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Abstract: The purpose of the paper is to discuss ten things potential users should know 
about the limits of the Dynamic Conditional Correlation (DCC) representation for 
estimating and forecasting time-varying conditional correlations. The reasons given for 
caution about the use of DCC include the following: DCC represents the dynamic 
conditional covariances of the standardized residuals, and hence does not yield dynamic 
conditional correlations; DCC is stated rather than derived; DCC has no moments; DCC 
does not have testable regularity conditions; DCC yields inconsistent two step estimators; 
DCC has no asymptotic properties; DCC is not a special case of Generalized 
Autoregressive Conditional Correlation (GARCC), which has testable regularity conditions 
and standard asymptotic properties; DCC is not dynamic empirically as the effect of news 
is typically extremely small; DCC cannot be distinguished empirically from diagonal Baba, 
Engle, Kraft and Kroner (BEKK) in small systems; and DCC may be a useful filter or a 
diagnostic check, but it is not a model. 

Keywords: DCC representation; BEKK; GARCC; stated representation; derived model; 
conditional correlations; two step estimators; assumed asymptotic properties; filter 
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1. Introduction 

The 21st century has seen substantial and growing interest in the analysis of dynamic covariances 
and correlations across investment instruments. In particular, there has been great emphasis paid to the 
analysis of financial assets (see [1] and [2], among others, and the references cited in the surveys  
by [3] and [4]). More recently, there has been growing interest in energy finance, particularly oil  
(see [5], [6], [7] and [8] among others).  

In this research stream, the most widely-used representation is a variation of Multivariate 
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH), namely Dynamic Conditional 
Correlation (DCC), as introduced by [1]. The baseline representation has been extended in several 
directions, dealing with the parameterization (see [2], [6], and [9], among others), the introduction of 
additional elements, such as asymmetry (see [2] and [10], among others), and the proposal of 
alternative estimation methods (see [11] and [12], among others). 

Despite the growing interest in DCC and its central role in the estimation of dynamic correlations, 
several important issues relating to this representation seem to have been ignored in the financial 
econometrics literature. These important issues include the absence of any derivation of DCC and its 
mathematical properties, and a lack of any demonstration of the asymptotic properties of the estimated 
parameters (for a summary of these issues, see [13]). In this respect, a useful contribution is [14], who 
demonstrates the inconsistency of the two step estimator of the parameters of DCC. In fact, most 
published papers dealing with dynamic correlations simply do not discuss stationarity of the model, the 
regularity conditions, or the asymptotic properties of the estimators.  

Another critical element of DCC is associated with the construction of the dynamic conditional 
correlations. In fact, the representation seems to provide estimated dynamic correlations as a  
bi-product of standardization, and not as a direct result of the equation governing the multivariate 
dynamics. This will be clarified below. An alternative representation which avoids this last criticism, 
but nevertheless has no discussion of the mathematical properties or demonstration of the asymptotic 
properties of the estimators, has been proposed by [15]. However, this representation seems to have 
attracted considerably less interest in the literature.  

It should be mentioned that many empirical applications involving DCC and related representations 
show that the impact of news can be rather limited, thereby making the estimated conditional 
correlations similar to those implied by simple BEKK models (see [16] and [17], at least in small 
cross-sectional problems (for further details, see [9] and [18]).  

This paper highlights some critical issues associated with the use of the DCC and related 
representations to make potential users aware of the inherent problems they might encounter. The main 
message is not against the use of DCC, which is the most popular representation of dynamic 
conditional correlations, but is intended to be cautionary, so that users can understand and appreciate 
the limits of DCC. In fact, we suggest that DCC be regarded as a filter or as a diagnostic check, as in 
the Exponentially Weighted Moving Average approach adopted in the first versions of the [19] 
methodology. When an equation has not been derived in a rigorous way, and for which we do not have 
any explicit details regarding the existence of moments, derivation and testability of the stationarity 
conditions, and demonstrated asymptotic properties of the estimators, it should not be considered as a 
model, but rather as a filter or a diagnostic check for estimating and forecasting dynamic conditional 
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correlations. We will elaborate on this issue in the remainder of the paper after highlighting the critical 
aspects of the DCC framework. 

The plan of the paper is to discuss ten things you should know about the DCC representation. These 
caveats are discussed in Section 2. Some concluding remarks are given in Section 3. 

