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Abstract 

 
Optimal age replacement policies for network components such as cables, overhead lines or 
transformers are usually identified based on gathered knowledge about the state of a 
component and its stochastic deterioration process. In this context, uncertainty is an important 
challenge because current information about the aging process may be false. Especially in the 
context of innovative use of newly developed network equipment some experience knowledge 
from similar equipment might exist or pre-testing under laboratory conditions could allow 
setting up hypothesis about the characteristics of aging. Nonetheless, substantial uncertainty is 
still common in replacement. An example in this context is the lifetime of PE tubes in gas 
networks, which is not very well explored due to the fact that no tubes older than 40 years 
exist. The length of the aging process as well as the expected starting date can be inferred 
only to some confidence probability. Apart from newly developed equipment, production 
imperfections like the Water treeing Effect in cable insulations led to very early replacement 
of complete lots of cables because the insulation deteriorated much earlier than initially 
expected.  
Hence, the question arises how these different sources of uncertainty will impact the network 
operator’s replacement decision. Further it is of interest how much value can be attributed to 
the reduction of the uncertainty. In this paper, an optimal replacement strategy in an analytical 
stationary state model is derived explicitly with local and global optima. Based on a discrete 
mixture model of failure rates under perfect replacement, we show how different assumptions 
about the underlying type of uncertainty will affect the replacement decision. In a further step, 
the value of information representing the cost difference between a state of parameter 
certainty and the state of parameter uncertainty is derived. Trough the course of some 
applications, it is shown that the value of information increases with the level of uncertainty. 
Some exemplary calculations are presented to show that the magnitude of the value of 
information is significant. 
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1 Introduction 

The introduction of incentive and quality regulation in important network branches such as 
telecommunication or utilities has led many network operators to reduce maintenance costs by 
optimizing the trade-off between planned maintenance costs and cost for random breakdowns 
which may lead to outages and penalties by regulation authorities. Numerous models have 
been developed within the Operations Research literature, which support network operators in 
identifying optimal replacement strategies. For an overview, cf. e.g. Valdez-Flores and 
Feldman (1989) and Wang (2002). However, the task is made much more difficult by a 
significant level of uncertainty concerning the methodology and data used for these models. 
Replacement models are founded on assumptions about the current state of the asset and its 
further deterioration. These assumptions may be wrong. Some important sources of 
uncertainty are the shape of the distribution function, and the distribution function being 
known, parameters such as the starting point of the aging process and its speed. The 
introduction of completely new components or new technologies will lead to a situation, 
where only rough assumptions may be available. Another situation arises when lots of a good 
are of very different quality, due to flaws during the production process. In this case, an 
operator will probably know the aging characteristics of a good and a bad asset. However, he 
will not be able to know early if he got a good or a bad lot. Such uncertainty is common in 
replacement. An example is the lifetime of PE tubes where the start and the magnitude of the 
aging process are rather unclear due to the fact that no tubes older than 40 years exist. 
Another example is water treeing, a phenomenon regarding cable insulations that led to very 
early replacement of complete lots of cables because the insulation of a high number of lots 
deteriorated much earlier than initially expected. Hence, the question arises how such 
uncertainty will affect the network operator’s replacement decision and how to value the 
information about the correct state of the equipment and the probability that it will fail in the 
close future. Research so far has mainly focused on different types of maintenance strategies 
(age replacement, block replacement, repair limits, etc.). Furthermore, distributions that shall 
reflect deterioration of assets and forecast breakdown probabilities as well as methods to 
estimate distribution parameters have been discussed. To our knowledge, there is no research 
which explicitly analyses how uncertainty may affect an agent’s replacement strategy in an 
analytical modeling framework. This may be due to the fact that common failure distributions 
do not allow an analytical derivation of optimal replacement strategies because of terms, 
which even do not have closed form representations in many cases. 
The focus of the present paper yet lies on the effect of uncertainty on an optimal replacement 
strategy and its implications for the value of information. In order to derive general insights, a 
stationary analytical framework is chosen, which models the cost annuity as a sum of planned 
replacement and breakdown. We will use a uniform unconditional failure distribution which 
permits to analytically derive an optimal replacement strategy and discuss how uncertainty 
about the starting point and the speed of aging will affect the optimal replacement strategy. 
We find that uncertainty will in the majority of cases lead to later replacement.  
In the applications section, two different cases will be discussed. If components from 
suppliers are of different quality and this quality is observable through testing, the value of 
information corresponds to the willingness to pay for quality control. In application of the 
approach to the phenomenon of water treeing of the insulation of VPE cables, the value of 
information is found to be significant. In a second application, a new technology is introduced 
that slows down deterioration, e.g. a new type of insulation of gas steel tubes. However, its 
effectiveness is not certain. The impact of uncertainty on the expected cost advantage is 
derived. 
The structure of the paper is as follows: The existing literature is reviewed in section 2. Then 
a general model of replacement is sketched in section 3. In section 4, the concept of parameter 
uncertainty will be included in the model and the existence of optimal replacement strategies 
under uncertainty will be shown. In section 5 we will discuss two exemplary applications 
using the results obtained so far. A final chapter concludes and provides an outlook for future 
research. 
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2 Literature Overview 

