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Abstract 
 
This paper proposes the Fixed Effects Filtered (FEF) and Fixed Effects Filtered instrumental 
variable (FEF-IV) estimators for estimation and inference in the case of time-invariant effects 
in static panel data models when N is large and T is fixed. It is shown that the FEF and FEF-
IV estimators are √N-consistent, and asymptotically normally distributed. The FEF estimator 
is compared with the Fixed Effects Vector Decomposition (FEVD) estimator proposed by 
Plumper and Troeger (2007) and conditions under which the two estimators are equivalent are 
established. It is also shown that the variance estimator proposed for FEVD estimator is 
inconsistent and its use could lead to misleading inference. Alternative variance estimators are 
proposed for both FEF and FEF-IV estimators which are shown to be consistent under fairly 
general conditions. The small sample properties of the FEF and FEF-IV estimators are 
investigated by Monte Carlo experiments, and it is shown that FEF has smaller bias and 
RMSE, unless an intercept is included in the second stage of the FEVD procedure which 
renders the FEF and FEVD estimators identical. The FEVD procedure, however, results in 
substantial size distortions since it uses incorrect standard errors. We also compare the FEF-
IV estimator with the estimator proposed by Hausman and Taylor (1981), when one of the 
time-invariant regressors is correlated with the fixed effects. Both FEF and FEF-IV estimators 
are shown to be robust to error variance heteroskedasticity and residual serial correlation. 
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1 Introduction

Identification and estimation of the effects of time-invariant regressors, such as the effects of race or

gender is often the focus of panel data analysis, yet estimation procedures such as fixed effects (FE),

that yield consistent estimates of the coeffi cients of time-varying regressors under fairly general

conditions, cannot be used for estimation of the time-invariant effects, since the FE transformation

eliminates all time-invariant regressors. As a result estimation of time-invariant effects has posed a

challenge in panel data econometrics - namely how to carry out inference on time-invariant effects

without making strong assumptions on the correlation between unobserved individual effects and

the time-varying regressors.

For the estimation of time-invariant effects, Plumper and Troeger (2007) (PT) propose the so

called Fixed Effects Vector Decomposition (FEVD) through a three-step procedure.1 As we shall

see, whilst the FEVD approach can be modified to yield consistent estimates of the time-invariant

effects, the variance estimator proposed by PT for their estimator is not consistent. PT do not

provide any formal statistical proofs to support their stated claims about the consistency of their

estimator and its variance estimator. See Greene (2011a).

In the case where one or more of the time-invariant regressors are endogenous, an early pio-

neering contribution by Hausman and Taylor (1981) (HT) propose using instrumental variables in

the context of a pooled random coeffi cient panel data model. The instruments are obtained by

assuming that known sub-sets of time-varying and time-invariant regressors are exogenous. HT

also assumed that individual-specific effects as well as the idiosyncratic errors of the panel data

model under consideration are serially uncorrelated and homoskedastic. Some of these assumptions

are relaxed in the subsequent literature, but the main idea that sub-sets of time-varying and time

invariant regressors are exogenous is typically maintained. See also Amemiya and MaCurdy (1986),

Breusch et al. (1989), Im et al. (1999) and Baltagi and Bresson (2012).

In this paper, we consider a general static panel data model, which allows for an arbitrary

degree of correlation between the time-varying covariates and the individual effects, and propose

the fixed-effects filtered (FEF) estimation for the coeffi cients of the time-invariant regressors when

the cross-sectional observation, N , is large and the time-series dimension, T, is small and fixed.

Our proposed estimator has two simple steps. In the first step FE estimates are computed for the

coeffi cients of the time-varying variables, and these estimates are used to filter out the time-varying

effects. The residuals from the first stage panel regression are then averaged over time and used as

a dependent variable in a cross-section OLS regression that includes an intercept and the vector of

time-invariant regressors. Under the identifying assumption that the time-invariant regressors are

uncorrelated with the individual effects and a number of other regularity conditions, it is shown

that the FEF estimator is unbiased and consistent for a finite T and as N → ∞. We derive
the asymptotic distribution of the FEF estimator and propose a non-parametric estimator of its

1Plumper and Troeger (2007)’s FEVD approach is very popular in political science, and there even is a STATA
procedure for the implementation of the FEVD estimator.
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covariance matrix, not known in the literature, which we show to be consistent in the presence

of heteroskedasticity of the individual effects and performs well in the presence of residual serial

correlation.

Finally, we consider the case when one or more of the time-invariant variables are endogenous,

and develop the FEF-IV estimator assuming there exist valid instruments. It is shown that the FEF-

IV estimator is consistent and asymptotically normally distributed. A feasible variance estimator

is also proposed for this FEF-IV estimator, which works well under heteroskedasticity and residual

serial correlation. The main advantage of the proposed FEF-IV over the HT estimator lies in the

fact that it does not require a sub-set of time-varying regressors to be exogenous, whilst at the

same can use time averages of the time-varying regressors as instruments if it is known that such

time averages are uncorrelated with the fixed effects, and at the same time correlated with the

endogenous time-invariant regressors.2 The second advantage of the FEF-IV estimator of time-

invariant effects is its robustness to residual serial correlation and error heteroskedasticity.

We also contribute to the controversy over the FEVD estimator proposed by PT, discussed

by Greene (2011a) and Breusch et al. (2011b), and followed up with responses and rejoinders by

Plumper and Troeger (2011), Greene (2011b), Breusch et al. (2011a), and Beck (2011). The FEVD

estimator of PT is based on a three step procedure, we show that when an intercept is included

in the second step of their procedure, then the FEVD estimator is identical to the FEF estimator.

But if an intercept is not included in the second stage, the FEVD estimator is in general biased and

inconsistent. The extent of the bias of the FEVD estimator depends on the magnitude of intercept

and the mean of time-invariant variables. What is more important is that, even if an intercept

is included in the second step of the FEVD procedure, inferences based on the FEVD estimators

and their variances in the third step of PT’s estimation procedure could be misleading since the

variance of the FEVD estimator obtained in the third step is biased and most likely will result in

over-rejection of the null. This is confirmed by the Monte Carlo simulations.

The small sample properties of the FEF and FEF-IV estimators for static panel data model

are investigated, using two sets of comprehensive Monte Carlo experiments including error vari-

ance heteroskedasticity and residual serial correlation. In one set we generate the time-invariant

regressors as exogenous, whilst in the second set we allow one of the time-invariant regressors to be

correlated with the fixed effects. In both sets of experiments we allow the time-varying regressors

to be correlated with the fixed effects. We compare FEF and FEVD estimators using the first set

of experiments only, since these procedures are not appropriate in the case of the second set of

experiments where one of the time-invariant regressors is endogenous. We find that our proposed

estimator has smaller bias and RMSE, unless an intercept is included in the second stage of the

2 It is important to note that the assumption of a zero correlation between time averages of time-varying regressors
and the fixed effects is less restrictive than the assumption of zero correlation between time-varying regressors and the
fixed effects. The latter implies the former but not the reverse. For example, suppose that the time-varying regressor,
xit, is related to the fixed effects, αi, according to xit = αigt + wit, for t = 1, 2, ..., T , where wit is distributed
independently of αi and

∑T
t=1 gt = 0. In this setting Cov(xit, αi) = gtV ar(αi) 6= 0 for each t, but Cov(x̄i, αi) = 0,

where x̄i = T−1∑T
t=1 xit.
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FEVD procedure which renders the FEF and FEVD estimators identical. However, as predicted by

our theoretical derivations, the FEVD procedure results in substantial size distortions since it uses

incorrect standard errors. In contrast, the use of the standard errors derived in this paper yields

the correct size and satisfactory power in the case of all experiments, illustrating the robustness

of our variance formula to heteroskedasticity and residual serial correlation. We also compare the

FEF-IV estimator with the HT estimator using the second set of experiments where one of the

time-invariant regressors is correlated with the fixed effects. The FEF-IV procedure performs well

and has the correct size when an instrument is used for the endogenous time-invariant regressor.

It is also robust to error variance heteroskedasticity and residual serial correlation. But a straight-

forward application of the HT procedure results in biased estimates and size distortions since it

incorrectly assumes that one of the time-varying regressors is uncorrelated with the fixed effects.

In such cases the HT procedure must be modified so that none of the time-varying regressors are

used as instruments.

The rest of the paper is organized as follows: Section 2 sets out the panel data model with

time-invariant effects. Section 3 develops the FEF estimator, derives its asymptotic distribution,

gives robust variance matrix estimator for the proposed FEF estimator, and provides a comparison

of the FEF and FEVD estimators. Section 4 considers the FEF-IV estimator in the case where one

or more of the time-invariant regressors are correlated with the errors. Section 5 discusses the HT

estimator and derives its covariance matrix under a general specification of the error covariance

matrix. The small sample properties of the FEF and FEF-IV estimators are then investigated

in Section 6. The paper ends with some concluding remarks in Section 7. Some of the detailed

mathematical proofs are provided in the Appendix.

For any real-valued N ×N matrix A, we will use ‖A‖ to denote the Frobenius norm of matrix

A defined as ‖A‖ = [tr (AA′)]1/2. Throughout, K denotes a generic non-zero positive constant

that does not depend on N. The symbols→p and→d are used to denote convergence in probability

and in distribution, respectively.

2 Panel data models with time-invariant effects

Consider the following panel data model that contains time-varying as well as time-invariant vari-

ables:

yit = αi + z′iγ + x′itβ + εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (1)

where

αi = α+ ηi, (2)

xit is a k × 1 vector of time-varying variables, and zi is an m × 1 vector of observed individual-

specific variables that only vary over the cross section units, i. In addition to zi, the outcomes,

yit, are also governed by unobserved individual specific effects, αi. The focus of the analysis is on

estimation and inference involving the elements of γ. It is clear that without further restrictions on

4



αi, γ cannot be identified even if β was known to the researcher. For example consider the simple

case where β = 0, and assume that T is small. Then averaging across t we obtain

ȳi = α+ z′iγ + vi

where ȳi = T−1ΣT
t=1yit, vi = ηi + ε̄i , and ε̄i = T−1ΣT

t=1εit. It is clear that without specifying how

vi and zi are related it will not be possible to identify the effects of zi. To deal with this problem,

it is often assumed that there exists instruments that are uncorrelated with vi but at the same time

are suffi ciently correlated with zi. Even if such instruments exist a number of further complications

arises if β 6= 0. In such a case the IV approach must be extended also to deal with the possible

dependencies between ηi and xit. In what follows we allow for ηi and xit to have any degree of

dependence, but initially assume that zi and vi are uncorrelated for identification of γ, and assume

that xit and εis are uncorrelated for all i,t and s, to identify β. This approach can be modified in

cases where one or more instruments are available for zi and/or xit.

3 Fixed effects filtered (FEF) estimator of time-invariant effects

3.1 FEF estimator

Under the assumption that xit and εis are uncorrelated for all i, t and s, as it is well known β

can be estimated consistently under fairly general assumptions on temporal dependence and cross-

sectional heteroskedasticity of εit, and the distribution of the fixed effects, αi. Denoting the FE

estimator of β by β̂, γ can then be estimated by the regression of ȳi − β̂
′
x̄i on an intercept and

zi. We denote this estimator by γ̂FEF and refer to it as the fixed effects filtered (FEF) estimator

of γ. Formally, the FEF estimator can be computed using the following two-step procedure:

Step 1: Using model (1), compute the fixed-effects estimator of β, denoted by β̂, and the

associated residuals ûit defined by

ûit = yit − β̂
′
xit. (3)

Step 2: Compute the time averages of these residuals, ûi = T−1
∑T

t=1 ûit, and regress ûi on zi

with an intercept to obtain γ̂FEF , namely

γ̂FEF =

[
N∑
i=1

(zi − z̄) (zi − z̄)′
]−1 N∑

i=1

(zi − z̄)
(
ûi − û

)
, (4)

and

α̂FEF = û− γ̂ ′FEF z̄, (5)

where û = N−1
∑N

i=1 ûi.

The use of the FE residuals, ûit, for consistent estimation of γ is not new and has been used in the

literature extensively starting with the pioneering contribution of Hausman and Taylor (1981). The
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FEVD procedure proposed by Plumper and Troeger (2007) also makes use of the FE residuals. (see

Section 3.4). The main contribution of this paper lies in development of the asymptotic distribution

of γ̂FEF (and its IV version, γ̂FEF−IV introduced in Section 4) under fairly general conditions on

the error processes εit, and ηi, and alternative assumptions concerning the correlation of zi and

ηi + ε̄i. We also derive conditions under which the covariance matrix of γ̂FEF (and γ̂FEF−IV ) can

be consistently estimated.

3.2 Asymptotic Properties of the FEF Estimator of γ

We examine the asymptotic properties of the FEF estimator of γ, γ̂FEF , defined by (4), under the

following assumptions:

Assumption P1: E(εit |xis ) = 0, for all i, t and s, and E
(
ε4
it

)
< K <∞, for all i and t.

Assumption P2: E (εitεjs |X) = 0, for all i 6= j, and all t and s, whereX = (xit; i = 1, 2, ..., N ;

t = 1, 2, ..., T ).

Assumption P3: The errors, εit, are heteroskedastic and temporally dependent, namely

E (εitεis |X) = γi(t, s), for all t and s,

where 0 < γi(t, t) = σ2
i , and |γi(t, s)| < K, for all i, t and s.

Assumption P4 : The regressors, xit, have either bounded supports, namely ‖xit‖ < K <∞,
or satisfy the moment conditions E ‖xit − x̄‖4 < K <∞, and E ‖x̄i − x̄‖4 < K <∞, for all i and
t, where x̄i = T−1

∑T
t=1 xit, and x̄ = N−1

∑N
i=1 x̄i.

Assumption P5: The k × k matrices Qp,NT and QFE,NT defined by

Qp,NT =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (xit − x̄)′ , (6)

QFE,NT =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄i) (xit − x̄i)
′ , (7)

converge (in probability) toQp,T andQFE,T for a fixed T and asN tends to infinity, λmin (QFE,NT ) >

1/K and λmin (Qp,NT ) > 1/K, for all N and T where K is a finite, non-zero constant.

