decomposing the sources of 
commodity price co-movement and global business cycle fluctuations. Underlying this methodology is a 
general-equilibrium model of global business cycles with commodities that predicts a factor structure for real 
commodity prices. The predicted factor structure decomposes the sources of global business cycle fluctuations 
and commodity price movements, and the theory suggests several ways to recover a structural interpretation to 
the common factors extracted from commodity prices. In other words, this methodology provides a way to use 
the co-movement in commodity prices to disentangle the simultaneous determination of commodity prices and 
business cycles. 
 The factor structure in commodity prices predicted by the model separates exogenous forces (or 
“shocks”) into two types. The first set of shocks includes those that directly shift the supply and demand curves 
for commodities and thus affect commodity prices, even without general-equilibrium changes in aggregate 
income. We refer to these factors as direct factors. They potentially reflect a variety of common shocks to the 
prices of inputs used to produce commodities, such as labor or energy, common productivity shocks, or 
demand factors such as changes in the relative need for commodities to produce final consumption goods. The 
second set of shocks includes those that affect commodity prices only indirectly through their effects on 
aggregate output. We refer to these as indirect factors. The indirect effects can come through two channels. 
One is the standard demand channel. When aggregate economic activity is high, the demand for commodities 
used to produce the final good is also high, thereby raising the prices of all commodities. There can also be a 
supply-side channel. When aggregate income is high, agents may be less willing to supply the inputs used to 
produce commodities because of income effects, thereby pushing up the prices of commodities. Both channels 
induce positive co-movement in the prices of commodities.  
 The theory predicts a new result about indirect shocks. Because their effects on commodity prices are 
summarized entirely by their effects on aggregate output, each of the shocks induces the same co-movement 
among commodity prices. As a result, their combined effect on commodity prices can be aggregated into a 
single factor. Furthermore, this factor has a precise structural interpretation in the model. It corresponds to the 
counterfactual level of global economic activity that would have been obtained without direct commodity 
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shocks. Identifying this factor therefore provides a new way to recover historical changes in global economic 
activity and commodity prices that reflect endogenous responses to non-commodity-related shocks. In contrast, 
direct shocks induce additional shifts in the supply of or demand for commodities, above and beyond the 
general-equilibrium effects on output, and thus imply a different pattern of co-movement among commodities. 
As a result, each of the direct commodity shocks implies the existence of a distinct factor. 
 However, because standard empirical factor decompositions identify factors only up to a rotation, one 
cannot immediately recover the indirect common factor from a simple factor decomposition of commodity 
prices. The second element of our approach is to impose identification conditions, again grounded in the 
predictions of the theoretical model, to recover the direct and indirect factors underlying commodity price 
movements. The theoretical model provides two ways to do this: sign restrictions on factor loadings of the 
indirect common factor and orthogonality conditions with respect to a set of instruments for either the direct or 
indirect factors. Using a cross-section of 40 non-energy commodity prices available since 1968, we apply both 
identification strategies to identify the indirect factor and find similar results across specifications, indicating 
that the results are robust to the choice of identification strategy and instruments. 
  Our main empirical finding is that the vast majority of historical commodity price movements are 
associated with the indirect factor, i.e., broad-based changes in commodity prices can largely be attributed to a 
general-equilibrium response to aggregate non-commodity shocks rather than direct shocks to commodity 
markets. While there are a number of historical episodes during which direct shocks to commodity markets 
played some role in accounting for commodity price movements and changes in global production (e.g., 1979–
80, the run-up in commodity prices in the 2000s and the decline in prices in 2008–09), the primary source of 
commodity price movements is their endogenous response to non-commodity-related shocks, as argued in 
Kilian (2009) in the case of oil prices.  

Our approach is related to the literature on the macroeconomic effects of shocks to oil and commodity 
prices (Bosworth and Lawrence 1982; Hamilton 1983; Barsky and Kilian 2002; Hamilton 2009; and Blinder 
and Rudd 2012) as well as a growing body of recent research on identifying the sources of oil price 
movements, such as Kilian (2009), Lombardi and Van Robays (2012), Kilian and Murphy (2013), Kilian and 
Lee (2013). However, we differ from this line of research in a number of ways. First, whereas previous work 
has focused primarily on oil prices, we focus on a broader range of non-energy commodities, which are 
essential to implement our identification strategy. Second, our identification strategy is new. Whereas previous 
work has relied on structural vector autoregressions (VAR) of individual commodity markets or estimated 
dynamic stochastic general-equilibrium (DSGE) models, we first apply factor methods that decompose the co-
movement across different commodity prices. We then exploit the predictions about this decomposition from a 
microfounded model to identify the structural sources of fluctuations in commodity prices and aggregate 
output. Third, while identification in structural VARs of commodity markets typically decomposes shocks into 
supply and demand shocks, our general-equilibrium model allows for the fact that exogenous forces can have 
both supply and demand effects. For example, an increase in productivity in the production of final goods will 
not only raise the demand for commodities, but may also lower their supply if income effects induce 
households to restrict the supply of inputs used in the production of commodities. To the extent that income 
effects are small empirically, the resulting identification of the indirect common factor could be interpreted as 
primarily reflecting global demand forces; however, this interpretation is not imposed in our identification.  
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We are not the first to apply factor methods to commodity prices. Some papers have examined whether 
there is excess co-movement among unrelated commodities—that is, price co-movement in excess of what one 
would expect, conditional on macroeconomic fundamentals (Pindyck and Rotemberg 1990; Deb, Trivedi, and 
Varangis 1996; and Ai, Chatrath, and Song 2006). Other papers have investigated the forecasting performance 
of the common factor in metals prices for individual metals prices (West and Wong 2014) and commodity 
convenience yields for inflation (Gospodinov and Ng 2013). But there has been little attempt at interpreting the 
resulting factors in a structural sense. 

Our model provides a structural interpretation of a factor representation for commodity prices along 
with the requisite identification conditions, so that we are able to disentangle the different economic channels 
underlying commodity price movements. In this respect, our approach is related to work that uses economic 
theory to assign factors an economic interpretation. For example, Forni and Reichlin (1998) impose constraints 
guided by economic theory on common factors to identify technological and non-technological shocks (see 
also Gorodnichenko 2006). Another set of papers has identified the factors driving macroeconomic aggregates 
common to all countries and specific subsets of countries (Stock and Watson 2005; and Kose et al. 2012). This 
approach has also been used to identify relative price changes for specific goods and the absolute price changes 
common to all goods (Reis and Watson 2010) and the relative importance of aggregate and sector-specific 
shocks that have driven U.S. industrial production (Foerster et al. 2011). Our paper differs from this line of 
research in that we use commodity price dynamics to identify the sources of global business cycle fluctuations 
and in our identification strategy, which relies on the use of sign restrictions and orthogonality conditions 
rather than zero restrictions on the factor loadings. 

 We also show that our factor-based method can help with forecasting commodity prices. Using 
recursive out-of-sample forecasts, we find that a bivariate factor-augmented VAR (FAVAR) that includes each 
commodity’s price and the first common factor extracted from the cross-section of commodities generates 
improvements in forecast accuracy relative to the no-change forecast, particularly at short (1-, 3- and 6-month) 
horizons. This result extends to broader commodity price indices, such as the Commodity Research Bureau 
(CRB) spot index, the World Bank non-energy index and the International Monetary Fund (IMF) index of non-
energy commodity prices. We also find that the indirect common factor extracted from the cross-section of 
commodity prices helps to predict real oil prices, again with the largest gains being at short horizons (e.g., 20% 
reductions in the mean-squared prediction error (MSPE) at the 1-month horizon). These improvements in the 
accuracy in forecasting oil prices are similar in size to those obtained using oil market VARs in Baumeister 
and Kilian (2012) and Alquist et al. (2013). But unlike the monthly oil market VARs, our approach relies only 
on a cross-section of commodity prices that can be readily updated at monthly or quarterly frequencies. This is 
an important advantage because production and inventory data for commodities are often unavailable at these 
frequencies. Our factor-based approach thus provides a unified framework to forecast commodity prices and a 
structural interpretation of these forecasts. 

The remainder of the paper is organized as follows. Section 2 presents a general-equilibrium business 
cycle model with commodities and shows how the model can be used to assign a structural interpretation to the 
common factors in commodity prices. The section also shows how the model permits an econometrician to 
recover the economic factors from typical factor decompositions through identification restrictions. Section 3 
applies these results to a historical cross-section of commodity prices. Section 4 considers the implications of 
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commodity storage, while section 5 uses the indirect common factor in a recursive out-of-sample forecasting 
exercise. Section 6 concludes. 
 
2 The Sources of Commodity Price Co-movement: Theory 
In this section, we present a model that characterizes the sources of commodity price co-movement. In 
particular, we show that the model yields a tractable factor structure for a cross-section of commodity prices, 
which permits an economic interpretation of the factors. 
 

2.1 Model of commodity prices 
The baseline model consists of households, a continuum of heterogeneous primary commodities, a sector that 
aggregates these commodities into a single intermediate commodity input, and a final goods sector that 
combines commodities, labor and technology into a final good. 
 

The Household 
A representative consumer maximizes expected discounted utility over consumption (𝐶), labor supply (𝑁𝑠) 
and the amount of another input supplied to each commodity sector (𝐿𝑠(𝑗)) as follows: 

max𝐸𝑡�𝛽𝑖 �
𝐶𝑡+𝑖1−𝜎

1 − 𝜎
− 𝑒−𝜀𝑡+𝑖

𝑛
𝜑𝑛

𝑁𝑡+𝑖𝑠 1+1𝜂

1 + 1
𝜂

− 𝜑𝐿𝑒−𝜀𝑡
𝐿 ∫ 𝐿𝑡+𝑖𝑠 (𝑗)1+

1
𝑣𝑑𝑗1

0

1 + 1
𝑣

� 
∞

𝑖=0

 

where 𝛽 is the discount factor. We refer to the input supplied to each commodity sector as “land” simply to 
differentiate it by name from the labor input provided to the final goods sector. However, to be clear, “land” is 
simply a label: the variable is an input into the production process for primary commodities and can be 
interpreted in many different ways. For example, one could interpret the input as another form of labor that 
cannot be reallocated across sectors. In this case, one can think of Ns as the supply of labor to the 
manufacturing or service sectors, whereas Ls could be thought of as the supply of labor to the mining and 
agricultural sectors. Alternatively, one can interpret the input literally as land. In that case, the use of land 
generates direct benefits to the household and is therefore included in the utility function, but it can also be 
provided to commodity producers (e.g., for farming or mining) in exchange for a rental payment. The 
assumption that this input enters the utility function, along with the introduction of the preference shifter 𝜀𝑡𝐿, is 
a reduced-form way to generate an upward-sloping supply curve for the input into the commodity production 
process, but the specific mechanism used does not play an important role in the analysis. The same qualitative 
results would apply if this input did not enter into the utility function so that the household is supplied its total 
endowment each period. With 𝜑𝑛 > 0 and 𝜑𝐿 > 0, welfare is decreasing in hours worked and in the amount of 

land supplied to commodity sectors. The 𝑒𝜀𝑡
𝑛
 term is an exogenous shock to the disutility of hours worked, 

while 𝑒𝜀𝑡𝐿 is an exogenous shock to the disutility of supplying land. 
The household pays a price 𝑃𝑡 for the consumption good, receives wage 𝑊𝑡 for each unit of labor 

supplied and is paid a rental rate of land 𝑅𝑡𝐿(𝑗) for each unit of land supplied to the primary commodity sector 
j. The household also can purchase risk-free bonds 𝐵𝑡 that pay a gross nominal interest rate of 𝑅𝑡. The budget 
constraint is 
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𝑃𝑡𝐶𝑡 + 𝐵𝑡 = 𝐵𝑡−1𝑅𝑡−1 + 𝑊𝑡𝑁𝑡𝑠 + � 𝑅𝑡𝐿(𝑗)𝐿𝑡𝑠(𝑗)𝑑𝑗
1

0
+ 𝛵𝑡 

where 𝛵𝑡 represents payments from the ownership of firms. 
  

The Primary Commodity-Production Sector 
Each primary commodity j is produced by a representative price-taking firm who uses land (𝐿𝑡𝑑(𝑗)) to produce 
a quantity 𝑄𝑡(𝑗) of good j given a production function 
           𝑄𝑡(𝑗) = 𝐴𝑡(𝑗)𝐿𝑡𝑑(𝑗)𝛼𝑗             
where 𝐴𝑡(𝑗) is the exogenously determined level of productivity for commodity j and 0 < 𝛼𝑗 < 1 is the 
commodity-specific degree of diminishing returns to land. Given the price of commodity j 𝑃𝑡(𝑗), and the rental 
rate of land 𝑅𝑡𝐿(𝑗) specific to commodity j, the firm chooses the amount of land input to maximize profits 

max𝑃𝑡(𝑗)𝑄𝑡(𝑗) − 𝑅𝑡𝐿(𝑗)𝐿𝑡𝑑(𝑗). 
This yields the following demand curve for land for each commodity j: 

   𝑅𝑡𝐿(𝑗)/𝑃𝑡 = 𝛼𝑗 �
𝑃𝑡(𝑗)
𝑃𝑡
�𝐴𝑡(𝑗)𝐿𝑡𝑑(𝑗)𝛼𝑗−1.                         

We assume that the steady-state level of productivity 𝐴(𝚥)������ is such that the steady-state level of production in 
each sector is equal. Equilibrium in the market for land requires 

         𝐿𝑡𝑠(𝑗) = 𝐿𝑡𝑑(𝑗)              
for each sector j. 
 

The Intermediate Commodity 
A perfectly competitive sector purchases 𝑌𝑡(𝑗) of each primary commodity j and aggregates it into an 
intermediate commodity 𝑄𝑡𝐶 using the Dixit-Stiglitz aggregator 

   𝑄𝑡𝑐 = �∫ 𝑌𝑡
𝑗
𝜃𝑐−1
𝜃𝑐 𝑑𝑗1

0 �

𝜃𝑐
𝜃𝑐−1

             

which yields a demand for each commodity j of 
 𝑃𝑡(𝑗)/𝑃𝑡𝑐 = (𝑌𝑡(𝑗)/𝑄𝑡𝐶)−1/𝜃𝑐             

where 𝜃𝑐 is the elasticity of substitution across commodities and the price of the intermediate commodity 

aggregate is given by 𝑃𝑡𝐶 = �∫ 𝑃𝑡(𝑗)1−𝜃𝑐𝑑𝑗1
0 �

1
1−𝜃𝑐.  Market clearing for each commodity sector j requires 

𝑄𝑡(𝑗) = 𝑌𝑡(𝑗).              
Note that the setup implicitly assumes that no storage of commodities takes place, since all commodities 
produced must be used in the same period. We discuss the rationale for this assumption and its implications in 
more detail in section 4. 
 

The Final Goods Sector 
A perfectly competitive sector combines purchases of the intermediate commodity good 𝑌𝑡𝐶 and labor 𝑁𝑡𝑑 
according to the Cobb-Douglas production function 

      𝑌𝑡 = 𝐴𝑡𝑌𝑡𝐶
𝛼𝑡𝑁𝑡𝑑

1−𝛼𝑡           
to maximize profits 



7 
 

                𝑃𝑡𝑌𝑡 −𝑊𝑡𝑁𝑡𝑑 − 𝑃𝑡𝐶𝑌𝑡𝐶 
taking all prices as given and where 𝐴𝑡 is an exogenously determined aggregate productivity process. This 
yields the following demand for each input: 

         𝛼𝑡 = (𝑃𝑡𝐶/𝑃𝑡)(𝑌𝑡𝐶/𝑌𝑡)            
      1 − 𝛼𝑡 = (𝑊𝑡/𝑃𝑡)(𝑁𝑡𝑑/𝑌𝑡)            

Since all of the final good is purchased by the household, equilibrium in the final goods market requires 
𝐶𝑡 = 𝑌𝑡. The fact that 𝛼𝑡 is potentially time-varying allows for exogenous variation in the relative demand for 
commodities and labor in the production of the final good. 
 

The Linearized Model 
A detailed solution of the model is provided in Appendix A. We assume that exogenous processes are 
stationary around their steady-state levels, so that all real variables are constant in the steady state. Lower-case 
letters denote log deviations from steady state (e.g., 𝑐𝑡 ≡ log𝐶𝑡 − log𝐶̅), and we normalize the nominal 
variables by the price level of final goods (e.g., 𝑝𝑡(𝑗) ≡ log𝑃𝑡(𝑗)/𝑃𝑡 − log(𝑃(𝚥)/𝑃���������). We normalize 

commodity productivity shocks as 𝑣𝑡(𝑗) ≡ 𝑎𝑡(𝑗) �1 + �𝜀𝑗𝜃𝑐�
−1�

−1
�1 + 𝜀𝑗−1� to simplify the aggregation 

across commodities, where 𝜀𝑗 ≡ �𝑣−1 + 1 − 𝛼𝑗�/𝛼𝑗. 1 We assume that productivity shocks to each commodity 

sector have an idiosyncratic component and a common component such that 𝑣𝑡(𝑗) = 𝑣𝑡𝑎 + 𝑣𝑡
𝑗, which implies 

that the sum of productivity across commodities is 𝑣𝑡 ≡ ∫ 𝑣𝑡(𝑗)𝑑𝑗1
0 = 𝑣𝑡𝑎. The idiosyncratic shocks are 

orthogonal across commodity sectors, such that 𝐸�𝑣𝑡
𝑗𝑣𝑡𝑘� = 0 ∀𝑗 ≠ 𝑘 and 𝐸[𝑣𝑡] = 0. The log deviation of 

𝛼𝑡from its steady-state value of 𝛼 is denoted by 𝛼�𝑡. 
The aggregate level of production of final goods is as follows: 

                  𝑦𝑡 = 𝜑𝑦[𝑎𝑡 + 𝜅𝐿𝜀𝑡𝐿 + 𝜅𝑛𝜀𝑡𝑛 + 𝜅𝑣𝑣𝑡 + 𝜅𝛼𝛼�𝑡]         (1) 

where 𝜑𝑦 ≡ �1 − 𝛼 � (1−𝜎)𝜃𝑐𝜑
1+(𝜃𝑐−1)𝜑

� − (1 − 𝛼) � 1−𝜎
1+𝜂−1

��
−1

, 𝜅𝐿 ≡
𝛼𝜃𝑐𝜑

1+(𝜃𝑐−1)𝜑
, 𝜅𝑛 ≡

1−𝛼
1+𝜂−1

, 𝜅𝑣 ≡
𝛼

1+(𝜃𝑐−1)𝜑
, 𝜅𝛼 ≡

𝜑𝛼 + 𝛼𝜑𝜃𝑐
1+𝜑(𝜃𝑐−1) −

𝛼
1+𝜂−1

, 𝜑𝛼 ≡ 𝛼�ln𝑌𝑐���� − ln𝑁��, and 𝜑 ≡ ∫ �1 + 𝜀𝑗𝜃𝑐�
−1𝑑𝑗1

0 . Output rises with aggregate 

productivity, positive shocks to the household’s willingness to supply land and labor and a positive sum over 
commodity-specific productivity shocks. Whether output rises when the relative demand for commodities 
increases (𝛼�𝑡) depends on specific parameter values. 
  