Replacement models can be characterized as either deterministic or probabilistic. 
Deterministic replacement models assume a deterioration of the functionality and thus of the 
output of equipment, but they do not address full breakdown. Probabilistic models focus on 
the possibility of failure. Uncertainty may result because the distribution function is not 
known or the parameters of distribution functions (either failure rate or restoration process) 
are uncertain.   
Fox (1966) investigates the effect of uncertainty in the case of a preventive periodic 
maintenance policy. Uncertainty occurs because the failure distribution function is not known. 
In this case, the optimal strategy consists of solely replacing at failure and to conduct no 
planned maintenance at all. As opposed to this extreme uncertainty leading exclusively to 
corner solutions, usually a decision taking entity has some prior beliefs about aging of assets, 
which in turn lead to a convex optimization trading off higher costs of shorter actual lifetimes 
due to premature replacement against higher costs resulting from failure. How a firm will use 
this knowledge about failure distributions has yet hardly been treated.  
A major discussion on how to deal with uncertain parameter focused the restoration process 
of failed equipment. If one assumes that repair of a good does not lead to a state “as good as 
new” (i.e. minimal repair that does not reset the time t since the last repair to 0), the 
probability of failure after repair will be more or less close to the probability before repair. In 
the specific case of Barlow and Hunter (1960), the probability of failure in a periodic PM 
policy is governed by a Poisson process, whose parameters are assumed to be known. 
Introducing uncertainty in the restoration process can be achieved by different specifications 
for the Poisson process, which all have based on different observations. Bassin (1973) uses a 
Bayesian estimation approach to deduce the parameters for the Poisson process and thus 
derives optimal periodic PM in the case of minimal repair. Dogramaci and Fraiman (2004) 
use the basic optimal control model by Kamien and Schwatz (1971) in a dynamic setting with 
multiple periods and introduce uncertainty (caused by technological change) by considering 
alternative scenarios using this base model. Therefore, they account for the fact that future 
technologies and their maintenance requirements are supposed to be unknown. They 
numerically deduce the optimal strategy for each scenario, their focus lying on the 
minimization of computation times and the effect of technological jumps on maintenance 
costs. Wang et al. (2009) present a condition-based replacement model for a deteriorating 
system with a number of identical assets. In their model, deterioration of an asset increases 
with time but whether a failure occurs or not depends on the condition-based reliability 
adding a layer of uncertainty. 
Parameter uncertainty regarding the distribution of the failure rate is another important topic. 
Sathe and Hancock (1972) present a Bayesian model for determining optimal maintenance 
policies when no historical data about failure rates are given. The decision makers’ beliefs 
(which are represented by probability density functions regarding the relevant parameters) are 
used as prior for the distribution parameter. Based on more and more observations, these 
beliefs are recursively updated using Bayes’ theorem. Mazzuchi and Soyer (1996) present a 
comparable approach based on Weibull failure distributions with unknown coefficients. 
Uncertainty is reassessed as all data gathered during the process is used to increase the 
estimation quality of the distribution parameters and consequently replacement strategies are 
adapted. Juang and Anderson (2004) extend this approach by uncertain repair costs and by a 
more complete set of maintenance actions such as minimal repair, major repair, planned 
replacement, unplanned replacement and periodic scheduled maintenance. Finkelstein (2008) 
points out an interesting aspect we will refer to later. If one is not sure about the parameters of 
the distribution function, he can use another distribution function regarding these parameters.   
However, conventional approaches to find optimal replacement strategies require specific 
properties of the failure rate function. Barlow and Hunter (1960) find that, given an age 
replacement protocol, a general optimum only occurs if the conditional failure rate is strictly 
non-decreasing (IFR-condition). Typical failure distributions such as the exponential 
distribution, the gamma distribution, the truncated normal distribution and the Weibull 
distribution fulfill this IFR condition. Finkelstein (2008) states that a combination of failure 
rates (e.g. Weibull distribution and Gamma distribution) may lead to a distribution which does 
not fulfill the IFR-condition. Hence uncertainty about the distribution parameters may lead to 
a situation where the derivation of optimal replacement strategies is not trivial, because 
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multiple local optima exist. A branch of literature discussing a problem relatively close to 
network replacement under uncertainty focuses on technological change and its impact on 
optimal service life. Yatsenko and Hritenko (2008) for instance discuss the properties of 
optimal replacement under technological change in a dynamic replacement setting. Based on 
an amount of literature they summarize, they claim that “qualitative properties of optimal 
machine replacement under technological change are poorly known”.  
The value of information has not been a predominant topic in maintenance and replacement 
literature so far. In the context of supply chains and stock policy, the value of information is 
the result of the degree of sharing information between supplier, producer and retailer. Huang 
et al. (2003) review more than 100 contributions about the impact of sharing production 
information on supply chain dynamics. Lee (2008) presents a Bayesian approach to determine 
the value on information if ordered quantities cannot be carried forward to future periods.  
Ketzenberg (2009) discusses uncertainty regarding demand, recovery yield and capacity 
utilization in the context of closed loop supply chains. His study indicates which type of 
information is most valuable for different conditions.  
Summarizing, we state that many authors primarily focus on methods of estimation to reduce 
uncertainty; very few analyze effects of uncertainty itself. In particular the effect of discrete 
uncertainty, where the distribution ex ante is a mixture of two alternative distributions, is 
hardly treated. However this case is of considerably practical importance, both in the case of 
lots of diverging quality (as in the water treeing case) and when it comes to estimate the value 
of information obtained from ex-ante quality control. By focusing on an analytically tractable 
case, moreover it is also possible to derive general insights which are valid beyond the 
particular numerical examples considered.  

3 General Age Replacement Model 

In the following section, the stochastic replacement model is presented briefly.
1
 Consider a 

network operator that optimizes his age replacement strategies. The costs considered 
correspond to the capital expenditure for a planned replacement of equipment Z and additional 
costs for breakdowns S

2
. The decision variables are the replacement ages tj at which asset j is 

subject to planned replacement. In order to keep the problem analytically tractable, we chose 
a stationary setting and focus on the equilibrium state. Thus, time in our model is represented 
by the index t (which can be considered equivalent to the asset age) and the replacement age 
tj.