Assumption P6: The m×m matrix, Qzz,N , and the m× k matrix Qzx̄,N defined by

Qzz,N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ , (8)

Qzx̄,N =
1

N

N∑
i=1

(zi − z̄) (x̄i − x̄)′ , (9)

converge (in probability) to the non-stochastic limits Qzz and Qzx̄, and λmin (Qzz,N ) > 1/K, for

all N > m.
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Assumption P7: The time-invariant regressors, zi, are independently distributed of vj =

ηj + ε̄j , for all i and j, and ηi and ε̄i are independently distributed. Also, zi either have bounded

support, namely ‖zi‖ < K, or satisfy the moment conditions E ‖(zi − z̄)‖4 < K, for all i.

Remark 1 Note that since

‖xit − x̄i‖ = ‖xit − x̄− (x̄i − x̄)‖ ≤ ‖xit − x̄‖+ ‖x̄i − x̄‖ ,

then any order moment conditions on ‖x̄i − x̄‖ and ‖x̄i − x̄‖ imply the same order moment condi-
tions on ‖xit − x̄i‖. The boundedness of ‖xit − x̄‖ and ‖x̄i − x̄‖ are also suffi cient for the bound-
edness of ‖xit − x̄i‖.

Remark 2 Assumptions P5 and P6 ensure that there exists a finite N0 such that for all N > N0,

Qzz,N and QFE,NT are positive definite and converge in probability to the fixed matrices Qzz and

QFE, respectively. But using the results in lemma A.1 in the Appendix, one can then relax the

conditions λmin (Qzz,N ) > 1/K and λmin (QFE,NT ) > 1/K by requiring λmin (Qzz) > 2/K and

λmin (QFE) > 2/K. Under our assumptions the latter conditions ensure that the former conditions

hold with probability approaching one.

Remark 3 Although, our focus is on fixed T and N large panels, we shall also discuss conditions

under which our analysis will be valid when both T and N are large.

To derive the asymptotic distribution of γ̂FEF , we first note that the FE estimator of β is given

by

β̂ =

[
T∑
t=1

N∑
i=1

(xit − x̄i) (xit − x̄i)
′
]−1 T∑

t=1

N∑
i=1

(xit − x̄i) (yit − ȳi) . (10)

Under the above assumptions, β̂ is unbiased and consistent for any fixed T and as N →∞, and

V ar
(
β̂ |X

)
=

1

NT
Q−1
FE,NTVFE,NTQ−1

FE,NT , (11)

where

VFE,NT =
1

NT

N∑
i=1

T∑
t=1

σ2
i (xit − x̄i) (xit − x̄i)

′ +
1

NT

N∑
i=1

T∑
t6=s

γi(t, s) (xit − x̄i) (xis − x̄i)
′ . (12)

In the standard case where εit ∼ IID(0, σ2), we obtain the more familiar expression V ar
(
β̂ |X

)
=

(NT )−1σ2Q−1
FE,NT . Also, for a fixed T and as N →∞, we have the following limiting distribution

√
N
(
β̂ − β

)
→d N(0,T−1Ωβ̂), (13)

where

Ωβ̂ = Q−1
FE,TVFE,TQ−1

FE,T , (14)
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and QFE,T is defined in Assumption P5, and VFE,T = p limN→∞ (VFE,NT ).

Consider now the FEF estimator of γ defined by (4) and note that

ûi − û = (ηi − η̄) + (ε̄i − ε̄) + (zi − z̄)′ γ − (x̄i − x̄)′
(
β̂ − β

)
.

Using this result in (4) we now have (noting that N−1
∑N

i=1 (zi − z̄) (ε̄+ η̄) = 0)

γ̂FEF − γ = Q−1
zz,N

[
N−1

N∑
i=1

(zi − z̄) ζi

]
, (15)

where Qzz,N is defined by (8) and

ζi = ηi + ε̄i − (x̄i − x̄)′
(
β̂ − β

)
. (16)

Let Z = (z1, ...., zN )′, X = (xit; i = 1, 2, ..., N ; t = 1, 2, ..., T ), and η = (η1, η2, ..., ηN )′, and note

that

E [(zi − z̄) ζi |Z,X,η ] = (zi − z̄) ηi − (zi − z̄) (x̄i − x̄)′
[
E
(
β̂ |X

)
− β

]
= (zi − z̄) ηi.

Also under Assumption P7 we have E [(zi − z̄) ηi] = 0 for all i, and using (15) it follows that

E (γ̂FEF ) = γ, which establishes that γ̂FEF is an unbiased estimator of γ.

Consider now the consistency and the asymptotic distribution of γ̂FEF . To this end we first

note that

N−1
N∑
i=1

(zi − z̄) ζi = N−1
N∑
i=1

(zi − z̄) (ηi + ε̄i)

−
[
N−1

N∑
i=1

(zi − z̄) (x̄i − x̄)′
](
β̂ − β

)
.

Also under Assumptions P6 and P7, N−1
∑N

i=1 (zi − z̄) (x̄i − x̄)′ →p Qzx̄,

N−1/2
N∑
i=1

(zi − z̄) (ηi + ε̄i)→d N(0, ω2
iTQzz), (17)

where

ω2
iT = σ2

η +
σ2
i

T
+

1

T 2

∑
s 6=t

γi (s, t) (18)
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with γi (s, t) = E (εisεit), and

N−1
N∑
i=1

(zi − z̄) ζi = Op

(
β̂ − β

)
+Op

(
N−1/2

)
.

Now using (15), and since Qzz,N →p Qzz, which is a non-singular matrix, then we also have

γ̂FEF − γ = Op

(
N−1/2

)
+Op

(
β̂ − β

)
. (19)

Therefore, in view of (19) we obtain

γ̂FEF − γ = Op

(
N−1/2

)
,

which establishes that γ̂FEF , is a
√
N consistent estimator of γ.

To derive the asymptotic distribution of γ̂FEF , we first note that

1√
N

N∑
i=1

(zi − z̄) ζi =
1√
N

N∑
i=1

(zi − z̄) ηi +
1√
N

N∑
i=1

(zi − z̄)
[
ε̄i − (x̄i − x̄)′

(
β̂ − β

)]
, (20)

and consider the limiting distribution of the two terms of (20) and their covariance. We first note

that the second term of the above can be written as

ε̄i − (x̄i − x̄)′
(
β̂ − β

)
=

1

T

T∑
t=1

εit −
1

T

T∑
t=1

(x̄i − x̄)′Q−1
FE,NT

1

NT

T∑
t=1

N∑
j=1

(xjt − x̄j) εjt

=
1

T

T∑
t=1

εit − 1

N

N∑
j=1

wij,tεjt

 ,

where3

wij,t = (x̄i − x̄)′Q−1
FE,NT (xjt − x̄j) . (21)

Hence,

1√
N

N∑
i=1

(zi − z̄)
[
ε̄i − (x̄i − x̄)′

(
β̂ − β

)]

=
1√
N

N∑
i=1

(zi − z̄)
1

T

T∑
t=1

εit − 1

N

N∑
j=1

wij,tεjt


=

1√
N

N∑
i=1

ξ̄i,N ,

3Note that wij,t 6= wji,t.
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where

ξ̄i,N =
1

T

T∑
t=1

dz,itεit, (22)

and

dz,it = (zi − z̄)− 1

N

N∑
j=1

(zj − z̄)wji,t. (23)

Using these results in (20) now yield

1√
N

N∑
i=1

(zi − z̄) ζi =
1√
N

N∑
i=1

(zi − z̄) ηi +
1√
N

N∑
i=1

ξ̄i,N . (24)

However,

Cov

(
1√
N

N∑
i=1

(zi − z̄) ηi,
1√
N

N∑
i=1

ξ̄i,N

)

=
1

N

∑
i,j

E
[
(zi − z̄) ηiξ̄j,N

]
=

1

N

∑
i,j

E
{
E
[
ηi (zi − z̄) ξ̄

′
j,N |Z,X,η

]}
= 0,

and it is suffi cient to derive the asymptotic distributions of the two terms in (24), separately. To

this end we note that under Assumptions P6 and P7, and using standard central limit theorems it

follows that
1√
N

N∑
i=1

(zi − z̄) ηi →d N
(
0, σ2

ηQzz

)
. (25)

Consider now the second term in (24) and note that under Assumption P1-P3 and P7, wji,t and zi

are distributed independently of εis, for all i, j, t, and s, and hence conditional on Z and X, ξ̄i,N
have zero means, and are cross sectionally independently distributed (noting that by Assumption

P2, εit are assumed to be cross-sectionally independent). But since the terms, ξ̄i,N , in (24) vary

with N it suffi ces to show that the following Liapunov condition, (see Davidson (1994), p. 373) is

satisfied.

lim
N→∞

N∑
i=1

E
∥∥∥N−1/2ξ̄i,N

∥∥∥2+δ
= 0 for some δ > 0. (26)

The validity of this condition is established under Assumptions P1-P7 in Section A.1 of the Ap-

pendix. Hence

1√
N

N∑
i=1

ξ̄i,N =
1√
N

N∑
i=1

(
T−1

T∑
t=1

dz,itεit

)
→d N

(
0,Ωξ̄

)
(27)

where Ωξ̄ = limN→∞Ωξ̄,N , and (since εit are assumed to be cross-sectionally independent)

Ωξ̄,N = N−1
N∑
i=1

T−2
T∑

t,s=1

dz,itd
′
z,isE (εitεis)

 . (28)
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The above results are summarized in the following theorem:

Theorem 1 Consider the FEF estimator γ̂FEF of γ in the panel data model (1) defined by (4),
and suppose that Assumptions P1-P7 hold. Then γ̂FEF is an unbiased and a consistent estimator

of γ, and √
N (γ̂FEF − γ)→d N

(
0,Ωγ̂FEF

)
, (29)

where

Ωγ̂FEF = Q−1
zz

(
σ2
ηQzz + Ωξ̄

)
Q−1
zz . (30)

Qzz is defined in Assumption P6, Ωξ̄ = limN→∞Ωξ̄,N , with Ωξ̄,N is defined by (28), and σ2
η is the

variance of the fixed effects defined by (2).

3.3 Consistent estimation of V ar (γ̂FEF )

In order to estimate Ωγ̂FEF , it is helpful to begin with the following proposition regarding Ωξ̄,

defined by (28), which enters the expression for Ωγ̂FEF .

Proposition 1 Let

Vzz,N =
1

N

N∑
i=1

ω2
iT (zi − z̄) (zi − z̄)′ , (31)

where ω2
iT = σ2

η + κ2
iT ,

κ2
iT =

σ2
i

T
+

1

T 2

∑
s 6=t

γi (s, t) , (32)

γi (t, s) = E (εitεis), and σ2
i = γi (t, t). Then σ2

ηQzz + Ωξ̄,N , with Ωξ̄,N defined by (28), can be

written as

σ2
ηQzz + Ωξ̄,N = Vzz,N + Qzx̄,NV ar

(√
N β̂

)
Q′zx̄,N −

(
∆ξ̄,N + ∆′ξ̄,N

)
, (33)

where Qzx̄,N is defined in (9), and

∆ξ̄,N = Qzx̄,NQ−1
FE,NT

 1

N

N∑
i=1

T−2
T∑

t,s=1

γi(t, s) (xit − x̄i) (zi − z̄)′

 . (34)

Proof. A proof is provided in Section A.2 in the Appendix.

Proposition 2 Under Assumptions P1-P7, and if

1

NT 2

N∑
i=1

T∑
t,s=1

γi(t, s) (xit − x̄i) (zi − z̄)′ = op (1) , (35)

11



then the variance of the FEF estimator (4), can be consistently estimated for a fixed T and as

N →∞, by

Ω̂γ̂FEF = N V̂ ar (γ̂FEF ) = Q−1
zz,N

[
V̂zz,N + Qzx̄,N

(
NV̂ ar(β̂)

)
Q′zx̄,N

]
Q−1
zz,N , (36)

where Qzz,N and Qzx̄,N are defined by (8) and (9), respectively,

V̂ ar(β̂) =

(
N∑
i=1

x′i·xi·

)−1( N∑
i=1

x′i·eie
′
ixi·

)(
N∑
i=1

x′i·xi·

)−1

, (37)

where x′i· = (xi1 − x̄i,xi2 − x̄i, . . . ,xiT − x̄i) denotes the demeaned vector of xit, and the t-th ele-

ment of ei is given by eit = yit − ȳi − (xit − x̄i)
′ β̂, and

V̂zz,N =
1

N

N∑
i=1

(
ς̂ i − ς̂

)2
(zi − z̄)(zi − z̄)′, (38)

where

ς̂ i − ς̂ = ȳi − ȳ − (x̄i − x̄)′ β̂ − (zi − z̄)′γ̂FEF . (39)

Proof. A proof is provided in Section A.3 of the Appendix.
Condition (35) is not as restrictive as it may appear at first, and holds under a number of still

fairly general assumptions regarding the error processes, εit. To see this, first not that

1

NT 2

T∑
t,s=1

N∑
i=1

γi(t, s) (xit − x̄i) (zi − z̄)′ = T−1

[
N−1

N∑
i=1

(
X′iMTΓiτT (zi − z̄)′

T

)]
,

where Xi = (xi1, . . . ,xiT )′ , Γi = (γi(t, s)), and τT is a T × 1 vector of ones. Also, T−1ΓiτT = (

γ̄i1, γ̄i2, ..., γ̄iT )′, where γ̄it = T−1
∑T

s=1 γi(t, s). Then condition (35) is met exactly if γ̄it = ci for all

t. Since in such a case T−1ΓiτT = ciτT , and T−1X′iMTΓiτT (zi − z̄)′ = ciX
′
iMTτT (zi − z̄)′ = 0.

Condition γ̄it = ci is clearly met if γi(t, s) = 0 for all t 6= s, and γi(t, t) = E(ε2
it) = σ2

i . After

extensive simulations including cases where there are significant variations over time in γ̄it, we

find that the effect of ∆ξ̄,N is negligible and the use of (36) for inference seems to be justified

more generally.4 Furthermore, the quality of approximating the variance of γ̂FEF by (36) tends to

improve with T so long as T−1
∑T

t,s=1 |γi(t, s)| < K.