2.2 Co-movement in Commodity Prices 
We now consider the determinants of commodity prices. First, the supply of commodity j is given by 

                  𝑝𝑡(𝑗) = 𝜀𝑗𝑦𝑡(𝑗)− �1+𝜀𝑗𝜃𝑐�
𝜃

�𝑣𝑡𝑎 + 𝑣𝑡
𝑗� + 𝜎𝑦𝑡 − 𝜀𝑡𝐿         (2) 

where εj is the elasticity of commodity supply with respect to its price. First, changes in aggregate output shift 
the supply curve when income effects on the input are present (σ > 0). This implies that all macroeconomic 

                                                           
1 The rescaling of the commodity-specific productivity shock ensures that a 1% increase in productivity in each 
commodity sector raises the equilibrium level of production of that commodity by equal amounts for each commodity.  
This would not be the case without the rescaling because each primary commodity sector’s supply curve has a different 
slope.   
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shocks that affect aggregate production in the model cause an equal upward or downward shift in the supply of 
every commodity in general equilibrium. Therefore, all shocks in the model are, in a sense, supply shocks to 
commodities. Second, the supply of commodity j increases whenever its productivity level rises, which can 

reflect common productivity shocks (𝑣𝑡𝑎) or idiosyncratic shocks (𝑣𝑡
𝑗). Finally, shocks to the household’s 

willingness to supply land to the commodity sector directly affect the supply curve. Thus, we can write the 
supply curve of commodity j more succinctly as 

       𝑝𝑡(𝑗) = 𝑆𝑗�𝑦𝑡(𝑗); 𝑦𝑡(𝑎𝑡 , 𝜀𝑡𝑛, 𝜀𝑡𝐿 ,𝛼�𝑡 ,𝑣𝑡𝑎); 𝑣𝑡𝑎, 𝜀𝑡𝐿 ,𝑣𝑡
𝑗�        (2’) 

which captures the fact that some shocks affect the supply of commodity j indirectly through general-
equilibrium effects captured by aggregate output; some shocks affect supply directly by shifting the curve, 
holding aggregate output constant; and some shocks do both. 
 The demand for commodity j is 

               𝑝𝑡(𝑗) = − 1
𝜃𝑐
𝑦𝑡(𝑗) + �1+(𝜃𝑐−1)𝜎𝜑

1+(𝜃𝑐−1)𝜑
� 𝑦𝑡 −

𝜑(𝜃𝑐−1)
1+(𝜃𝑐−1)𝜑

𝜀𝑡𝐿 −
(𝜃𝑐−1)

1+(𝜃𝑐−1)𝜑
� 1
𝜃𝑐
� 𝑣𝑡𝑎 + 1

1+𝜑(𝜃𝑐−1)𝛼�𝑡  .    (3) 

Demand for commodity j is increasing with aggregate output, which reflects the role of commodities as an 
input into the production of final goods. This term therefore captures general-equilibrium demand effects, and 
all macroeconomic shocks that affect aggregate production in the model result in an equal upward or 
downward shift in the demand for each commodity. Thus, all shocks in the model other than idiosyncratic 
shocks are both demand and supply shocks. However, in addition to these general-equilibrium shifts in 
commodity demand, the demand for commodity j rises with changes in the relative demand for commodities 
(𝛼�𝑡), holding aggregate output constant. It also shifts, holding aggregate output constant, with exogenous 
changes in the household’s willingness to supply land and with exogenous common commodity productivity 
shocks. While the latter two would more commonly be thought of as supply shocks, the effect that they have 
on all commodities implies that they affect equilibrium prices and quantities of the intermediate commodity 
bundle and thus the demand for each commodity through the constant elasticity of substitution (CES) structure. 
We can rewrite the demand curve of commodity j more succinctly as 

             𝑝𝑡(𝑗) = 𝐷𝑗(𝑦𝑡(𝑗); 𝑦𝑡(𝑎𝑡 , 𝜀𝑡𝑛, 𝜀𝑡𝐿 ,𝛼�𝑡 ,𝑣𝑡𝑎); 𝑣𝑡𝑎, 𝜀𝑡𝐿 ,𝛼�𝑡)        (3’) 
to highlight the fact that some shocks affect the demand for commodity j indirectly through general-
equilibrium effects on output; some shocks shift the demand for each commodity j directly, holding aggregate 
output constant; and some do both. 
 In this setting, there are no well-defined supply and demand shocks to a given commodity, so 
identification procedures that rely on supply and demand characterizations may be ill-defined. However, the 
co-movement across commodities can help to resolve this identification problem. Consider, for example, the 
effect of an aggregate productivity shock (𝑎𝑡) on commodity prices. Such a shock affects both supply and 
demand for every commodity, but it does so only through its equilibrium effects on aggregate output. A 
positive productivity shock in this setting would increase output and thereby increase the demand for each 
commodity j and decrease its supply through income effects. Both effects tend to increase the prices of all 
commodities. While the size of the effect differs across commodities with the slopes of their supply curves 
(which, in turn, depend on the αj’s), there is necessarily positive price co-movement implied by such shocks. 

This point is illustrated visually in the left graph of Panel A in Figure 1, which shows the price 
implications of an increase in aggregate productivity for a commodity with relatively elastic supply 𝑆𝐸�𝑦(𝑎)� 
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and one with relatively inelastic supply 𝑆𝐼�𝑦(𝑎)�. The graph on the right plots the set of prices for the two 
commodities that result from different levels of aggregate productivity, denoted by 𝑅(𝑎𝑡). Higher levels of 
productivity increase the prices of both commodities, so that 𝑅(𝑎𝑡) is upward-sloping. This example illustrates 
the positive commodity price co-movement that results from productivity shocks. 
 Importantly, any shock that affects commodity prices only through its effects on aggregate output 
induces the same relative co-movement of commodity prices as productivity shocks. In the model, shocks to 
the household’s willingness to supply labor (εn) also affect commodity prices only through 𝑦𝑡 and deliver the 
same pattern of co-movement among commodities as an aggregate productivity shock, i.e., 𝑅(𝑎𝑡) = 𝑅(𝜀𝑛). 
While there are only two exogenous variables in the model that affect commodity prices solely through 
general-equilibrium effects, one could readily integrate a wider set of such forces into a more complex model. 
For example, if differentiated forms of labor were used in the production of final goods, then variation in the 
willingness of households to supply each form of labor would generate the same co-movement. Another 
example is if the final good were produced under imperfect competition, exogenous variation in the desired 
markups would again generate the same pattern of co-movement in commodity prices.  

In contrast, any shock that directly (i.e., holding aggregate output constant) affects the supply or 
demand of a commodity induces different co-movement among commodities. This point is illustrated in Panel 
B of Figure 1 for the case of a decrease in the relative demand for commodities (from 𝛼�𝑡 to 𝛼�𝑡′) that is then 
assumed to raise aggregate output. (The covariance of 𝛼�𝑡 and yt in the model depends on specific parameter 
values). The decline in 𝛼�𝑡 has two effects on the supply and demand for commodities. The first effect is the 
indirect general-equilibrium effect operating through aggregate activity. Given our assumption that the decline 
in 𝛼�𝑡 raises yt, this effect shifts the demand and supply of commodities in exactly the same way as an increase 
in aggregate productivity. The second effect is the direct decrease in the demand for commodities, illustrated 
graphically by 𝐷(𝑦(𝛼�𝑡),𝛼�𝑡′), so that the combined effect on demand for commodities is given by the demand 
curve 𝐷(𝑦(𝛼�𝑡′),𝛼�𝑡′). As a result of these shifts, the prices of both commodities are again higher, but the price 
of the elastically supplied commodity increases by more than that of the inelastically supplied commodity, 
yielding a different pattern of commodity price co-movement. The latter is illustrated graphically on the right-
hand side of Panel B in Figure 1. 𝑅(𝛼�𝑡), the set of possible prices of the two commodities for different levels 
of 𝛼�𝑡, is flatter than that obtained for changes in aggregate productivity or changes in the household’s 
willingness to supply labor. Indeed, any shock that has both direct and indirect effects on commodity markets 
leads to a different pattern of co-movement among commodities than shocks that have only indirect effects. 
 

2.3 The Factor Structure in Commodity Prices 
To solve for commodity prices, we combine equations (2) and (3), yielding 

        𝑝𝑡(𝑗)�1 + 𝜀𝑗𝜃𝑐� = �𝜎 + 𝜀𝑗𝜃𝑐(1+(𝜃𝑐−1)𝜎𝜑)
1+(𝜃𝑐−1)𝜑

�𝑦𝑡 − �𝜀𝑗𝜃𝑐𝜑
(𝜃𝑐−1)

1+(𝜃𝑐−1)𝜑
+ 1� 𝜀𝑡𝐿 

− 1
𝜃𝑐
�1 + 𝜀𝑗𝜃𝑐 + 𝜀𝑗𝜃𝑐(𝜃𝑐−1)

1+(𝜃𝑐−1)𝜑
� 𝑣𝑡𝑎 + 𝜀𝑗𝜃𝑐

1+𝜑(𝜃𝑐−1)𝛼�𝑡 −
1
𝜃𝑐
�1 + 𝜀𝑗𝜃𝑐�𝑣𝑡

𝑗(𝑗).              

Because aggregate output 𝑦𝑡 is a function of all aggregate shocks in the model, we can decompose it as 
follows: 

𝑦𝑡 = 𝑦𝑡𝑛𝑐(𝑎𝑡, 𝜀𝑡𝑛) + 𝜑𝑦[𝜅𝐿𝜀𝑡𝐿 + 𝜅𝑣𝑣𝑡𝑎 + 𝜅𝛼𝛼�𝑡] 
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where 𝑦𝑡𝑛𝑐 = 𝜑𝑦[𝑎𝑡 + 𝜅𝑛𝜀𝑡𝑛] is the level of aggregate output coming exclusively from changes in aggregate 
productivity and changes in the willingness of households’ to supply labor to the final goods sector. We can 
then rewrite the equilibrium price of commodity j as 

             𝑝𝑡(𝑗) = 𝜆𝑗
𝑦𝑦𝑡𝑛𝑐(𝑎𝑡, 𝜀𝑡𝑛)���������
indirect (𝐼𝐶) 

+  𝜆𝑗𝐿𝜀𝑡𝐿 + 𝜆𝑗𝑣𝑣𝑡𝑎 + 𝜆𝑗𝛼𝛼�𝑡�������������
direct (𝐷𝐶) 

 − 1
𝜃𝑐
𝑣𝑡
𝑗(𝑗)�����

idiosyncratic

        (4) 

        = 𝜆𝑗𝐹𝑡 + 𝜉𝑡
𝑗                             

where 𝜆𝑗
𝑦 ≡ �1 + 𝜃𝜀𝑗�

−1 �𝜎 + 𝜀𝑗𝜃(1+(𝜃−1)𝜎𝜑)
1+(𝜃−1)𝜑

�, 𝜆𝑗𝐿 ≡ 𝜑𝑦𝜅𝐿𝜆𝑗
𝑦 − � 1

1+𝜀𝑗𝜃𝑐
+ 𝜀𝑗𝜃𝑐

1+𝜀𝑗𝜃𝑐
(𝜃𝑐 − 1)�, 𝜆𝑗𝑣 ≡ 𝜑𝑦𝜅𝑣𝜆𝑗

𝑦 −

� 1
𝜃𝑐

+ 𝜀𝑗𝜃𝑐
1+𝜀𝑗𝜃𝑐

�𝜑(𝜃𝑐−1)
𝜑𝜃

��, 𝜆𝑗𝛼 ≡ 𝜑𝑦𝜅𝛼𝜆𝑗
𝑦 + 𝜀𝑗𝜃𝑐

1+𝜀𝑗𝜃𝑐
� 1
1+𝜑(𝜃𝑐−1)�, 𝜆𝑗 ≡ �𝜆𝑗

𝑦 𝜆𝑗𝐿 𝜆𝑗𝑣  𝜆𝑗𝛼�, 𝐹𝑡 ≡ [𝑦𝑡𝑛𝑐 𝜀𝑡𝐿  𝑣𝑡𝑎 𝛼�𝑡], and 

𝜉𝑡
𝑗 ≡ − 1

𝜃𝑐
𝑣𝑡
𝑗.   

Equation (4) provides a factor structure for real commodity prices with three distinct and orthogonal 
components. The last term on the right-hand side reflects idiosyncratic shocks to commodity j that have no 
aggregate real effects. The second term on the right-hand side consists of a factor for each shock that has direct 
effects on the commodity market (i.e., that shifts the supply or demand for commodities, holding aggregate 
output constant). For this reason, we refer to these factors as “direct common” (DC) factors. In this setup, there 
are three such factors: common shocks to the input used in the production of commodities, a common 
productivity shock, and a shock to the relative demand for commodities in the production of final goods. Each 
enters as a separate factor because each shifts supply and demand curves in different ways and therefore has 
distinct implications for the price of a single commodity. Because these forces have both direct and indirect 
effects on the market for commodity j, there is, in general, no guarantee that their respective loadings have the 
same signs across commodities. 

The most interesting component of the factor structure is the first term on the right-hand side of (4), 
which reflects the combined contribution on the price of commodity j from all shocks whose effects on 
commodity prices operate only indirectly through aggregate output (i.e., only through general-equilibrium 
effects). We refer to this common factor as the “indirect common” (IC) factor. It captures the fact that, because 
some shocks affect commodity markets only through changes in aggregate output, they all have identical 
implications for the price of a given commodity, conditional on the size of their effect on aggregate output, and 
induce the same co-movement across different commodity prices. As a result, they can be represented as a 
single factor. Furthermore, this factor has a well-defined interpretation: it is the level of global output that 
would have occurred in the absence of any direct commodity shocks. Thus, this common factor represents a 
way to reconstruct the counterfactual history of aggregate output without direct commodity shocks, as well as 
to decompose historical commodity price changes into those components reflecting direct commodity shocks 
versus all other aggregate economic forces captured by the IC factor. Unlike the DC factors, another key 
characteristic of the IC factor is that all the loadings on this factor must be positive (𝜆𝑗

𝑦 > 0 ∀𝑗). This 

prediction reflects the fact that the shocks incorporated in the IC factor raise commodity demand when the 
shock is expansionary and simultaneously restrict the commodity supply through income effects, which 
unambiguously increases commodity prices. Finally, in the absence of income effects on the common input 
into the production of commodities, the IC could be interpreted as capturing exogenously driven global 
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demand for commodities. In short, this factor decomposition provides a new way to separate causality in the 
presence of simultaneously determined prices and production levels. 
 

2.4 Recovering a Structural Interpretation of the Factors 
A key limitation of factor structures is that, empirically, factors are identified only up to a rotation. For 
example, if one estimated a factor structure on commodity prices, one could not directly associate the extracted 
factors with the structural interpretation suggested by (4). However, the theory developed in this section has 
implications that can be used to identify the unique rotation consistent with those predictions and permits us to 
assign an economic interpretation to the factors driving commodity prices. 
 To see this, suppose that, as in the theory above, the N variables in vector 𝑋𝑡 (N by 1) of real 
commodity prices have a factor structure: 

𝑋𝑡 = 𝐿𝐹𝑡 + 𝜀𝑡 
where 𝐹𝑡 is a K by 1 vector of unobserved variables, and 𝐿 is an N by K matrix of factor loadings. Let the 
variance of 𝜀𝑖 be given by 𝜑𝑖 and the covariance matrix of 𝜀𝑖 be 𝑐𝑜𝑣(𝜀) = 𝑑𝑖𝑎𝑔(𝜑𝑖) = 𝛹 such that the 𝜀𝑖s are 
uncorrelated with one another. We make the typical assumptions underlying factor analysis: (a) 𝐸(𝐹) = 0, (b) 
𝐸(𝜀𝑖) = 0, (c) 𝐸(𝐹𝜀𝑖) = 0 and (d) 𝑐𝑜𝑣(𝐹) = 𝐼, so that the factors are orthogonal to one another and have 
variance normalized to one. Then, letting 𝛴 ≡ 𝑐𝑜𝑣(𝑋) be the covariance matrix of X, it follows that 𝛴 = 𝐿𝐿′ +
𝛹. The identification problem is that for any K by K orthogonal matrix 𝑇 such that 𝑇𝑇′ = 𝐼, we can define 
𝐿� = 𝐿𝑇 and 𝐹�𝑡 = 𝑇′𝐹𝑡 such that  

𝑋𝑡 = 𝐿�𝐹�𝑡 + 𝜀𝑡 . 
As a result, an empirical estimate of the factors underlying 𝑋𝑡 do not, in general, permit the economic 
identification of the factors 𝐹𝑡 but rather some rotation 𝐹�𝑡. 
 However, the model provides additional restrictions on the factor structure that can be used to assign 
an economic interpretation to the factors and recover the “structural” factors 𝐹𝑡 from the estimated factors 𝐹�𝑡. 
For example, consider the factor structure of equation (4) in section 2.3 in which real commodity prices reflect 
two underlying factors, a common commodity-related shock (𝜀𝑡𝐿) and the level of aggregate production that 
would have occurred in the absence of this shock (𝑦𝑡𝑛𝑐), thus 𝐹𝑡 = [𝐹𝑡1 𝐹𝑡2]′ = [𝑦𝑡𝑛𝑐 𝜀𝑡𝐿]′. As we discuss below, 
this two-factor structure is the most empirically relevant case. A factor decomposition of commodity prices 
would yield some rotation of these factors 𝐹�𝑡 such that  

𝐹𝑡 = 𝑇′𝐹�𝑡 = �
𝑡11 𝑡12
𝑡21 𝑡22

� ′[𝐹�𝑡1 𝐹�𝑡2]′ = � cos𝜃 sin𝜃
− sin𝜃 cos𝜃�

[𝐹�𝑡1 𝐹�𝑡2]′      

where the last equality reflects the properties of rotation matrices. Recovering the “structural” factors 𝐹𝑡 
corresponds to identifying the parameter θ and the rotation matrix T such that 𝐹𝑡 = 𝑇′𝐹�𝑡.  
 The theory imposes three types of conditions that can be used to identify θ. The first is that 𝑦𝑡𝑛𝑐 (the IC 
factor) is orthogonal to commodity-related shocks (DC factors). Therefore, if one had a S by 1 vector of 
instruments 𝑧𝑡 that is correlated with the commodity-related shocks 𝜀𝑡𝐿, the orthogonality of 𝑦𝑡𝑛𝑐 would deliver 
S moment conditions 𝐸[𝑦𝑡𝑛𝑐𝑧𝑡] = 0. The conditions can be rewritten as 

𝐸[𝑦𝑡𝑛𝑐𝑧𝑡] = 𝐸��𝐹�𝑡1 cos𝜃 + 𝐹�𝑡2 sin𝜃�𝑧𝑡� = 0.         (5) 
If S = 1, then θ would be uniquely identified. If S > 1, then θ is overidentified, and one could estimate it using 
standard generalized method of moments (GMM) methods by writing the moment conditions as 

 𝐽(𝜃) = 𝐸[𝑦𝑡𝑛𝑐𝑧𝑡]𝑊𝐸[𝑦𝑡𝑛𝑐𝑧𝑡]′                      (6) 
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where 𝑊 is a weighting matrix, such that 𝜃� = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽(𝜃). Letting 𝑊 be the inverse of the variance-
covariance matrix associated with the moment conditions, standard GMM asymptotic results apply, including 
standard errors for θ and tests of the over-identifying conditions for N and T large enough for the factors to be 
considered as observed variables rather than generated (e.g., Stock and Watson 2002; and Bai and Ng 2002).  
 A second approach would be to make use of the theoretical prediction that 𝑦𝑡𝑛𝑐 is a linear combination 
of exogenous variables that have only indirect effects on the commodity sector such as the productivity shocks 
or labor supply shocks considered in the model. If one had a S by 1 vector of instruments 𝑧𝑡 for each period 
correlated with one or more of these exogenous drivers, then another set of orthogonality conditions imposed 
by the theory would be 𝐸[𝐹𝑡2𝑧𝑡] = 0. As in the previous case, one could estimate θ using GMM, given these 
orthogonality conditions, and test over-identifying restrictions if S > 1.  
 In both of these cases, the econometrician must take a stand on whether the chosen instruments should 
be correlated with commodity-related shocks or with 𝑦𝑡𝑛𝑐. While economic theory may provide clear guidance 
in some cases, this choice may be problematic when one is interested in whether an exogenous variable affects 
commodities only through general-equilibrium effects or more directly. Within our framework, this question 
amounts to whether the exogenous variable should be considered part of 𝑦𝑡𝑛𝑐 or one of the commodity-related 
shocks. For example, in the case of commodity prices, monetary policy shocks could potentially have direct 
effects on commodity markets in the presence of storage motives but would otherwise not be expected to have 
direct effects on commodity markets if the speculative channel is absent or sufficiently small. We return to this 
particular point in section 4. 
 A third approach is to make use of sign restrictions on the loadings. The theory predicts that the 
loadings on 𝑦𝑡𝑛𝑐 must all be positive (since 𝜆𝑗

𝑦 > 0 ∀𝑗 in equation (4)). Letting 𝐿�  be the N by 2 matrix of 

unrotated factor loadings, the rotated or “structural” loadings are 𝐿 = 𝐿�𝑇 = [𝐿�1 𝐿�2]𝑇. The loadings on the first 
rotated factor (corresponding to 𝑦𝑡𝑛𝑐) are then 𝐿1 = 𝐿�1 cos𝜃 + 𝐿�2 sin𝜃. Imposing that all of the elements of 𝐿1 
be positive would therefore correspond to identifying the range of values of θ such that min�𝐿�1 cos𝜃 +

𝐿�2 sin𝜃� > 0. In general, this leads only to a set of admissible values of θ and associated rotation matrices 
without uniquely identifying the rotation matrix. This approach would be akin to the weak identification of 
VARs by sign restrictions (Uhlig 2002). 
 In short, the theoretical model of commodity prices yields not only a factor structure for commodity 
prices but also a set of conditions that can be used to identify (or, in the case of sign restrictions, limit the set 
of) the rotation matrix necessary to recover the underlying factors. Furthermore, the factors have economic 
interpretations. The IC factor corresponds to the level of production and income net of commodity-related 
shocks, while other factors correspond to one or more of these commodity-related shocks. The identification of 
the rotation matrix, and thus the underlying economic factors, follows from orthogonality conditions implied 
by the model, as well as sign restrictions on the loadings predicted by the theory. The implied factor structure 
of the model combined with the ability to recover an economic interpretation of the factors thus provides a new 
method for separating fluctuations in aggregate output into those driven by commodity-related shocks and 
those driven by non-commodity-related shocks. 
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3 The Sources of Commodity Price Co-movement: Empirical Evidence 
In this section, we implement the factor decomposition of real commodity prices suggested by the theory. We 
first construct a historical cross-section of real commodity prices for the commodities that conform to the 
theoretical structure of the model along several dimensions. We then implement a factor decomposition and 
identify the factors suggested by the theory. After considering a wide range of robustness checks, we argue that 
commodity-related shocks have contributed only modestly to fluctuations in global economic activity. 
 