3
  The objective function is: 

      jjj
t

tStZtC
j

minmin        ( 1 ) 

The link between unconditional failure rate f(t)  and conditional failure rate r(t),  is given by: 

   
 tF

tf
tr




1
          ( 2 ) 

Another expression necessary to identify the optimal replacement age in a stationary state is 
given by the expected utilization period G(tj) given the replacement age tj. It corresponds to: 

     
jt

o

j dttFtG 1          ( 3 ) 

G(tj) and the cumulative survival distribution 1 - F(t) are required to identify the vintage 
distribution H(t, tj) that will occur in stationary state: 

                                                 
1 See Weber et al. (2010) for a more detailed description of the model. 

2 This may also include quality penalties in e.g. regulated infrastructure industries. 

3 In the context of this analytical model, the initial (or starting) age of an asset is not of relevance. In dynamic 
models however, the initial age structure of equipment is highly relevant in the context of optimization. 
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Equipment that fails has to be replaced, which leads to the differentiation of preventive 
replacement Rprev (due to the fact that the asset’s age attains the decision variable replacement 
age, thus t = tj) and corrective replacement Rcorr (due to failure while t < tj). Corrective 
replacement is given by: 
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Planned replacement can be calculated as follows: 

     
 j

j

jjjprev
tG

tF
ttHtR




1
,        ( 6 ) 

With K corresponding to the unit costs for replacement, the total replacement costs add up to:  

      
 j

jcorrjprevj
tG

K
tRtRKtZ        ( 7 ) 

For each failure, additional cost of s result. We can write: 

   
 j

j

premj
tG

tsF
sRtS          ( 8 ) 

The total cost amount to: 

   
 j

j

j
tG

tsFK
tC


          ( 9 ) 

with the  resulting optimality condition (OC) for an inner optimum: 
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      ( 10 ) 

Writing Ks = K / s and using equation (2) the OC thus can be transformed to: 

  0)()(  sjjj KtFtGtr         ( 11 ) 

In order to derive analytical insights concerning the effect of uncertainty in the decision 
process, one has to make assumptions about the functions describing the wear-out effect. The 
functions most commonly used to model lifetime assumptions are the Normal distribution, the 
Weibull distribution and the Exponential distribution.4 In order to keep the problem 
analytically tractable, we use a uniform distribution for f (cf. Figure 1). An asset shows no 
sign of aging at all until ta, then it deteriorates between ta and the point tb, where all assets 
have failed. The use of a linear distribution function is a valid method to approximate 
frequently used lifetime distribution functions.

5
 

                                                 
4 For an overview over commonly used functions and their properties, cf. Finkelstein (2008). 

5 In the Appendix A to this article, we show how a linear distribution may be used to approximate a Weibull 
distribution and how such an approximation has relatively low impact on the optimal replacement age. 
Approximation quality may even be enhanced by using multiple uniform distributions sum up to a piecewise 
definition of the cumulative lifetime distribution. The appendix is available online or upon request.  
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One of its major advantages is that optimal replacement strategies can be derived 
analytically.

6

 
The conditional failure rate is given by: 
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The unconditional failure rate corresponds to: 
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The cumulative failure distribution is: 
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And finally, the expected lifetime corresponds to: 
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Based on (10), the optimal replacement strategy can be derived, it corresponds to:
7
 

m

KmtKK
tt

sass

aj




22
2

*        ( 16 ) 

One can see, that a steeper slope m, lower cost for planned replacement K, higher penalty cost 
s and an earlier beginning of the aging process ta will lead to earlier replacement. Inserting the 
optimal replacement strategy in the cost function, one obtains: 

                                                 
6 Regarding the previously mentioned distribution laws, such an approach is not possible, cf. Barlow and 

Proschan (1964). 

7 Cf. Weber et al. (2010). 

Figure 1: Uniform distribution of f 
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Based on (16), the impact of parameters on overall stationary replacement cost can be 
deduced. An increase of planned replacement cost K implies an increase of Ks resulting in an 
increase of the numerator and a decrease of the denominator. Consequently, the total cost 
increases with K. However, the impact of a higher s is more difficult to assess with the first 
term increasing and the denominator decreasing (which is due to the effect, that a higher   
will reduce the replacement interval. By formally deriving, we find that the total cost 
increases with additional breakdown costs. A later start of the aging process (represented by a 
higher ta) will reduce annual replacement cost as it decreases the numerator and increases the 
denominator. A more rapid deterioration, which will lead to a higher m, has the opposite 
effect as it will lead to earlier replacement. The nature of the replacement model is stochastic, 
as failures occur with a conditional failure rate r(t). Nevertheless, the parameters of the 
distribution function are assumed to be certain. This means that if a network operator holds an 
infinite number of assets, the costs will converge against the expectation. The assumption of 
parameter certainty is commonly encountered in replacement literature but will be loosened 
subsequently. 

4 Model of Age Replacement under Distribution Parameter 
Uncertainty 

Often, especially if a new technology is introduced, distribution functions will not be known 
with certainty but will be built upon uncertain expectations. If expectations are wrong, which 
has for instance happened in the case of Water treeing cables, suboptimal replacement 
strategies will be implemented and additional costs result. To discuss the effect of parameter 
uncertainty, m and ta are now considered as uncertain parameters.

8
 The uncertainty is modeled 

as discrete mixtures of two possible failure distributions (e.g. bad vs. good components) with 
probabilities ϑ  (for the unfavorable failure function) and 1 - ϑ. In the case of uncertainty 
about ta, parameter uncertainty is represented by a deviation c from the average start time ta 
and end time tb of the aging period. In the case of uncertainty about m, parameter uncertainty 
is characterized through an additive or subtractive term z modifying m. Figure 2 exemplarily 
presents the cumulative failure distributions for these two cases. In the left part, two 
failure distributions with distinct starting age and overlapping aging periods are shown. 
In the right part, two cumulative failure distributions starting both in ta, one being slow, 
one being fast, are mixed to form the distribution denominated ‘uncertain’. 

 

Figure 2: Uncertainty about start of aging (left hand) and slope (right hand) 
 
A discrete mixing of two failure rates may appear limiting at first glance. Yet, one has to bear 
in mind that decision finding processes in practice are often handled with the use of a 
relatively low number of scenarios, notably by using a worst case and best case scenario plus 
the expectation scenario (under assumed parameter certainty). Second, the scenarios may be 

                                                 
8 tb  

is implicitly defined by the specification of ta and m, because tb = ta + 1/m. 