3.4 Comparison of FEF and FEVD estimators

In this section, we will compare the FEF estimator with the FEVD proposed by Plumper and

Troeger (2007). The FEVD procedure is based on the following three steps:

Step 1: The fixed effects approach is applied to (1), to compute the FE residuals, ûit, defined

by (3).
4The results of these simulations are available upon request.
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Step 2: In the second step, PT regress ûi on zi where ûi = T−1
∑T

t=1 ûit = ȳi − x̄′iβ̂, ȳi =

T−1
∑T

t=1 yit and x̄i = T−1
∑T

t=1 xit. To obtain equivalence between the FEVD and FEF estimators

of γ, we modify this regression by also including an intercept in the regression and hence define

the residuals from the second stage by

ĥi = ûi − â− z′iγ̂, (40)

where â = û− z̄′γ̂, û = N−1
∑N

i=1 ûi, and

γ̂ =

[
N∑
i=1

(zi − z̄) (zi − z̄)′
]−1 N∑

i=1

(zi − z̄)
(
ûi − û

)
. (41)

which is exactly the same as our FEF estimator. Using the above results we now have

ĥi − ĥ =
(
ûi − û

)
− (zi − z̄)′ γ̂

= (ȳi − ȳ)− (x̄i − x̄)′ β̂ − (zi − z̄)′ γ̂, (42)

where ĥ = N−1
∑N

i=1 ĥi. Also, from the normal equations of this step, note that

ĥ = 0, N−1
N∑
i=1

(
ĥi − ĥ

)
(zi − z̄)′ = 0. (43)

Step 3: The third step uses ĥi computed in the earlier stage, as defined by (40), and estimates

the following panel regression by pooled OLS

yit = a+ x′itβ + z′iγ + δĥi + ε̃it. (44)

These estimators are the modified FEVD estimators which we shall denote by γ̃, δ̃ and β̃, and as

before we denote the FE estimator of β by β̂, and the estimator of γ obtained in the second step

of FEVD approach by γ̂ (which is identical to the FEF estimator if an intercept is included in the

second step). The original FEVD estimators proposed by PT are based on the same pooled OLS

regression, but do not include an intercept in the second stage regression that computes the ĥi.5

As we shall see this makes a great deal of difference to the resultant estimators.

To investigate the relationship between FEF and FEVD estimators we first introduce the fol-

5For example, equations (4) and (5) on p128 of Plumper and Troeger (2007).
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lowing notations

qp,NT =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (yit − ȳ) , Qzȳ,N =
1

N

N∑
i=1

(zi − z̄) (ȳi − ȳ) , (45)

Qhx̄,N =
1

N

N∑
i=1

(
ĥi − ĥ

)
(x̄i − x̄)′ , Qhz,N =

1

N

N∑
i=1

(
ĥi − ĥ

)
(zi − z̄)′ , (46)

Qhȳ,N =
1

N

N∑
i=1

(
ĥi − ĥ

)
(ȳi − ȳ) , Qhh,N =

1

N

N∑
i=1

(
ĥi − ĥ

)2
, (47)

where ĥ, x̄, x̄i, z̄, ȳ, and ȳi are defined as before. Using these additional notations, the normal

equations of the pooled OLS regressions for the panel data model defined by (44) are given by

qp,NT = Qp,NT β̃ + Q′zx̄,N γ̃ + Q′hx̄,N δ̃,

Qzȳ,N = Qzx̄,N β̃ + Qzz,N γ̃ + Q′hz,N δ̃,

Qhȳ,N = Qhx̄,N β̃ + Qhz,N γ̃ + Qhh,N δ̃.

Also, when an intercept is included in the second step of FEVD we have Qhz,N = 0 = Q′hz,N , (see

(43) and (46)), and the normal equations reduce to

qp,NT = Qp,NT β̃ + Q′zx̄,N γ̃ + Q′hx̄,N δ̃, (48)

Qzȳ,N = Qzx̄,N β̃ + Qzz,N γ̃, (49)

Qhȳ,N = Qhx̄,N β̃ + Qhh,N δ̃. (50)

The FEVD estimator of γ, namely γ̃, can now be obtained using the above system of the equations.

The results are summarized in the following proposition.

Proposition 3 Consider the panel data model (44), and suppose that Qp,NT and Qzz,N are non-

singular, and Qhh,N > 0. Let

QNT = Qp,NT −Q′zx̄,NQ−1
zz,NQzx̄,N −Q′hx̄,NQ−1

hh,NQhx̄,N , (51)

and suppose also that QNT is non-singular. Then the FEVD estimators proposed by PT and FEF

estimators proposed in this paper are identical if an intercept is included in the second step regression

of the FEVD procedure, namely γ̃ = γ̂, and β̃ = β̂. Furthermore δ̃, the FEVD estimator of δ in

the third step of the FEVD procedure, is identically equal to unity.

Proof. See Section A.4 in the Appendix for a proof.

Proposition 4 Suppose that the three-step FEVD estimators (denoted as before by β̃, γ̃ and δ̃)
are computed without including an intercept in the regression in the second step. In this case we
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continue to have β̃ = β̂ and δ̃ = 1, but for γ we obtain γ̃ = γ̊, where γ̊ is the OLS estimator of

the coeffi cient of zi in the OLS regression of ûi on zi, without an intercept, and γ̊ is biased and

inconsistent unless αE
[(
N−1

∑N
i=1 ziz

′
i

)−1
N−1

∑N
i=1 zi

]
= 0.

Proof. See Section A.5 in the Appendix for a proof.
It is also interesting to compare the covariance of the FEF given by (30), with the one that is

obtained when the standard formula for the variance of the pooled OLS estimators is applied to

the third step of the FEVD procedure as proposed by PT. Recall that the FEVD estimator of γ

coincides with γ̂ if an intercept is included in the second step of the procedure, and pooled OLS

applied to the third step will result in a valid inference only if the variance obtained using the FEVD

procedure also coincides with Ωγ̂FEF . To simplify the comparisons suppose that εit ∼ IID(0, σ2)

for all i and t, and note that in this simple case Vzz and Ωβ̂ (given by (31) and (14)) reduce to

Vzz =

(
σ2
η +

σ2

T

)
Qzz,

Ωβ̂ =
σ2

T

[
lim
N→∞

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i) (xit − x̄i)
′
]−1

=
σ2

T
(Qp −Qx̄x̄)−1 ,

and we have6

Ωγ̂FEF = Q−1
zz

[(
σ2
η +

σ2

T

)
Qzz + Qzx̄Ωβ̂Qx̄z

]
Q−1
zz

=

(
σ2
η +

σ2

T

)
Q−1
zz +

σ2

T
Q−1
zz Qzx̄ (Qp −Qx̄x̄)−1 Qx̄zQ

−1
zz .

Under the same model specifications the covariance of the FEVD estimator (also scaled by
√
N) is

given by

Ωγ̂FEVD = σ2
ε̃

[
Q−1
zz + Q−1

zz Qzx̄Q
−1Q′zx̄Q

−1
zz

]
,

where as before Q = Qp −Q′zx̄Q
−1
zz Qzx̄ −Q′hx̄Q

−1
hhQhx̄,

σ2
ε̃ = lim

N→∞

[
N−1T−1

T∑
t=1

N∑
i=1

(
yit − α̃− x′itβ̃ − z′iγ̃ − δ̃ĥi

)2
]

= lim
N→∞

[
N−1T−1

T∑
t=1

N∑
i=1

̂̃ε2

it

]
,

and ̂̃εit = yit − ȳ − (xit − x̄)′ β̂ − (zi − z̄)′ γ̂ − ĥi.
6Note that since in the present case ε′its are serially uncorrelated then ∆ξ̄ = 0.
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To derive σ2
ε note that ĥi = ȳi − ȳ − (x̄i − x̄)′β̂ − (zi − z̄)′γ̂, and hence

̂̃εit = yit − ȳ − (xit − x̄)′ β̂ − (zi − z̄)′ γ̂ − ĥi
= yit − ȳi − (xit − x̄i)

′ β̂

= εit − ε̄i − (xit − x̄i)
′
(
β̂ − β

)
.

Also, in the case where εit ∼ IID(0, σ2), we have Cov
[
εit − ε̄i, (xit − x̄i)

′
(
β̂ − β

)]
= 0, and hence

E
(̂̃ε2

it

)
= σ2

(
1− 1

T
+
k

N

)
.

A comparison of the expressions derived above for Ωγ̂FEF and Ωγ̂FEVD clearly shows that they

differ irrespective of whether T is fixed or T →∞.

Remark 4 Plumper and Troeger (2007) argue that the necessity of third step is to correct standard
errors of γ̊ (Plumper and Troeger (2007) , p129), however, as shown above and in the simulations
below, the variance term calculated in the third step of FEVD does not fully correct the bias of the

variance estimator in the second step.7

4 FEF-IV estimation of time-invariant effects

The FEF procedure assumes that the time-invariant regressors, zi, are distributed independently

of the individual-specific effects ηi + ε̄i. However, it is relatively straight forward to modify the

FEF estimator to allow for possibly endogeneity of the time-invariant regressors, if there exists a

suffi cient number of valid instruments. In particular, it is possible to derive an IV version of FEF,

which we denote by FEF-IV, under the following assumptions:

Assumption P8: There exists the s× 1 vector of instruments ri for zi, i = 1, 2, . . . , N , where

ri is distributed independently of ηj and ε̄j for all i and j, and s ≥ m, and satisfy the moment

condition E ‖ri − r̄‖4 < K <∞, if it has unbounded support.
Assumption P9: Let Z = (z1, z2, . . . , zN )′ , R = (r1, r2, . . . , rN )′. Consider the s×m matrix

Qrz,N , the s× k matrix Qrx,N = N−1
∑N

i=1 (ri− r̄)(x̄i− x̄)′, and the s× s matrix Qrr,N defined by

Qrz,N = N−1
N∑
i=1

(ri−r̄)(zi−z̄)′, Qrx̄,N = N−1
N∑
i=1

(ri−r̄)(x̄i−x̄)′, Qrr,N = N−1
N∑
i=1

(ri−r̄)(ri−r̄)′,

(52)

where r̄ = N−1
∑N

i=1 ri. Qrz,N and Qrr,N are full rank matrices for all N > r, and have finite

probability limits as N →∞ given by Qrz and Qrr, respectively. Matrices Qrx̄,N and Qzz,N have

finite probability limits given by Qrx̄ and Qzz, respectively, and in cases where xit and zi are

7PT state "...only the third stage allows obtaining the correct SE’s.", P.129.
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stochastic with unbounded supports, then λmin(Qrr,N ) > 1/K, for all N , and as N → ∞, with
probability approaching one.

Under the above assumptions and maintaining Assumptions P1-P6 as before, a consistent two-

stage estimator of γ can be obtained as follows8

γ̂FEF−IV =
(
Qzr,NQ−1

rr,NQ′zr,N

)−1 (
Qzr,NQ−1

rr,NQrû,N

)
, (53)

where Qzr,N and Qrr,N are defined by (52),

Qrû,N =
1

N

N∑
i=1

(ri − r̄)
(
ûi − û

)
,

û = 1
N

∑N
i=1 ûi, ûi = ȳi − (x̄i − x̄)′ β̂, and β̂ is the FE estimator of β from the first stage. It then

follows that

√
N
(
γ̂FEF−IV − γ

)
=
(
Qzr,NQ−1

rr,NQ′zr,N

)−1
(

Qzr,NQ−1
rr,N

1√
N

N∑
i=1

(ri − r̄) ζi

)
,

with ζi = ηi + ε̄i − x̄′i

(
β̂ − β

)
, as before (see (16)). Following a similar line of proof as in the case

with exogenous zi, under Assumptions P1-P6 and P8-P9, it can be shown that

1√
N

N∑
i=1

(ri − r̄)
(
ζi − ζ̄

)
→d N

(
0, σ2

ηQrr + Ωψ̄

)
,

where

Ωψ̄ = lim
N→∞

1

N

N∑
i=1

T−2
T∑

t,s=1

dr,itd
′
r,isE (εitεis)

 , (54)

where dr,it = (ri − r̄) − 1
N

∑N
j=1 (rj − r̄)wji,t, and wij,t = (x̄i − x̄)′Q−1

FE,NT (xjt − x̄j), as before.

Moreover, we note that under Assumption P9

Qzr,NQ−1
rr,NQ′zr,N →p QzrQ

−1
rr Q′zr, and Qzr,NQ−1

rr,N →p QzrQ
−1
rr .

Using the above results and Slutsky’s theorem now yields

√
N
(
γ̂FEF−IV − γ

)
→d N

(
0,Ωγ̂FEF−IV

)
,

where

Ωγ̂FEF−IV =
(
QzrQ

−1
rr Q′zr

)−1
QzrQ

−1
rr

(
σ2
ηQrr + Ωψ̄

)
Q−1
rr Q′zr

(
QzrQ

−1
rr Q′zr

)−1
. (55)

8A derivation is available upon request.
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For convenience, the above results are summarized in the following theorem.

Theorem 2 Suppose that Assumptions P1-P6, P8 and P9 hold, and let the FEF-IV estimator be
defined as in (53). Then we have

√
N
(
γ̂FEF−IV − γ

)
→d N

(
0,Ωγ̂FEF−IV

)
,

where Ωγ̂FEF−IV is given by (55).

The variance of γ̂FEF−IV can now be estimated along similar lines as in Section 3.3. We have

V̂ ar
(
γ̂FEF−IV

)
= N−1Hzr,N

[
V̂rr,N + Qrx̄,N

(
NV̂ ar(β̂)

)
Q′rx̄,N

]
H′zr,N , (56)

where

Hzr,N =
(
Qzr,NQ−1

rr,NQ′zr,N

)−1
Qzr,NQ−1

rr,N ,

Qrx̄,N =
1

N

N∑
i=1

(ri − r̄) (x̄i − x̄)′ ,

V̂rr,N =
1

N

N∑
i=1

(ri − r̄)(ri − r̄)′
(
υ̂i − υ̂

)2
,

υ̂i − υ̂ = ȳi − ȳ − (x̄i − x̄)′ β̂ − (zi − z̄)′γ̂FEF−IV ,

and as before V̂ ar(β̂) is given by (37). It can be shown that V̂ ar
(√

N γ̂FEF−IV

)
is a consistent

estimator of Ωγ̂FEF−IV defined by (55) if condition (35) is met. Our simulation results suggest that

the above variance estimator performs well even if condition (35) is not satisfied.

5 Hausman and Taylor (1981) estimation procedure

Hausman and Taylor (1981) approach the problem of estimation of the time-invariant effects in the

panel data model, (1), by assuming that xit and zi can be partitioned into two parts as (x1,it,x2,it)

and (z1,i, z2,i), respectively, such that

E
(
x′1,itηi

)
= 0, E

(
z′1,iηi

)
= 0,

E
(
x′2,itηi

)
6= 0, E

(
z′2,iηi

)
6= 0.