3.1 Data  
The selection of the commodities used in the empirical analysis is guided by the theoretical model. In 
particular, we use four criteria to decide which commodities to include in the data set and which to exclude. 
First, commodities must not be vertically integrated. Second, the main use of commodities must be directly 
related to the aggregate consumption bundle, and they should not be primarily used for the purposes of 
financial speculation. Third, commodities must not be jointly produced. Finally, the pricing of commodities 
must be determined freely in spot markets and must not display the price stickiness associated with the 
existence of long-term contractual agreements. 

The first criterion, that commodities must not be vertically integrated, conforms to the structure of the 
model in which the only direct interaction between commodities is through their use in the production of the 
aggregate consumption good. Vertically integrated commodities would introduce the possibility of price co-
movement resulting from idiosyncratic shocks to one commodity, thereby affecting prices in other 
commodities through the supply chain. For example, an exogenous shock to the production of sorghum would 
affect the price of non-grass-fed beef because sorghum is primarily used as feed. Thus, this shock could 
ultimately affect the price of milk and hides as well. To satisfy this condition, we exclude from the sample a 
number of commodities that are frequently incorporated in commodity price indices. For example, we exclude 
prices of non-grass-fed cattle, poultry (broilers), milk, hogs, lard, pork bellies, eggs, tallow and hides. In the 
same spirit, we exclude energy commodities and any fertilizer products.2 In addition, when commodities are 
available in closely related forms (e.g., soybeans, soybean meal and soybean oil), we use, at most, one of the 
available price series.  

The second criterion ensures that the primary forces driving the prices of the included commodities are 
related to the production and consumption of each commodity. Some commodities, such as precious metals, 
have long been recognized as behaving more like financial assets than normal commodities (Chinn and 
Coibion 2013). Thus, we exclude gold, silver, platinum and palladium from the cross-section of commodities. 

The third criterion reflects the fact that some commodities are derivative products of the production of 
other commodities. This is particularly the case for minerals, which are commonly recovered during the 
mining for metal commodities. For example, antimony and molybdenum are derivatives of copper mining, 
while cadmium is recovered during mining for zinc. For this type of commodity, the assumption of orthogonal 
productivity shocks is clearly inapplicable.  

                                                           
2 Another reason to exclude energy prices is that, in the model, it is assumed that each commodity is too small for its 
idiosyncratic shocks to have aggregate implications. This condition would almost certainly not apply to energy 
commodities. 
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The fourth criterion is that the prices of commodities be primarily determined in spot markets rather 
than through contractual agreements or government regulations. While many commodities have long been 
traded on liquid international spot markets, this is not the case for other commodities. For example, the price 
measure of tung oil (primarily used for wood finishing) tracked by the Commodity Research Bureau (CRB) 
Commodity Yearbooks varies little over time and is often fixed for periods lasting as long as one year. Because 
we want to focus on commodities whose prices reflect contemporaneous economic conditions, we exclude 
commodities such as tung oil that systematically display long periods of price invariance. For some 
commodities in the sample, prices were not determined in flexible markets until much later than others; for 
these commodities, we treat early price data as missing values (e.g., aluminum prior to 1973). For mercury, the 
reverse is true, since its use has declined over time and its price began to display long periods with no price 
changes starting in 1995. We treat its prices after March 1995 as missing. Appendix B provides more details 
on these adjustments. 

Applying these criteria leaves us with 40 commodities in the sample. It includes 22 commodities that 
we refer to as agricultural or food commodities: apples, bananas, barley, cocoa, coffee, corn, fishmeal, grass-
fed beef, hay, oats, onion, orange juice concentrate, pepper, potatoes, rice, shrimp, sorghum, soybeans, sugar, 
tea, tobacco and wheat. The data set also includes five food oils: coconut, groundnuts (peanut), palm, rapeseed 
(canola) and sunflower (safflower). Finally, we have 13 industrial commodities: aluminum, burlap, cement, 
cotton, copper, lead, lumber, mercury, nickel, rubber, tin, wool and zinc. We compiled monthly data from 
January 1957 to January 2013 (as available) from a number of sources, including the CRB Commodity 
Yearbooks, the CRB InfoTech CD, the World Bank GEM Commodity Price Data, the IMF’s Commodity Price 
Indices and the U.S. Bureau of Labor Statistics. While most of the data are consistently available from January 
1968 until January 2013, in some cases, there are a number of missing observations in the underlying data, as 
well as periods when we treat the available data as missing because spot trading was limited. Appendix C 
provides details on the construction of each series, their availability and any periods over which we treat the 
data as missing because of infrequent price changes. Furthermore, while we can construct price data going 
back to at least 1957 for many commodities, we restrict the empirical analysis to the period since 1968, in light 
of the numerous price regulations and government price support mechanisms in place during the earlier period. 

There is wide geographic variation in where commodities are produced. This point is illustrated in 
Appendix D, which presents information on the primary producing countries for each commodity in 1990, the 
middle of the sample period, as well as information on the common uses of each type of commodity. While 
some countries are consistently among the major producers of many commodities because of their size (e.g., 
the former USSR, China and India), the geographic variation is nonetheless substantial and reflects the 
disproportionate influence of some smaller countries on the production of individual commodities. For 
example, while the former USSR was the primary producer of potatoes and sunflower oil in 1990, Poland was 
second for potatoes, accounting for 13% of global production, while Argentina was second in sunflower oil, 
accounting for 17% of global production. Among industrial commodities, Chile is well known as one of the 
world’s largest producers of copper. But production of other commodities is also quite geographically 
differentiated. For example, in 1990, Uzbekistan was the third largest producer of cotton (14% of global 
production), Bangladesh accounted for 30% of global production of jute/burlap, while Australia and New 
Zealand were the largest producers of wool, jointly accounting for nearly 50% of world production. This 
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geographic variation in the production of commodities has also been used in other contexts (e.g., Chen, Rogoff 
and Rossi 2010). 

The table in Appendix D also describes some of the uses of each commodity, again primarily as 
reported by the CRB Commodity Yearbooks and the Food and Agriculture Organization of the United Nations 
(UN FAO). It is important to recognize that, while we group commodities into three categories 
(agricultural/food, oils and industrial) in the same way as the IMF, the World Bank and the CRB, these 
groupings are somewhat arbitrary. Although they are based on end use (e.g., cotton is used primarily in textiles 
and is therefore considered industrial), most commodities are used in a variety of ways, which can make such a 
classification problematic. For example, many of the “agricultural/food” commodities also have industrial uses 
or serve as inputs into the production of refined products: potatoes and grains are used in significant quantities 
for distillation; pepper and soybeans can be made into oils that have medical, cosmetic or industrial uses; corn 
and sugar are increasingly used as fuel; and so on. Similarly, the oils in the sample are well-known for their 
use in cooking, but some (such as palm and coconut oil) also have a number of important industrial uses. 
 

3.2 Common Factors in Commodity Prices 
Before conducting the factor analysis, we normalize each price series by the U.S. CPI, so that the analysis is in 
terms of real commodity prices. Second, we take logs of all series. Third, we normalize each series by its 
standard deviation. Because there are missing observations in the data, we use the expectation-maximization 
(EM) algorithm of Stock and Watson (2002).3 We follow Kilian (2009) in focusing on the (log) level of real 
commodity prices, but document in our robustness checks that our results are qualitatively unchanged if we 
take the first difference  of real commodity prices or use linearly detrended series. 
 We consider several metrics to characterize the contribution of the first five factors in accounting for 
commodity price movements, summarized in Table 1.4 The first row presents the sum of eigenvalues 
associated with each number of factors normalized by the sum across all eigenvalues, a simple measure of 
variance explained by common factors. In addition, we present additional metrics based on R2s that explicitly 
take into account missing values associated with some commodities. For example, the second row presents the 
average across the individual R2s computed for each commodity (excluding commodity-specific imputed 
values) for the numbers of factors ranging from one to five. The third row presents the median across these 
same commodity-specific R2s, while the fourth row presents the R2 constructed across all commodities (again 
omitting imputed values). Because different commodities have different time samples, the R2s are not directly 
comparable across commodities, but they nonetheless provide a useful metric for evaluating the importance of 
common factors to the co-movement of commodity prices. 

The key result from this table is that the first common factor explains a large share of the price 
variation across commodities, ranging from 60% to 70% depending on the specific measure used. In contrast, 
all of the additional factors explain smaller percentages of the variance in commodity prices. The second 

                                                           
3 Specifically, we first demean each series and replace missing values with zeroes before recovering the first K factors.  
We use these K factors to impute the value of missing observations, and then do the factor analysis again, iterating on this 
procedure until convergence. We use K = 5 factors for the imputation; however, the results are not sensitive to the specific 
number of factors used. 
4 Following Connor and Korajczyk (1993) and Bai and Ng (2002), we use principal components on the variance-
covariance matrix of commodity prices to estimate the approximate factors.  
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factor, for example, accounts for between 6% and 10%, while the third factor contributes another 5% of the 
variance. Thus, the first two factors jointly account for approximately 70–75% of the variance in commodity 
prices. The next three factors jointly bring the combined variance up to 85%. Given these contributions to the 
variance, statistical tests of the number of factors point toward parsimonious factor specifications. For 
example, the PC2 and IC2 criteria of Bai and Ng (2002) each select one factor. The same result is obtained 
using the test suggested by Onatski (2010) or the two criteria proposed in Ahn and Horenstein (2013).5 

The ability of the first two factors, and the first common factor in particular, to account for so much of 
the variance holds across commodity groups. Table 1 includes the contribution of different factors to 
explaining the variance across the three subsets of commodities in the sample—agricultural/food, oils and 
industrials. Differences across subsets of commodities are quite small: the contribution of the first factor 
ranges from 55% (pooled R2 across all commodities in this subset) for industrial commodities to 64% for 
agricultural/food commodities and 72% for oils. The differences are largely driven by a few commodities 
within each grouping for which the first factor accounts for a much smaller share of the historical real price 
variation than others (Appendix E). Among agricultural commodities, apples, bananas, onions, pepper and 
shrimp have much smaller R2s than most other commodities, likely reflecting the fact that these are the 
agricultural commodities for which industrial uses are the least important. Among industrial commodities, 
nickel and cement are the two commodities for which the first common factor accounts for the smallest share 
of the variance. But with the exception of these few commodities, the decomposition does not suggest that one 
needs different factors for different types of commodities. This point is worth stressing because a common 
concern with factor analysis is that different factors are needed to explain different subsets of the data. For 
example, Blanchard (2009) notes that the macroeconomics factor literature has yielded a puzzling need for 
separate factors to explain real, nominal and financial variables. In our context, one might be concerned that a 
factor decomposition of real commodity prices across a wide set of commodities may lead to the need for 
separate factors for industrial and agricultural commodities. As illustrated in Table 1, this is not the case. 
 

3.3 Identification of the Rotation Matrix and the Underlying Economic Factors 
To implement a structural interpretation of the factors as suggested by the model, we interpret the results of 
Table 1 as indicating that a two-factor representation adequately characterizes the data. First, additional factors 
beyond the first two add relatively little in explanatory power and can be omitted. Second, under the null of the 
model, it is a priori unlikely for there to be fewer than two factors. Indeed, such a finding would imply that 
there are no shocks that directly affect commodity prices and that all movements in commodity prices reflect 
either the level of aggregate economic activity or idiosyncratic commodity factors. We can rule this argument 
out immediately because there exists at least one common shock to the supply of commodities: exogenous 
energy price movements. Because commodities require energy in production and distribution, exogenous 
shocks to energy prices necessarily induce some co-movement in commodity prices, since commodities are 
produced in different parts of the world but consumption occurs disproportionately in advanced economies, 
thereby generating significant shipping and distribution costs. As a result, energy can be interpreted as a 

                                                           
5 These information criteria, however, can be sensitive to the sample period. For example, the Onatski (2010) test picks 
three factors instead of one when we start the sample period just one year earlier, in January 1967 instead of 1968.  
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common input into the production of commodities in the same spirit as the “land” in the model presented in 
section 2. 

To assess whether exogenous energy shocks feed through to other commodity prices, we regress each 
commodity’s real price on lags of itself as well as contemporaneous and lagged values of Kilian’s (2008) 
measure of exogenous OPEC production shocks that has been updated through January 2013 by Bastianin and 
Manera (2014).6 Following Romer and Romer (2004), we use two years of lags for the autoregressive 
component and three years of lags for the exogenous variable (OPEC production shocks). From the impulse 
responses implied by the estimates, we find that we can reject the null hypothesis of no response to an OPEC 
production shock for 20 (14) commodities at the 10% (5%) level. This evidence suggests that exogenous oil 
production shocks tend to affect commodity prices and there is therefore at least one source of direct 
commodity shocks. Thus, we focus on the two-factor representation of real commodity prices. 
 To estimate the rotation matrix, our baseline is to impose orthogonality conditions on the indirect 
common factor 𝐹𝑡1. Specifically, we take 𝜀𝑡

𝑜𝑝𝑒𝑐 , the measure of OPEC production shocks from Bastianin and 
Manera’s updated version of the Kilian (2008) series and define the orthogonality conditions as 𝐸[𝐹𝑡1𝑧𝑡], 
where 𝑧𝑡 ≡ �1 𝜀𝑡

𝑜𝑝𝑒𝑐 …  𝜀𝑡−𝐿
𝑜𝑝𝑒𝑐� is the vector of instruments that consists of a constant, the contemporaneous 

value of the production shock series as well as L lags of the shock. The IC factor 𝐹𝑡1 (𝑦𝑡𝑛𝑐 in the model) is a 
rotation over the two estimated factors 𝐹�𝑡1 and 𝐹�𝑡2, i.e., 𝐹𝑡1 = 𝑡11𝐹�𝑡1 + 𝑡21𝐹�𝑡2 where the orthogonal rotation 
parameters 𝑡11 and 𝑡21 can be expressed as a function of a single underlying rotation parameter θ such that 
𝑡11 = cos𝜃 and 𝑡21 = sin𝜃. Given that there are more moment conditions (L + 2) than parameters (θ), we can 
estimate the rotation parameter θ using GMM by minimizing 𝐽(𝜃): 

                    𝐽(𝜃) = �1
𝑇
∑ (𝐹𝑡1(𝜃)𝑧𝑡)𝑡 �𝑊 �1

𝑇
∑ (𝐹𝑡1(𝜃)𝑧𝑡)𝑡 �

′
          (7) 

  As previously noted, many commodity prices respond significantly to exogenous OPEC oil 
production shocks. Furthermore, the second unrotated factor is significantly affected by OPEC production 
shocks, obtaining peak effects 16 months after the shock and declining gradually thereafter. We can thus reject 
the null hypothesis that OPEC production shocks have no effect on the unrotated second factor at the 5% 
level.7 Thus, the orthogonality condition of the instrument follows from the theory, and this empirical evidence 
suggests that the exogenous OPEC production shocks have clearly discernible effects on commodity prices, 
justifying their use as instruments. We set L = 36 months for the baseline estimation to capture the fact that the 
OPEC production shocks have long-lived effects on commodity prices, although the results are robust to both 
shorter and longer lag specifications as well, as we document below. W is the Newey-West (1987) 
heteroskedasticity and autocorrelation HAC robust estimate of the inverse of the variance-covariance matrix of 
moment conditions. We iterate over minimizing 𝐽(𝜃) and then computing the implied weighting matrix until 

                                                           
6 We thank Lutz Kilian and Andrea Bastianin for providing us with the original and updated OPEC production shock data. 
The correlation between the original Kilian (2008) series and Bastianin and Manera’s updated series is 0.99. There are 
small numerical differences between the two series that are likely due to the fact that Bastianin includes Ecuador in the set 
of OPEC countries. Ecuador rejoined OPEC in 2007, after the first draft of the Kilian paper was written. Kilian’s (2008) 
measure of OPEC production shocks is available on a monthly basis from January 1968 until August 2004, but the first 
production shock does not occur until November 1973. To extend the series back to January 1968, we set the Kilian 
production shock series to zero prior to 1973. 
7 Specifically, we regress the unrotated second factor on a constant, the contemporaneous OPEC production shock, and 24 
lags of the OPEC production shock and test the null hypothesis that all coefficients on OPEC production shocks are zero. 
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the estimate of θ has converged (W = I in the first step). Table 2 presents the resulting estimate of θ and its 
associated standard error. With 𝜃� = −0.10 and a standard error of 0.31, we cannot reject the null hypothesis 
that θ = 0. From this estimate of θ, we construct estimates of the rotation parameters 𝑡11 and 𝑡21: 𝑡11 is close to 
1, and we cannot reject the null hypothesis that 𝑡21 = 0, so the estimated rotation matrix is not statistically 
different from the identity matrix. Furthermore, the over-identification conditions cannot be rejected. 
 The results are insensitive to many of the specific choices made for the estimation of θ. For example, 
we report in Table 2 the results from using fewer moment conditions (L = 12 and 24 months) as well as more 
moment conditions (L = 48 months). Neither changes the estimates significantly. With fewer lags, the standard 
errors get somewhat larger. This finding reflects the fact that OPEC production shocks have only gradual 
effects on commodity prices, so that moment conditions at shorter lag lengths are only weakly informative. 
Similarly, we repeat the GMM estimates using a two-step procedure, in which θ is first estimated using a 
weighting matrix equal to the identity matrix with no subsequent iterations after updating the weighting matrix, 
and second using a continuously updated GMM in which we minimize over θ and W jointly until convergence. 
In both cases, the results are qualitatively similar. Finally, because non-linear GMM can be sensitive to 

normalizations, we replicate the baseline estimation after rewriting moment conditions as 𝐸 �(𝐹�𝑡1 +

𝐹�𝑡2
sin𝜃
cos𝜃

)𝑧𝑡� = 0, and the results are again qualitatively unchanged. 