F(t)

No uncertainty Early (ta-c) Late (ta+c) Uncertain

ta

F(t)

No uncertainty Slow (m-z) Fast (m+z) Uncertain

ta ta+
1/(m+z)

ta+
1/(m-z)

ta-c ta+c tb-c

Sec.1 Sec.2 Sec.3 Sec.4 Sec.5 Sec.1 Sec.2 Sec.3

tb+c

tb
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used to represent expectations of two distributions, a best case and a worst case distribution, 
and thus leave significant freedom of parameterization. Third, this freedom of 
parameterization can be used to approximate arbitrary (empirical or simulated) functions. The 
mixing of a first unfavorable failure rate distribution (indexed U, e.g. early or fast aging) with 
a favorable failure rate distribution (indexed F, e.g. late or slow aging) leads to mixed 
unconditional failure rate (M):  

     tftftf FUM   1)(         ( 18 ) 

The cumulative failure distribution F(t) is derived analogously. For the expected lifetime, we 
again obtain: 

     
jt

o

MjM dttFtG 1         ( 19 ) 

The mixed functions may now be used to update the OC 

  0)()(  sjMjMjM KtFtGtr        ( 20 ) 

The resulting optimal replacement age under parameter uncertainty will be denominated tj
**

 
(in contrast to tj

*
 under parameter certainty). In order to analytically derive this optimal 

replacement strategy, we now turn to the relevant cases.  

4.1 Optimal replacement when the start of aging is uncertain 

Depending on the range of uncertainty, the intervals during which aging is expected to take 
place will either overlap or not. These two cases will be referred to as the overlapping and the 
non-overlapping case. We will discuss the overlapping case with priority and show 
modifications occurring in the non-overlapping case. Both cumulated failure distributions 
have the same slope. Further a symmetric range   around the initial starting point ta is defined. 
In the case of cm ≤ 0.5, the two distribution functions will be overlapping, for cm > 0.5, they 
will be non-overlapping. 

  

Figure 3: Overlapping (left hand) and non-overlapping case (right hand) 

Case A: Overlapping Failure Distributions 

Two states can be differentiated: early aging (i.e. aging starts at ta - c and ends at tb – c) and 
late aging (i.e. aging starts at ta + c and ends at tb + c). In the case of the overlapping 
specification, the uncertainty implies five different sections for the aggregated failure 
function. In the first and the fifth section, no aging occurs at all (cf. Figure 3, left hand side). 
In the second section of the function, aging will only occur under early aging. In the third 
section, aging will occur in both states, thus the slope of the expected cumulative distribution 
will also be higher. In the fourth section, aging will only occur under late aging. In the 
following application, we will refer to the range [ta - c; ta + c[ as section 2, [ta + c; tb - c[ as 
section 3 and to [tb - c; tb + c[ as section 4. These are the most interesting sections, because 
optima for the replacement age are only to be expected here.  

F(t)

No uncertainty Early (ta-c) Late (ta+c) Uncertain

tata-c ta+c

F(t)

No uncertainty Early (ta-c) Late (ta+c) Uncertain

ta-c tb-c ta+c tb+c

Sec.1 Sec.2 Sec.3 Sec.4 Sec.5 Sec.1 Sec.2 Sec.3 Sec.4 Sec.5

tb-c tb+c ta tbtb
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Proposition 1 The unconditional failure rate of the mixture distribution corresponds to 
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The cumulative failure distribution, i.e. the probability that the equipment will fail and have to 
be replaced within   is given by: 
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( 22 ) 

And the expected age of survival corresponds to:
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Proofs of Proposition 1 Cf. Appendix B.1. 
 
Given the piecewise definitions, the functions FM and GM are continuous, yet given the piece-
wise constant fM the optimality condition is not necessarily continuous or even smooth. 
Therefore, multiple local optima plus corner solutions might be possible. For the 
identification of the global optimum the following procedure can be followed: 

Step 1: The inner local optimum for each section is identified.  
Step 2: Characteristics of solutions are discussed.  
Step 3: A feasibility analysis is conducted by comparing one specific section’s local  

optimum to the support of the respective section.  
Step 4: If multiple local solutions are found, then the global optimum has to be  

identified by comparison of the cost of the different solutions considering 
 corner solutions as well. 

 
Proposition 2 Using optimality condition (9) the interior optima for the different sections can 
be derived. The solutions for section 1 and 5 are corner solutions, namely ta - c (section 1) and 
tb + c (section 5). The inner solution for sections 2, 3 and 4 are given by the following 
formulas. 

Section 2: 
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Section 3: 
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Section 4: 
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Proofs of Proposition 2 Cf. Appendix B.2. 
 
The main purpose of this article is to investigate how uncertainty affects optimal replacement 
behavior. The parameters representing uncertainty are, first, ϑ, the probability of occurrence 
of the early aging case vs. the late aging case, and, second, c, the degree of uncertainty, i.e. 
the distance between early and late aging cumulative failure functions in years. The following 
table summarizes the results of respective derivations. 
 

Table 1: Dependence of optimal replacement on ϑ and c  

Inner optimum ∂tj
**
/∂ϑ ∂tj

**
/∂c 

Section 2 < 0 < 0 for Ks >1 

Section 3 < 0  

(sufficient condition:  

Ks ≥   ⁄ ) 

Depends on ϑ: Typically  

< 0 for ϑ  >0.5 

> 0 for ϑ  ≤ 0.5 

 (sufficient conditions see App.B.2.4) 

Section 4 > 0 (sufficient conditions:  

ϑ < 1 and ta + (1-2ϑ)c > 0) 

Depends on ϑ: 

Always ≥ 0 if ϑ  ≥ 0.5. 

Numeric testing reveals mostly positive 

relationship; Ks and ta  sufficiently large will 

as well ensure positive relationship 

All results analytically derived, except for mentioned numeric testing. 

 
An increase of ϑ intuitively leads to earlier replacement in sections 2 and 3, in 4 it mostly 
leads to later replacement. This is natural in sections 2 and 3. In section 4, the effect is due to 
the fact that early aging is already finished. An increase of ϑ thus reduces the magnitude of 
aging in this section and consequently lengthens replacement cycles. This might appear 
counterintuitive at first glance. This is due to following marginal consideration. It is optimal 
to replace relatively late because of relatively high reinvestment cost compared to penalties 
for premature replacement. Then relatively low additional risk of premature failure with 
increasing replacement age in section 4 becomes even lower because of increasing ϑ. Trading 
off relatively high capital costs K (which have to be high to be in section 4) against less 
important extra cost for premature replacement s then leads to later optimal replacement. 
Finally, as well a higher level of ϑ itself will further increase the positive impact of an 
increase of ϑ on replacement age. The impact of c on the solution depends majorly on the 
values for ϑ, but a tendency of earlier replacement switching to later replacement with 
an increasing degree of uncertainty is observable. This switch may occur in section 3, 
where, for ϑ = 1, the effect remains negative, but for lower ϑ (from a threshold ϑ onwards) the 
impact of increasing uncertainty may lead to later replacement (cf. Appendix B.2.4).  