To compute the HT estimator the panel data model is first written as

yi = Xiβ +
(
z′iγ + α+ ηi

)
τT + εi, for i = 1, 2, ..., N, (57)
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where Xi = (xi1, . . . ,xiT )′, yi = (yi1, yi2, ..., yiT )′, and εi = (εi1, εi2, ..., εiT )′. Then the following

two-step procedure is used9:

Step 1 of HT: As in our approach β is estimated by β̂, the FE estimator, the deviations

d̂i = ȳi − x̄′iβ̂, i = 1, 2, . . . , N, are used to compute the 2SLS (or IV) estimator

γ̂IV =
(
Z′PAZ

)−1
Z′PAd̂, (58)

where d̂ = (d̂1, d̂2, ..., d̂N )′, Z = (z1, z2, ..., zN )′ = (Z1,Z2), and PA = A (A′A)−1 A′ is the orthog-

onal projection matrix of A =
(
τN , X̄1,Z1

)
, where X̄ = (X̄1, X̄2), and X̄ = (x̄1, x̄2, ..., x̄N )′ , x̄i =

(x̄i,1, x̄i,2). Using these initial estimators of β and γ, the error variances σ2
ε and σ

2
η are estimated

as

σ̂2
η = s2 − σ̂2

ε,

σ̂2
ε =

1

N (T − 1)

N∑
i=1

(
yi −Xiβ̂FE

)′
MT

(
yi −Xiβ̂FE

)
,

s2 =
1

NT

N∑
i=1

T∑
t=1

(
yit − µ̂− x′itβ̂FE − z′iγ̂IV

)2
,

Step 2 of HT : In the second step the N equations in (57) are stacked to obtain

y = Wθ + (η ⊗ τT ) + ε,

whereW = [(τN ⊗ τT ) ,X, (Z⊗ τT )], θ = (α,β′,γ ′)′, y = (y′1,y
′
2, ...,y

′
N )′, η = (η1, η2, ..., ηN )′, and

ε = (ε′1, ε
′
2, ..., ε

′
N )′. Under the assumptions that the errors are cross-sectionally independent, seri-

ally uncorrelated and homoskedastic we have

Ω = V ar [(η ⊗ τT ) + ε] = σ2
η

(
IN ⊗ τTτ ′T

)
+ σ2

ε (IN ⊗ IT ) ,

which can be written as Ω =
(
σ2
ε + Tσ2

η

)
PV + σ2

εQV , where PV = IN ⊗ (IT −MT ) and QV =

IN ⊗MT . It is now easily verified that Ω−1/2 = 1
σε

(ϕPV + QV ), where ϕ = σε/
√
σ2
ε + Tσ2

η. Then

the transformed model can be written as

Ω−1/2y = Ω−1/2Wθ + Ω−1/2 [(η ⊗ τT ) + ε] . (59)

To simplify the notations we assume that the first column of Z is τN , and then write the (infeasible)

HT estimator as,

θ̂HT =
(
W′Ω−1/2PAΩ−1/2W

)−1 (
W′Ω−1/2PAΩ−1/2y

)
, (60)

9As noted in the Introduction, HT procedure is further developed and extended in the papers by Amemiya and
MaCurdy (1986), Breusch et al. (1989), Im et al. (1999) and Baltagi and Bresson (2012).
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where

PA = A
(
A′A

)−1
A′, A =

(
τN ⊗ τT ,QV X,X(1),Z1 ⊗ τT

)
,

X(1) = (X1,1,X1,2, ...,X1,N )′, with X′1,i = (x1,i1, . . . ,x1,iT ), and x1,it contains the regressors that

are uncorrelated with ηi.
10

The variance covariance matrix of θ̂HT in the general case where the fixed effects, ηi, are

heteroskedastic and possibly cross-sectionally correlated is given by 11

V ar
(
θ̂HT

)
= Q−1+

(
T

σ2
ε + Tσ2

η

)
Q−1

[
W′Ω−1/2PA

((
Vη − σ2

ηIN
)
⊗ 1

T
τTτ

′
T

)
PAΩ−1/2W

]
Q−1,

(61)

where Q = W′Ω−1/2PAΩ−1/2W, and Vη represents the covariance matrix of η. V ar
(
θ̂HT

)
reduces to Q−1 in the standard case where ηi’s are assumed to be homoskedastic and cross-

sectionally independent, namely when Vη = σ2
ηIN . To our knowledge the above general expression

for V ar
(
θ̂HT

)
is new.

Remark 5 The HT approach assumes that the errors ηi and εit are both homoskedastic, serially
uncorrelated and cross-sectionally independent. However, simulations to be reported below suggest

that the HT estimator works well even in cases of heteroskedasticity and serially correlated errors,

if the orthogonality conditions of HT estimator are satisfied. But it is important to bear in mind

that if the orthogonality conditions are not met the HT approach breaks down and must be modified.

Remark 6 In the case where the effects of the time-invariant regressors are exactly identified, then
the HT estimator of γ, γ̂HT , is identical to the first stage estimator of γ, given by (58). See Baltagi

and Bresson (2012). It is also easily seen that in such a case, γ̂HT is also identical to the FEF-IV

estimator.

6 Monte Carlo Simulation

In order to evaluate the performance of the FEF and the FEF-IV estimators proposed in this

paper, we conducted two sets of simulations. One set with exogenous time-invariant regressors

and a second set where one of the time-invariant regressors is correlated with the fixed effects.

In both sets of experiments the data generating process (DGP) include two time-varying and two

time-invariant regressors, and allow for error heteroskedasticity and residual serial correlation.

DGP1: Initially, we consider the following data generating process

yit = 1 + αi + x1,itβ1 + x2,itβ2 + z1iγ1 + z2iγ2 + εit,

i = 1, 2, . . . , N ; t = 1, 2, . . . , T,

10See Amemiya and MaCurdy (1986) and Breusch et al. (1989) for discussion on the choice of instruments for HT
estimation.
11See Section A.6 of the Appendix for a derivation.
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with β1 = β2 = 1 and γ1 = γ2 = 1. We generate the fixed effects as αi ∼ 0.5
(
χ2 (2)− 2

)
,

for i = 1, 2, . . . , N. For the time varying regressors we consider the following relatively general

specifications

x1,it = 1 + αig1t + ωit,1,

x2,it = 1 + αig2t + ωit,2,

where the time effects g1t and g2t for t = 1, 2, . . . , T , are generated as U (0, 2) and are then kept

fixed across the replications. The stochastic components of the time varying regressors (ωit,1 and

ωit,2) are generated as heterogenous AR(1) processes

ωit,j = µij(1− ρω,ij) + ρω,ijωit−1,j +
√

1− ρ2
ω,ijεωit,j for j = 1, 2,

where

εωit,j ∼ IIDN(0, σ2
εi), for all i, j and t,

σ2
εi ∼ 0.5(1 + 0.5IIDχ2(2)), ωi0,j ∼ IIDN(µi, σ

2
εi), for all i, j,

ρω,ij ∼ IIDU [0, 0.98], µij ∼ IIDN(0, σ2
µ), σ2

µ = 2, for all i, j.

The time-invariant regressors are generated as

z1i ∼ 1 +N (0, 1) , for i = 1, 2, . . . , N,

z2i ∼ IU [7, 12] , for i = 1, 2, . . . , N,

where IU (7, 12) denotes integers uniformly drawn within the range [7, 12].

DGP2: In this case the DGP is the same as DGP1, except that the second time-invariant

regressor, z2i, is generated to depend on the fixed effects, αi, namely

z2i = ri + αi, for i = 1, 2, . . . , N,

ri ∼ IU [7, 12] for i = 1, 2, . . . , N. (62)

We use ri as the instrument for z2i in the FEF-IV estimation procedure.

For each of the above two baseline DGPs, we generate εit according to

Case 1: Homoskedastic errors:

εit ∼ IIDN(0, 1), for i = 1, 2, . . . , N ; t = 1, 2, . . . , T.

Case 2: Heteroscedastic errors:

εit ∼ IIDN(0, σ2
i ), i = 1, 2, . . . , N ; t = 1, 2, . . . , T,
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where σ2
i ∼ 0.5(1 + 0.5IIDχ2(2)) for all i.

Case 3: Serially correlated and heteroscedastic errors:

εit = ρεiεi,t−1 +
√

1− ρ2
εivit,

where

εi0 = 0 for all i,

vit ∼ IIDN(0, σ2
vi), for all i and t,

σ2
vi ∼ 0.5(1 + 0.5IIDχ2(2)),

ρεi ∼ IIDU [0, 0.98], for all i,

for t = −49,−48, ...., 0, 1, 2, ..., T, with ui,−49 = 0, for all i. The first 50 observations are discarded,

and the remaining T observations are used in the experiments.

Remark 7 The two DGPs are intended to capture the different features of the estimators proposed
in this paper and in the literature. DGP1 allows for an arbitrary degree of dependence between

the time-varying regressors and the fixed effects, but assumes that the time-invariant regressors are

exogenous. This DGP is designed to be applicable to the FEVD and FEF estimators. DGP2 allows

one of the time-invariant regressors to be correlated with the fixed effects, and is used to evaluate

the small sample properties of FEF-IV in the presence of heteroscedastic and serially correlated

errors.

We use 1, 000 replications for each experiment, and report bias, root mean squared error

(RMSE), size and power for different estimators of γ, namely FEVD with and without intercepts

in the second step, and the FEF estimator proposed in this paper for DGP1. We also consider HT

and FEF-IV estimators in the case of DGP2 where all the time varying regressors are correlated

with the errors.

The results of FEF for DGP1 are summarized in Tables 1-6, and clearly show that the FEF

estimator performs well in all experiments, even when the errors are serially correlated and/or

heteroscedastic. It has much lower bias and RMSE as compared to the FEVD estimator proposed

by PT. However, in accordance with our theoretical findings, the FEF and FEVD estimators become

identical when an intercept is included in the second stage of the PT estimation procedure. However,

even after this correction the FEVD approach continues to exhibit substantial size distortions due

to the use of incorrect standard errors in the third stage of the procedure (see Section 3.4).

The results for DGP2 are summarized in Tables 7-12. The FEF-IV estimator is computed

using ri (defined by (62)) as an instrument for the endogenous time-invariant regressor, z2i. The

HT estimator uses time averages of the time-varying regressors, x̄1i and x̄2i, as well as zi1, as

instruments. The FEF-IV procedure performs well in all cases, irrespective of whether the errors

are heteroskedastic and/or serially correlated. In particular the size of the FEF-IV estimator is very
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close to the 5% nominal value, with the power rising steadily in N . This suggests that the variance

estimator for the FEF-IV, (56), is valid in the case of error heteroskedasticity and performs well

even the errors are serially correlated (for example, see Tables 11-12). In contrast, the application

of the standard HT procedure yields biased estimates and significant size distortions, particularly

in the case of γ2, the coeffi cient of the endogenous time-invariant regressor , z2i. Perhaps this is

not surprising, considering that in these experiments both of the included time-varying regressors

are correlated with the fixed effects, and neither cannot be used as valid instruments.12 It is

possible to modify the HT procedure by including ri as an additional instrument, in which case

the HT estimator will become identical to the FEF-IV estimator considering that under DGP2 the

parameters of the panel data model are exactly identified.

7 Conclusion

In this paper, we propose the FEF and FEF-IV estimators for panel models with time-invariant

regressors. The FEF estimator is computed using a two-step procedure, where in the first step

the fixed effects estimators are used to filter the effects of time-varying regressors. In the second

step, time averages of the residuals are used in cross-section regressions to estimate the coeffi cients

of time-invariant regressors. We also develop the asymptotic distribution for the FEF, and show

that it’s unbiased, consistent and asymptotically normally distributed. The FEF estimator is suffi -

ciently robust and allows for cross-sectional heteroskedasticity and serial correlation. An alternative

variance estimators of the FEF estimator is also proposed in this paper.

Moreover, when there is correlation between the time-invariant variables and individual effects,

we propose the FEF-IV estimator, which can also be calculated by a two step procedure. The

first step of FEF-IV is similar to FEF, but in the second step, we use the instrument variable

estimation for the time-invariant regressors. We also show that this FEF-IV estimator is consistent

and asymptotically normally distributed. Similar to the FEF estimator, the FEF-IV estimator is

suffi ciently robust and allows for cross-sectional heteroskedasticity and serial correlation. An alter-

native variance estimator of the FEF-IV estimator is also proposed in this paper. By simulations,

we find both the FEF and FEF-IV have better small sample performance in terms of bias and

RMSE, and most importantly has the correct size in the presence of correlation of arbitrary degree

between the time-varying regressors and the individual effects.

Furthermore, we also contribute to the debate on the FEVD estimator proposed by Plumper and

Troeger (2007). We show that the FEVD estimator is exactly the same as our FEF estimator if an

intercept is included in the second step of PT’s procedure, but the FEVD estimator is inconsistent

in general if no intercept is included in the second stage (see equation (5) in PT). Furthermore,

even if the FEVD estimator is computed using an intercept in the second stage, it will still lead to

misleading inference since contrary to what is claimed by PT, the standard errors computed in the

12 In implemetation of the HT procedure we use QV X (the demeaned time varying regressors, see (60)) as instru-
ments.
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third stage of the PT procedure are not valid.

Overall, our Monte Carlo simulations suggest that FEF and FEF-IV estimators proposed in this

paper perform well in terms of bias, RMSE, size and power. The simulation results also confirm our

theoretical derivations showing that in general the FEVD estimator suffers from size distortions.

Finally, in cases where none of the time-varying regressors is uncorrelated with the fixed effects,

the use of standard HT procedure can lead to bias and significant size distortions. In such cases

a modified version of the HT procedure can be considered if there exists a suffi cient number of

instruments for the endogenous time-invariant regressors. But it is not clear what advantages there

might be in following such a modified HT procedure as compared to the FEF-IV estimator proposed

in this paper.

Appendix: Mathematical Derivations
Lemma A.1 Suppose that A is a p×p symmetric where p is fixed, λmin (A) ≥ 2/K, and λmax (A) ≤ K/2, with K being a fixed,

non-zero positive constant. Consider now the stochastic matrix ÂN , viewed as an estimator of A, such that
∥∥∥ÂN −AN

∥∥∥→p 0.