 The reason why the estimated rotation matrix is close to the identity matrix is that, while the first 
unrotated factor is largely uncorrelated with OPEC production shocks, this condition is not satisfied for the 
second unrotated factor. Because the unrotated factors are already largely consistent with the theoretically 
predicted orthogonality conditions (namely, that the first factor is orthogonal to commodity shocks, but the 
second is not), the estimation procedure yields only a slight rotation of the original factors. 
 While the fact that we cannot reject the over-identifying conditions is consistent with the theory, we 
can further assess the extent to which the estimated rotation satisfies the theoretical predictions of the model. 
For example, an additional theoretical prediction is that the loadings on the indirect factor will all be the same 
sign. To assess this prediction, we present in Table 3 the estimated factor loadings for each rotated factor. The 
loadings on the IC factor are positive for all commodities, as predicted by the theory. In contrast, the loadings 
on the commodity-related factor are of mixed signs. There are no systematic patterns across commodity 
groups, again confirming that the factors explaining commodity prices are common across commodity subsets. 
Without imposing any restrictions on the loadings as part of the identification strategy for the rotation matrix, 
we find that the estimated rotation satisfies theoretical predictions on the factor loadings and those implied by 
the over-identifying restrictions. 
 Given the estimate of θ and the rotation matrix, we construct the rotated factor 𝐹𝑡1 that, according to 
the model, corresponds to the level of aggregate output and income that would have occurred in the absence of 
commodity-related shocks. This factor is presented in Figure 2 after applying a Hodrick-Prescott (HP) filter 
with λ = 129,600, the typical value for monthly data, to highlight variation at business cycle frequencies. In 
addition, we draw from the estimated distribution of θ, construct 𝐹𝑡1 for each new draw and use this 
distribution to characterize the 99% confidence interval of the HP-filtered factor. 
 This factor displays a sharp rise in 1973–74 before falling sharply during the 1974–75 recession in the 
United States. This drop is followed by a progressive increase over the course of the mid- to late 1970s, with 
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the factor peaking in 1979 before falling sharply during each of the “twin” recessions of 1980–82, and then 
rebounding sharply after the end of the Volcker disinflation. Thus, over the course of the 1970s, this structural 
factor displays a clear cyclical pattern. During the mid-1980s, the factor drops sharply before rebounding in the 
late 1980s, and then falls gradually through the 1990–91 U.S. recession before rebounding through the mid-
1990s. It experiences a large decline in the late 1990s, before the 2000–01 U.S. recession and then rebounds 
shortly thereafter. After a brief decline in the mid-2000s, the factor displays a sharp increase from 2005 to 
2008, the period when many commodity prices boomed, and then falls sharply in late 2008 and 2009 before 
rebounding strongly in 2010. In short, there is a clear procylical pattern to the IC factor relative to U.S. 
economic conditions, a point we return to in greater detail in section 3.4. 
 To assess the sensitivity of our results, we consider the alternative identification strategy suggested in 
section 2.4, namely to exploit the theoretical predictions for signs of factor loadings: loadings on the IC factor 
should all be positive. Thus, one can characterize the set of admissible rotation matrices by restricting them to 
be consistent with the sign restrictions implied by the theory, in the spirit of Uhlig (2002). In our case, this 
procedure consists of identifying the set of θ such that min�𝐿�1 cos𝜃 + 𝐿�2 sin𝜃� > 0, where 𝐿�𝑖 for i = {1, 2} 
are the loading vectors associated with the unrotated factors and min is with respect to the elements of 𝐿1. We 
consider values of 𝜃 ∈ [−𝜋,𝜋] (at increments of 0.001) and, for each θ, determine whether the restriction is 
satisfied. This yields a set of admissible rotation matrices and therefore a set of possible IC factors. We apply 
the HP filter to each of these and plot the resulting minimum and maximum values for each month in Panel B 
of Figure 2, along with the 99% confidence interval for the rotated IC factor from the baseline GMM 
estimation. There is significant overlap between the two approaches, with the minimum and maximum values 
from the sign restriction typically being within the 99% confidence interval of the GMM-estimated IC factor. 
Thus, despite the fact that the two identification strategies are quite different, they point toward a remarkably 
consistent characterization of the non-commodity-related structural factor. 
 We verify that our results are not unduly sensitive to specific commodities or groups of commodities 
within the cross-section (Appendix F). For example, the sample includes five closely related grains (barley, 
hay, oats, sorghum and wheat), which out of a cross-section of 40 commodities could lead to the appearance of 
more general co-movement if these specific commodities were affected by a common shock. Keeping only 
wheat out of the grains makes little difference for our results as does keeping only palm oil out of the five oils. 
One might also be concerned about too much overlap in how some commodities are used. We replicate our 
results dropping either all commodities whose primary (60% or more in Table 1) use is as food or as feed. 
Another concern is that while there is significant geographic variation among the primary producing countries 
of different commodities, the former U.S.S.R., China and India still accounted for a large proportion of the 
production of many commodities during our sample period. However, we find that dropping all commodities 
for which the primary producing country in 1990 was the former U.S.S.R (8 commodities) increases the 
uncertainty around the estimated IC factor, primarily in the 1970s, but leaves the estimate of θ and the 
underlying unrotated factors unchanged. Dropping all of the commodities for which either China or India were 
the primary producers in 1990 (13 commodities) yields results almost identical to our baseline. Thus, we 
conclude that the baseline estimation of the common factors in commodity prices is robust to the choice of 
commodities included in the cross-section. 
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We also assess whether the results are sensitive to statistical considerations. For example, our baseline 
approach uses the (log) level of real commodity prices. While there is little visual evidence of commodity 
prices exhibiting pronounced trends over this period (see Appendix G), we want to ensure that the results are 
not driven by spurious correlations from trends. We replicate our analysis after linearly detrending each series 
before extracting factors and also consider an alternative specification in which we take the first difference of 
real commodity prices. Neither yields qualitatively different results, thereby ensuring that our results are robust 
to alternative assumptions about the stationarity of commodity prices.  

We consider two final checks on the results. First, we drop all commodities for which some significant 
imputations had to be done (e.g., commodities with more than a few missing observations at the end of the 
sample), or 7 commodities in total. Omitting these series again has almost no effect on the results. Thus, our 
findings are insensitive to the imputation of commodity prices. Second, we implement the initial factor 
analysis by decomposing the correlation matrix of commodity prices rather than the covariance matrix, again 
finding little difference relative to the baseline. In short, the estimates of the IC factor are quite robust to 
commodity selection issues, treatment of trends in the data, the imputation of commodity prices and the 
identification procedure used to recover the rotation matrix. 

The robustness of the results reflects two features of the data. First, the initial factor decomposition, 
and particularly the first unrotated common factor, is largely insensitive to the specific set of commodities used 
or econometric details such as the treatment of trends or the specific method used to decompose the data. This 
reflects the fact that there is widespread and persistent co-movement in real commodity prices, most of which 
is captured by a single factor. Second, this first unrotated factor already satisfies the theoretical restrictions 
implied by the theory: the factor is largely orthogonal to exogenous OPEC production shocks and its factor 
loadings are all of the same sign. Thus, when imposing these theoretical restrictions implied by the model to 
identify the rotation matrix, we cannot reject the null hypothesis that the rotation matrix is equal to the identity 
matrix. Almost all subsequent sensitivity found in robustness checks reflects variation in the standard errors of 
the GMM estimate of the rotation parameter, not variation in the underlying factor decomposition or the point 
estimate of the rotation matrix. 
 

3.4 The Contributions of the Factors to Commodity Prices, Co-movement and Global Real Activity 
The model presented in section 2 suggests that one of the common factors driving real commodity prices can 
be interpreted as the level of global economic activity that would have prevailed in the absence of commodity-
related shocks. Furthermore, the theory provides guidance on how one can identify this factor from the data, 
and the previous sections have shown how to implement this identification procedure. In this section, we 
construct historical decompositions of commodity price movements and global economic activity following 
the structural interpretation suggested by the theory. 
 

3.4.1 Sources of Average Commodity Price Changes 
For prices, we decompose the average annual percentage change in commodity prices into the components 
driven by indirect and direct common factors. The decomposition follows directly from the rotated factor 
structure, yielding 

𝑝𝑡 − 𝑝𝑡−12������������� = 𝐿𝐼𝐶�����𝐹𝑡𝐼𝐶 − 𝐹𝑡−12𝐼𝐶 � + 𝐿𝐷𝐶������𝐹𝑡𝐷𝐶 − 𝐹𝑡−12𝐷𝐶 �+ (𝜀𝑡 − 𝜀𝑡−12�������������) 
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where the bar denotes averages across all commodities in the cross-section. The first term on the right-hand 
side of the equation represents the contribution of the IC factor to average commodity price changes, the 
second represents the contribution of the DC factor, and the third reflects average idiosyncratic effects. We 
focus on annual changes in prices to abstract from higher-frequency fluctuations in commodity prices. 
 The results of this decomposition are presented in the top panel of Figure 3, in which we plot the 
contributions from the IC and DC factors each month as well as the actual annual average price change across 
commodities. The IC factor explains the vast majority of historical commodity price changes. Thus, historical 
changes in commodity prices have primarily reflected endogenous responses to non-commodity shocks. To the 
extent that income effects on inputs into the production of commodities are likely weak, the IC factor could be 
interpreted as primarily reflecting changing demand for commodities related to changes in global economic 
activity. During the commodity boom of 1973–74, for example, indirect shocks to commodity markets 
accounted for almost all of the rise in commodity prices, with the remainder reflecting direct commodity-
related shocks. This pattern appears to be the historical norm: every major historical episode of large changes 
in average commodity prices is accounted for by the indirect factor, i.e., as an endogenous response of 
commodity prices to global business cycle conditions not driven by commodity-related shocks.  
 

3.4.2 Sources of Commodity Price Co-movement 
We can also quantify how changes in each factor have contributed to the time variation in co-movement among 
commodity prices. Specifically, we can decompose, each month, annual changes in real commodity prices as 
follows: 

𝑝𝑡(𝑗) − 𝑝𝑡−12(𝑗) = 𝜆𝑗𝐼𝐶�𝐹𝑡𝐼𝐶 − 𝐹𝑡−12𝐼𝐶 �+ 𝜆𝑗𝐷𝐶�𝐹𝑡𝐷𝐶 − 𝐹𝑡−12𝐷𝐶 �+ 𝜀𝑡
𝑗 − 𝜀𝑡−12

𝑗  

From this, we can construct each month the R2 coming from both factors (i.e., the ability of changes in both 
factors to explain commodity price movements through common forces) as well as the partial R2 coming from 
the IC factor. These series are plotted in Panel B of Figure 3. There is significant variation over time in the 
overall co-movement of commodity prices, as captured by both factors, with the highest degrees of co-
movement in commodity prices occurring between 1973 and 1975, in the early to mid-1980s, in the late 1990s, 
and in the mid- to late 2000s continuing to 2013. Most of the time variation in co-movement can again be 
explained by changes in the indirect factor, implying that periods in which commodity prices co-move most 
strongly have also been periods in which commodity price changes have been driven by the endogenous 
response of commodity prices to non-commodity shocks.  
 

3.4.3 Sources of Global Business Cycle Fluctuations 
We now assess the contribution of each factor to global economic activity. To do so, we rely on a measure of 
global industrial production (IP) constructed by Baumeister and Peersman (2011), who collected the industrial 
production data in the United Nations’ Monthly Bulletin of Statistics from 1947Q1 until 2008Q3 and 
aggregated individual country industrial production measures into a global measure of industrial production. 
The series was extended from 2008Q3 until 2010Q4 using only advanced-economy industrial production. 
 Unlike with commodity prices, the factor structure does not immediately lend itself to a decomposition 
of historical changes in global industrial production. To do so, we first rely on the theory presented in section 2 
in which the IC factor corresponds to the level of global activity that would have occurred in the absence of 
direct commodity shocks (𝑦𝑡𝑛𝑐). Thus, changes in the IC factor can be directly interpreted as changes in 
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aggregate output driven by indirect shocks. Because the scale of the IC factor is not identified, we normalize it 
such that the standard deviation of quarterly changes in the IC is equal to the standard deviation of quarterly 
percent changes in global IP and treat the resulting historical changes in the IC as the contribution of indirect 
shocks to global IP. The difference between the demeaned quarterly growth rate of global IP and the demeaned 
change in the IC (which we define as 𝛿𝑡, where 𝛿𝑡 ≡ 𝛥𝑦𝑡 − 𝛥𝑦𝑡𝑛𝑐) should reflect the contribution of direct 
commodity shocks, potentially omitted factors, and mismeasurement in global production levels. To evaluate 
the contribution of direct commodity shocks to global IP, we estimate 

𝛿𝑡 = 𝑐 + �𝛽𝑗𝛿𝑡−𝑗

4

𝑗=1

+ �𝛾𝑗𝐹𝑡−𝑗𝐷𝐶
8

𝑗=1

+ 𝜀𝑡 

such that the direct factor can have dynamic effects on global IP. Unlike the IC factor, the DC factor not only 
reflects the contribution of direct commodity shocks to aggregate production but also the effects of such 
shocks on commodity markets through direct shifts in supply or demand. Such shifts have effects above and 
beyond the general-equilibrium effects of the direct commodity shocks on aggregate output. We estimate the 
regression at a quarterly frequency and allow for one year of autoregressive lags and two years of lags of the 
DC factor to capture potentially dynamic effects of commodity-related shocks on global IP. From this 
specification, we construct the contribution of the DC factor to global IP net of the contribution of the IC 
factor. Note that this approach leaves a component of global activity unaccounted for. This component can be 
interpreted as reflecting measurement error, omitted variables or model misspecification. 
 We plot the resulting contributions of the IC and DC factors to global IP growth in Panel C of Figure 
3, again showing only the annual changes to filter out the high-frequency variation in the measurement of 
global IP. The correlation between changes in the IC factor and annual changes in global IP is high (0.59) so 
that historical changes in global IP are primarily attributed to indirect non-commodity shocks. This is 
particularly true from the early 1970s through the mid-1980s, although commodity-related shocks deepened 
the decline in global IP during late 1974 and early 1975. As was the case with the decomposition of 
commodity prices, the decline in economic activity during the Volcker disinflation is accounted for by the IC 
factor. The dynamics of global activity from the late 1980s to mid-1990s are also largely attributed to the IC 
factor, although actual changes in global IP exceeded those predicted by the two factors. Growth in the IC 
factor during the 2000s also coincides with the growth in global IP during this time period, while commodity-
related shocks in the DC contributed modest downward pressure on economic activity in 2002 and 2003, then 
again in 2007–10. To the extent that the DC factor reflects exogenous energy price fluctuations, the negative 
contribution of the DC factor from late 2007 through 2010 (subtracting 1–2% from the annual growth rate of 
global IP) is broadly consistent with Hamilton (2009), who argues that oil price shocks contributed to the 
severity of the Great Recession of 2007–09. Nonetheless, the decomposition suggests that most of the decline 
in the growth rate of global IP from late 2007 to the depth of the recession can be attributed to declines in the 
growth rate of the IC factor. 

4 Storage 
The model in section 2 yields a factor structure of commodity prices whose properties conform closely to the 
data and permit us to make causal inferences about the relationship between global real activity and 
commodity-related shocks. The key to the identification in the factor structure is that all indirect shocks to 
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commodity markets (i.e., all shocks that affect commodity prices through the general-equilibrium response of 
output) are aggregated into a single factor, the IC factor. This conclusion relies on the premise that all indirect 
shocks induce identical co-movement in commodity prices. 

This aggregation property of the factor structure can be broken in the presence of storage. To see why, 
suppose that we extend the model to include a perfectly competitive storage sector for each primary 
commodity j that purchases or sells that commodity on the spot market, leading it to hold inventories in the 
steady state. As illustrated in Deaton and Laroque (1992), the key determinant of whether the storage sector 
increases or decreases its inventories is the expected path of prices of the commodity. If a current increase in 
prices is not expected to persist, then the storage sector sells a positive amount of its inventories on the spot 
market today when prices are high and rebuilds inventories in future periods when prices are lower. This 
behavior increases the current supply of the good and reduces it in the future. In contrast, if the shock is 
expected to generate a persistent increase in prices, the storage sector does not have an incentive to change its 
stock of inventories and therefore is not a net purchaser of the good. Thus, the persistence of the driving 
process affects the size of net purchases by the storage sector through its effect on the path of expected prices. 
For example, if aggregate productivity shocks in the model were highly persistent while labor supply shocks 
were less persistent, the presence of storage would lead these shocks to have different supply responses, 
depending on the size of the storage sector’s net purchases. The co-movement in commodity prices would then 
not necessarily be the same across the two shocks, potentially breaking the aggregation result. 

In practice, this issue is unlikely to be quantitatively important for three reasons. First, if the 
aggregation of indirect shocks into a single IC factor were broken, we would expect a factor decomposition of 
commodity prices to indicate that many factors were required to explain the co-movement of commodity 
prices, since a number of different aggregate structural shocks are likely affecting commodity prices through 
the indirect channel of global activity, such as financial shocks, markup shocks and fiscal shocks, in addition to 
the productivity and labor supply shocks that we explicitly model. But, as documented in Table 1, the co-
movement of commodity prices is well-characterized by two factors, with any additional factors adding little 
explanatory power. This finding suggests that either different indirect shocks have common effects on 
expected price paths of commodity prices (such that the response of the storage sector is similar across all 
indirect shocks and, therefore, that the aggregation of indirect shocks still holds) or the effects of net purchases 
for the storage motive are second-order in affecting commodity prices. 

The second reason why storage is unlikely to be important is precisely because the effects of net 
purchases for storage motives appear to be second-order for most commodities. To examine this claim, 
suppose again that we integrated a storage sector for each primary commodity into the model, in which firms 
purchase or sell the commodity on the spot market as well as store it. The storage sector would therefore affect 
spot markets through its forward-looking net purchases, defined as 𝑁𝑃𝑡(𝑗) at time t for commodity j. The 
market-clearing condition in the presence of an additional storage sector would then be given by 𝑄𝑡(𝑗) =
𝑌𝑡(𝑗) + 𝑁𝑃𝑡(𝑗) such that high (low) net purchases by the storage sector to accumulate (draw down) inventories 
would increase (decrease) the demand for commodity j at time t, holding all else constant. Allowing for trend 
growth in production such that Y/Q and NP/Q are stationary along the balanced growth path, the log-linearized 
version of this equation is 

(𝑌/𝑄 − 1)𝑛𝑝𝑡(𝑗) = (𝑌/𝑄)𝑦𝑡(𝑗) 
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where the terms in parentheses are balanced growth path ratios. For the storage sector to have first-order 
effects on equilibrium outcomes (including prices), it must be the case that net purchases are different from 
zero on average, or equivalently that the ratio of consumption to production (Y/Q) of the commodity is 
different from one. 
 Table 4 presents estimates of the mean annual ratio of consumption to production (minus 1) for 
commodities for which such data could be collected: 𝑟𝑡 = 𝑌𝑡/𝑄𝑡 − 1.8 Out of 32 commodities, we reject the 
null hypothesis that 𝑟𝑡 = 0 on average for only nine: apples, bananas, onions, potatoes, rice, sugar, tea, palm 
oil and safflower oil. Note that four of these are highly perishable commodities (apples, bananas, onions and 
potatoes), thus one would expect some fraction of the goods to spoil while being transported from production 
to retail facilities. But even in the case of these highly perishable goods, the implied gaps between 
consumption and production are small—less than 1% per year. Furthermore, in the case of potatoes, the 
rejection of the null has the wrong sign (i.e., consumption is larger than production on average). Among the 
less perishable agricultural commodities (e.g., grains), there is little evidence that consumption is significantly 
less than production, on average, with most of the point estimates being less than 1%. This conclusion also 
applies to industrial commodities, which are highly storable and for which one would expect inventory motives 
to be potentially important. In fact, there is little evidence of non-zero net purchases by the storage sector. 
Thus, with the exception of a few commodities, it is difficult to reject the null that speculative motives through 
storage have only second-order effects on prices.9 Furthermore, the failure to reject the null does not typically 
reflect large standard errors. Rather, the point estimates of the net ratio are typically smaller than 1%, which 
suggests that net flows to the storage sector are small on average. Finally, if we replicate our baseline factor 
analysis using only the commodities for which we cannot reject the null of zero net purchases on average, there 
is little effect on the estimated IC factor (Appendix H). 