Case B: Non-overlapping Failure Distributions 

In the non-overlapping case, aging will either happen early or late with no overlapping section 
of the respective functions for the different aging states (Cf. Figure 3, right hand side). This 
requires that cm ≥ 0.5. In the following section, the range [ta - c; tb - c] will be referred to as 
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section 2, [tb - c; ta + c] as section 3 and [ta - c; tb + c] as section 4. Regarding the functional 
forms of section 2 and 4, distribution characteristics are very similar to their counterparts in 
the overlapping case A except for sections’ boundaries. This entails identical functional forms 
for the calculation of optimal replacement ages tj

**
 and an identical sensitivity of optimal 

replacement age to uncertainty parameters ϑ and c. The only section showing different 
functional forms differing from the overlapping distribution function is section 3, as the 
following proposition shows. 
 
Proposition 3 The unconditional failure rate of the mixture distribution function can be 
written as follows: 

 


























ctt

cttctm

cttct

cttctm

ctt

tf

b

ba

ab

ba

aj

M

for 0

for 1

for 0

for 

for 0

)(




      ( 27 ) 

whereas the cumulative distribution function of failures is given by 
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and expected lifetime is  
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Proofs of Proposition 3 Proofs analogously follow the proofs of Proposition 1. The proof for 
FM(tj) in section 3 is obtained through a weighted sum of F(tj) in the early aging case by ϑ, 
which has already taken its maximum value of 1, and the late aging case by (1 - ϑ), which still 
is equal to 0 in section 3. 
 
Consequently, aging occurs only in the second and the fourth section of the function. A major 
difference compared to the overlapping case is due to section 3, in which no failure occurs in 
the non-overlapping case. Consequently, the solutions of sections except section 3 are equal to 
the solutions in the previous application, the solution of section 3 being always ta + c. 
However, the bounds of the solutions are different. This leads to the sole sensitivity of the 
optimal replacement age to ϑ and c, i.e.   

   increases proportionately to c and is insensitive to 
ϑ.  
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4.2 Optimal replacement when the period/speed of aging is uncertain 

Uncertainty about the slope of the cumulative failure distribution is represented via an 
additive modification of the slope m. In the case of slow aging, the unconditional failure rate 
is given by m - z in the case of fast aging it is given by m + z. Obviously, z has to be restricted 
to the case z < m to avoid negative or zero aging in the first case.  
 
Proposition 4 The unconditional failure distribution is given by: 
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In the case of ϑ = 0.5 the function coincides in the first section with the function without 
uncertainty. 
The cumulative failure distribution can then be derived. 
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The expected lifetime corresponds to: 
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Proofs Proposition 4 Cf. Appendix C.1. 
 
Proposition 5 The optimal replacement strategy for the second section can be derived. The 
inner solution for section 2 is given by: 
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For ϑ = 0.5, tj
**

 = tj
*
 and there is no difference between the certain solution and the uncertain 

solution in section 2. The inner optimum in section 3 corresponds to: 
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Proofs Proposition 5 Cf. Appendix C.2.  
 
Section 1 and 4 are characterized by corner solutions corresponding to ta (section 1) and 

 zmta 1 (section 4). The probability of fast aging, ϑ, and its impact, denoted z, define in 
which section an optimum will appear. If the probability of early aging is very low, then an 
optimal solution will always be found in section 3. Given very low uncertainty, which will 
result in (m - z) / (m + z) close to 1, the solution will be certainly found in section 2 because 
the section 3 is quasi not existing. A solution in section 2 is also very probable for low Ks 
signifying high additional premature replacement costs. 

The sensitivity of optimal replacement to uncertainty parameters is summarized in Table 2. 

Table 2: Dependence of optimal replacement on ϑ and z  

Inner optimum ∂tj
**
/∂ϑ ∂tj

**
/∂z 

Section 2 < 0 Depends on ϑ:  

< 0 if ϑ  > 0.5 

= 0 if ϑ  = 0.5 

> 0 if ϑ  < 0.5 

Section 3 < 0 (numeric testing results; exception: 

unrealistic combination of very high mta 

combined with low Ks) 

> 0 

All results analytically derived, except for mentioned numeric testing. 

 
In section 2, a higher ϑ will lead to earlier replacement. For symmetric ϑ no difference to the 
optimal replacement under certainty about aging parameters will occur. Then tj

* 
= tj

**
 and a 

variation of z has no impact at all. The impact of the degree of uncertainty z thus depends on 
ϑ. For ϑ > 0.5, a higher probability of faster aging, uncertainty will lead to earlier replacement and 
vice versa. These effects are less obvious in section 3. Here, numerical approaches reveal that 
an increase of ϑ also leads to earlier replacement.

9
 An increase of z leads to later replacement. 

This mirrors to some extent the above result where increasing c leads to later replacement in 
section 4 and partially in section 3 but to earlier replacement in section 2 and partially in 
section 3. 

4.3 Computing the Value of Information 

The value of information indicates the benefits of relieving the uncertainty over the 
parameters of the failure rate distribution. For instance, if both possibilities (early and late 
aging) exist, knowing the actual failure rate distribution will allow informed choices of the 
optimal replacement time. The expected cost without information (N - not informed) on the 
aging process is then given by: 
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With given information on the aging process, the distribution of the failure rate is known a 
priori (I - informed). Thus, the agent will use an optimal solution given unfavorable aging tj

U
 

or favorable aging tj
F
: 
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The value of information then corresponds to the difference between the costs in both states, 

namely ‘uncertainty’ or ‘information’ on the distribution of the failure rate:  

IN CCV            ( 37 ) 

                                                 
9 Cf. Appendix C.2. 
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5 Application 

This section discusses the impact of uncertainty in two specific application contexts. The first 
application presents the value of information generated by quality control of purchased 
components. In this case the example of VPE cables being subject to the water tree effect is 
considered. The willingness to pay for quality control depends on the benefit that will be 
achieved by optimizing maintenance. The second application discusses the benefit of an 
uncertain new technology, in our case given the example of new insulations for gas tubes. 