Then with probability approaching one λmin

(
ÂN

)
≥ 1/K and λmax

(
ÂN

)
≤ K.

Source: Lemma A0 in the mathematical supplement to Newey and Windmeijer (2009).

Lemma A.2 Given the cross-product sample moments defined by (45), (46) and (47), and in view of (42) and (43), we have

Qhȳ,N = Qhx̄,N β̂ + Qhh,N , (A.1)

qp,NT = Qp,NT β̂ + Q′zx̄,N γ̂ + Q′hx̄,N , (A.2)

Qzȳ,N = Qzx̄,N β̂ + Qzz,N γ̂, (A.3)

Qzz,N (γ̂ − γ̃) + Qzx̄,N

(
β̂ − β̃

)
= 0, (A.4)

(δ̃ − 1)Qhh,N = Qhx̄,N

(
β̂ − β̃

)
. (A.5)

Proof. Using (42) and (43) we first note that

Qhȳ,N =
1

N

N∑
i=1

(
ĥi − ĥ

)
(ȳi − ȳ)

=
1

N

N∑
i=1

(
ĥi − ĥ

)
(x̄i − x̄)′ β̂ +

1

N

N∑
i=1

(
ĥi − ĥ

)
(zi − z̄)′ γ̂ +

1

N

N∑
i=1

(
ĥi − ĥ

)2

= Qhx̄,N β̂ + Qhh,N .

Similarly

qp,NT =
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (yit − ȳ)

=
1

NT

N∑
i=1

T∑
t=1

(xit − x̄) (xit − x̄)′ β̂ +
1

NT

N∑
i=1

T∑
t=1

(xit − x̄)
(
ûit − û

)
= Qp,NT β̂ + Q′zx̄,N γ̂ + Q′hx̄,N ,
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where

1

NT

N∑
i=1

T∑
t=1

(xit − x̄)
(
ûit − û

)
=

1

NT

N∑
i=1

T∑
t=1

(xit − x̄i)
(
ûit − ûi

)
+

1

N

N∑
i=1

(x̄i − x̄)
(
ûi − û

)

=
1

N

N∑
i=1

(x̄i − x̄)
(
ûi − û

)

=
1

N

N∑
i=1

(x̄i − x̄) (zi − z̄)′ γ̂ +
1

N

N∑
i=1

(x̄i − x̄)
(
ĥi − ĥ

)
= Q′zx̄,N γ̂ + Q′hx̄,N ,

and

Qzȳ,N =
1

N

N∑
i=1

(zi − z̄) (ȳi − ȳ)

=
1

N

N∑
i=1

(zi − z̄) (x̄i − x̄)′ β̂ +
1

N

N∑
i=1

(zi − z̄)
(
ûi − û

)
= Qzx̄,N β̂ + Qzz,N γ̂.

Using this result together with (49) now yields

Qzz,N (γ̂ − γ̃) + Qzx̄,N

(
β̂ − β̃

)
= 0.

Finally, (A.5) follows immediately using (A.1) and (50).

A.1 Proof of Liapunov condition (26)
The Liapunov condition (26), for δ = 2 can be written as

lim
N→∞

N−2
N∑
i=1

E
∥∥ξ̄i,N∥∥4

= 0. (A.6)

From (22) we first note that ∥∥ξ̄i,N∥∥ ≤ 1

T

T∑
t=1

‖dz,itεit‖ ,

and by Holder inequality
T∑
t=1

‖dz,itεit‖ ≤
(

T∑
t=1

‖dz,it‖4
)1/4( T∑

t=1

|εit|4/3
)3/4

,

and hence ∥∥ξ̄i,N∥∥4 ≤ 1

T 4

(
T∑
t=1

‖dz,it‖4
)(

T∑
t=1

|εit|4/3
)3

.

But under Assumptions P3 and P7, xit and zi are distributed independently of εit, and it follows that

E
∥∥ξ̄i,N∥∥4 ≤

(
T−1

T∑
t=1

E ‖dz,it‖4
)
E

(T−1
T∑
t=1

|εit|4/3
)3
 .
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But under Assumption P1, E
(
|εit|4

)
< K, and since T is finite and for each i, εit are serially independent, then for some

positive finite constant K1 we have

E

(T−1
T∑
t=1

|εit|4/3
)3
 ≤ K1 T

−1
T∑
t=1

E |εit|4 < K1K.

Hence,

N−2
N∑
i=1

∥∥ξ̄i,N∥∥4
< K1KT

−1
T∑
t=1

[
N−2

N∑
i=1

E ‖dz,it‖4
]

(A.7)

Now recall that

dz,it = (zi − z̄)− 1

N

N∑
j=1

(zj − z̄)wji,t,

where wji,t = (x̄j − x̄)′Q−1
FE,NT (xit − x̄i). Then

dz,it = (zi − z̄)− 1

N

N∑
j=1

(zj − z̄) (x̄j − x̄)′Q−1
FE,NT (xit − x̄i)

= zi − z̄−Azx̄,N (xit − x̄i) , (A.8)

where Azx̄,N = Qzx̄,NQ−1
FE,NT . But

13

∥∥Azx̄,N

∥∥2
= tr

(
Q−1
FE,NTQ′zx̄,NQzx̄,NQ−1

FE,NT

)
= tr

(
Q−2
FE,NTQ′zx̄,NQzx̄,N

)
≤ λmax

(
Q−2
FE,NT

)
tr
(
Q′zx̄,NQzx̄,N

)
= λ2

max

(
Q−1
FE,NT

)∥∥Qzx̄,N

∥∥2

= λ−2
min

(
QFE,NT

) ∥∥Qzx̄,N

∥∥2

=

∥∥Qzx̄,N

∥∥2

λ2
min

(
QFE,NT

) ,
and noting that under Assumption P5, λmin

(
QFE,NT

)
> 1/K, then

∥∥Azx̄,N

∥∥ ≤ K ∥∥Qzx̄,N

∥∥ . (A.9)

Also, it is easily seen that

‖dz,it‖2 = d′z,itdz,it = ‖zi − z̄‖2 − 2 (zi − z̄)′Azx̄,N (xit − x̄i) + (xit − x̄i)
′A′zx̄,NAzx̄,N (xit − x̄i) ,

and

‖dz,it‖4 = ‖zi − z̄‖4 + 4 (zi − z̄)′Azx̄,N (xit − x̄i) (xit − x̄i)
′A′zx̄,N (zi − z̄)

+ (xit − x̄i)
′A′zx̄,NAzx̄,N (xit − x̄i) (xit − x̄i)

′A′zx̄,NAzx̄,N (xit − x̄i)

−4 ‖zi − z̄‖2 (zi − z̄)′Azx̄,N (xit − x̄i) + 2 ‖zi − z̄‖2 (xit − x̄i)
′A′zx̄,NAzx̄,N (xit − x̄i)

−4 (zi − z̄)′Azx̄,N (xit − x̄i) (xit − x̄i)
′A′zx̄,NAzx̄,N (xit − x̄i) .

13Note that for any p×p matrices A and B such that A is symmetric and B positive semi-definite, then tr (AB) ≤
λmax (A) tr (B).
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Hence

‖dz,it‖4 ≤ ‖zi − z̄‖4 + 4 ‖zi − z̄‖2 ‖xit − x̄i‖2
∥∥Azx̄,N

∥∥2

+ ‖xit − x̄i‖4
∥∥Azx̄,N

∥∥4
+ 4 ‖zi − z̄‖3 ‖xit − x̄i‖

∥∥Azx̄,N

∥∥
+2 ‖zi − z̄‖2 ‖xit − x̄i‖2

∥∥Azx̄,N

∥∥2
+ 4 ‖zi − z̄‖ ‖xit − x̄i‖3

∥∥Azx̄,N

∥∥3
,

and using (A.9) we have

N−1
N∑
i=1

‖dz,it‖4 ≤ N−1
N∑
i=1

‖zi − z̄‖4 + 4K2
1

∥∥Qzx̄,N

∥∥2

[
N−1

N∑
i=1

‖zi − z̄‖2 ‖xit − x̄i‖2
]

+K4
1

∥∥Qzx̄,N

∥∥4

[
N−1

N∑
i=1

‖xit − x̄i‖4
]

+ 4K1

∥∥Qzx̄,N

∥∥[N−1
N∑
i=1

‖zi − z̄‖3 ‖xit − x̄i‖
]

+4K3
1

∥∥Qzx̄,N

∥∥3

[
N−1

N∑
i=1

‖zi − z̄‖ ‖xit − x̄i‖3
]
.

Using this result in (A.7) we now obtain

N−1
N∑
i=1

∥∥ξ̄i,N∥∥4 ≤ K1KN
−1

N∑
i=1

‖zi − z̄‖4 +W1N +W2N +W3N +W4N ,

where

W1N = 4KK3
1

∥∥Qzx̄,N

∥∥2

[
(NT )−1

N∑
i=1

T∑
t=1

‖zi − z̄‖2 ‖xit − x̄i‖2
]
,

W2N = KK5
1

∥∥Qzx̄,N

∥∥4

[
(NT )−1

N∑
i=1

T∑
t=1

‖xit − x̄i‖4
]
,

W3N = 4KK2
1

∥∥Qzx̄,N

∥∥[(NT )−1
N∑
i=1

T∑
t=1

‖zi − z̄‖3 ‖xit − x̄i‖
]
,

W4N = 4KK4
1

∥∥Qzx̄,N

∥∥3

[
N−1

N∑
i=1

‖zi − z̄‖ ‖xit − x̄i‖3
]
.

To investigate the limiting property of N−1
∑N
i=1

∥∥ξ̄i,N∥∥4, we first note that by Assumption P6
∥∥Qzx̄,N

∥∥ →p c, as N → ∞,
where c is a finite constant, and by Slutsky’s theorem (as N →∞, for a fixed T ) we have

W1N → p4KK3
1c

2

[
lim
N→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖2 ‖xit − x̄i‖2

]]
,

W2N → pKK
5
1c

4

[
lim
N→∞

(NT )−1
N∑
i=1

T∑
t=1

E ‖xit − x̄i‖4
]
,

W3N → p4KK2
1c

[
lim
N→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖3 ‖xit − x̄i‖

]]
,

W4N → p4KK4
1c

3

[
lim
N→∞

N−1
N∑
i=1

‖zi − z̄‖ ‖xit − x̄i‖3
]
.
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Hence

lim
N→∞

N−1
N∑
i=1

E
∥∥ξ̄i,N∥∥4 ≤ K lim

N→∞
N−1

N∑
i=1

E ‖zi − z̄‖4

+4KK3
1c

2

[
lim
N→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖2 ‖xit − x̄i‖2

]]

+KK5
1c

4

[
lim
N→∞

(NT )−1
N∑
i=1

T∑
t=1

E ‖xit − x̄i‖4
]

+4KK2
1c

[
lim
N→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖3 ‖xit − x̄i‖

]]

+4KK4
1c

3

[
lim
N→∞

N−1
N∑
i=1

‖zi − z̄‖ ‖xit − x̄i‖3
]
.

Therefore, N−1
∑N
i=1 E

∥∥ξ̄i,N∥∥4 is bounded and converges to a finite limit as N → ∞ (irrespective of whether T is fixed or

tends to infinity) if the following conditions hold

lim
N→∞

N−1
N∑
i=1

E ‖zi − z̄‖4 < K,

lim
N→∞

N−1
N∑
i=1

E ‖xit − x̄i‖4 < K, when T is fixed

lim
N and T→∞

(NT )−1
N∑
i=1

T∑
t=1

E ‖xit − x̄i‖4 < K

lim
N→∞

N−1
N∑
i=1

E
[
‖zi − z̄‖2 ‖xit − x̄i‖2

]
< K, when T is fixed, (A.10)

lim
N and T→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖2 ‖xit − x̄i‖2

]
< K,

lim
N→∞

N−1
N∑
i=1

E
[
‖zi − z̄‖3 ‖xit − x̄i‖

]
< K, when T is fixed, (A.11)

lim
N and T→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖3 ‖xit − x̄i‖

]
< K,

lim
N→∞

N−1
N∑
i=1

E
[
‖zi − z̄‖ ‖xit − x̄i‖3

]
< K, when T is fixed, (A.12)

lim
N and T→∞

(NT )−1
N∑
i=1

T∑
t=1

E
[
‖zi − z̄‖ ‖xit − x̄i‖3

]
< K,

The above conditions are clearly satisfied if xit and zi have bounded supports. In the case where xit and zi do not have

bounded supports the following moment conditions are suffi cient to ensure that limN→∞N−2
∑N
i=1 E

∥∥ξ̄i,N∥∥4
= 0, as required
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(applying Cauchy—Schwarz inequality to (A.10) and Holder’s Inequality to (A.11) and (A.12)14

E ‖zi − z̄‖4 < K, and E ‖xit − x̄i‖4 < K,

for all i,t, N and T . These conditions allow for any degree of dependence between zi and xit.

A.2 Proof of Proposition 1
Using (A.8) and noting that E (εisεit) = γi(s, t), Ωξ̄,N defined by (28) can be written as

Ωξ̄,N =
1

N

N∑
i=1

1

T 2

T∑
t,s=1

dz,itd
′
z,isE (εitεis)

=
1

N

N∑
i=1

1

T 2

T∑
t,s=1

[zi − z̄−Azx̄ (xit − x̄i)] [zi − z̄−Azx̄ (xis − x̄i)]
′ γi(t, s)

where Azx̄,N = Qzx̄,NQ−1
FE,NT . Since

[
zi − z̄−Azx̄,N (xit − x̄i)

] [
zi − z̄−Azx̄,N (xis − x̄i)

]′
= (zi − z̄) (zi − z̄)′ −Azx̄,N (xit − x̄i) (zi − z̄)′ − (zi − z̄) (xis − x̄i)

′A′zx̄,N

+Azx̄,N (xit − x̄i) (xis − x̄i)
′A′zx̄,N ,

then setting κ2
iT = T−2

∑T
t,s=1 γi(t, s), we obtain (See (18) and (32)).