2. Ten Caveats about DCC 

The DCC representation was introduced by [1] to capture the empirically observed dynamic 
contemporaneous correlations of asset returns. The representation can be given as follows. Denote by 
rt the vector containing the log-returns of k assets. The density of the returns is characterized by the 
absence of serial correlation in the mean returns, and by the presence of time-varying second-order 
moments: 

rt | It−1  D µ,Σt( )  (1) 

where 1tI −  denotes the information set to time t-1, µ  is the unconditional mean, which is generally 
equal, or very close, to zero, tΣ  is the dynamic conditional covariance matrix, and D  is a generic 

multivariate density function depending on the mean vector and dynamic conditional covariance matrix.  
Following [12], the covariance matrix can be decomposed into the product of dynamic conditional 

standard deviations and dynamic conditional correlations: 

t t t tD R DΣ =  (2) 

where ( )1 2, ,...,t kD diag σ σ σ= , ( )diag a is a matrix operator creating a diagonal matrix with the vector 
a along the main diagonal, and tR  is a dynamic correlation matrix. From Equations (1) and (2), the 

marginal density of each element of rt has a time-varying conditional variance, and can be modeled, 
for example, as a univariate GARCH process. 

The DCC representation focuses on the dynamic evolution of tR  in Equation (2), and recovers that 

quantity by considering the dynamics of the conditional variance of the standardized residuals, which 
are defined as follows: 

( )1
t t tD rη µ−= −  (3) 

By construction, the standardized residuals have second-order unconditional moment equal to 

t tE Rηη⎡ ⎤ʹ′ =
⎣ ⎦  

(4) 

with R being the unconditional correlation, thereby motivating the focus on standardized residuals to 
recover the dynamics for the conditional correlations.  

In practice, the standardized residuals can be used to verify empirically the existence of dynamics in 
the conditional correlations, for instance, by means of a rolling regression approach. Moreover, if the 
data generating process of the returns is given in Equations (1) and (2), the dynamic conditional 
covariance of the standardized residuals is given as: 

1|t t t tE I Rηη −
⎡ ⎤ʹ′ =
⎣ ⎦  

(5) 
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Without distinguishing between the dynamic conditional covariance and dynamic conditional 
correlation matrices, [1] presents the following equation based on the outer cross-products of the 
standardized residuals: 

( ) 1 1 11t t t tQ Q Qα β αη η β− − −
ʹ′= − − + +  (6) 

where Equation (6) has scalar parameters, as in the most common DCC representation, Q  is assumed 
to be a positive definite matrix with unit elements along the main diagonal (which is alleged to be a 
conditional correlation matrix), the two scalar parameters satisfy a stability constraint of the form 

1α β+ < , and the sequence tQ  purportedly drives the dynamics of the conditional correlations.  
However, as the matrix tQ  in Equation (6) does not satisfy the definition of a (dynamic) conditional 

correlation matrix, as in Equation (2), [1] introduces the following standardization: 

( )( ) ( )( )0.5 0.5
t t t tR diag dg Q Qdiag dg Q

− −
=  (7) 

where ( )dg A  is a matrix operator returning a vector equal to the main diagonal of matrix A. (In 

discussing the equivalent of Equation (7) above, namely Equation (25) in [1], a typographical error is 
present as the exponent is reported as −1 instead of −0.5.).  

It is clear that Equation (7) is a simple standardization, suggesting that the primary statistic of 
interest, namely the dynamic conditional correlation matrix, can be computed from (6). However, to 
state the obvious, a dynamic conditional correlation matrix is a standardization of a dynamic 
conditional covariance matrix, but not every standardization, such as that in Equation (7), is consistent 
with a dynamic conditional correlation matrix. This lack of equivalence is even more obvious if it 
cannot be demonstrated (as distinct from being stated) that Equation (6) is a dynamic conditional 
correlation matrix. (A simple illustration would be to divide 10 elephants by 20 elephants, which is not 
a correlation despite being a fraction.) It should be clear that, as the second term on the right-hand side 
of Equation (6) is not a dynamic update of a conditional correlation matrix, the representation in 
Equation (6) cannot be a dynamic conditional correlation matrix. 

Bearing these points in mind, the following caveats should be seriously considered before using the 
DCC representation. 