5.1 Willingness to Pay for Quality Control (water treeing) 

A first setting is the purchase of components which may be subject to quality control, 
allowing the detection of production flaws. The network operator will only carry out controls, 
if he knows that there may be a quality problem and that such problems may be detected by a 
quality control. If a component does not fulfill defined quality standards, the operator will not 
use it but instead give it back to the supplier or scrap it. Thereby he will be able to save future 
losses due to unforeseen, premature failure. A practical example is given by early VPE cables 
in the 1980 years. Due to water treeing effects, the cables’ insulations deteriorated 
dramatically and whole charges of cables were replaced due to a high number of occurring 
failures. 
A major question of interest is how the operator values the information about the quality of 
the component. This value V corresponds perfectly to the sum he will be willing to pay for 
quality control. First, if no quality control is carried out the operator may receive a good 
component (with probability 1 - ϑ), or a bad component with probability ϑ. A bad component 
in this example corresponds to a VPE cable whose insulation deteriorates more rapidly due to 
water treeing. The cost is computed following (35).  
In the informed state, he carries out quality controls and thus assures that components are 
always of good quality. In our case this means that the cable insulation will not suffer from 
any water tree impact. Consequently aging is slower, the slope of the cumulated failure 
distribution is given by m - z, and the operator will choose the corresponding informed 
strategy. 
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( 38 ) 

Based on (37), the value of information corresponds to the cost difference between the 
uninformed and the informed state. The informed state is therefore supposed to be the state 
after the resolution of uncertainty about the speed of aging. The value of information depends 
on the probability ϑ of a component being subject to unfavorable aging and on the other 
parameters, like z. Therefore, a practical example based on published failure rate data from 
FGH (2006) will help deepening insights. In Figure 4 one can see that the first generation of 
VPE cables (‘old’) aged dramatically between an age of 20 and 40 years. 
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Figure 4: Cumulated failure rates for VPE cables (old), linear approximation and assumptions10 
 
The figure illustrates that section 2, in which the two failure rates add up, ends with an age of 
40 years, starts at ta = 20 years. Section 3 includes all ages from 41 up to 60. For s, we assume 
different two scenarios: 20% of K (Ks = 5) and 50% of K (Ks = 2). ϑ can be interpreted as 
expected share of defective (e.g. water treeing) cables. Results for the value of information are 
given in the following table. 

Table 3: Numerical results for section 2 (m = 0.0375, z = 0.0125, ta = 20, K = 100) 

 Ks = 5      Ks = 2      

ϑ tj
** tj

* CI CU V V/ CI tj
** tj

* CI CU V V/ CI 

0.25 54 53 3.0 3.2 0.2 7% 47 46 3.5 3.8 0.3 9% 

0.50 54 53 3.0 3.4 0.4 15% 35 46 3.5 4.2 0.6 18% 

0.75 55 53 3.0 3.7 0.7 24% 31 46 3.5 4.4 0.8 24% 

 
The value of information describes the willingness to pay for the knowledge that reinvestment 
is with certainty performed using an asset of good quality. The value is important in all cases, 
corresponding to 7% up to 24% of the yearly maintenance costs in the informed state. V 
increases with the probability of water treeing characteristics of the cable. For higher values 
of Ks, the replacement cycles is that long that it almost corresponds to the strategy used if 
defective cables were detected by quality control procedures. For lower values of Ks, a higher 
potential share of water-treeing cables ϑ leads to an important reduction of replacement 
cycles. 

5.2 Benefit of an Uncertain New Technology 

The next application compares two states: a costly state under parameter certainty and an 
uncertain but less costly state. This may for instance apply if a technology (e.g. a new type of 
insulations for steel tubes) is introduced that should lead to later aging, but its effectiveness 
cannot be guaranteed. Suppose that we have the cost function of an established asset class 
with aging speed m, aging starting at ta - c. 
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10 CDF of old VPE cables were derived from FGH (2006) and linearly approximated. The CDF regarding non-

water treeing cables represents an assumption. 
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A new insulation is introduced that shall lead to later aging but no long term data is given to 
prove its impact. In the worst case, which occurs with probability ϑ, it will have no effect at 
all. In the best case, aging will occur at ta + c.  
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The uncertain cost advantage of the new technology C
Δ
 corresponds to the expected cost 

advantage of introducing the new technology, thus: 
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Obviously, C
Δ
 increases with the probability 1 - ϑ that the technology will lead to later aging. 

We use an example of cumulated failure density for different types of insulations of steel 
tubes published in DVGW (1999), namely steel tubes with paper insulations and steel tubes 
with PE/fiber cement insulations. The normal distributions published are approximated by 
uniformly distributed unconditional failure rates (cf. Figure 5). We consider the case, that the 
aging characteristics of the new technology are uncertain. We assume the probability ϑ 
(unfavorable case), that the aging characteristics of the more recent insulation are not better 
than the characteristics of paper insulations. 