A third way to assess the possibility that the effects of storage could break the aggregation of indirect 
commodities into a common IC factor is to note that, in the presence of storage motives, interest rates would 
play an important role in affecting commodity prices (Deaton and Laroque 1992; and Frankel 2008). As a 
result, the logic of the model in section 2 would imply that monetary policy shocks would directly affect 
commodity prices through changes in desired inventories. Therefore, in a factor decomposition, these 
monetary policy shocks would not be incorporated into the indirect factor. Hence, a testable implication of a 
quantitatively important storage motive is that monetary policy shocks should not affect the IC factor. 
 To test this prediction, we identify U.S. monetary policy shocks using a time-varying-coefficients 
(TVC) Taylor rule 

                                                           
8 We use measures of consumption and production of commodities from the CRB. When these are not available, we rely 
on measures from the UN FAO for agricultural and oil commodities, from the U.S. Department of Agriculture’s Food and 
Agricultural Services (USDA FAS), and from trade associations. Aluminum data were provided to us by the European 
Aluminum Association (EAA), data for copper are from the International Copper Study Group (ICSG), data for tin were 
provided by the International Tin Research Institute (ITRI), nickel data are from International Nickel Study Group 
(INSG), while data for zinc and lead were tabulated from the International Lead and Zinc Study Group’s Monthly 
Bulletin. For many commodities, we were able to construct global production and consumption data going back to 1968.  
There are only eight commodities for which we could not compile consumption and production data: beef, hay, orange 
juice, shrimp, cement, lumber, mercury and wool. 
9 This evidence is also consistent with the well-documented inconsistencies between the standard storage model and the 
observed data (see, among others, Ng 1996). 
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   𝑖𝑡 = 𝑐𝑡 + 𝜑𝑡𝜋𝐹𝑡𝜋𝑡+1,𝑡+2 + 𝜑𝑡
𝑔𝑦𝐹𝑡𝑔𝑦𝑡 + 𝜑𝑡𝑥𝐹𝑡𝑥𝑡 + 𝜌𝑡𝑖𝑡−1 + 𝜀𝑡

𝑚𝑝      (8) 
in which the central bank responds to real-time forecasts (𝐹𝑡) of average inflation over the next two quarters 
(𝜋𝑡+1,𝑡+2), the current quarter’s output growth (𝑔𝑦𝑡), the current quarter’s output gap (𝑥𝑡), and the previous 
period’s interest rate, as in Kozicki and Tinsley (2009) and Coibion and Gorodnichenko (2011). We assume 
that each of the TVCs follows a random walk, including the intercept that captures changes in the central 
bank’s target levels of macroeconomic variables and the natural rate of interest. Following Orphanides (2003) 
and Romer and Romer (2004), we use the Greenbook forecasts prepared by the staff of the Federal Reserve 
before each Federal Open Market Committee (FOMC) meeting to characterize the FOMC’s real-time beliefs 
about current and future macroeconomic conditions. The TVCs allow us to distinguish between systematic 
changes in the monetary policy rule from transitory deviations captured by the residuals. We estimate this rule 
using data on the frequency of FOMC meetings from March 1969 until December 2008. Because Greenbook 
data are not available after 2007, we use Blue Chip Economic Indicator forecasts. The sample ends in 
December 2008 when the zero lower bound on interest rates was reached. We then define the residuals 
estimated from equation (8) as monetary policy shocks and construct a monthly time series from the shock 
series. 
 To quantify the effects of monetary policy shocks on the indirect common factor, we use a vector 
autoregressive representation of macroeconomic dynamics with four variables: our measure of monetary 
policy shocks, the log of U.S. industrial production, the log of the U.S. Consumer Price Index (CPI) and the IC 
factor. We order the monetary policy shock first, given that it should already incorporate the most recent 
economic information obtained from the Greenbook forecasts and to allow other variables to respond to the 
impact of this shock. We use data from March 1969 until December 2008 to estimate the VAR with 18 months 
of lags, midway between the 12-month lag specifications typical of monetary VARs and the 24-month lag 
specification used by Romer and Romer (2004). We then plot in Figure 4 the impulse responses of industrial 
production, the CPI and the IC factor to a monetary policy innovation. 
 An expansionary monetary policy shock in the VAR leads to higher industrial production, with peak 
effects happening one to two years after the shock. The CPI rises moderately but persistently around six 
months after the shock, consistent with the delayed effect on prices of monetary policy shocks long observed 
in the empirical monetary policy literature (e.g., Christiano et al. 1999). The indirect factor rises much more 
rapidly, within the first three months, but does not peak until nearly two years after the shock before gradually 
declining back toward zero. The responses are significantly different from zero at the 5% level for the first 20 
months and are briefly at the 1% level.10 Thus, we can statistically reject the null hypothesis that monetary 

                                                           
10 Note that the reported standard errors do not account for the fact that the IC factor is a generated regressor, and they 
therefore may understate the true uncertainty around the point estimates. However, there are at least two reasons to 
suspect that this is not quantitatively important. First, one could also test the null that monetary policy shocks have no 
effect on the IC factor by regressing it on current and lagged monetary shocks, i.e., 𝐹𝑡𝐼𝐶 = 𝑐 + ∑ 𝛽𝑖𝜀𝑡−𝑖

𝑚𝑝𝐼
𝑖=0 + 𝑣𝑡, setting I = 

36 months to account for the gradual effects of monetary policy shocks on macroeconomic variables. From this 
procedure, we can reject the null hypothesis that monetary policy shocks have no effect on the IC factor (i.e., 𝛽̂𝑖 = 0 ∀𝑖) 
with a p-value of 0.019. The generated regressor issue is not binding in this case, since the IC factor is only on the left-
hand side and the null hypothesis is that the coefficients on monetary policy shocks are zero, thus asymptotic (Newey-
West) standard errors are valid (Pagan 1984). The advantage of the VAR specification is that it also purges the monetary 
policy shocks of potentially remaining predictability from macroeconomic variables and is in this respect a more 
conservative approach. Second, given that we cannot reject the null of the rotation matrix being equal to the identity 
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policy shocks have no effect on the IC factor. In addition, the quantitative contribution of U.S. monetary policy 
shocks to the indirect factor is relatively large, accounting for much of the sustained increase in the IC factor 
from late 1975 until 1980 and around two-thirds of the subsequent decline from 1980 to 1982.  
 In short, while the presence of commodity storage could potentially break the aggregation of indirect 
shocks into a common IC factor, there is little quantitative evidence in favor of this claim.11 First, the fact that 
the co-movement in commodity prices is well characterized by a small number of factors is difficult to 
reconcile with the aggregation result failing to hold. Second, for most commodities, we cannot reject the null 
that storage has only second-order effects on commodity prices. And third, monetary policy shocks have both 
statistically and economically significant effects on the IC factor, which suggests that the factor decomposition 
is not treating them as a direct commodity-related shock, as would be the case if speculative considerations 
were economically important. While storage motives are nonetheless likely to play a role in commodity prices 
in periods when inventory constraints are close to binding, the results suggest that, on average, the aggregation 
result from section 2 provides a succinct and adequate characterization of the data. 
 

5 Forecasting Applications 
The model presented in section 2 predicts that the level of real commodity prices and total demand for 
commodities are endogenous and jointly determined. Furthermore, the empirical evidence presented in section 
3 documented that a large proportion of commodity price movements are systematically related to one another 
and can be interpreted as reflecting aggregate shocks that are not specific to the commodity sector. Guided by 
this insight, we examine whether the common factor identified from the cross-section of commodity prices 
contains information relevant for predicting real commodity prices in a recursive out-of-sample forecasting 
exercise. In the out-of-sample forecasting exercise, we examine the ability of the common commodity factor to 
forecast not only the set of commodities in the data set, but also commonly used commodity indices and the 
real price of oil. 
 

5.1 Forecasting Model 
The forecasting model is a linear bivariate FAVAR(p) model for the real price of commodity j and the IC 
factor: 

𝑥𝑡+1 = 𝐴(𝐿)𝑥𝑡 + 𝑒𝑡+1                                                             (9) 
where 𝑥𝑡 = [𝑟𝑝𝑐𝑗𝑡 , 𝐼𝐶𝑡]′, 𝑟𝑝𝑐𝑗𝑡 denotes the log of the real price of commodity 𝑗, 𝐼𝐶𝑡 is the IC factor extracted 
from the cross-section of real commodity prices, 𝑒𝑡+1 is the regression error, and 𝐴(𝐿) = 𝐴1 + 𝐴2𝐿 + 𝐴3𝐿2 +
                                                                                                                                                                                                    
matrix, one can use the unrotated first common factor in the VAR in lieu of the rotated one. Since the unrotated factor can 
be treated as observable following Bai and Ng (2002) and Stock and Watson (2002) for large enough cross-sections and 
time samples, the corresponding standard errors are valid. The results from this alternative specification are almost 
identical, and we can reject the null of no response at the same confidence level. 
11 Another reason why one might be skeptical of the quantitative importance of the storage mechanism is that recent work 
examining the role of speculative shocks in oil markets has found little evidence that these have contributed in 
economically significant ways to historical oil price fluctuations, either in statistical VAR models such as in Kilian and 
Murphy (2013) and Kilian and Lee (2013) or in DSGE models such as in Unalmis et al. (2012). While little evidence 
exists on this question for other commodities, one would expect that oil markets would be most likely to display 
sensitivity to speculation, given the relative ease with which oil can be stored (both underground and in above-ground 
storage facilities) and the potentially large convenience yields to refineries associated with holding oil as inventories. The 
fact that storage shocks are not quantitatively important does not imply that storage has no effects on the response of 
prices to other shocks, but it is consistent with this result.  
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⋯+ 𝐴𝑝𝐿𝑝−1. In the forecasting exercise, the lag length p is chosen recursively using the Bayesian information 
criterion (BIC). 

All of the nominal commodity prices are deflated by U.S. CPI. In addition to the cross-section of 40 
commodity prices used to compute the IC factor, we examine the ability of the IC factor to forecast three 
widely used commodity price indices—the CRB spot index, the World Bank non-energy index and the IMF 
non-fuel index.12 The indices are also deflated by U.S. CPI. The real price of oil used in the forecasting 
exercise is the U.S. refiner’s acquisition cost of imported oil, which is a good proxy for the international price 
of crude oil (see Alquist et al. 2013). We apply the EM algorithm recursively to fill in the missing observations 
and estimate the common factor at each point in time. We take into account that, in section 3, we are unable to 
reject the null that the rotation matrix equals the identity matrix and therefore use the unrotated first factor in 
the forecasting exercises. The reason for this approach is the well-known sensitivity of GMM in short samples 
and the related concern that small-sample considerations may induce significant variation in the estimate of the 
rotation matrix across periods. 

The forecast performance of the FAVAR is evaluated over two periods. In the first case, the forecast 
evaluation period depends on the commodity. It begins either in January 1968 or at the earliest date subject to 
the condition that the initial estimation window contains at least 48 observations (see Appendix I, Table I.1). 
The second forecast evaluation period begins in January 1984 and ends in December 2012, with the initial 
estimation window ending in December 1983. We again impose the condition that the initial estimation period 
contains at least 48 observations. These constraints reduce the total number of commodities that we can 
consider in the common forecast evaluation period from 40 to 28. We evaluate the recursive mean-squared 
prediction error (MSPE) of the FAVAR-based forecast at the 1-, 3-, 6-, and 12-month horizons. All forecast 
accuracy comparisons are conducted relative to the no-change benchmark. Multiple step-ahead forecasts are 
computed iteratively using the FAVAR. 
 

5.2 Forecasting Results 
Table 5 summarizes the results obtained from the forecasting exercise for the commodity-specific and common 
sample periods. The first column of Table 5 shows the aggregate MSPE ratio, which is defined as follows: 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑀𝑆𝑃𝐸 𝑅𝑎𝑡𝑖𝑜 ≡
∑ 𝑀𝑆𝑃𝐸𝑗𝐹𝐴𝑉𝐴𝑅𝑁
𝑗=1

∑ 𝑀𝑆𝑃𝐸𝑗𝑅𝑊𝑁
𝑗=1

 

where 𝑀𝑆𝑃𝐸𝑗𝑉𝐴𝑅 is the mean-squared prediction error of the FAVAR-based forecast for commodity 𝑗; 

𝑀𝑆𝑃𝐸𝑗𝑅𝑊 is the mean-squared prediction error of the random walk forecast for commodity 𝑗. Thus, the 

aggregate MSPE ratio summarizes the performance of the all of the forecasting models for a given horizon. 
For both the commodity-specific and the common forecast evaluation periods, forecasts based on a common 
factor generate improvements in forecast accuracy relative to the no-change forecast up to the 6-month 
horizon. In the commodity-specific period, the improvements range between approximately 6–8%. In the 
common forecast evaluation period, the improvements are smaller and lie in the 2% to 7% range at horizons up 

                                                           
12 The IMF non-fuel commodity price index available from Haver Analytics begins in February 1980. The price index 
was backcast to January 1957 using the IMF agricultural raw material, beverage, food and metals sub-indices with the 
weights obtained from regressing the non-fuel index on the individual sub-indices. Over the sample period during which 
the indices overlap, a regression of the non-fuel index on the sub-indices yields an 𝑅2 in excess of 0.99999. 
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to 6 months. But these summary statistics mask the heterogeneity in the ability of the FAVAR to produce more 
accurate forecasts than the no-change forecast. Table 5 also reports the distribution of the MSPE ratios for each 
forecast evaluation period. In the commodity-specific period, there are 32 (out of 40) commodities at the 1-
month horizon and 20 (out of 40) commodities at the 3-month horizon for which the FAVAR-based forecasts 
are more accurate than the no-change forecast. The performance of the FAVAR deteriorates as the forecast 
horizon lengthens. Similar results are obtained in the common forecast evaluation period. There are 22 (out of 
28) commodities at the 1-month horizon and 18 (out of 28) commodities at the 3-month horizon for which the 
VAR-based forecasts are more accurate than the no-change forecast. In addition, at the 6- and 12-month 
horizons, the FAVAR generates superior forecasts relative to the no-change forecast for about half of the 
commodities in the sample. 

For the commodity-specific sample period, the common factor-based forecasts of the real commodity 
price indices achieve improvements in forecast accuracy relative to the no-change forecast at the 1-month 
horizon. The FAVAR does best at predicting the World Bank non-energy index and the IMF non-fuel index, 
with improvements in forecast accuracy in the 11–13% range. The accuracy of the FAVAR-based forecast 
diminishes at the 3-month horizon, with a maximum improvement in forecast accuracy of about 1% for the 
IMF non-fuel index. Over the common forecast evaluation period, the FAVAR does somewhat better at 
forecasting the price indices compared with the no-change forecast. Again, the largest improvements in 
forecast accuracy are obtained for the World Bank and IMF commodity-price indices, with improvements of at 
most 14% relative to the no-change forecast. At the 3-month horizon, the FAVAR is more accurate than the 
no-change forecast, but the improvements are smaller (i.e., at most about 7%). The FAVAR model also does 
well at forecasting the real price of oil at short horizons. For both forecast evaluation periods, it produces 
improvements in forecast accuracy of about 20% at the 1-month horizon. The 3-month-ahead forecasts are 3–
6% more accurate than the random walk forecast. The forecasts based on the FAVAR become less accurate as 
the forecast horizon lengthens. 

Tables I.1 and I.2 in Appendix I report the forecast accuracy results for the individual commodities for 
the commodity-specific and common sample periods. First, the FAVAR-based forecasts generate 
improvements in forecast accuracy for some agricultural commodities and oils up to 12 months ahead. For 
example, 12 (out of 15) agricultural commodities and 2 (out of 3) oils achieve improvements in forecast 
accuracy at the 12-month horizon. For the agricultural commodities, the improvements in forecast accuracy 
relative to the random walk forecast range between about 4% for cocoa to 41% for hay. For oils, the gains are 
about 32% for groundnut oil and about 4% for palm oil at the 12-month horizon. Second, the improvements in 
forecast accuracy in the industrial commodities are concentrated at the 1- and 3-month horizons. Appendix 
Table I.2 shows that the improvements in forecast accuracy range between about 22% for cotton to less than 
1% for lead at the 1-month horizon, and between about 11% for tin to around 1% for aluminum at the 3-month 
horizon. 

Additional results on the ability of the commodity price factor to forecast the real price of oil are 
reported in Appendix Table I.3. The table compares the bivariate FAVAR with a standard VAR model of the 
global oil market that has been shown to perform well at forecasting the real price of oil out of sample 
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(Baumeister and Kilian 2012; and Alquist et al. 2013).13 Because of constraints on the availability of data on 
the oil market, the start date for the exercise is January 1973. On the one hand, the model based on the IC 
factor does well relative to the oil market VAR model at the 1- and 3-month horizons when the BIC is used.14 
On the other hand, the IC factor-based model is dominated by the model of the oil market when a fixed lag 
length of 12 is used, although the IC factor model still delivers improvements in forecast accuracy up to about 
14% relative to the no-change forecast.15 This evidence suggests that the IC factor contains information 
relevant for forecasting the real price of crude oil at short horizons. It also underscores the similarities between 
the economic models underlying the two forecasting models and, in particular, the important role that demand 
plays in forecasting not only the real price of oil but also the real prices of other agricultural and industrial 
commodities. 

Taken together, these findings indicate that the prices of internationally traded commodities are, to 
some extent, forecastable in a way suggested by the model presented in section 2. The improvements in 
forecast accuracy can be substantial, particularly at short horizons, and agricultural commodities and oils tend 
to be more predictable than industrial commodities. These results show that a FAVAR can be used to generate 
accurate forecasts of real commodity prices relative to the no-change benchmark. Thus, the factor structure in 
commodity prices can serve a dual purpose for policy-makers and practitioners—providing a structural 
decomposition of the forces driving commodity prices while also helping to forecast movements in commodity 
prices within a common framework. 
 

6 Conclusion 
In this paper, we propose a new empirical strategy, grounded in a microfounded business cycle model with 
commodities, to identify the driving forces of global economic activity and commodity prices. First, the model 
predicts the existence of a factor structure for commodity prices that has a direct economic interpretation. The 
first component of the factor structure captures idiosyncratic price movements, the second captures global 
economic forces, and the third is related to commodity-specific shocks. The indirect common (IC) factor is of 
particular interest because it represents a precise counterfactual: the level of global economic activity that 
would have prevailed in the absence of any contemporaneous commodity-related shocks. Thus, the factor 
structure of commodity prices predicted by theory suggests a way that the IC factor can help to resolve the 
identification problem associated with the joint determination of global economic activity and commodity 
prices. We also show how the model’s predictions can be used to identify the rotation matrix that recovers the 
underlying economic factors implied by the theory, including the IC factor, from a standard empirical factor 
decomposition of commodity prices. This point addresses the central problem of factor analysis— that it is 
problematic to assign the factors an economic interpretation. However, the theory provides a set of 

                                                           
13 We thank Christiane Baumeister for sharing the real-time data set for the model of the oil market. The variables in the 
oil market VAR include the percent change in global crude oil production, the global real activity index constructed in 
Kilian (2009), the log of the real price of oil and a proxy for the change in global above-ground crude oil inventories. For 
further discussion of these data, see Kilian and Murphy (2013). 
14 During the January 1984–August 2012 forecast evaluation period, for example, the model based on the IC factor 
achieves an improvement in forecast accuracy of about 21% relative to the no-change forecast, whereas the improvement 
in the forecast accuracy of the fundamental model of the oil market is about 17% at the 1-month horizon. 
15 The fundamental model of the oil market generates improvements in forecast accuracy of up to about 16% compared 
with the no-change forecast. 
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orthogonality conditions and sign restrictions that can each be used to identify the parameters of the rotation 
matrix consistent with a structural interpretation of the factors. 
 Applying these methods to a broad cross-section of commodity prices, the IC factor that we identify 
accounts for about 60–70% of the variance in commodity prices, and this finding is not sensitive to using two 
alternative identification strategies. In addition, we cannot reject the theoretical restrictions implied by the 
model. The IC factor is highly correlated with independently computed measures of global economic activity 
at business cycle frequencies. Its behavior during the 1970s and 1980s suggests that the macroeconomic 
fluctuations observed during that era were not driven primarily by commodity-related shocks. Nevertheless, 
there are episodes during which the direct commodity shocks contributed negatively to global economic 
activity, particularly in the early 1990s and again during the Great Recession. 

Finally, we show that the IC factor is useful for forecasting real commodity prices, some widely used 
commodity price indices and the real price of crude oil. A recursive out-of-sample forecasting exercise shows 
that a simple bivariate FAVAR that includes the IC factor and the real commodity price can generate 
economically large improvements in forecast accuracy relative to a no-change benchmark. Because our 
identification strategy relies only on commodity prices, it can be implemented in real time. Therefore, our 
approach provides a unified framework to forecast a wide range of commodity prices in real time and to assign 
them a structural interpretation. 
 In sum, we provide a new conceptual framework for identifying the sources and implications of 
commodity price co-movement and its relationship to global macroeconomic conditions. The framework 
suggests a way to interpret the common factors driving commodity prices and offers a fresh perspective on the 
historical behavior of a broad cross-section of internationally traded commodities since the early 1970s. 
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TABLE 1: CONTRIBUTION OF COMMON FACTORS TO COMMODITY PRICES 

 Cumulative Variance Explained by Common Factors 
Number of Common Factors: 1 2 3 4 5 

Complete Sample:      
Cumulative eigenvalue shares 0.59 0.69 0.75 0.79 0.82 
Mean across commodity-specific R2s 0.60 0.69 0.74 0.78 0.81 
Median across commodity-specific R2s 0.70 0.76 0.78 0.84 0.85 
R2 across all commodities 0.62 0.71 0.75 0.79 0.82 
      

Subset of Commodities:      
R2 across agricultural/food commodities 0.64 0.72 0.75 0.77 0.80 
R2 across oils 0.72 0.74 0.76 0.82 0.85 
R2 across industrial commodities 0.55 0.68 0.75 0.80 0.83 

      
Note: The table provides metrics of the cumulative variance associated with using additional factors, as indicated by 
each column. The first row provides the cumulative sum of eigenvalues associated with each factor normalized by 
the sum of all eigenvalues. The second row provides the mean across the R2 of each commodity for each given 
factor, using the specific sample associated with each commodity. The third row provides the median R2 across all 
commodity-specific R2s. The fourth row provides the joint R2 constructed using all commodities. In addition, the top 
panel presents joint R2s for subsets of commodities (as defined in Table 1). Each R2 omits imputed values. See 
section 3.2 for details. 