2.1. DCC is Based on the Conditional Second-Order Moment of the Standardized Residuals, and 
Hence does not Directly Yield Conditional Correlations 

The simple observation of Equation (6) recognizes the structure of the scalar BEKK model of 
dynamic conditional correlations (see [16] and [17]), pointing to an inherent contradiction in the DCC 
model. Combining Equations (1), (2), and (3) leads to: 

ηt = Dt
−1 rt −µ( )  D 0,Rt( )  

Moreover, using Equation (7), this is equivalent to 

ηt = Dt
−1 rt −µ( )  D 0,diag dg Qt( )( )

−0.5
Qtdiag dg Qt( )( )

−0.5"

#
$

%

&
'  
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However, if we consider the tQ  dynamic recurrence in Equation (6) as a BEKK model, then tQ  
might be interpreted as the dynamic conditional covariance matrix of the innovation term, which is tη , 

and it thereby suggests that the following holds: 

ηt = Dt
−1 rt −µ( )  D 0,Qt( )  (8) 

which is inconsistent with what is implied in Equations (1)–(3) and (5). Therefore, we note an implicit 
contradiction in the way the DCC correlation dynamics are derived. 

In addition, a dynamic conditional correlation matrix may be obtained only through the 
standardization in Equation (7). However, we can also note an inconsistency between the dynamic 
conditional expectation reported in Equation (5) and the way in which the dynamic conditional 
correlation matrix is obtained in Equation (7). Such inconsistency causes further problems as tQ  is not 
the conditional covariance of tη , as shown in Equation (5), and is not the conditional correlation of tη  

as it is just positive definite, but need not correspond to a dynamic conditional correlation matrix.  
The last remark can easily be verified by visual inspection of the estimates of tQ , which are 

typically not considered in empirical analysis. However, by using several datasets, it is straightforward 
to show that the elements of tQ  can be greater than 1 (see, for example, [20]). As a consequence, it 
might be stated that the sequence tQ  is a convenient device for obtaining dynamic conditional 

correlations but, as it stands, has no proper interpretation as either a dynamic conditional covariance or 
dynamic conditional correlation matrix. This leads to another caveat about DCC. 

2.2. DCC Is Stated Rather Than Derived 

From the previous comments, it clearly emerges that DCC is a stated representation, but it is not a 
derived model that is based on the relationship between the innovations to returns and the standardized 
residuals. Moreover, the DCC representation does not satisfy the definition that relates dynamic 
conditional correlations to dynamic conditional covariances, as given in Equation (2). As such, the 
interpretation of DCC as a representation that may yield dynamic conditional correlations is inherently 
flawed. This quandary also begs the question as to whether DCC is actually a model, namely a set of 
assumptions, or alternatively as a representation with explicit and testable mathematical properties and 
derivable statistical properties. 

A further motivation for the previous claim is inherently related to the construction of the 
conditional correlations within the DCC representation. Generally speaking, conditional correlations 
can be derived from a conditional covariance model by standardization of the covariances, namely 

1 1
, , , ,ij t ij t i t j tρ σ σ σ− −=  . However, such a procedure cannot be applied to the DCC representation because 

the covariance is obtained as  0.5 0.5
, , , , , ,ij t i t j t ij t i t j tq q qσ σ σ − −= . Consequently, the traditional way of deriving 

correlations applies to the conditional matrix tQ  and not to the full conditional covariance. We 

conclude that we cannot derive conditional correlations in the usual way due to the presence of two 
standardizations rather than just one. 

The above discussion also affects the many representations which are obtained as generalizations of 
the DCC representation including, among others, [2], [6] and [14]. Moreover, this has further 
consequences for the model structure and the associated statistical properties. 
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2.3. DCC Has No Moments 

This follows from the stated rather than derived properties of the representation (see [20] for further 
details). Therefore, there is no connection between univariate models of conditional variance, such as 
ARCH ([21]) and GARCH ([22]), and multivariate models of conditional correlations. This is in 
marked contrast to the direct connection between the alternative univariate conditional volatility 
models and the BEKK multivariate model of dynamic conditional covariances (see [16] and [17]), and 
the direct connection between univariate conditional volatility models and the GARCC multivariate 
model of dynamic conditional correlations (see [20]). Nevertheless, we observe that the financial 
econometrics literature includes several other models and approaches where the underlying stochastic 
component is characterized, for instance, by the known existence of lower-order moments while 
higher-order moments, or even the variance, might not exist. In any event, such approaches have been 
used extensively, with useful and interesting empirical results, within a risk management framework. 