 

Figure 5: Cumulated failure rates for gas and linear approximation 
 
The relevant distribution parameters to compute the value of information are ta = 65, c = 15 
and m = 0.025. This corresponds to an overlapping case because in section 3 (ages between 80 
and 90 years), both cumulated failure densities overlap. Again, extra costs of 20% and 50% 
for premature replacement are assumed. 
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Table 4: Numerical results for section 2 (m = 0.025, c = 15, ta = 65, K = 100) 

 Ks = 5      Ks = 2      

ϑ tj
** tj

* CI CN CΔ CΔ / CI tj
** tj

* CI CN CΔ CΔ / CI 

0.25 101 78 1.7 1.3 0.4 22% 80 64 1.9 1.4 0.5 25% 

0.50 103 78 1.7 1.4 0.3 16% 77 64 1.9 1.6 0.3 16% 

0.75 82 78 1.7 1.6 0.1 6% 75 64 1.8 1.8 0.0 1% 

 
The intuitive result is obtained that the more the investor expects the favorable, old aging case 
to occur the more he is willing to pay for the knowledge enabling him to exclude the 
occurrence of the unfavorable aging case. For most cases, the cost difference is important. 
Only in one case (when the new insulation will not be better with a probability of 75% and 
premature replacement is costly), then the cost difference amount to only 1%. For high Ks 
implying low cost for premature replacement, the counterintuitive effect described in section 
4.1.A is visible. Inner optimum solutions will mostly be within section 4, and thus increase 
with ϑ. For lower values of Ks  (the example on the right), optimal replacement decreases with 
the probability of unfavorable aging. The cost advantage due to the new technology is 
important, reducing costs by up to 25% in our example. Replacement cycles are extended by 
10 to 26 years (compared to the 30 years difference between the failure rates). 

 6 Conclusion 

This article analyzes the impact of uncertainty, concerning the beginning as well as the speed 
of the aging process, on the optimal replacement strategy. The unconditional failure rate was 
assumed to follow a uniform distribution, representing a plausible approximation of 
empirically observable aging functions and permitting to analytically derive an optimal 
replacement strategy. Considering uncertainty is achieved by mixing a favorable and an 
unfavorable failure pattern and analytically deriving the optimal strategy with an underlying 
mixed failure distribution.  
First, we find that the characteristics of uncertainty have major impacts on the replacement 
decision. Higher degrees of uncertainty may lead to either earlier replacement or later 
replacement depending both on the optimal replacement age relative to the maximum asset 
age and on the probability the investor attributes to the occurrence of unfavorable aging cases. 
For earlier optimal replacement ages additional uncertainty, c, will induce shorter replacement 
cycles whereas the contrary is true for later optimal replacement ages. This stems from the 
tradeoff between reinvestment cost and costs for premature replacement: If latter are already 
relatively important additional uncertainty will enforce the effect towards early replacement. 
If on the other hand reinvestment cost exhibit a pressure to replace relatively late, additional 
uncertainty in tendency delays reinvestment because of even lower mixed failure 
probabilities. Similarly, the probability of occurrence of unfavorable aging cases, ϑ, will 
reduce optimal replacement age for early replacement cases and increase it for late 
replacement cases. Second, a value of information as difference between the cost in an 
informed and an uninformed state was computed in the case of two applications. It is shown 
to be highly relevant and suggests a willingness to pay for the elimination of uncertainty of up 
to a fourth of realized costs. 
As for possible future research, an area of interest would be to decrease the limitation by 
switching from a two-state-model to a multi-state or continuous model. 
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Appendix A: Example of linear approximation of Weibull-CDF  

 

 

Appendix B: Mixture of early and late aging - overlapping case 

B.1 Calculus of FM(t) and GM(tj) 

B.1.1 Calculus of FM(t) 

Formally, the cumulative failure distribution function (cdf) is obtained through integration by 

parts over the support of fM(t):    
t

MM dftF
0

 . As the cdf FM(t) is linear in fM(t) and the 

mixture distribution fM(t) is a linear combination of the unfavorable and favorable case, 

denoted fE(t) and fL(t) respectively. Correspondingly FM(t)  can also be obtained as a weighted 

sum of the individual FE(t) and FL(t),        tFtFtF LEM   1 . 

For the first and the last section FM(t) is simply 0 and 1. In section 2, the cdf is given by 
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B.1.2 Calculus of GM(tj) 

The expected utilization period is      
jt

o

MjM dFtG 1 . Similar to FM(t) the derivation of 

GM(tj) is also possible by weighting GE(tj) and GL(tj),        jLjEjM tGtGtG   1 .  

With tj being part of section 1, GM(tj) then is simply tj.  

In section 2,  
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In section 3, GM(tj) is given by 
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For section 4, GM(tj) is obtained according to following formula. 
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Section 5 is similarly given by 
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B.2 Optimality conditions 

The cost function is given by equation (9) 
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with the resulting optimality condition (11):   0)()(  sjjj KtFtGtr . 
 
B.2.1 Inner local optimum in section 2 
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The quadratic equation yields as feasible solution: 
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The term under the square root may be simplified further to obtain mcmtKK ass  222
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This leads to the following result 
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B.2.2 Properties of an inner local optimum in section 2 
 
In this section, the sensitivity of the optimal solution with respect to ϑ and c is analyzed. The 
sensitivity with respect to ϑ is: 
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This follows directly from the fact that the square root is decreasing in   whereas the 

denominator is increasing in .  

The impact of c on the optimal replacement time is given by:
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An inner optimum will only occur for 
**

jt  larger then ta – c (cf. equation (A1)). This requires 

the square root to be larger than Ks according to equation (A1). Thus a sufficient condition for 

the derivative with respect to c to be positive is Ks>1. This condition is not restrictive in 

practice, given that Ks corresponds to the ratio of normal replacement costs to the additional 

cost (or penalty) for early replacement. Thus in any case where the penalty does not exceed 

the normal replacement costs, the derivative with respect to c will be negative. 

 

B.2.3 Inner local optimum in section 3 

 

The locally optimal solution for section 3 is computed from 
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Simplifying the term under the square root gives the following result 
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B.2.4 Properties of an inner local optimum in section 3 

In this section, the sensitivity of the optimal solution with respect to ϑ and c is analyzed.  
For ϑ, the various terms containing ϑ react differently: 
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Thus the sign of the derivative is not obvious at first sight. 