TABLE 2: GMM ESTIMATES OF THE ROTATION MATRIX 
 GMM Estimates of Rotation Parameter  Implied Rotation Coefficients 
 θ se(θ) p(over-id) N  t11 95% CI(t11) t21 95% CI(t21) 
          Baseline GMM Estimates: -0.10 (0.31) 1.00 505  1.00 [0.75 1.00] -0.10 [-0.65 0.49] 

(Iterative GMM, L=36)          
          Robustness of GMM Estimates:          
More moments: (L=48) -0.15 (0.27) 1.00 493  0.99 [0.77 1.00] -0.15 [-0.63 0.39] 
Fewer moments: (L=24) -0.13 (0.35) 1.00 517  0.99 [0.67 1.00] -0.13 [-0.73 0.54] 
Fewer moments: (L=12) -0.23 (0.50) 1.00 529  0.97 [0.32 1.00] -0.23 [-0.94 0.69] 
Two-step GMM -0.10 (0.31) 1.00 505  1.00 [0.75 1.00] -0.10 [-0.65 0.47] 
Continuous GMM -0.07 (0.31) 1.00 505  1.00 [0.76 1.00] -0.07 [-0.62 0.52] 
Alternative normalization -0.08 (0.31) 1.00 505  1.00 [0.75 1.00] -0.08 [-0.64 0.50] 

          
 
Notes: The table presents nonlinear GMM estimates of parameter θ from equation (7) in the text, along with Newey-
West (1987) standard errors (se(θ)), the p-value for over-identifying restrictions (p(over-id)), and the number of 
observations used in the estimation (N). The panel on the right presents the implied parameters of the first row of the 
rotation matrix, along with the 95% confidence interval implied from the estimated distribution of θ. The baseline 
estimates are based on iterative GMM until convergence, using a constant as well as the contemporaneous value and 
36 lags of OPEC production shocks for moment conditions. Subsequent rows present robustness to using more or 
fewer lags of OPEC production shocks as moment conditions, a two-step GMM procedure, a continuously updated 
GMM procedure and an alternative normalization of moment conditions. See section 3.3 for details. 
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TABLE 3: ROTATED COMMODITY-SPECIFIC FACTOR LOADINGS  
 Factor Loadings   Factor Loadings 

Commodity IC DC  Commodity IC DC 
       
Agr./Food Commodities    Oils   

Apples 0.46 0.13  Coconut oil 0.82 0.02 
Bananas 0.57 0.22  Groundnut oil 0.86 0.13 
Barley 0.75 0.41  Palm oil 0.89 0.13 
Beef 0.87 -0.09  Rapeseed oil 0.53 0.39 
Cocoa 0.89 -0.12  Sun/Safflower oil 0.83 0.22 
Coffee 0.85 -0.17     
Corn 0.95 0.09  Industrial Commodities   
Fishmeal 0.91 0.15  Aluminum 0.80 0.05 
Hay 0.86 -0.04  Burlap 0.85 -0.00 
Oats 0.88 0.11  Cement 0.21 0.06 
Orange juice 0.74 -0.22  Copper  0.60 0.69 
Onions 0.53 -0.39  Cotton 0.92 -0.20 
Pepper 0.56 -0.62  Lead  0.73 0.58 
Potatoes 0.73 -0.05  Lumber 0.53 -0.23 
Rice 0.93 0.09  Mercury 0.46 0.75 
Shrimp 0.44 -0.75  Nickel  0.20 0.74 
Sorghums 0.95 0.08  Rubber 0.79 0.45 
Soybeans 0.95 0.02  Tin  0.90 0.18 
Sugar 0.78 0.11  Wool 0.87 0.16 
Tea 0.87 -0.22  Zinc  0.60 0.36 
Tobacco 0.84 -0.33     
Wheat 0.92 0.13     
       

 
Note: The table presents the rotated loadings from factor analysis using the GMM estimates of the 
rotation matrix. See section 3.3 for details. 
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TABLE 4: TESTING THE NULL HYPOTHESIS OF ZERO NET PURCHASES BY STORAGE SECTOR 

 Estimates of Mean Ratio of Consumption to Production – 1 
Number of Factors: 𝑐̂ 𝑠𝑒(𝑐̂) N Sample Source 
      Agr./Food Commodities      

Apples -0.007*** (0.003) 42 1968-2009 UN FAO 
Bananas -0.008** (0.004) 42 1968-2009 UN FAO 
Barley 0.001 (0.005) 33 1979-2011 CRB 
Beef      
Cocoa -0.009 (0.010) 43 1968-2010 CRB 
Coffee 0.016 (0.011) 41 1968-2009 UN FAO 
Corn 0.004 (0.005) 32 1980-2011 CRB 
Fishmeal -0.014 (0.016) 45 1968-2012 USDA-FAS 
Hay      
Oats 0.002 (0.004) 45 1968-2012 USDA-FAS 
Orange juice      
Onions -0.007*** (0.001) 42 1968-2009 UN FAO 
Pepper -0.000 (0.018) 42 1968-2009 UN FAO 
Potatoes 0.005** (0.002) 42 1968-2009 UN FAO 
Rice -0.010** (0.005) 45 1968-2012 USDA-FAS 
Shrimp      
Sorghums 0.010 (0.009) 28 1983-2011 CRB 
Soybeans -0.002 (0.006) 42 1968-2009 UN FAO 
Sugar -0.020*** (0.005) 45 1968-2012 USDA-FAS 
Tea -0.022*** (0.005) 42 1968-2009 UN FAO 
Tobacco 0.004 (0.015) 37 1968-2004 USDA-FAS 
Wheat 0.000 (0.006) 34 1978-2011 CRB 

      
Oils      

Coconut oil 0.003 (0.009) 42 1968-2009 UN FAO 
Groundnut oil -0.003 (0.004) 41 1971-2011 USDA-FAS 
Palm oil -0.045** (0.017) 42 1968-2009 UN FAO 
Rapeseed oil -0.007 (0.005) 45 1968-2012 USDA-FAS 
Sun/Safflower oil -0.024** (0.010) 41 1972-2012 USDA-FAS 

      
Industrial Commodities      

Aluminum -0.007 (0.005) 45 1968-2012 TA  
Burlap 0.020 (0.012) 42 1968-2009 UN FAO 
Cement      
Copper  0.001 (0.005) 45 1968-2011 TA 
Cotton 0.001 (0.010) 43 1968-2010 CRB 
Lead  -0.001 (0.004) 39 1972-2012 TA 
Lumber      
Mercury      
Nickel  -0.009 (0.008) 45 1968-2012 BREE 
Rubber 0.001 (0.004) 43 1968-2010 CRB 
Tin  0.011 (0.012) 45 1968-2012 TA 
Wool      
Zinc  -0.007 (0.006) 39 1972-2012 TA 

      
Note: The table presents the average ratio of consumption to production (minus one) for each commodity and 
associated Newey-West standard errors. Data on global consumption and production are from the Commodity 
Research Bureau (CRB), trade associations (TA), the United Nations Food and Agriculture Organization (UN FAO), 
the Food and Agricultural Services of the U.S. Department of Agriculture (USDA-FAS), or the Bureau of Resources 
and Energy Economics of the Australian Government (BREE). See section 4 for details and additional information 
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on specific trade organizations. Series left blank are those for which consumption and production data are 
unavailable. 
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TABLE 5: SUMMARY OF RECURSIVE FORECAST ACCURACY DIAGNOSTICS FOR REAL COMMODITY PRICES 

             
 Forecast Evaluation Period: Commodity-Specific 
         
 Aggregate MSPE Ratio  Distribution of MSPE Ratios    
   [0,0.9) [0.9,0.95) [0.95,1) [0,1) [1,∞)  CRB WB IMF Crude Oil 
1 month 0.921  10 11 11 32 8  0.974 0.834 0.874 0.805 
             
3 months 0.922  4 5 11 20 20  1.057 1.022 0.990 0.972 
             
6 months 0.938  5 4 4 13 27  1.127 1.245 1.072 1.141 
             
12 months 1.096  5 6 5 16 24  1.187 1.214 1.155 1.318 
             
No. of commodities 40        24 (15) 39 (17) 45(17)  
             
 Forecast Evaluation Period: January 1984–December 2012 
         
 Aggregate MSPE Ratio  Distribution of MSPE Ratios      
   [0,0.9) [0.9,0.95) [0.95,1) [0,1) [1,∞)  CRB WB IMF Crude Oil 
1 month 0.930  8 7 7 22 6  0.964 0.863 0.888 0.790 
             
3 months 0.946  7 4 7 18 10  0.991 0.982 0.928 0.947 
             
6 months 0.984  8 3 3 14 14  1.068 1.106 1.008 1.111 
             
12 months 1.106  9 3 5 17 11  1.128 1.256 1.112 1.308 
             
No. of commodities 28        24 (15) 39 (17) 45 (17)  

Notes: For the commodity-specific forecast evaluation period, the initial estimation window depends on the commodity. It begins either in January 1968 or 
at the earliest date that allows the initial estimation window to contain at least 48 observations. The maximum length of the recursive sample is restricted by 
the end of the data and the forecast horizon. The “Aggregate MSPE Ratio” is the ratio of the sum of the MSPEs for the bivariate FAVAR forecasts of the 
real commodity prices relative to the sum of the MSPEs for the no-change forecast. The MSPE ratios of the individual forecasts of real commodity prices 
are also computed relative to the benchmark no-change forecast. For the FAVAR-based forecasts, the lag length is chosen recursively using the BIC. The 
number of commodities included in the commodity price indices but not in the cross-section of 40 commodities used to extract the factor is in parentheses.
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FIGURE 1: COMPARATIVE STATICS AND COMMODITY PRICE CO-MOVEMENT ACROSS SHOCKS 

Panel A: Expansionary Change in Aggregate Productivity 

 
 

Panel B: Expansionary Change in Relative Demand for Commodities 

 
Notes: The two figures in Panel A plot the effects of a change in aggregate productivity from 𝑎𝑡 to 𝑎𝑡′ on commodity 
prices. In the graph on the left, 𝑆𝐸 and 𝑆𝐼  are supply curves for relatively elastically and inelastically supplied 
commodities; 𝐷 denotes demand curves. In the graph on the right, R(a) shows the set of prices of the two commodities 
that may arise as a result of productivity changes. The two figures in Panel B plot the equivalent comparative statics for a 
decrease in the relative demand for commodities (𝛼�𝑡), which is assumed to raise aggregate production y by the same 
amount as the increase in productivity in Panel A. See section 2.2 for details. 
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FIGURE 2: INDIRECT COMMON FACTOR IN COMMODITY PRICES 

Panel A: Indirect Common Factor (GMM Approach) 

 
Panel B: Indirect Common Factor (Factor Loading Sign Restrictions) 

 

 
Note: The figure in Panel A presents the IC factor from the factor analysis in section 3.3. The IC factor is HP-
filtered (λ = 129,600) in the figure. The light grey shaded areas are recessions dated by the National Bureau of 
Economic Research. The dark grey shaded areas are 99% confidence intervals of HP-filtered rotated factors 
constructed from the estimated distribution of rotation parameters. The figure in Panel B plots the 99% confidence 
interval of the IC factor as estimated by GMM (shaded areas), and the minimum and maximum range for admissible 
values of the IC factor using sign restrictions on factor loadings (solid blue lines). See section 3.3 for details. 
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FIGURE 3: THE CONTRIBUTION OF INDIRECT AND DIRECT FACTORS TO CHANGES IN COMMODITY PRICES  
Panel A: Contributions to Average Annual Commodity Price Changes 

 

 
Panel B: Contributions to Co-movement in Commodity Price Changes 

 
Panel C: Contributions to Annual Changes in Global Industrial Production 

 
Note: Panel A plots the contributions of the direct and indirect factors (DC and IC, respectively) to the average 
annual price changes across all commodities. Panel B plots the contribution of the two factors to cross-sectional 
variation in 1-year commodity price changes (black line) and that coming solely from IC factor (blue shaded area). 
See section 3.4 for details. Panel C plots the equivalent contributions to the annual growth rate of global industrial 
production.  
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FIGURE 4: EFFECTS OF MONETARY POLICY SHOCKS ON THE INDIRECT COMMON FACTOR 

 

Note: The figures in the top row present estimated impulse responses of U.S. industrial production, the U.S. 
consumer price index, and the IC factor to a 100-basis-point expansionary monetary policy shock using the vector 
autoregression (VAR) described in section 4. Confidence intervals are constructed from the distribution of impulse 
responses generated by drawing 2,000 times from the estimated distribution of VAR parameters. The bottom row 
presents actual values of each variable normalized by the predicted values from the VAR given initial conditions and 
no subsequent shocks (solid black line), U.S. recessions (light grey shaded areas) and the estimated contribution of 
monetary policy shocks to historical variation in each variable (blue areas). For the CPI, the bottom figure presents 
year-over-year inflation rates. See section 4 for details. 
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Appendix A: Model Derivations 

The Household 
A representative consumer maximizes expected discounted utility over consumption (𝐶), labor supply 
(𝑁𝑠), and the amount of another input supplied to each commodity sector (𝐿𝑠(𝑗)) as follows: 

max𝐸𝑡�𝛽𝑖 �
𝐶𝑡+𝑖1−𝜎

1 − 𝜎
− 𝑒−𝜀𝑡+𝑖

𝑛
𝜑𝑛

𝑁𝑡+𝑖𝑠 1+1𝜂

1 + 1
𝜂

− 𝜑𝐿𝑒−𝜀𝑡
𝐿 ∫ 𝐿𝑡+𝑖𝑠 (𝑗)1+

1
𝑣𝑑𝑗1

0

1 + 1
𝑣

� 
∞

𝑖=0

 

where 𝛽 is the discount factor. The 𝑒𝜀𝑡
𝑛
 term is an exogenous shock to the disutility of hours worked, 

while 𝑒𝜀𝑡𝐿 is an exogenous shock to the disutility of supplying land. 
The household pays a price 𝑃𝑡 for the consumption good, receives wage 𝑊𝑡 for each unit of labor 

supplied and is paid a rental rate of land 𝑅𝑡𝐿(𝑗) for each unit of land supplied to the primary commodity 
sector j. The household also can purchase risk-free bonds 𝐵𝑡 that pay a gross nominal interest rate of 𝑅𝑡. 
The budget constraint is  

𝑃𝑡𝐶𝑡 + 𝐵𝑡 = 𝐵𝑡−1𝑅𝑡−1 + 𝑊𝑡𝑁𝑡𝑠 + � 𝑅𝑡𝐿(𝑗)𝐿𝑡𝑠(𝑗)𝑑𝑗
1

0
+ 𝛵𝑡 

where 𝛵𝑡 represents payments from the ownership of firms. Assuming that the household takes all prices 
as given, its first-order conditions are 

𝜑𝑛𝐶𝑡𝜎𝑁𝑡𝑠
𝜂−1 = 𝑒𝜀𝑡

𝑛
𝑊𝑡/𝑃𝑡                     (A.1) 

𝜑𝐿𝐶𝑡𝜎𝐿𝑡𝑠(𝑗)𝑣−1 = 𝑒𝜀𝑡𝐿𝑅𝑡𝐿(𝑗)/𝑃𝑡                    (A.2) 
 𝐶𝑡−𝜎 = 𝐸𝑡𝛽 �𝐶𝑡+1−𝜎 𝑅𝑡

𝑃𝑡
𝑃𝑡+1

�.        (A.3) 
The Primary Commodity-Production Sector 
Each primary commodity j is produced by a representative price-taking firm who uses land (𝐿𝑡𝑑(𝑗)) to 
produce a quantity 𝑄𝑡(𝑗) of good j given a production function 
           𝑄𝑡(𝑗) = 𝐴𝑡(𝑗)𝐿𝑡𝑑(𝑗)𝛼𝑗                    (A.4) 
where 𝐴𝑡(𝑗) is the exogenously determined level of productivity for commodity j and 0 < 𝛼𝑗 < 1 is the 
commodity-specific degree of diminishing returns to land. Given the price of commodity j 𝑃𝑡(𝑗), and the 
rental rate of land 𝑅𝑡𝐿(𝑗) specific to commodity j, the firm chooses the amount of land input to maximize 
profits: 

max𝑃𝑡(𝑗)𝑄𝑡(𝑗)− 𝑅𝑡𝐿(𝑗)𝐿𝑡𝑑(𝑗) 
This yields the following demand curve for land for each commodity j: 

   𝑅𝑡𝐿(𝑗)/𝑃𝑡 = 𝛼𝑗 �
𝑃𝑡(𝑗)
𝑃𝑡
�𝐴𝑡(𝑗)𝐿𝑡𝑑(𝑗)𝛼𝑗−1                    (A.5) 

We assume that the steady-state level of productivity 𝐴(𝚥)������ is such that the steady-state level of production 
in each sector is equal. Equilibrium in the market for land requires 

         𝐿𝑡𝑠(𝑗) = 𝐿𝑡𝑑(𝑗)                     (A.6) 
for each sector j. 
 
The Intermediate Commodity 
A perfectly competitive sector purchases 𝑌𝑡(𝑗) of each primary commodity j and aggregates it into an 
intermediate commodity 𝑄𝑡𝐶 using the Dixit-Stiglitz aggregator 

   𝑄𝑡𝑐 = �∫ 𝑌𝑡
𝑗
𝜃𝑐−1
𝜃𝑐 𝑑𝑗1

0 �

𝜃𝑐
𝜃𝑐−1

        (A.7) 

which yields a demand for each commodity j of 
 𝑃𝑡(𝑗)/𝑃𝑡𝑐 = (𝑌𝑡(𝑗)/𝑄𝑡𝐶)−1/𝜃𝑐        (A.8) 
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where 𝜃𝑐 is the elasticity of substitution across commodities and the price of the intermediate commodity 

aggregate is given by 𝑃𝑡𝐶 = �∫ 𝑃𝑡(𝑗)1−𝜃𝑐𝑑𝑗1
0 �

1
1−𝜃𝑐. Market-clearing for each commodity sector j requires 

𝑄𝑡(𝑗) = 𝑌𝑡(𝑗).         (A.9) 
 
The Final Goods Sector 
A perfectly competitive sector combines purchases of the intermediate commodity good 𝑌𝑡𝐶 and labor 𝑁𝑡𝑑 
according to the Cobb-Douglas production function 
      𝑌𝑡 = 𝐴𝑡𝑌𝑡𝐶

𝛼𝑡𝑁𝑡𝑑
1−𝛼𝑡      (A.10) 

to maximize profits 
                𝑃𝑡𝑌𝑡 −𝑊𝑡𝑁𝑡𝑑 − 𝑃𝑡𝐶𝑌𝑡𝐶 

taking as given all prices and where 𝐴𝑡 is an exogenously determined aggregate productivity process. 
This yields the following demand for each input: 

         𝛼𝑡 = (𝑃𝑡𝐶/𝑃𝑡)(𝑌𝑡𝐶/𝑌𝑡)       (A.11) 
      1 − 𝛼𝑡 = (𝑊𝑡/𝑃𝑡)(𝑁𝑡𝑑/𝑌𝑡)       (A.12) 

Since all of the final good is purchased by the household, equilibrium in the final goods market requires 
that 𝐶𝑡 = 𝑌𝑡. The fact that 𝛼𝑡 is potentially time-varying allows for exogenous variation in the relative 
demand for commodities and labor in the production of the final good. 
 