2.4. DCC Does Not Have Testable Regularity Conditions 

This follows from point (3) above. In particular, [1] (p. 342) refers to “reasonable regularity 
conditions” and “standard regularity conditions”, without stating them explicitly. The author of [14] 
(pp. 10–11) assumes that the unstated regularity conditions, whatever they might be, are satisfied. An 
extension of the DCC representation to incorporate asymmetries is developed in [2], but explicit 
regularity conditions are not provided. With no testable regularity conditions, such as log-moment or 
second moment conditions, the internal consistency of the model cannot be checked. There is, 
therefore, no evidence as to whether the purported estimates of dynamic conditional correlations have 
any connection to the definition of dynamic conditional correlations. 

The absence of explicit regularity conditions and of explicit moment affects also the derivation of 
asymptotic properties of the parameter estimates. The author of [1] suggests the following “two step” 
approach for estimating DCC parameters. Within a Quasi Maximum Likelihood framework, we have 
the following Gaussian log-likelihood for one observation of the returns tr : 

 t  −
1
2
ln Σt −

1
2
rt#Σt

−1rt#  

Following the decomposition in (2), we have: 

 t  −
1
2
ln DtRtDt −

1
2
rt"Dt

−1Rt
−1Dt

−1rt"  

= −
1
2
ln Dt

2
−
1
2
ln Rt ±

1
2
rt"Dt

−1Dt
−1rt" −

1
2
rt"Dt

−1Rt
−1Dt

−1rt"  

= −
1
2
ln Dt

2
−
1
2
rt"Dt

−1Dt
−1rt"

#

$
%

&

'
(+ −

1
2
ln Rt +

1
2
ηtηt" −

1
2
ηtRt

−1ηt"
#

$
%

&

'
(  

( ) ( ),V C
t V t V C= Θ + Θ Θl l  

where it is shown that the single observation likelihood can be decomposed into two terms, namely a 
function of the variance parameters only, VΘ , and a function of both the variance and correlations 
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parameters, VΘ  and CΘ , respectively. Note that the first likelihood component is based on a 

correlation matrix set to the identity matrix, which is then used to recover the variance parameters 
only. The second likelihood component is used to estimate the correlation parameters, conditionally on 
the first stage likelihood estimated parameters ( ˆ VΘ ).  

In [1], it is suggested that the first likelihood component can be further decomposed into the sum of 
univariate likelihoods representing the marginal contribution of each return series, under the 
assumption of independence. This is a first simplification imposed to deal with the curse of 
dimensionality that generally affects multivariate GARCH models (see [23] for further details). In 
addition, to simplify the computational burden associated with the maximization of the second stage 
likelihood ( ) ( )1

ˆ ˆ, ,T C
V C t t V CL =Θ Θ = Σ Θ Θl , [1] suggests replacing the matrix Q  with the sample 

correlation matrix of the standardized residuals tη , thereby introducing an intermediate “1.5” step.  

The previously outlined approach entails a number of assumptions which are generally not satisfied 
by empirical data, as follows: 

- Marginal variances are assumed to be independent, which rules out any form of spillovers or 
feedback across variances and shocks of the various assets. This is related to the general idea of 
having dependence across assets governed only by the correlations. However, this is not always 
the case, and shocks of different assets can affect the variance of a single asset. 

- The sample correlation matrix is assumed to be an appropriate estimator for the matrix Q , which 
is not necessarily a correlation matrix. 

- The approach is called “two step”, when in reality it is a “three step” procedure when sample 
correlations are used for Q , and is a proper “two step” procedure when the correlation likelihood 

( )1 ,T C
t t V Cl=Σ Θ Θ  is maximized with respect to the full parameter set CΘ ,	   and conditionally on the 

variance parameters VΘ . 

However, the possible incompatibility between the assumptions leading to the estimation approach 
described above do not prevent its use, which can be motivated and supported by its computational 
simplicity, an important issue of which users should be aware. Nevertheless, the asymptotic properties 
of the “two step” estimator are not discussed in [1], apart from a reference to [24], which remains an 
unpublished manuscript and does not, in fact, demonstrate any asymptotic properties for the DCC 
parameters.  