Writing ass mtKKk 22
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 , the derivative is given by:  
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As in the previous case, the solution for tj
**

 from equation (A2) is only an interior solution, if 
the square root fulfils certain conditions. Since section 3 by definition starts from t=ta+c, the 
following condition has to be fulfilled for an interior solution: 
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Under this condition an upper limit for the derivative is  
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The worst case is then ϑ = 0 and cm=1/2 (larger values of cm correspond rather to the non-
overlapping case). Still a value of Ks above 3/2 is then sufficient to ensure negativity of the 
derivative. This is typically not a strong restriction on Ks, especially since the restrictions for 
an interior solution mostly put tighter restrictions on Ks  

With respect to changes in c, simple inspection indicates different reactions:  
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The derivative is then: 
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Thus the derivative with respect to c is strongly dependent on the values of ϑ. The first term in 

the derivative thereby dominates in almost all cases compared to the third one, given the 

previously obtained condition for the square root (cf. equation (A3)) and typical values of Ks. 

The maximum value of the second term in the derivative is 0.5 for ϑ = 1/2 and cm=1/2. Thus 

this term is also of less importance and has only a decisive impact on the sign of the 

derivative for ϑ close to 0.5. Inspection of configurations for extreme values for ϑ confirms 

this perception. In order to obtain a positive derivative    
    ⁄   , the following conditions 

have to be met. 
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For ϑ = 1 the inequality is hardly ever fulfilled given typical values for Ks. When cm takes its 

maximum value the inequality does not hold and even for the other extreme value, cm = 0, k 

would have to be smaller than one. Consequently increasing uncertainty as measured through 

c will lead to shorter replacement cycles for ϑ = 1 in most cases. Contrarily, for ϑ = 0.5 the 

inequality is always true, thus larger c will always lead to longer replacement cycles 

independent of parameterizations. For the lowest possible value of ϑ, ϑ = 0, the inequality is 

also fulfilled for typical values of Ks, hence increasing uncertainty c usually leads to 

increasing optimal replacement age. Nevertheless, in the unusual case that k ≤ 2cm+1 shorter 

replacement cycles due to uncertainty might as well occur. 

 

B.2.5 Inner local optimum in section 4 

 

The locally optimal solution for section 4 is computed from 
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Again a quadratic equation thus has to be resolved. For the term under the square root one 

obtains: 
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The optimal replacement age is then given by 
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B.2.6 Properties of an inner local optimum in section 4 

In this section, the sensitivity of the optimal solution with respect to ϑ and c is considered. 
The derivative with respect to ϑ is:  

 
       

    
    


























ctmKK

ctmKK

mcctm

m

t
ass

ass

aj







21122

211222

1421211

1

1 2

22

**

 

As long as ϑ < 1 and ta + (1-2ϑ)c > 0, all terms are positive and thus the derivative is 
positive.  
 
For the derivative with respect to c one obtains: 
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Here the result is less obvious. A sufficient condition for a positive derivative obviously is 
given by ϑ > 1/2. Moreover Ks and ta sufficiently large will ensure a positive derivative. 

 

Appendix C: Mixture of fast and slow aging 

C.1 Calculus for distribution functions 

C.1.1 Density function f(tj) 

Again, the unconditional failure distribution function is given by the mixture distribution of 

the respective fast and slow aging functions. For section 2 

     zzmzmzmtf jM   21)(  

and for section 3 

  .1)( zmtf jM  
 

 

C.1.2 Cumulative distribution function F(tj) 

The CDF of failures is given by
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for section 2 and for section 3 by 

   .1)( ajjM ttzmtF    

As FM is the integral over fM it is continuous. 

 

C.1.3 Average life time G(tj) 

The mixture of slow and fast aging subsamples leads to G given by 

       222

2

2

2
1

2
)( ajjajjajjjM tt

zzm
ttt

zm
ttt

zm
ttG 





























  

for section 2 and for section 3 by 
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 As GM is the integral over FM it is continuous. 

 

C.2 Optimal Replacement Age  

As before the cost function is given by equation (9) 
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with the resulting optimality condition   0)()(  sjjj KtFtGtr . 

 
C.2.1 Inner local optimum in section 2 

For an inner local optimum the first-order condition yields: 
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Employing the formula for the solution of quadratic equations gives as single feasible solution 
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This solution corresponds to the solution under certainty about aging parameters, when ϑ = 
0.5 is assumed:  
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C.2.2 Properties of inner local optimum in section 2 

Since the numerator in the expression for tj
**

 is decreasing and the denominator increasing in 

, the derivative with respect to  obviously fullfils:  
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For the derivative with respect to the speed of aging z a similar reasoning may be applied after 
slight reformulation of the expression for tj
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Then the sign of the derivative is clearly dependent on the value of : 
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C.2.3 Inner local optimum in section 3 

From the first order condition we get: 
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Application of the solution formula for quadratic equations gives 
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The expression under the square root may be simplified: 

   

     

     ass

as
s

aaa

sa

tzm
zm

zmzm
KK

tK
zm

K
tt

zmzm
t

zmzm

Ktzm


































 














12
3

2

5.0
2

1

2

1
4

1

22

2

2

 

This leads to the optimal replacement age 
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C.2.4 Properties of an inner local optimum in section 3 

Given the different terms in the expression for the optimal replacement age and their 
dependency on , no clear result can be easily derived  for the derivative with respect to .  
 
For the derivative with respect to z, we find:  
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List of Symbols 

c  Uncertainty related to the starting point of aging 
C  Total equipment cost (objective function) 
C

I
  Total equipment cost (objective function) under parameter certainty (‘informed’) 

C
N
  Total equipment cost (objective function) under parameter uncertainty (‘uninformed’) 

C
Δ
  Cost difference between informed and uninformed state 

f Probability density function of unconditional failure 
F Probability distribution function of unconditional failure 
G Mean lifetime of asset class 
H Probability distribution function of age (age structure of assets) 
j Assets class 
m Slope of probability distribution function 
ϑ Probability of early or fast aging 
Rcorr Probability of premature/corrective replacement 
Rprev Probability of normal/preventive replacement 
r Conditional failure probability (failure rate) 
S Total penalty cost 
s Additional cost for breakdown 
ta Starting point of the aging period 
tb End of the aging period 
tj Planned utilization period 
tj

*
 Optimal replacement strategy under parameter certainty 

tj
**

 Planned utilization period under parameter uncertainty 
V Value of information 
z Uncertainty related to the speed of aging 
Z Replacement cost of equipment 
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