σ2
ηQzz + Ωξ̄,N = Q̊zz,N + ∆N −∆ξ̄N −∆′

ξ̄N
(A.13)

where

Q̊zz,N =
1

N

N∑
i=1

(
σ2
η + κ2

iT

)
(zi − z̄) (zi − z̄)′ ,

∆N =
1

T
Azx̄,N

 1

NT

N∑
i=1

T∑
t,s=1

γi(t, s) (xit − x̄i) (xis − x̄i)
′

A′zx̄,N , (A.14)

and

∆ξ̄,N = Azx̄,N

 1

N

N∑
i=1

1

T 2

T∑
t,s=1

γi(t, s) (xit − x̄i) (zi − z̄)′

 . (A.15)

Consider (A.14) and note that using (12) and replacing Azx̄,N by Qzx̄,NQ−1
FE,NT , it can be written as

∆N = T−1Qzx̄,NQ−1
FE,NTVFE,NTQ−1

FE,NTQ′zx̄,N ,

which upon using (11) reduces to

∆N = Qzx̄,NV ar(
√
N β̂)Q′zx̄,N . (A.16)

14Note that by Holder’s inequality

E
[
‖zi − z̄‖3 ‖xit − x̄i‖

]
≤
[
E
(
‖zi − z̄‖4

)]3/4 [
E ‖xit − x̄i‖4

]1/4
,

and
E
[
‖zi − z̄‖ ‖xit − x̄i‖3

]
≤
[
E
(
‖zi − z̄‖4

)]1/4 [
E ‖xit − x̄i‖4

]3/4
.
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Similarly, using the expression for Azx̄,N given above, ∆ξ̄,N , given by (A.15) can be written as

∆ξ̄,N = Qzx̄,NQ−1
FE,NT

 1

T 2N

N∑
i=1

T∑
t,s=1

γi(t, s) (xit − x̄i) (zi − z̄)′

 . (A.17)

Substituting (A.16) and (A.17) in (A.13) now yields the desired result.

A.3 Proof of Proposition 2
Consider (30) and the decomposition (33), and note that under Assumptions P1-P5, V̂ ar(

√
N β̂) defined by (37) tends to

V ar
(√

N β̂
)
for a fixed T and as N →∞. (See, for example, Arellano (1987)). Consider now V̂zz,N defined by (38) and note

that ς̂i − ς̂ defined by (39) can be written as

ς̂i − ς̂ = (ηi − η̄) + (ūi − ū)− (x̄i − x̄)′
(
β̂ − β

)
− (zi − z̄)′ (γ̂FEF − γ) .

Then

V̂zz,N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′
(
ς̂i − ς̂

)2
= A1N + A2N −A3N ,

where

A1N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ [(ηi − η̄) + (ε̄i − ε̄)]2 ,

A2N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′
[
(x̄i − x̄)′

(
β̂ − β

)
+ (zi − z̄)′ (γ̂FEF − γ)

]2
A3N =

2

N

N∑
i=1

(zi − z̄) (zi − z̄)′ [(ηi − η̄) + (ε̄i − ε̄)]
[
(x̄i − x̄)′

(
β̂ − β

)
+ (zi − z̄)′ (γ̂FEF − γ)

]

Starting with A1N , we have

A1N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ [vi − (η̄ + ε̄)]2

=
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ v2
i − 2 (η̄ + ε̄)

1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ vi

+
(η̄ + ε̄)2

N

N∑
i=1

(zi − z̄) (zi − z̄)′ .

Under Assumptions P1, P2 and P7, η̄+ ε̄ = Op
(
N−1/2

)
+Op

(
N−1/2T−1/2

)
= op (1). Also, N−1

∑N
i=1 (zi − z̄) (zi − z̄)′ vi =

op(1), and conditional on Z = (z1, z2, ..., zN )′,

1

N

N∑
i=1

(zi − z̄) (zi − z̄)′
[
v2
i − E(v2

i )
]

= op(1),

as N →∞. This latter result follows under Assumption P7, ξi = v2
i − E(v2

i ) and zi are independently distributed, and vi are

cross-sectionally independent. Under these assumptions

E

[
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′
[
v2
i − E(v2

i )
]]

=
1

N

N∑
i=1

E
[
(zi − z̄) (zi − z̄)′

]
E
[
v2
i − E(v2

i )
]

= 0,
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and

E

∣∣∣∣∣ 1

N

N∑
i=1

(zi − z̄) (zi − z̄)′
[
v2
i − E(v2

i )
]∣∣∣∣∣ ≤ 1

N

N∑
i=1

E ‖(zi − z̄)‖2 E
∣∣v2
i − E(v2

i )
∣∣ < K <∞,

since by assumption E ‖(zi − z̄)‖2 < K, and E(v2
i ) < K. In view of these results it now follows that

A1N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ E
(
v2
i

)
+ op(1).

Consider now A2N and note similarly that

A2N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′
[
(x̄i − x̄)′

(
β̂ − β

)
+ (zi − z̄)′ (γ̂FEF − γ)

]2
=

1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ (x̄i − x̄)′
(
β̂ − β

)(
β̂ − β

)′
(x̄i − x̄)

+
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ (zi − z̄)′ (γ̂FEF − γ) (γ̂FEF − γ)′ (zi − z̄)

+
2

N

N∑
i=1

(zi − z̄) (zi − z̄)′ (x̄i − x̄)′
(
β̂ − β

)
(zi − z̄)′ (γ̂FEF − γ) ,

and expectations of all the three terms above tend to zero with N . Furthermore

∥∥∥∥∥N−1
N∑
i=1

(zi − z̄) (x̄i − x̄)′
(
β̂ − β

)(
β̂ − β

)′
(x̄i − x̄) (zi − z̄)′

∥∥∥∥∥
≤

∥∥∥β̂ − β∥∥∥2
[
N−1

N∑
i=1

∥∥(zi − z̄) (x̄i − x̄)′
∥∥2

]
.

But by Cauchy—Schwarz inequality

N−1
N∑
i=1

E
[∥∥(zi − z̄) (x̄i − x̄)′

∥∥2
]
≤ N−1

N∑
i=1

(
E ‖zi − z̄‖4

)1/2 (
E ‖x̄i − x̄‖4

)1/2
,

and since under Assumption P4 and P7, E ‖zi − z̄‖4 < K and E ‖x̄i − x̄‖4 < K, it then follows that N−1
∑N
i=1

∥∥(zi − z̄) (x̄i − x̄)′
∥∥2

converges to a finite limit and hence

E

∥∥∥∥∥N−1
N∑
i=1

(zi − z̄) (x̄i − x̄)′
(
β̂ − β

)(
β̂ − β

)′
(x̄i − x̄) (zi − z̄)′

∥∥∥∥∥ ≤ K E

[∥∥∥β̂ − β∥∥∥2
]

= O
(
N−1

)
.

A similar line of argument applies to other terms of A2,N .

Finally, for A3N we have

A3N =
2

N

N∑
i=1

(zi − z̄) (zi − z̄)′ [vi − (η̄ + ε̄)]
[
(x̄i − x̄)′

(
β̂ − β

)
+ (zi − z̄)′ (γ̂FEF − γ)

]
.

Once again noting that η̄ + ε̄ = op(1), β̂ − β = Op
(
N−1/2

)
= op (1) , γ̂FEF − γ = Op

(
N−1/2

)
, it then follows that

A3N =

(
2

N

N∑
i=1

(zi − z̄) (zi − z̄)′ vi (x̄i − x̄)′
)(

β̂ − β
)

−
(

2

N

N∑
i=1

(zi − z̄) (zi − z̄)′ vi(zi − z̄)′
)

Q−1
zz,NQzx̄,N

(
β̂ − β

)
+ op(1)
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so long as

E

∥∥∥∥∥ 1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ vi (x̄i − x̄)′
∥∥∥∥∥ ≤ 1

N

N∑
i=1

E
[
‖zi − z̄‖2 ‖x̄i − x̄‖

]
E |vi| < K <∞,

and

E

∥∥∥∥∥ 1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ vi(zi − z̄)′
∥∥∥∥∥ ≤ 1

N

N∑
i=1

E ‖zi − z̄‖3 E |vi| < K <∞.

The above conditions are met if E ‖zi − z̄‖4 < K and E ‖x̄i − x̄‖2 < K, for all i.

Considering all the three terms together we now have

V̂zz,N =
1

N

N∑
i=1

(zi − z̄) (zi − z̄)′ E(v2
i ) + op(1).

We also note that E(v2
i ) = ω2

iT , where ω
2
iT is defined by (18), and hence V̂zz,N →p Vzz , defined by (31) as required.

Finally, since Qzx̄,NQ−1
FE,NT →p Qzx̄Q−1

FE,T , as N → ∞, which is finite and bounded in N , then for a fixed T , ∆ξ̄,N

(defined by (34)) has the same order as N−1T−2
∑N
i=1

∑T
t,s=1 γi(t, s) (xit − x̄i) (zi − z̄)′ , and for a fixed T then ∆ξ̄,N = op(1),

if condition (35) is met.

A.4 Proof of proposition 3
Rewrite the normal equations of the FEVD procedure, (48)-(50) in the following matrix format

 Qp,NT Q′zx̄,N Q′hx̄,N
Qzx̄,N Qzz,N 0

Qhx̄,N 0 Qhh,N


 β̃

γ̃

δ̃

 =

 qp,NT

Qzȳ,N

Qhȳ,N

 ,

and note that the inverse of the LHS coeffi cient matrix is given by (see Magnus and Neudecker (2007), p12))

 Qp,NT Q′zx̄,N Q′hx̄,N
Qzx̄,N Qzz,N 0

Qhx̄,N 0 Qhh,N


−1

=

 Q−1
NT −Q−1

NTQ′zx̄,NQ−1
zz,N −Q−1

NTQ′hx̄,NQ−1
hh,N

−Q−1
zz,NQzx̄,NQ−1

NT Q−1
zz,N + Q−1

zz,NQzx̄,NQ−1
NTQ′zx̄,NQ−1

zz,N Q−1
zz,NQzx̄,NTQ−1

NTQ′hx̄,NQ−1
hh,N

−Q−1
hh,NQhx̄,NQ−1 Q−1

hh,NQhx̄,NQ−1
NTQ′zx̄,NQ−1

zz,N Q−1
hh,N + Q−1

hh,NQhx̄,NQ−1
NTQ′hx̄,NQ−1

hh,N


where QNT is given by (51). Hence

β̃ = Q−1
NT

(
qp,NT −Q′zx̄,NQ−1

zz,NQzȳ,N −Q′hx̄,NQ−1
hh,NQhȳ,N

)
.

But using the results in the lemma A.2 we note that

qp,NT −Q′zx̄,NQ−1
zz,NQzȳ,N −Q′hx̄,NQ−1

hh,NQhȳ,N

= Qp,NT β̂ + Q′zx̄,N γ̂ + Q′hx̄,N −Q′zx̄,NQ−1
zz,N

(
Qzx̄,N β̂ + Qzz,N γ̂

)
−Q′hx̄,NQ−1

hh,N

(
Qhx̄,N β̂ + Qhh,N

)
= Qp,NT β̂ + Q′zx̄,N γ̂ + Q′hx̄,N −Q′zx̄,NQ−1

zz,NQzx̄,N β̂ −Q′zx̄,NQ−1
zz,NQzz,N γ̂

−Q′hx̄,NQ−1
hh,NQhx̄,N β̂ −Q′hx̄,NQ−1

hh,NQhh,N

= Qp,NT β̂ + Q′zx̄,NQ−1
zz,N

(
Qzȳ,N −Qzx̄,N β̂

)
+ Q′hx̄,N −Q′zx̄,NQ−1

zz,NQzx̄,N β̂

−Q′zx̄,NQ−1
zz,NQzz,NQ−1

zz,N

(
Qzȳ,N −Qzx̄,N β̂

)
−Q′hx̄,NQ−1

hh,NQhx̄,N β̂

−Q′hx̄,NQ−1
hh,NQhh,N

=
(
Qp,NT −Q′zx̄,NQ−1

zz,NQzx̄,N −Q′hx̄,NQ−1
hh,NQhx̄,N

)
β̂ = QNT β̂.
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Hence, given that QNT is non-singular by assumption then β̃ = β̂. Using this result in (A.4) and (A.5) now establishes that

γ̃ = γ̂, and δ̃ = 1, as required.

A.5 Proof of proposition 4
Denote the residuals from the OLS regression of by h̊i and note that in this case the FEVD estimators are obtained by application

of the pooled OLS procedure to the following regression

yit = α̃+ x′itβ̃ + z′iγ̃ + δ̃̊hi + ζ̃it,

where

h̊i = ûi − z′i̊γ,

and ζ̃it are the residuals from the pooled OLS regression. Recall also that when an intercept is included in the second step

regression we have

ĥi = ûi − âγ − z′iγ̂.

Hence,

h̊i + z′i̊γ = ĥi + âγ + z′iγ̂

Using this result to substitute h̊i in terms of ĥi we obtain

yit = α̃+ x′itβ̃ + z′iγ̃ + δ̃
(
ĥi + âγ + z′iγ̂ − z′i̊γ

)
+ ζ̃it,

or

yit =
(
α̃+ δ̃âγ

)
+ x′itβ̃ + z′i (γ̃ + γ̂ − γ̊) + δ̃ĥi + ζ̃it.

This is the same regression estimated in the third step of the FEVD procedure when an intercept term is included in the second

stage, and the results of proposition 3 applies directly and we must have

β̃ = β̂, δ̃ = 1,

and (
γ̃ + δ̃γ̂ − δ̃̊γ

)
= γ̂,

Hence, γ̃ = γ̊.