We have the additional following caveat: 

2.5. DCC Yields Inconsistent “Two Step” Estimators 

The author of [1] (p. 342) states that the standardized residuals in equation (6) are “a Martingale 
difference by construction” in suggesting how to estimate the parameters of DCC by resorting to 
standard ARMA methods. Moreover, the fact that the errors are a martingale difference sequence 
allows recovery of general results for multivariate GARCH processes and, in particular, those in [17]. 
However, [14] points out that the DCC representation cannot be interpreted as a linear multivariate 
GARCH, and this leads to the inconsistency of the “two step” DCC estimator discussed above. The 
inconsistency is governed by the fact that in equation (6) the matrix tQ  is not the expectation of the 
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standardized residuals cross-products. Therefore, it is not possible to obtain a martingale difference by 
rewriting equation (6) in a companion VARMA form.  

The primary merit of [14] is in highlighting the inconsistency problem, but the proposed ‘solution’ 
still suffers from the same troubles afflicting the DCC representation of [1]. In fact, [14] discusses 
targeting and a modification to DCC to enable consistent estimation. However, he assumes that the 
estimators of the modified DCC representation are asymptotically normal under “standard” regularity 
conditions, without stating what the conditions might be. It has been shown in [18] and [23] that 
dynamic conditional correlations can be estimated consistently by using an indirect DCC 
representation based on the BEKK model, but asymptotic normality cannot be established. 

2.6. DCC Has No Desirable Asymptotic Properties 

In [14], [20] and [23] it has been shown that the estimated parameters of the DCC representation 
under the standard two step approach have no asymptotic properties. Moreover, the asymptotic 
properties of the joint maximum likelihood estimator (for all parameters in one step) are not known. In 
their extension of DCC, [2] do not establish any asymptotic properties. In a recent contribution, [11] 
claim to prove consistency of the estimates of the DCC representation in Theorem 1, but the proof 
refers to pseudo-true parameters rather than the parameters of interest. In Theorem 2, the authors 
assume consistency of the estimated parameters of interest (such that the pseudo-true parameters  
are identical to the parameters of interest) in claiming a proof of asymptotic normality (see [23] for 
further details).  

It is clear that the availability of asymptotic properties is still an open question. As a consequence, 
the reliability of standard inferential procedures, such as statistical significance, or likelihood ratio 
testing across nested DCC representations, remains unknown, and should be considered only on the 
basis of appropriate simulation experiments. 

2.7. DCC Is Not a Special Case of GARCC, Which Has Testable Regularity Conditions and Standard 
Asymptotic Properties 

In [20] the Generalized Autoregressive Conditional Correlation (GARCC) model is derived based 
on the relationship between the innovations to returns and the standardized residuals, using a vector 
random coefficient autoregressive process. The scalar and diagonal versions of BEKK are also shown 
to be special cases of a vector random coefficient autoregressive process, though not the Hadamard 
and full BEKK models. The GARCC model provides a motivation for dynamic conditional 
correlations that satisfy the definition of a conditional correlation matrix, and hence can be shown to 
produce dynamic conditional correlations. As an application of a vector random coefficient 
autoregressive process, the GARCC model also has testable regularity conditions, and the estimated 
parameters can be shown to be consistent and asymptotically normal. 
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2.8. DCC Is Not Dynamic Empirically and Variance Misspecification Impact Is Not Known 

Are the purported dynamic conditional correlations real or apparent, and do they arise solely  
from the standardization of the dynamic conditional covariances? What is the impact of variance 
misspecification? 

With respect to the first question, we refer to the parameter estimates which are generally observed 
in empirical studies, whereby β is large and close to 1, while α is typically small and less than 0.05.  
As a result, the conditionally dynamic matrix tQ  may ‘appear’ to be dynamic as both parameter 

estimates are statistically significant. However, the limited impact of the shocks, driven by the small 
estimate of α, makes tQ  almost constant, with limited oscillations around the unconditional tQ  value 
of Q . In addition, such a limited dynamic effect might be amplified in the dynamic correlation matrix 

tR  , as defined in (7), due to the presence of the standardization. This may well confuse the user of the 

DCC representation, who might not be aware that that the purported dynamics are spurious. 
Moving to the second question, we give the underlying intuition starting from a classical example. 

In the context of the Box-Jenkins procedure, if an ARMA(1,1) is estimated when an ARMA(2,1) 
representation is correct, then the residuals might still show some AR dynamics. For instance, in the 
limiting case of real roots for the ARMA(2,1) model, if the roots of the estimated model correspond to 
those of the true model (such that the AR component captures precisely one of the two roots of the 
ARMA(2,1) model), then the residuals would still be an AR(1) process. Therefore, estimating the 
residuals with an AR filter could possibly capture the remaining dynamics.  