The Linearized Model 
We assume that exogenous processes are stationary around their steady-state levels, so that all real 
variables are constant in the steady state. Letting lower-case letters denote log deviations from steady 
state (e.g., 𝑐𝑡 ≡ log𝐶𝑡 − log𝐶̅) and normalizing all nominal variables by the price level of final goods 
(e.g., 𝑝𝑡(𝑗) ≡ log𝑃𝑡(𝑗)/𝑃𝑡 − log(𝑃(𝚥)/𝑃���������), the first-order conditions from the household’s problem are 

     𝜎𝑦𝑡 + 1
𝜂
𝑛𝑡 = 𝑤𝑡 + 𝜀𝑡𝑛      (A.13) 

    𝜎𝑦𝑡 + 1
𝑣
𝑙𝑡(𝑗) = 𝑟𝑡𝐿(𝑗) + 𝜀𝑡𝐿      (A.14) 

        𝑦𝑡 = 𝐸𝑡 �𝑦𝑡+1 −
1
𝜎
𝑟𝑡�      (A.15) 

where we have imposed the market-clearing conditions 𝐶𝑡 = 𝑌𝑡 and 𝑁𝑡𝑑 = 𝑁𝑡𝑠 ≡ 𝑁𝑡 and defined 𝑟𝑡 as the 
log deviation of the gross real interest rate from its steady-state value. 
 Each primary commodity-producing sector is summarized by the following equations: 

                  𝑟𝑡𝐿(𝑗) = 𝑝𝑡(𝑗) + 𝑎𝑡(𝑗) − �1 − 𝛼𝑗�𝑙𝑡(𝑗)                 (A.16) 
      𝑦𝑡(𝑗) = 𝑎𝑡(𝑗) + 𝛼𝑗𝑙𝑡(𝑗)      (A.17) 

where we have imposed the market-clearing conditions 𝐿𝑡𝑠(𝑗) = 𝐿𝑡𝑑(𝑗) ≡ 𝐿𝑡(𝑗) and 𝑄𝑡(𝑗) = 𝑌𝑡(𝑗). The 
intermediate commodity sector is given by 

          𝑦𝑐,𝑡 = ∫ 𝑦𝑡(𝑗)𝑑𝑗1
0        (A.18) 

𝑝𝑡(𝑗) = 𝑝𝑐,𝑡 −
1
𝜃𝑐
�𝑦𝑡(𝑗)− 𝑦𝑐,𝑡�.      (A.19) 

Finally, letting α be the steady-state value of αt and the log deviation of 𝛼𝑡from its steady-state value of 𝛼 
be 𝛼�𝑡, the final goods sector follows 

       𝑦𝑡 = 𝑎𝑡 + 𝛼𝑦𝑐,𝑡 + (1 − 𝛼)𝑛𝑡 + 𝜑𝛼𝛼�𝑡     (A.20) 
         𝑝𝑐,𝑡 = 𝑦𝑡 − 𝑦𝑐,𝑡 + 𝛼�𝑡      (A.21)  
        𝑤𝑡 = 𝑦𝑡 − 𝑛𝑡 −

𝛼
1−𝛼

𝛼�𝑡         (A.22) 
where 𝜑𝛼 ≡ 𝛼�ln𝑌𝑐���� − ln𝑁��. 
 
Equilibrium Dynamics 
Labor market equilibrium for primary commodity j requires 
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𝑙𝑡(𝑗) = �
1
𝑣

+ 1 − 𝛼𝑗�
−1

[𝑝𝑡(𝑗) + 𝑎𝑡(𝑗) − 𝜎𝑦𝑡 + 𝜀𝑡𝐿] . 
Thus production of commodity j is given by 

   𝑦𝑡(𝑗) = 𝑎𝑡(𝑗)�1 + 𝜀𝑗−1�+ 𝜀𝑗−1𝑝𝑡(𝑗) − 𝜎𝜀𝑗−1𝑦𝑡 + 𝜀𝑗−1𝜀𝑡𝐿    (A.23) 
where 𝜀𝑗 ≡ �1

𝑣
+ 1 − 𝛼𝑗� /𝛼𝑗. Substituting in the relative demand for commodity j yields 

       𝑦𝑡(𝑗) = 𝑣𝑡(𝑗) + �1 + 1
𝜀𝑗𝜃𝑐

�
−1
�𝜀𝑗−1 �𝑝𝑐,𝑡 + 1

𝜃𝑐
𝑦𝑐,𝑡� − 𝜎𝜀𝑗−1𝑦𝑡 + 𝜀𝑗−1𝜀𝑡𝐿�    (A.24) 

where 𝑣𝑡(𝑗) ≡ 𝑎𝑡(𝑗) �1 + 1
𝜀𝑗𝜃𝑐

�
−1
�1 + 𝜀𝑗−1� is a rescaled version of each commodity’s productivity.16  

The aggregate supply of commodities then follows from aggregating equation (A.24) across all j: 
            𝑝𝑐,𝑡 = 1

𝜃𝑐
�1
𝜑
− 1� 𝑦𝑐,𝑡 + 𝜎𝑦𝑡 −

1
𝜑𝜃𝑐

𝑣𝑡 − 𝜀𝑡𝐿     (A.25) 

where 𝜑 ≡ ∫ �1 + 𝜀𝑗𝜃𝑐�
−1𝑑𝑗1

0  such that 0 < 𝜑 < 1/2 and 𝑣𝑡 ≡ ∫ 𝑣𝑡(𝑗)𝑑𝑗1
0  is the aggregate over the 

rescaled productivity shocks in all commodity sectors. The aggregate output level on the right-hand side 
of equation (A.25) reflects income effects on the supply of land by the household, which lower the 
aggregate supply of commodities when income is high. The supply of commodities also shifts with the 
aggregated commodity productivity level and shocks to the household’s willingness to supply land. 
 With the demand for the commodity bundle given by 𝑝𝑐,𝑡 = 𝑦𝑡 − 𝑦𝑐,𝑡 + 𝛼�𝑡, equilibrium 
production of the intermediate commodity bundle is given by 

            𝑦𝑐,𝑡 = (1−𝜎)𝜃𝑐𝜑
1+(𝜃𝑐−1)𝜑

𝑦𝑡 + 1
1+(𝜃𝑐−1)𝜑

𝑣𝑡 + 𝜃𝑐𝜑
1+(𝜃𝑐−1)𝜑

𝜀𝑡𝐿 + 𝜃𝑐𝜑
1+(𝜃𝑐−1)𝜑

𝛼�𝑡 .    (A.26) 
Whether equilibrium total commodity production rises or falls with income (holding v and εL constant) 
depends on the strength of the income effect, which here is captured by σ. If σ < 1, then commodity 
production co-moves positively with total production. 
 Equilibrium in the labor market is given by 

       𝑛𝑡 = 1−𝜎
1+𝜂−1

𝑦𝑡 + 1
1+𝜂−1

𝜀𝑡𝑛 −
1

1+𝜂−1
𝛼�𝑡.     (A.27) 

Therefore, the aggregate level of production of final goods follows from the production function 
                  𝑦𝑡 = 𝜑𝑦[𝑎𝑡 + 𝜅𝐿𝜀𝑡𝐿 + 𝜅𝑛𝜀𝑡𝑛 + 𝜅𝑣𝑣𝑡 + 𝜅𝛼𝛼�𝑡]     (A.28) 

where 𝜑𝑦 ≡ �1 − 𝛼 � (1−𝜎)𝜃𝑐𝜑
1+(𝜃𝑐−1)𝜑

� − (1 − 𝛼) � 1−𝜎
1+𝜂−1

��
−1

, 𝜅𝐿 ≡
𝛼𝜃𝑐𝜑

1+(𝜃𝑐−1)𝜑
, 𝜅𝑛 ≡

1−𝛼
1+𝜂−1

, 𝜅𝑣 ≡
𝛼

1+(𝜃𝑐−1)𝜑
 and 

𝜅𝛼 ≡ 𝜑𝛼 + 𝛼𝜑𝜃𝑐
1+𝜑(𝜃𝑐−1) −

𝛼
1+𝜂−1

. Output rises with aggregate productivity, positive shocks to the 
household’s willingness to supply land and labor, and a positive average over commodity-specific 
productivity shocks. Whether output rises when the relative demand for commodities increases (𝛼�𝑡) 
depends on specific parameter values. 
 
Co-movement in Commodity Prices 
We assume that productivity shocks to each commodity sector have an idiosyncratic component and a 
common component such that 𝑣𝑡(𝑗) = 𝑣𝑡𝑎 + 𝑣𝑡

𝑗, which implies that the aggregate across commodities is 
𝑣𝑡 = 𝑣𝑡𝑎. The idiosyncratic shocks are orthogonal across commodity sectors, such that 𝐸�𝑣𝑡

𝑗𝑣𝑡𝑘� = 0 ∀𝑗 ≠
𝑘 and 𝐸[𝑣𝑡] = 0. 

We now consider the determinants of individual commodity prices. First, the supply of 
commodity j follows from equations (A.19), (A.21) and (A.26) and is given by 

                                                           
16 The rescaling of the commodity-specific productivity shock ensures that a 1% increase in productivity in each 
commodity sector raises the equilibrium level of production of that commodity by equal amounts for each 
commodity. This would not be the case without the rescaling because each primary commodity sector’s supply 
curve has a different slope. The rescaling simplifies the aggregation across commodity sectors. 
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                  𝑝𝑡(𝑗) = 𝜀𝑗𝑦𝑡(𝑗)− �1+𝜀𝑗𝜃𝑐�
𝜃

�𝑣𝑡𝑎 + 𝑣𝑡
𝑗� + 𝜎𝑦𝑡 − 𝜀𝑡𝐿     (A.29) 

where εj is the elasticity of commodity supply with respect to its price. We can write the supply curve of 
commodity j as in the text 

       𝑝𝑡(𝑗) = 𝑆𝑗�𝑦𝑡(𝑗); 𝑦𝑡(𝑎𝑡 , 𝜀𝑡𝑛, 𝜀𝑡𝐿 ,𝛼�𝑡 ,𝑣𝑡𝑎); 𝑣𝑡𝑎, 𝜀𝑡𝐿 ,𝑣𝑡
𝑗�     (A.30) 

which captures the fact that some shocks affect the supply of commodity j indirectly through general-
equilibrium effects captured by aggregate output; some shocks affect supply directly by shifting the 
curve, holding aggregate output constant; and some shocks do both. 
 The demand for commodity j comes from combining equation (A.19) with equations (A.21) and 
(A.25) yielding 
               𝑝𝑡(𝑗) = − 1

𝜃𝑐
𝑦𝑡(𝑗) + �1+(𝜃𝑐−1)𝜎𝜑

1+(𝜃𝑐−1)𝜑
� 𝑦𝑡 −

𝜑(𝜃𝑐−1)
1+(𝜃𝑐−1)𝜑

𝜀𝑡𝐿 −
(𝜃𝑐−1)

1+(𝜃𝑐−1)𝜑
� 1
𝜃𝑐
� 𝑣𝑡𝑎 + 1

1+𝜑(𝜃𝑐−1)𝛼�𝑡   (A.31) 
We can rewrite the demand curve of commodity j more succinctly as 

             𝑝𝑡(𝑗) = 𝐷𝑗(𝑦𝑡(𝑗); 𝑦𝑡(𝑎𝑡 , 𝜀𝑡𝑛, 𝜀𝑡𝐿 ,𝛼�𝑡 ,𝑣𝑡𝑎); 𝑣𝑡𝑎, 𝜀𝑡𝐿 ,𝛼�𝑡)    (A.32) 
to highlight the fact that some shocks affect the demand for commodity j indirectly through general-
equilibrium effects on output; some shocks shift the demand for each commodity j directly, holding 
aggregate output constant; and some do both. 
 
The Factor Structure in Commodity Prices 
To solve for commodity prices, we combine equations (A.29) and (A.31), yielding 
        𝑝𝑡(𝑗)�1 + 𝜀𝑗𝜃𝑐� = �𝜎 + 𝜀𝑗𝜃𝑐(1+(𝜃𝑐−1)𝜎𝜑)

1+(𝜃𝑐−1)𝜑
�𝑦𝑡 − �𝜀𝑗𝜃𝑐𝜑

(𝜃𝑐−1)
1+(𝜃𝑐−1)𝜑

+ 1� 𝜀𝑡𝐿 

− 1
𝜃𝑐
�1 + 𝜀𝑗𝜃𝑐 + 𝜀𝑗𝜃𝑐(𝜃𝑐−1)

1+(𝜃𝑐−1)𝜑
� 𝑣𝑡𝑎 + 𝜀𝑗𝜃𝑐

1+𝜑(𝜃𝑐−1)𝛼�𝑡 −
1
𝜃𝑐
�1 + 𝜀𝑗𝜃𝑐�𝑣𝑡

𝑗.              (A.33) 
Because aggregate output 𝑦𝑡 is itself a function of all aggregate shocks in the model, we can decompose it 
as follows: 

𝑦𝑡 = 𝑦𝑡𝑛𝑐(𝑎𝑡 , 𝜀𝑡𝑛) + 𝜑𝑦[𝜅𝐿𝜀𝑡𝐿 + 𝜅𝑣𝑣𝑡𝑎 + 𝜅𝛼𝛼�𝑡] 
where 𝑦𝑡𝑛𝑐 = 𝜑𝑦[𝑎𝑡 + 𝜅𝑛𝜀𝑡𝑛]. Given this decomposition, we can rewrite the equilibrium price of 
commodity j as 
             𝑝𝑡(𝑗) = 𝜆𝑗

𝑦𝑦𝑡𝑛𝑐(𝑎𝑡, 𝜀𝑡𝑛)���������
indirect (𝐼𝐶) 

+  𝜆𝑗𝐿𝜀𝑡𝐿 + 𝜆𝑗𝑣𝑣𝑡𝑎 + 𝜆𝑗𝛼𝛼�𝑡�������������
direct (𝐷𝐶) 

 − 1
𝜃𝑐
𝑣𝑡
𝑗

�
idiosyncratic

 

        = 𝜆𝑗𝐹𝑡 + 𝜉𝑡
𝑗                         (A.34) 

where 𝜆𝑗
𝑦 ≡ �1 + 𝜃𝜀𝑗�

−1 �𝜎 + 𝜀𝑗𝜃(1+(𝜃−1)𝜎𝜑)
1+(𝜃−1)𝜑

�, 𝜆𝑗𝐿 ≡ 𝜑𝑦𝜅𝐿𝜆𝑗
𝑦 − � 1

1+𝜀𝑗𝜃𝑐
+ 𝜀𝑗𝜃𝑐

1+𝜀𝑗𝜃𝑐
(𝜃𝑐 − 1)�, 𝜆𝑗𝑣 ≡

𝜑𝑦𝜅𝑣𝜆𝑗
𝑦 − � 1

𝜃𝑐
+ 𝜀𝑗𝜃𝑐

1+𝜀𝑗𝜃𝑐
�𝜑(𝜃𝑐−1)

𝜑𝜃
��, 𝜆𝑗𝛼 ≡ 𝜑𝑦𝜅𝛼𝜆𝑗

𝑦 + 𝜀𝑗𝜃𝑐
1+𝜀𝑗𝜃𝑐

� 1
1+𝜑(𝜃𝑐−1)�, 𝜆𝑗 ≡ �𝜆𝑗

𝑦 𝜆𝑗𝐿 𝜆𝑗𝑣  𝜆𝑗𝛼�, 𝐹𝑡 ≡

[𝑦𝑡𝑛𝑐  𝜀𝑡𝐿 𝑣𝑡𝑎 𝛼�𝑡], and 𝜉𝑡
𝑗 ≡ − 1

𝜃𝑐
𝑣𝑡
𝑗, which is the expression in the text. 
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Appendix B: Price Observations Dropped 

 

 

Note: Each figure presents the price series used in the empirical analysis (light blue line: “Restricted X 
price series”) and the observations dropped (thick red line: “Observations dropped). 
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Appendix C: Notes on Commodity Price Data 

Commodity Sources Description Available 
Sample Additional Notes 

Apples CRB 
Wholesale price of (delicious) apples in 
U.S. until 1978:12, apple price received by 
growers starting 1979:1 

1957:1–
2011:12 

Data from 1979:1 are apple prices received by growers. 
Data prior to that are wholesale prices of (delicious) 
applies in U.S., rescaled by the average price ratio of 
the two series from 1979:1–1980:12. Data prior to 1979 
have numerous missing values. 

Bananas WB 
Bananas (Central and South America), 
major brands, U.S. import price, free on 
truck (f.o.t.) U.S. Gulf ports 

1960:1–
2013:1  

Barley CRB/WB 

WB: Barley (Canada), feed, Western No. 1, 
Winnipeg Commodity Exchange, spot, 
wholesale farmers' price; CRB: No. 3 
straight Barley, Minneapolis Exchange 

1957:1–
2013:1 

Data from 1957:1–1959:12 are CRB series. Data from 
1960:1–2013:1 are WB series rescaled by the ratio of 
the two series in 1960:1.  

Beef IMF 
Australia and New Zealand, frozen 
boneless, 85% visible lean cow meat, U.S. 
import price FOB port of entry 

1957:1–
2013:1  

Cocoa IMF 

International Cocoa Organization cash 
price; average of the three nearest active 
futures trading months in the New York 
Cocoa Exchange at noon and the London 
Terminal market at closing time, CIF U.S. 
and European ports 

1957:1–
2012:12  

Coffee IMF 

International Coffee Organization; cash 
prices for 4 kinds of beans: Brazilian 
unwashed Arabica, Columbian mild 
Arabica, other mild Arabica and Robustas 

1957:1–
2012:12 

Value for 1957:1 is average across all four types of 
coffee beans. Subsequent values are the equally 
weighted average of percent change in price of each 
kind of bean times the previous period’s price. 

Corn IMF 
U.S. No. 2 yellow, prompt shipment, FOB 
Gulf of Mexico ports (USDA, Grain and 
Feed Market News, Washington, D.C.) 

1957:1–
2012:12  

Fishmeal IMF Peru Fish meal/pellets, 65% protein, CIF 
United Kingdom (DataStream) 

1957:1–
2012:12  

Hay CRB 
Mid-month price received by farmers for all 
hay (baled) in the United States, dollars per 
ton 

1957:1–
2012:2  

Oats CRB CD  1957:1–
2010:11  
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Orange juice CRB CD Orange Juice Frozen Concentrate: nearest-
term futures contract traded on ICE 

1967:1–
2012:10  

Onions CRB Average price received by farmers 1957:1–
2011:12  

Pepper CRB 
(1) Average black pepper (Brazilian) 
arriving in New York; (2) Average black 
pepper (Lampong) arriving in New York 

1957:1–
2007:6 

From 1984:1–2007:6, we use the Brazilian pepper 
price. Prior to 1984, we use Lampong price rescaled by 
the ratio of the two prices in 1984:1. 

Potatoes CRB Average price received by farmers 1957:1–
2011:12  

Rice IMF 
Thai, white milled, 5% broken, nominal 
price quotes, FOB Bangkok (USDA, Rice 
Market News, Little Rock, Arkansas). 

1957:1–
2012:12  

Shrimp IMF 
Mexican, west coast, white, No. 1, shell-on, 
headless, 26 to 30 count per pound, 
wholesale price at New York 

1957:1–
2013:1  

Sorghums CRB/WB 
CRB: average price of no. 2, yellow, at 
Kansas City, $/100 pounds; WB: no. 2 milo 
yellow, FOB Gulf ports 

1957:1–
2013:1 

From 1960:1–2013:1, we use the WB series. Prior to 
1960:1, we use the CRB series rescaled by the ratio of 
the two series in 1960:1. 

Soybeans CRB CD No. 1 yellow, Chicago Board of Trade 1959:7–
2012:9  

Sugar IMF 
CSCE contract No. 11, nearest future 
position (Coffee, Sugar and Cocoa 
Exchange, New York Board of Trade) 

1957:1–
2012:12  

Tea IMF 
Mombasa auction price for best PF1, 
Kenyan Tea, replaces London auction price 
beginning July 1998 

1957:1–
2013:1  

Tobacco WB Tobacco (any origin), unmanufactured, 
general import , CIF United States 

1968:1–
2013:1  

Wheat IMF 

U.S. No. 1 hard red winter, ordinary 
protein, prompt shipment, FOB $/Mt,  
Gulf of Mexico ports (USDA, Grain and 
Feed Market News) 

1957:1–
2012:12  

Coconut oil CRB 
Average price of coconut oil (crude) at 
Pacific Coast of U.S. and average price of 
coconut oil (crude) tank cars in New York 

1965:1–
2010:12 

Data from 1965:1–1980:12 are Pacific Coast, data from 
1981:1–2010:12 are NY. Series have identical prices in 
overlapping months: 1980:1–1980:12. 

Groundnut oil WB Groundnut oil (any origin), CIF Rotterdam 1960:1–
2013:1  

Palm oil IMF 
Crude Palm Oil Futures (first contract 
forward) 4–5% FFA, Bursa Malaysian 
Derivatives Berhad 

1957:1–
2013:1  
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Rapeseed oil IMF Crude, FOB Rotterdam (Datastream) 1980:1–
2013:1  

Sun/Safflower oil IMF Sunflower Oil, crude, U.S. export price 
from Gulf of Mexico (Datastream) 

1960:1–
2013:1 

Data from 2005:7–2005:12 and data from 2006:6–
2008:2 are treated as missing because of no price 
variation. 

Aluminum IMF 

London Metal Exchange, standard grade, 
spot price, minimum purity 99.5%, CIF 
U.K. ports (Wall Street Journal, New York, 
and Metals Week, New York); prior to 
1979, U.K. producer price, minimum purity 
99% 

1957:1–
2013:1 

Data from 1957:1–1972:12 are treated as missing 
because of infrequent price variation. 