To derive the bias of γ̊ as an estimator of γ, note that

γ̊ =

(
N∑
i=1

ziz
′
i

)−1 N∑
i=1

ziûi =

(
N∑
i=1

ziz
′
i

)−1 N∑
i=1

zi

(
ȳi − x̄′iβ̂

)

= γ +

(
N∑
i=1

ziz
′
i

)−1 N∑
i=1

zi

[
α+ ηi + ūi − x̄′i

(
β̂ − β

)]
,

Hence,

E (̊γ |Z ) = γ + α

(
N−1

N∑
i=1

ziz
′
i

)−1

z̄,

and γ̊ is an unbiased estimator of γ, if αE
[(
N−1

∑N
i=1 ziz

′
i

)−1
z̄

]
= 0. Note that the bias term does not vanish even for N

suffi ciently large if αE(zi) 6= 0, for at least one i.
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A.6 Covariance matrix of the HT estimator in the case where the fixed effects
are heteroskedastic and cross sectionally correlated

Starting with (60), and using (57) we have

θ̂HT = Q−1
[
W′Ω−1/2PAΩ−1/2y

]
= θ + Q−1

[
W′Ω−1/2PAΩ−1/2u

]
,

where Q = W′Ω−1/2PAΩ−1/2W, W = [(τN ⊗ τT ) ,X, (Z⊗ τT )], and u = (η ⊗ τT ) + ε. Hence, conditional on W we have

V ar
(
θ̂HT

)
= Q−1

[
W′Ω−1/2PAΩ−1/2V ar (u) Ω−1/2PAΩ−1/2W

]
Q−1. (A.18)

where

V ar (u) = V ar ((η ⊗ τT ) + ε) = Vη ⊗ τT τ ′T + (IN ⊗ IT )σ2
ε,

and Vη = E(ηη′). Recalling that Ω−1/2 = 1
σε

[IN ⊗MT + ϕIN ⊗ (IT −MT )] with ϕ = σε/
√
σ2
ε + Tσ2

η , then we have

V ar (u) = Ω−1/2V ar ((η ⊗ τT ) + ε) Ω−1/2

=
ϕ2

σ2
ε

(
Vη ⊗ τT τ ′T

)
+ IN ⊗MT +

σ2
ε

σ2
ε + Tσ2

η

IN ⊗ (IT −MT )

=
T

σ2
ε + Tσ2

η

(
Vη ⊗

1

T
τT τ

′
T

)
+ IN ⊗MT +

σ2
ε

σ2
ε + Tσ2

η

IN ⊗ (IT −MT )

= IN ⊗ IT −
(

1− σ2
ε

σ2
ε + Tσ2

η

)
IN ⊗

1

T
τT τ

′
T +

T

σ2
ε + Tσ2

η

(
Vη ⊗

1

T
τT τ

′
T

)
= IN ⊗ IT +

T

σ2
ε + Tσ2

η

((
Vη − σ2

ηIN
)
⊗ 1

T
τT τ

′
T

)
.

Using this result in (A.18) and after some algebra we obtain (conditional on W)

V ar
(
θ̂HT

)
= Q−1

[
W′Ω−1/2PA

(
IN ⊗ IT +

T

σ2
ε + Tσ2

η

((
Vη − σ2

ηIN
)
⊗ 1

T
τT τ

′
T

))
PAΩ−1/2W

]
Q−1

= Q−1 +

(
T

σ2
ε + Tσ2

η

)
Q−1

[
W′Ω−1/2PA

((
Vη − σ2

ηIN
)
⊗ 1

T
τT τ

′
T

)
PAΩ−1/2W

]
Q−1.
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Table 1: RMSE, size and power of FEF and FEVD estimators for γ1 in Case 1 of DGP1

T 3 5 10

N FEF FEVD FEF FEVD FEF FEVD

without with without with without with

estimate 0.9981 0.5556 0.9981 1.0006 0.5476 1.0006 1.0029 0.5525 1.0029

100 bias -0.0019 -0.4444 -0.0019 0.0006 -0.4524 0.0006 0.0029 -0.4475 0.0029

rmse 0.1191 0.5010 0.1191 0.1147 0.5095 0.1147 0.1061 0.5024 0.1061

size 3.7% 41% 12% 6.1% 44% 35% 6% 72% 58%

power 5.9% 47% 5.9% 8% 51% 22% 8.4% 57% 61%

estimate 0.9996 0.5538 0.9996 1.0018 0.5532 1.0018 0.9985 0.5552 0.9985

500 bias -0.0004 -0.4462 -0.0004 0.0018 -0.4468 0.0018 -0.0015 -0.4448 -0.0015

rmse 0.0519 0.4577 0.0519 0.0478 0.4581 0.0478 0.0476 0.4570 0.0476

size 5% 100% 43% 4.9% 100% 47% 5% 100% 58%

power 20% 97% 61% 19% 100% 67% 20% 100% 76%

estimate 0.9985 0.5499 0.9985 1.0003 0.5521 1.0003 1.0003 0.5524 1.0003

1000 bias -0.0015 -0.4501 -0.0015 0.0003 -0.4479 0.0003 0.0003 -0.4476 0.0003

rmse 0.0360 0.4559 0.0360 0.0351 0.4536 0.0351 0.0328 0.4537 0.0328

size 4.1% 100% 42% 5.4% 100% 48% 5.5% 100% 58%

power 25% 100% 72% 33% 100% 79% 34% 100% 86%

estimate 1.0001 0.5505 1.0001 1.0002 0.5485 1.0002 0.9997 0.5514 0.9997

2000 bias 0.0001 -0.4495 0.0001 0.0002 -0.4515 0.0002 -0.0003 -0.4496 -0.0003

rmse 0.0260 0.4525 0.0260 0.0245 0.4543 0.0245 0.0229 0.4515 0.0229

size 5.3% 100% 41% 4.9% 100% 47% 4.7% 100% 54%

power 52% 100% 87% 52% 100% 92% 57% 100% 98%

Notes: 1. Size is calculated under γ
(0)
1 = 1, and power under γ(1)

1 = 0.95.

2. For FEVD estimators, "with" refers to the FEVD estimator when an intercept is included in the

second step, and "without" refers to the case where the FEVD estimator is computed without an intercept.

3. The number of replication is set at R = 1000, and the 95% confidence interval for size 5% is [3.6%,

6.4%].

4. The FEF estimator and its variance are computed using (4) and (36). The FEVD estimator and its

variance are computed using the three step procedure described in Section 3.4.
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Table 2: Bias, RMSE, size and power of FEF and FEVD estimators for γ2 in Case 1 of DGP1

T 3 5 10

N FEF FEVD FEF FEVD FEF FEVD

without with without with without with

estimate 0.9948 -0.0124 0.9948 1.0010 -0.0118 1.0010 1.0021 -0.0117 1.0021

100 bias -0.0052 -1.0124 -0.0052 0.0010 -1.0118 0.0010 0.0021 -1.0117 0.0021

rmse 0.0622 1.0127 0.0622 0.0568 1.0121 0.0568 0.0529 1.0120 0.0529

size 4.9% 45% 26% 6.2% 66% 47% 5.5% 95% 56%

power 13% 55% 17% 18% 63% 59% 19% 93% 72%

estimate 1.0017 -0.0114 1.0017 0.9992 -0.0117 0.9992 0.9995 -0.0118 0.9995

500 bias 0.0017 -1.0114 0.0017 -0.0008 -1.0117 -0.0008 -0.0005 -1.0118 -0.0005

rmse 0.0266 1.0115 0.0266 0.0237 1.0118 0.0237 0.0229 1.0118 0.0229

size 5.2% 100% 43% 4.2% 100% 46% 5.6% 100% 55%

power 52% 100% 88% 52% 100% 91% 57% 100% 94%

estimate 0.9990 -0.0111 0.9990 1.0009 -0.0112 1.0009 1.0002 -0.0115 1.0002

1000 bias -0.0010 -1.0111 -0.0010 0.0009 -1.0113 0.0009 0.0002 -1.0115 0.0002

rmse 0.0185 1.0112 0.0185 0.0173 1.0113 0.0173 0.0161 1.0115 0.0161

size 5.7% 100% 41% 6.1% 100% 44% 4.2% 100% 57%

power 78% 100% 96% 85% 100% 99% 87% 100% 99%

estimate 1.0000 -0.0113 1.0000 1.0001 -0.0111 1.0001 1.0005 -0.0113 1.0005

2000 bias 0.0000 -1.0113 0.0000 0.0001 -1.0111 0.0001 0.0005 -1.0113 0.0005

rmse 0.0128 1.0113 0.0128 0.0124 1.0111 0.0124 0.0121 1.0113 0.0121

size 4.6% 100% 40% 4.9% 100% 48% 5.5% 100% 59%

power 97% 100% 100% 98% 100% 100% 99% 100% 100%

Notes: Size is calculated under γ
(0)
2 = 1, and power under γ(1)

2 = 0.95. See also the notes to Table 1.
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Table 3: Bias, RMSE, size and power of FEF and FEVD estimators for γ1 in Case 2 of DGP1
T 3 5 10

N FEF FEVD FEF FEVD FEF FEVD

without with without with without with

estimate 0.9960 0.5512 0.9960 1.0041 0.5552 1.0041 1.0016 0.5482 1.0016

100 bias -0.0040 -0.4488 -0.0040 0.0041 -0.4448 0.0041 0.0016 -0.4518 0.0016

rmse 0.1212 0.5062 0.1212 0.1175 0.5028 0.1175 0.1033 0.5006 0.1033

size 3.8% 13% 41% 5.6% 36% 50% 4.7% 72% 55%

power 6.3% 6.3% 46% 9.3% 23% 54% 8% 57% 60%

estimate 1.0019 0.5534 1.0019 1.0014 0.5492 1.0014 1.0011 0.5552 1.0011

500 bias 0.0019 -0.4466 0.0019 0.0014 -0.4508 0.0014 0.0011 -0.4448 0.0011

rmse 0.0528 0.4587 0.0528 0.0497 0.4623 0.0497 0.0477 0.4564 0.0477

size 5.2% 100% 44% 5.1% 100% 48% 5.7% 100% 58%

power 19% 97% 61% 19% 100% 67% 20% 100% 75%

estimate 1.0005 0.5509 1.0005 1.0003 0.5501 1.0003 1.0010 0.5521 1.0010

1000 bias 0.0005 -0.4491 0.0005 0.0003 -0.4499 0.0003 0.0010 -0.4479 0.0010

rmse 0.0379 0.4552 0.0379 0.0343 0.4560 0.0343 0.0345 0.4539 0.0345

size 5.9% 100% 45% 4.7% 100% 47% 6.5% 100% 59%

power 30% 100% 72% 32% 100% 78% 33% 100% 85%

estimate 1.0007 0.5512 1.0007 0.9990 0.5488 0.9990 0.9988 0.5487 0.9988

2000 bias 0.0007 -0.4488 0.0007 -0.0010 -0.4512 -0.0010 -0.0012 -0.4512 -0.0012

rmse 0.0260 0.4519 0.0260 0.0242 0.4541 0.0242 0.0231 0.4541 0.0231

size 5% 100% 43% 4.1% 100% 46% 4.9% 100% 58%

power 52% 100% 89% 51% 100% 92% 55% 100% 95%

Note: See the notes to Table 1.
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Table 4: Bias, RMSE, size and power of FEF and FEVD estimators for γ2 in Case 2 of DGP1
T 3 5 10

N FEF FEVD FEF FEVD FEF FEVD

without with without with without with

estimate 0.9966 -0.0118 0.9966 0.9964 -0.0123 0.9964 0.9998 -0.0115 0.9998

100 bias -0.0034 -1.0118 -0.0034 -0.0036 -1.0123 -0.0036 -0.0002 -1.0115 -0.0002

rmse 0.0624 1.0121 0.0624 0.0557 1.0126 0.0557 0.0544 1.0118 0.0544

size 4.8% 29% 45% 4.3% 70% 46% 5.9% 97% 56%

power 14% 19% 55% 15% 60% 59% 18% 93% 72%

estimate 1.0000 -0.0116 1.0000 0.9999 -0.0112 0.9999 0.9997 -0.0118 0.9997

500 bias 0.0000 -1.0116 0.0000 -0.0001 -1.0112 -0.0001 -0.0003 -1.0118 -0.0003

rmse 0.0260 1.0116 0.0260 0.0242 1.0113 0.0242 0.0238 1.0118 0.0238

size 5.1% 100% 42% 5% 100% 47% 5.4% 100% 60%

power 49% 100% 88% 54% 100% 92% 57% 100% 95%

estimate 1.0006 -0.0112 1.0006 0.9995 -0.0113 0.9995 0.9997 -0.0115 0.9997

1000 bias 0.0006 -1.0112 0.0006 -0.0005 -1.0113 -0.0005 -0.0003 -1.0115 -0.0003

rmse 0.0183 1.0112 0.0183 0.0176 1.0113 0.0176 0.0156 1.0115 0.0156

size 4.3% 100% 45% 5.4% 100% 46% 4.3% 100% 55%

power 79% 100% 98% 82% 100% 98% 86% 100% 100%

estimate 1.0002 -0.0114 1.0002 1.0002 -0.0111 1.0002 1.0004 -0.0111 1.0004

2000 bias 0.0002 -1.0114 0.0002 0.0002 -1.0111 0.0002 0.0004 -1.0111 0.0004

rmse 0.0126 1.0114 0.0126 0.0128 1.0111 0.0128 0.0119 1.0111 0.0119

size 4.8% 100% 41% 5.5% 100% 50% 6% 100% 59%

power 98% 100% 100% 98% 100% 100% 99% 100% 100%

Notes: Size is calculated under γ
(0)
2 = 1, and power under γ(1)

2 = 0.95. See also the notes to Table 1.
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Table 5: Bias, RMSE, size and power of FEF and FEVD estimators for γ1 in Case 3 of DGP1

T 3 5 10

N FEF FEVD FEF FEVD FEF FEVD

without with without with without with

estimate 1.0050 0.5585 1.0050 0.9978 0.5421 0.9978 0.9989 0.5576 0.9989

100 bias 0.0050 -0.4415 0.0050 -0.0022 -0.4579 -0.0022 -0.0011 -0.4424 -0.0011

rmse 0.1310 0.5007 0.1310 0.1294 0.5112 0.1294 0.1136 0.5054 0.1136

size 5.4% 31% 54% 6.3% 64% 60% 5.2% 82% 63%

power 7.7% 21% 60% 9.1% 49% 62% 7.3% 75% 67%

estimate 0.9984 0.5476 0.9984 0.9975 0.5469 0.9975 0.9981 0.5447 0.9981

500 bias -0.0016 -0.4524 -0.0016 -0.0025 -0.4531 -0.0025 -0.0019 -0.4653 -0.0019

rmse 0.0574 0.4650 0.0574 0.0547 0.4652 0.0547 0.0520 0.4667 0.0520

size 5.3% 100% 59% 5.3% 100% 60% 5.2% 100% 64%

power 15% 99% 70% 15% 100% 72% 16% 100% 79%

estimate 1.0004 0.5533 1.0004 1.0020 0.5479 1.0020 1.0004 0.5517 1.0004

1000 bias 0.0004 -0.4467 0.0004 0.0020 -0.4521 0.0020 0.0004 -0.4483 0.0004

rmse 0.0406 0.4525 0.0406 0.0380 0.4590 0.0380 0.0359 0.4542 0.0359

size 4.5% 100% 59% 4.9% 100% 61% 4.9% 100% 67%

power 25% 100% 79% 28% 100% 83% 29% 100% 86%

estimate 1.0007 0.5495 1.0007 1.0012 0.5520 1.0012 0.9998 0.5516 0.9998

2000 bias 0.0007 -0.4505 0.0007 0.0012 -0.4480 0.0012 -0.0002 -0.4484 -0.0002

rmse 0.0279 0.4537 0.0279 0.0267 0.4510 0.0267 0.0269 0.4513 0.0269

size 5.3% 100% 58% 4.5% 100% 60% 5.2% 100% 69%

power 43% 100% 89% 46% 100% 93% 51% 100% 93%

See the notes to Table 1.
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Table 6: Bias, RMSE, size and power of FEF and FEVD estimators for γ2 in Case 3 of DGP1

T 3 5 10

N FEF FEVD FEF FEVD FEF FEVD

without with without with without with

estimate 0.9992 -0.0124 0.9992 0.9981 -0.0111 0.9981 0.9964 -0.0125 0.9964

100 bias -0.0008 -1.0124 -0.0008 -0.0019 -1.0111 -0.0019 -0.0036 -1.0125 -0.0036

rmse 0.0649 1.0127 0.0649 0.0627 1.0114 0.0627 0.0584 1.0129 0.0584

size 6.8% 72% 55% 6.2% 97% 57% 5.9% 100% 65%

power 12% 63% 68% 13% 95% 69% 13% 100% 73%

estimate 0.9996 -0.0109 0.9996 1.0001 -0.0109 1.0001 1.0010 -0.0105 1.0010

500 bias -0.0004 -1.0109 -0.0004 0.0001 -1.0109 0.0001 0.0010 -1.0105 0.0010

rmse 0.0289 1.0010 0.0289 0.0274 1.0109 0.0274 0.0260 1.0106 0.0260

size 5% 100% 60% 5% 100% 59% 4.9% 100% 66%

power 41% 100% 90% 46% 100% 92% 51% 100% 96%

estimate 0.9996 -0.0116 0.9996 1.0002 -0.0112 1.0002 1.0014 -0.0114 1.0014

1000 bias -0.0004 -1.0116 -0.0004 0.0002 -1.0112 0.0002 0.0014 -1.0114 0.0014

rmse 0.0193 1.0116 0.0193 0.0186 1.0113 0.0186 0.0183 1.0114 0.0183

size 4.8% 100% 55% 4.3% 100% 58% 5.5% 100% 67%

power 72% 100% 98% 75% 100% 98% 80% 100% 99%

estimate 1.0005 -0.0111 1.0005 1.0007 -0.0113 1.0007 0.9996 -0.0114 0.9996

2000 bias 0.0005 -1.0111 0.0005 0.0007 -1.0113 0.0007 -0.0004 -1.0114 -0.0004

rmse 0.0140 1.0111 0.0140 0.0140 1.0113 0.0140 0.0129 1.0115 0.0129

size 2.8% 100% 59% 6.1% 100% 61% 4.7% 100% 66%

power 95% 100% 100% 96% 100% 100% 97% 100% 100%

Notes: Size is calculated under γ
(0)
2 = 1, and power under γ(1)

2 = 0.95. See also the notes to Table 1.

41



Table 7: Bias, RMSE, size and power of FEF-IV and HT estimators for γ1 in Case 1 of DGP2

T 3 5 10

N FEF-IV HT FEF-IV HT FEF-IV HT

estimate 0.9978 1.0025 0.9982 0.9900 0.9988 1.0030

100 bias -0.0022 0.0025 -0.0018 -0.0100 -0.0012 0.0030

rmse 0.1193 0.2248 0.1125 0.2614 0.1052 0.2230

size 3.9% 1.3% 4.9% 1.3% 5.8% 2.3%

power 6.5% 1.8% 7.4% 2.4% 8.3% 2.5%

estimate 0.9993 0.9972 1.0011 1.0017 0.9997 1.0002

500 bias -0.0007 -0.0028 0.0011 0.0017 -0.0003 0.0002

rmse 0.0518 0.0921 0.0497 0.0939 0.0454 0.0914

size 5.6% 3.7% 4.9% 4.7% 4.7% 4%

power 15% 7.1% 19% 8% 19% 7.9%

estimate 0.9979 1.0001 0.9972 1.0026 0.9996 0.9955

1000 bias -0.0021 0.0001 -0.0028 0.0026 -0.0004 -0.0045

rmse 0.0353 0.0683 0.0334 0.0639 0.0338 0.0651

size 4.3% 4.9% 4% 3.8% 5.9% 4.9%

power 25% 12% 27% 12% 33% 11%

estimate 1.0001 1.0009 1.0002 1.0026 1.0005 0.9980

2000 bias 0.0001 0.0009 0.0002 0.0026 0.0005 -0.0020

rmse 0.0260 0.0481 0.0245 0.0455 0.0237 0.0457

size 5.3% 5.3% 5.1% 4.3% 4.7% 5.4%

power 52% 18% 53% 20% 56% 18%

Notes: 1. Size is calculated under γ
(0)
1 = 1, and power under γ(1)

1 = 0.95.

2. The number of replication is set at R = 1000, and the 95% confidence interval for size 5% is [3.6%,

6.4%].

3. The FEF-IV estimator and its variance are computed using (53) and (56), with ri, defined by

(62) as the instrument. The HT estimator and its variance are computed using (60) and (61), with

time averages of the time-varying regressors, x̄1i and x̄2i, and zi1 as instruments. In computing

the variance of the HT estimator we set Vη = σ2
ηIN in (61), as assumed under the standard HT

procedure.
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Table 8: Bias, RMSE, size and power of FEF-IV and HT estimators for γ2 in Case 1 of DGP2

T 3 5 10

N FEF-IV HT FEF-IV HT FEF-IV HT

estimate 0.9969 1.9548 0.9999 1.9619 0.9979 1.9768

100 bias -0.0031 0.9548 -0.0001 0.9619 -0.0021 0.9768

rmse 0.0624 1.0705 0.0572 1.1176 0.0527 1.0589

size 4.2% 64% 5.8% 89% 5.5% 88%

power 18% 69% 18% 92% 23% 89%

estimate 1.0012 1.9850 0.9988 2.0002 0.9995 1.9958

500 bias 0.0012 0.9850 -0.0012 1.0002 -0.0005 0.9958

rmse 0.0266 1.0023 0.0238 1.0107 0.0232 1.0058

size 5.2% 100% 4.1% 100% 5.2% 100%

power 53% 100% 51% 100% 57% 100%

estimate 0.9996 1.9955 0.9993 1.9972 0.9998 1.9991

1000 bias -0.0004 0.9955 -0.0007 0.9972 -0.0002 0.9991

rmse 0.0178 1.0039 0.0177 1.0024 0.0168 1.0038

size 4.6% 100% 5.2% 100% 5.1% 100%

power 78% 100% 80% 100% 84% 100%

estimate 0.9999 1.9913 1.0000 2.0004 0.9999 1.9999

2000 bias -0.0001 0.9913 0.0000 1.0004 -0.0001 0.9999

rmse 0.0128 0.9955 0.0124 1.0029 0.0117 1.0024

size 4.6% 100% 5.2% 100% 4.7% 100%

power 96% 100% 98% 100% 98% 100%

Notes: 1. Size is calculated under γ
(0)
2 = 1, and power under γ(1)

2 = 0.95. Also see the notes to

Table 7.
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Table 9: Bias, RMSE, size and power of FEF-IV and HT estimators for γ1 in Case 2 of DGP2

T 3 5 10

N FEF-IV HT FEF-IV HT FEF-IV HT

estimate 1.0019 1.0081 1.0027 0.9963 1.0026 1.0029

100 bias 0.0019 0.0081 0.0027 -0.0037 0.0026 0.0029

rmse 0.1165 0.2196 0.1161 0.2443 0.1032 0.2521

size 4.6% 1.5% 4.2% 2.5% 5% 1.8%

power 7.4% 1.9% 8.8% 3.6% 8% 2.7%

estimate 0.9994 1.0020 1.0015 1.0019 0.9971 0.9935

500 bias -0.0006 0.0020 0.0015 0.0019 -0.0029 -0.0065

rmse 0.0529 0.0937 0.0497 0.0919 0.0460 0.0905

size 5.3% 3.4% 5.1% 3.8% 4% 4.2%

power 19% 7% 19% 8.3% 18% 7.1%

estimate 1.0010 0.9971 0.9989 1.0004 1.0011 0.9988

1000 bias 0.0010 -0.0029 -0.0011 0.0004 0.0011 -0.0012

rmse 0.0355 0.0670 0.0344 0.0681 0.0346 0.0660

size 3.8% 4.4% 5.4% 5.1% 6.2% 5.2%

power 30% 12% 30% 13% 34% 11%

estimate 1.0006 1.0011 0.9990 0.9999 0.9999 1.0018

2000 bias 0.0006 0.0011 -0.0010 -0.0001 -0.0001 0.0018

rmse 0.0259 0.0477 0.0242 0.0453 0.0237 0.0447

size 5.2% 5.7% 4.1% 4.7% 5.4% 4.1%

power 51% 19% 51% 19% 55% 20%

See the notes to Table 7.
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Table 10: Bias, RMSE, size and power of FEF-IV and HT estimators for γ2 in Case 2 of DGP2

T 3 5 10

N FEF-IV HT FEF-IV HT FEF-IV HT

estimate 0.9959 1.9536 0.9938 2.0047 0.9972 2.0584

100 bias -0.0041 0.9536 -0.0062 1.0047 -0.0028 1.0584

rmse 0.0583 1.0909 0.0584 1.1266 0.0550 1.6905

size 3.5% 60% 4.8% 86% 5.9% 87%

power 15% 67% 18% 88% 21% 89%

estimate 0.9994 1.9874 0.9994 1.9973 0.9993 1.9959

500 bias -0.0006 0.9874 -0.0006 0.9937 -0.0007 0.9959

rmse 0.0260 1.0060 0.0243 1.0046 0.0240 1.0063

size 4.8% 100% 5.2% 100% 5.9% 100%

power 49% 100% 54% 100% 58% 100%

estimate 1.0000 1.9974 0.9987 1.9963 0.9996 2.0018

1000 bias 0.0000 0.9974 -0.0013 0.9963 -0.0004 1.0018

rmse 0.0186 1.0058 0.0182 1.0019 0.0157 1.0069

size 5.8% 100% 7% 100% 3.8% 100%

power 77% 100% 80% 100% 84% 100%

estimate 1.0001 1.9980 1.0000 1.9981 1.0001 1.9993

2000 bias 0.0001 0.9980 0.0000 0.9981 0.0001 0.9993

rmse 0.0126 1.0022 0.0128 1.0008 0.0117 1.0018

size 4.9% 100% 5.2% 100% 4% 100%

power 97% 100% 97% 100% 99% 100%

See the notes to Table 7 and 8.
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Table 11: Bias, RMSE, size and power of FEF-IV and HT estimators for γ1 in Case 3 of DGP2

T 3 5 10

N FEF-IV HT FEF-IV HT FEF-IV HT

estimate 1.0022 1.0064 0.9978 1.0063 0.9935 1.0012

100 bias 0.0022 0.0064 -0.0022 0.0063 -0.0065 0.0012

rmse 0.1336 0.2313 0.1332 0.2634 0.1212 0.2257

size 5.5% 2.1% 6.8% 2.3% 7.1% 2.4%

power 6.8% 2.6% 8.6% 2.8% 7.9% 3.3%

estimate 1.0006 0.9974 0.9987 1.0007 0.9993 1.0039

500 bias 0.0006 -0.0026 -0.0013 0.0007 -0.0007 0.0039

rmse 0.0576 0.0964 0.0543 0.0951 0.0526 0.0965

size 4.3% 3.3% 5.1% 4.1% 5.7% 5.5%

power 15% 6.8% 15% 7.2% 18% 9.8%

estimate 0.9996 1.0070 0.9991 1.0012 0.9990 1.0012

1000 bias -0.0004 0.0070 -0.0009 0.0012 -0.0010 0.0012

rmse 0.0396 0.0666 0.0386 0.0644 0.0349 0.0660

size 4.4% 3.7% 5.2% 3.2% 3.8% 4.9%

power 22% 12% 25% 11% 26% 11%

estimate 1.0003 1.0020 1.0001 1.0002 0.9998 1.0000

2000 bias 0.0003 0.0020 0.0001 0.0002 -0.0002 0.0000

rmse 0.0291 0.0489 0.0266 0.0483 0.0256 0.0456

size 6.3% 5.2% 4.7% 5.6% 4.7% 3.8%

power 42% 19% 45% 20% 48% 20%

See the notes to Table 7.

46



Table 12: Bias, RMSE, size and power of FEF-IV and HT estimators for γ2 in Case 3 of DGP2

T 3 5 10

N FEF-IV HT FEF-IV HT FEF-IV HT

estimate 0.9977 1.9641 0.9962 2.0007 0.9958 2.0528

100 bias -0.0023 0.9641 -0.0038 1.0007 -0.0042 1.0528

rmse 0.0692 1.0573 0.0663 1.1191 0.0596 1.8064

size 7% 80% 6.9% 90% 5.1% 87%

power 15% 84% 16% 92% 18% 88%

estimate 0.9989 2.0003 0.9996 1.9918 1.0008 1.9959

500 bias -0.0011 1.0003 -0.0004 0.9918 0.0008 0.9959

rmse 0.0290 1.0139 0.0281 1.0022 0.0259 1.0068

size 4.5% 100% 6.1% 100% 5.4% 100%

power 42% 100% 46% 100% 51% 100%

estimate 1.0007 1.9979 0.9991 2.0047 0.9996 2.0000

1000 bias 0.0007 0.9979 -0.0009 1.0047 -0.0004 1.0000

rmse 0.0198 1.0050 0.0187 1.0101 0.0177 1.0051

size 4.9% 100% 4.3% 100% 4.3% 100%

power 72% 100% 71% 100% 77% 100%

estimate 0.9994 2.0029 1.0006 1.9992 0.9997 1.9969

2000 bias -0.0006 1.0029 0.0006 0.9992 -0.0003 0.9969

rmse 0.0141 1.0063 0.0137 1.0019 0.0129 0.9994

size 5.2% 100% 5.7% 100% 4.6% 100%

power 93% 100% 95% 100% 96% 100%

See the notes to Tables 7 and 8.
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