Burlap CRB CD Original source of data is USDA. 1957:1–
2012:9  

Cement BLS BLS PPI Index Industry (series  
PCU32731-32731) Cement Manufacturing 

1965:1–
2012:12 

Data prior to 1980:1 are treated as missing because of 
infrequent price variation. 

Copper IMF 

London Metal Exchange, grade A cathodes, 
spot price, CIF European ports (Wall Street 
Journal, New York, and Metals Week, New 
York); prior to July 1986, higher grade, 
wire bars or cathodes 

1957:1–
2012:12  

Cotton IMF 

Middling 1–3/32-inch staple, Liverpool 
Index "A", average of the cheapest 5 of 14 
styles, CIF Liverpool (Cotton Outlook, 
Liverpool); from January 1968 to May 
1981, strict middling 1–1/16-inch staple; 
prior to 1968, Mexican 1–1/16-inch staple 

1957:1–
2012:12  

Lead IMF London Metal Exchange, 99.97% pure, spot 
price, CIF European ports 

1957:1–
2012:12  

Lumber CRB/IMF 

CRB: Douglas fir softwood lumber 2x4 
dried, S4S; IMF: Average export price of 
Douglas fir, Western hemlock and other 
sawn softwood exported from Canada 

1957:1–
2012:12 

From 1975:1–2012:12, we use the IMF series. Prior to 
1975:1, we use the CRB series rescaled by the ratio of 
the two price series in 1975:1. 

Mercury CRB Average cash price in New York for flask 
of 76 pounds 

1957:1–
2010:12 

Only data from 1962:12–1995:3 is used; other periods 
display infrequent price adjustment. 

Nickel IMF 

London Metal Exchange, melting grade, 
spot price, CIF Northern European ports 
(Wall Street Journal, New York, and Metals 
Week, New York); prior to 1980, INCO, 
melting grade, CIF Far East and American 
ports (Metal Bulletin, London) 

1957:1–
2013:1 

Data prior to 1979:3 are treated as missing because of 
infrequent price variation. 
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Rubber CRB 
Average spot crude rubber prices (smoked 
sheets, no 1, ribbed, plantation rubber) in 
New York, cents per pound 

1957:1–
2010:12  

Tin IMF 

London Metal Exchange, standard grade, 
spot price, CIF European ports (Wall Street 
Journal, New York); from December 1985 
to June 1989, Malaysian, straits, minimum 
99.85% purity, Kuala Lumpur Tin Market 
settlement price; prior to November 1985, 
London Metal Exchange 

1957:1–
2012:12  

Wool IMF 23 micron (AWEX, Australian Wool 
Exchange) Sidney, Australia 

1957:1–
2012:12  

Zinc IMF 

London Metal Exchange, high grade 98% 
pure, spot price, CIF U.K. ports (Wall Street 
Journal, New York, and Metals Week, New 
York); prior to January 1987, standard 
grade 

1957:1–
2012:12  
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Appendix D: The Production and Use of Commodities 

 Largest Producers  Primary Uses  
     Agr./Food Commodities     

Apples (1990–91) U.S. (0.21), Germany (0.10), Italy (0.10)  Food (0.86), beverage, feed  
Bananas* (1990) India (0.15), Brazil (0.12), Ecuad (0.07)  Food (0.84), feed, other  
Barley (1990–91) USSR (0.28), Germany (0.08)  Feed (0.73), distillation, food  
Beef   Food  
Cocoa (1990–91) Ivory Coast (0.32), Brazil (0.25)  Food (0.96)   
Coffee (1990–91) Brazil (0.31), Columbia (0.14)  Food/beverages (0.98)  
Corn (1990–91) U.S. (0.42), Brazil (0.05)  Feed (0.62), food (0.16), adhesives  
Fishmeal* (1984) Japan (0.21), Chile (0.17), Peru (0.08)  Feed (0.90)  
Hay   Feed  
Oats (1990–91) USSR (0.39), U.S. (0.13)  Food (0.74), feed (0.09), ref. solvent  
Orange juice (1990–1) Oranges: Brazil (0.35), Spain (0.07)  Beverage (pulp for feed, oil)  
Onions* (1990) China (0.16), India (0.10)  Food (0.91)  
Pepper (1990) Main exporters: Indonesia, India  Food (0.96), oil (medical, perfumes)  
Potatoes* (1990) USSR (0.24), Poland (0.13)  Food (0.52), distillation, feed (0.19)  
Rice (1990–91) China (0.36), India (0.21)  Food (0.84), distillation, other  
Shrimp   Food  
Sorghum* (1990) U.S. (0.26), India (0.21), Mex. (0.11)  Food (0.39), feed (0.52)  

Soybeans (1990–91) U.S. (0.50), Brazil (0.15)  
Food/feed (0.11), industrial (paints, 

plastics)  
Sugar (1990–91) India (0.12), Brazil (0.07), Cuba (0.07)  Food/beverages (0.96), fuel  
Tea (1990) India (0.29), China (0.21), S. Lank (.09)  Beverage (0.98)  
Tobacco (1990) China (0.37), U.S. (0.10)  Smoking  
Wheat (1990–91) USSR (0.17), China (0.17), U.S. (0.13)  Food (0.65), feed (0.22)  
     

Oils     
Coconut oil (1990–91) Philippines (0.41), Indonesia (0.27)  Food (0.57), cosmetics, synth. rubber  
Groundnut oil* (1990) India (0.45), China (0.22), Nigeria (.09)  Food (0.98)  
Palm oil (1990–91) Malaysia (0.55), Indonesia (0.25)  Food (0.57), soaps, machine lubricants  
Rapeseed oil (1990) China (0.28), India (0.20), Canada (.13)  Food (0.82), inks, pharma, cosmetics  
Sun/Safflower oil (90-1) USSR (0.29), Argentina (0.17)  Food (0.90), fuel  
     

Industrial Commodities     
Aluminum (1990) U.S. (0.22), USSR (0.12), Canada (0.09)  Transportation, containers  
Burlap* (1990) India (0.52), Bangladesh (0.30)  Fabric  
Cement (1990) China (0.18), USSR (0.12), Japan (0.07)  Construction  
Copper (1990) Chile (0.18), U.S. (0.18)  Electrical (0.75), construction  
Cotton (1990–91) China (0.24), U.S. (0.18), Uzb. (0.14)  Clothing, furnishings, medical  
Lead (1990) U.S. (0.23), Kazakhstan (0.12)  Construction, lining, batteries  
Lumber Russia (0.39), Canada (0.39)  Construction, industrial uses  
Mercury (1990) China (0.22), Russia (0.18)  Batteries, paints, dental  
Nickel (1990) USSR (0.24), Canada (0.22)  Coins, batteries, electronics  
Natural rubber (1990) Malaysia (0.25), Thailand (0.24)  Household and industrial uses  
Tin (1990) China (0.19), Brazil (0.18)  Industrial uses  
Wool (1990-91) Australia (0.35), New Zealand (0.12)  Clothing/furnishing, insulation  
Zinc (1990) USSR (0.13), Japan (0.10), Can. (0.08)  Coating, alloy, batteries, medical  
     

     
 

Note: The table presents information on the largest-producing countries for each type of commodity in 1990 or as 
available. These data come from the CRB or, if marked with a *, from the FAO. The third column presents the most 
common uses of each commodity in 1990, as reported by the CRB (for industrials) or by the FAO (for all others). 
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Appendix E: Contribution of Common Factors to Individual Commodity Prices 

 Cumulative R2 from Common Factors 
Number of Factors: 1 2 3 4 5 
Agricultural/Food      

Apples 0.20 0.22 0.22 0.23 0.38 
Bananas 0.34 0.37 0.43 0.43 0.63 
Barley 0.62 0.73 0.78 0.86 0.86 
Beef 0.74 0.77 0.77 0.85 0.85 
Cocoa 0.76 0.80 0.88 0.89 0.90 
Coffee 0.69 0.75 0.86 0.87 0.87 
Corn 0.91 0.91 0.93 0.94 0.94 
Fishmeal 0.85 0.85 0.85 0.86 0.86 
Hay 0.73 0.75 0.76 0.84 0.87 
Oats 0.82 0.82 0.82 0.84 0.84 
Orange juice 0.51 0.59 0.64 0.73 0.78 
Onions 0.24 0.43 0.46 0.47 0.53 
Pepper 0.25 0.50 0.52 0.59 0.59 
Potatoes 0.54 0.55 0.64 0.64 0.69 
Rice 0.87 0.87 0.89 0.89 0.89 
Shrimp 0.14 0.76 0.79 0.79 0.80 
Sorghums 0.90 0.90 0.93 0.93 0.93 
Soybeans 0.91 0.91 0.93 0.93 0.93 
Sugar 0.61 0.62 0.71 0.73 0.75 
Tea 0.71 0.80 0.82 0.83 0.84 
Tobacco 0.65 0.82 0.82 0.83 0.84 
Wheat 0.87 0.87 0.89 0.90 0.90 

Oils      
Coconut oil 0.71 0.71 0.71 0.71 0.79 
Groundnut oil 0.75 0.75 0.78 0.83 0.86 
Palm oil 0.81 0.81 0.81 0.85 0.90 
Rapeseed oil 0.46 0.63 0.71 0.85 0.85 
Sun/Safflower oil 0.73 0.76 0.78 0.84 0.85 

Industrials      
Aluminum 0.62 0.62 0.68 0.78 0.79 
Burlap 0.72 0.72 0.73 0.81 0.85 
Cement 0.14 0.14 0.79 0.79 0.80 
Copper  0.44 0.83 0.85 0.92 0.93 
Cotton 0.80 0.88 0.89 0.89 0.89 
Lead  0.60 0.86 0.87 0.87 0.87 
Lumber 0.25 0.33 0.53 0.64 0.76 
Mercury 0.25 0.49 0.51 0.73 0.77 
Nickel  0.13 0.70 0.70 0.84 0.87 
Rubber 0.71 0.84 0.86 0.86 0.86 
Tin  0.84 0.85 0.92 0.93 0.93 
Wool 0.78 0.79 0.79 0.79 0.79 
Zinc  0.39 0.48 0.54 0.54 0.65 

      
Note: The table presents the R2 associated with the cumulative number of factors across columns for 
each commodity. Imputed values are not included in R2 calculations. See section 3.2 for details. 
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Appendix F: Robustness Checks 

 

Note: The figures present the baseline 99% confidence interval (CI) for the (HP-filtered) IC factor (grey shaded area) and the 99% confidence intervals for the 
HP-filtered IC factor for subsets of commodities (areas between blue lines). In the top two panels, we drop from the cross-section of commodities barley, hay, 
oats and sorghums (left figure) and coconut oil, peanut oil, rapeseed oil and safflower oil (right figure). In the two middle panels, we drop all commodities for 
which food is the primary use (left figure) and all commodities for which feed is the primary use (right figure). In the bottom two panels, we drop all 
commodities for which the former USSR was the primary producer in 1990 (8 commodities, left figure) and all commodities for which China or India were 
primary producers (13 commodities, right figure). See section 3.3 for details. 
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Note: The figures present the baseline 99% confidence interval (CI) for the (HP-filtered) IC factor (grey shaded area) and the 99% confidence intervals for the 
HP-filtered IC factor under alternative conditions (areas between blue lines). In the top left figure, we linearly detrend each real commodity price series prior to 
factor analysis. In the top right figure, we implement factor analysis in first-differences. In the bottom left figure, we include only commodities for which no 
imputation was necessary prior to 2010. In the bottom right figure, we extract factors from the correlation matrix of the cross-section of real commodity prices 
rather than the covariance matrix. See section 3.3 for details. 
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Appendix G: Time Series of (Log) Real Commodity Prices and Imputed Values 

 

Note: The figure plots real commodity prices (black lines) and imputed values (bold red values) from the expectation-maximization (EM) 
algorithm of Stock and Watson (2002).  
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Note: The figure plots real commodity prices (black lines) and imputed values (bold red values) from the expectation-maximization (EM) 
algorithm of Stock and Watson (2002).
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Appendix H: Robustness to Dropping Commodities for which the Null 
Hypothesis of No First-Order Speculation Is Rejected 

 

Note: The figure presents the baseline 99% confidence interval of the (HP-filtered) IC factor from the factor analysis 
on the full cross-section of commodities in section 3.3 using the estimated rotation parameters from GMM estimates 
(grey shaded area). The blue lines correspond to the 99% confidence interval for the equivalent factor using only 
those commodities for which we cannot reject the null of no first-order speculative price effects in Table 4. 
Confidence intervals are 3-month moving averages. See section 4 for details. 
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Appendix I: Additional Tables on Out-of-Sample Forecasting 
 APPENDIX TABLE I.1: RECURSIVE FORECAST ERROR DIAGNOSTICS FOR REAL COMMODITY PRICES 

 h = 1 h = 3 h = 6 h = 12 Forecast Evaluation 
Period 

Agr./Food Commodities      
Apples 0.886 0.738 0.598 0.703 1982:11–2011:12 
Bananas 0.898 0.726 0.659 0.929 1968:1–2013:1 
Barley 0.973 0.975 1.002 0.986 1968:1–2013:1 
Beef 1.138 1.261 1.359 1.367 1968:1–2013:1 
Cocoa 0.933 1.020 1.039 1.032 1968:1–2012:12 
Coffee 0.959 0.986 1.072 1.088 1968:1–2012:12 
Corn 0.904 0.943 0.924 0.910 1968:1–2012:12 
Fishmeal 1.025 1.167 1.108 1.078 1968:1–2013:1 
Hay 1.026 0.953 0.909 0.878 1968:1–2013:3 
Oats 0.932 0.965 0.937 0.955 1968:1–2010:11 
Orange juice 0.967 1.023 1.045 0.967 1971:2–2012:10 
Onions 0.886 0.762 0.618 0.623 1968:1–2011:12 
Pepper 0.906 1.073 1.197 1.375 1983:6–2007:6 
Potatoes 0.816 0.799 0.701 0.947 1968:1–2011:12 
Rice 0.873 0.961 1.025 1.115 1968:1–2012:12 
Shrimp 1.029 1.100 1.136 1.256 1968:1–2013:1 
Sorghum 0.930 0.997 0.988 0.982 1968:1–2013:1 
Soybeans 0.936 1.016 1.053 1.078 1968:1–2012:9 
Sugar 0.937 0.999 1.025 1.038 1968:1–2012:12 
Tea 1.042 1.193 1.237 1.313 1968:1–2013:1 
Tobacco 0.894 0.912 0.904 0.873 1968:1–2013:1 
Wheat 0.970 1.049 0.997 0.947 1968:1–2012:12 

Oils      
Coconut 0.988 0.984 0.964 0.914 1989:7–2010:12 
Groundnut 0.993 0.937 0.893 0.773 1968:1–2013:1 
Palm 0.915 1.071 1.072 1.036 1968:1–2013:1 
Rapeseed 1.030 0.992 1.028 0.963 1984:1–2013:1 
Sunflower 0.946 1.028 1.057 1.106 1968:1–2005:6 

Industrial Commodities      
Aluminum 0.999 1.004 1.058 1.155 1977:1–2013:1 
Burlap 0.880 1.050 1.068 1.054 1968:1–2012:9 
Cement 1.028 1.075 1.148 1.200 1984:1–2012:12 
Copper 0.887 1.006 1.072 1.104 1968:1–2012:12 
Cotton 0.762 0.927 1.000 0.950 1968:1–2012:12 
Lead 0.964 1.034 1.084 1.092 1968:1–2012:12 
Lumber 1.005 1.127 1.149 1.172 1968:1–2012:12 
Mercury 0.884 1.077 1.198 1.419 1968:1–1995:3 
Nickel 0.955 1.157 1.444 2.422 1983:3–2013:1 
Rubber 0.952 0.989 1.054 1.117 1968:1–2010:12 
Tin 0.915 0.922 0.991 1.068 1968:1–2012:12 
Wool 0.967 0.987 1.034 1.096 1968:1–2013:1 
Zinc 0.936 1.030 1.101 1.339 1968:1–2012:12 

Notes: The forecast evaluation period depends on the commodity. It begins either in 1968:1 or at the earliest date that allows the 
initial estimation window to contain at least 48 observations. The maximum length of the recursive sample is restricted by the 
end of the data and the forecast horizon. All forecasts are obtained from a bivariate VAR that includes the level of the real 
commodity price and the first principal component extracted from the cross-section of real commodity prices. The lag length of 
the VAR is chosen recursively using the BIC. The MSPE of the VAR forecast is expressed as a ratio relative to that of the no-
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change forecast. Entries smaller than 1 indicate that the VAR forecast is superior to the no-change forecast and are shown in 
boldface. 
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APPENDIX TABLE I.2: RECURSIVE FORECAST ERROR DIAGNOSTICS FOR REAL COMMODITY PRICES 

 h = 1 h = 3 h = 6 h = 12 
Agr./Food Commodities     

Bananas 0.880 0.698 0.625 0.842 
Barley 0.956 0.955 0.994 0.931 
Beef 1.048 1.207 1.475 1.787 
Cocoa 0.972 0.996 1.002 0.964 
Coffee 0.963 0.948 0.987 0.954 
Corn 0.874 0.870 0.838 0.769 
Fishmeal 0.968 1.104 1.199 1.319 
Hay 0.951 0.829 0.697 0.588 
Rice 0.847 0.885 0.838 0.758 
Shrimp 1.030 1.079 1.081 1.187 
Sorghum 0.908 0.911 0.863 0.813 
Sugar 0.942 1.010 0.994 0.922 
Tea 0.958 0.980 0.946 0.941 
Tobacco 0.858 0.876 0.831 0.726 
Wheat 0.921 0.919 0.826 0.750 

Oils     
Groundnut 0.877 0.891 0.825 0.679 
Palm 0.914 1.088 1.042 0.962 
Rapeseed 1.008 1.007 1.077 1.006 

Industrial Commodities     
Aluminum 1.000 0.985 1.000 1.020 
Cement 1.023 1.057 1.128 1.190 
Copper 0.865 0.980 1.015 1.063 
Cotton 0.784 0.913 1.019 0.972 
Lead 0.995 1.050 1.080 1.123 
Lumber 1.040 1.052 1.083 1.242 
Nickel 0.948 1.147 1.453 2.504 
Tin 0.893 0.889 0.947 0.969 
Wool 0.924 0.961 1.015 1.079 
Zinc 0.923 0.960 0.929 0.872 

Notes: The forecast evaluation period is 1984:1–2012:12. The initial estimation 
window begins at the earliest date that allows it to contain at least 48 observations. 
The maximum length of the recursive sample is restricted by the end of the data and 
the forecast horizon. All forecasts are obtained from a bivariate VAR that includes the 
level of the real commodity price and the first principal component extracted from the 
cross-section of real commodity prices. The lag length of the VAR is chosen 
recursively using the BIC. The MSPE of the VAR forecast is expressed as a ratio 
relative to that of the no-change forecast. Entries smaller than 1 indicate that the VAR 
forecast is superior to the no-change forecast and are shown in boldface.
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APPENDIX TABLE I.3: SUMMARY OF RECURSIVE FORECAST ACCURACY DIAGNOSTICS FOR THE REAL PRICE OF OIL 
        
 Forecast Evaluation Period: 1984:1–2012:8 
      
 BIC  12 lags 
 FAVAR  VAR  FAVAR  VAR 
1 month 0.790  0.825  0.858  0.843 
        
3 months 0.947  1.047  1.037  1.028 
        
6 months 1.111  1.268  1.224  1.206 
        
12 months 1.308  1.501  1.419  1.427 
        
        
 Forecast Evaluation Period: 1992:1–2012:8 
    
 BIC  12 lags 
 FAVAR  VAR  FAVAR  VAR 
1 month 0.832  0.846  0.904  0.857 
        
3 months 0.980  1.016  1.105  0.960 
        
6 months 1.182  1.174  1.329  1.115 
        
12 months 1.459  1.336  1.524  1.172 

Notes: The data for the oil market are from Baumeister and Kilian (2012) and span 
the period 1973:1–2012:8. “FAVAR” refers to the bivariate factor-augmented 
VAR forecasting model that includes the commodity price factor and the real price 
of oil. “VAR” refers to the four-variable VAR of the oil market, as described in the 
text. “BIC” indicates that the lag length is chosen recursively using the BIC. “12 
lags” indicates that the lag length is fixed at 12. The MSPE ratios of the real oil 
price forecasts are computed relative to the benchmark no-change forecast. Entries 
smaller than 1 indicate that the model-based forecast is superior to the no-change 
forecast and are shown in boldface. 
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