Transposing the same argument into the GARCH framework, the conditional variance might be 
estimated as GARCH(1,1), but the correct model might have asymmetry, leverage, jumps, thresholds 
and/or higher time-varying moments. As a result, the parameter estimates might be biased.  
The standardized residuals, which are typically not checked for further conditional heteroskedasticity 
(as the common wisdom is that GARCH(1,1) should be sufficient), may have remaining 
heteroskedasticity, however mild. Fitting standardized residuals using a GARCH(1,1) model, which is 
the diagonal term of the DCC representation, will capture some dynamics. Even if the conditional 
correlations happen to be constant, the conditional covariances across the standardized residuals may 
appear to be dynamic because of the misspecification. Therefore, standardization does not filter out the 
dynamics in the covariances due to the biases in the initial GARCH(1,1) estimates. As a result, the 
conditional correlations may appear to be dynamic (with significant parameter estimates) due to 
misspecification in the first step. However, no research seems to have followed this line of research, 
and so it is not clear what the potential impact of the conditional variance misspecification might be on 
the conditional correlation dynamics. 

2.9. DCC Cannot Be Distinguished Empirically from Diagonal BEKK in Small Systems 

In [18], it has been shown that the estimates of the dynamic conditional correlations from a scalar 
BEKK model—in effect an indirect DCC representation—are very similar to those from the DCC 
representation. This supports the argument that the DCC representation can mimic dynamic 
conditional correlations, at least for small financial portfolios. Theoretical arguments to support this 
claim are presented in [9]. However, there is no empirical evidence of the similarities/dissimilarities 



Econometrics 2013, 1 124 
 

	  

between the dynamic correlations obtained from the DCC representation and those obtained, for 
instance, from a diagonal BEKK model. As a consequence, we cannot verify if the empirical fit 
provided by the DCC representation might be better than the fit obtained from a more general BEKK 
model in which the dependence across the conditional variance and covariances is taken into account. 
Clearly, the advantage of the DCC representation is in the ease of estimation, but mainly in 
large systems. 

2.10. DCC May Be a Useful Filter or a Diagnostic Check, but It Is Not a Model 

A significant problem in empirical practice is that many users seem to be under the misapprehension 
that DCC is a model when it is not. DCC has no obvious or desirable mathematical or statistical 
properties. Nevertheless, DCC may be a useful filter or a diagnostic check that can capture the  
dynamics in what are purported to be conditional ‘correlations’, even if they arise through possible 
model misspecification. In this context, the DCC filter may perform well empirically. In fact, the 
popularity of the DCC representation is motivated by two main elements, namely the ease in 
estimation, and the ability of the filter to capture the possible presence of dynamic correlations of 
conditional variance misspecification. 

Consequently, the DCC filter may play a useful role in forecasting out-of-sample dynamic 
conditional covariances and correlations.  

3. Conclusions 

The paper discussed ten things potential users should know about the Dynamic Conditional 
Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. 
The reasons given for being cautious about the use of DCC included the following: DCC represents the 
dynamic conditional covariances of the standardized residuals, and hence does not yield dynamic 
conditional correlations; DCC is stated rather than derived; DCC has no moments; DCC does not have 
testable regularity conditions; DCC yields inconsistent two step estimators; DCC has no asymptotic 
properties; DCC is not a special case of GARCC, which has testable regularity conditions and standard 
asymptotic properties; DCC is not dynamic empirically as the effect of news is typically extremely 
small; DCC cannot be distinguished empirically from diagonal BEKK in small systems; and DCC may 
be a useful filter or a diagnostic check, but it is not a model.  

The computational advantages of the DCC representation might become relevant when focusing on 
large systems. However, there is no empirical evidence on the comparison of conditional correlations 
obtained directly from the DCC representation and indirectly from the BEKK model in a large cross 
section of assets. As a result, we cannot verify if the use of the DCC filter provides conditional paths 
that are similar to those obtained from a viable alternative model. On the other hand, the BEKK model 
is more general as it allows for direct spillovers and feedback effects across conditional variance and 
covariances, as well as indirect spillovers and feedback effects across conditional correlations. The 
GARCC model is also a viable alternative as it satisfies the definition of a dynamic conditional 
correlation matrix, and also has demonstrable, as distinct from assumed, regularity conditions and 
asymptotic properties. 
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As DCC is presently the most popular representation of dynamic conditional correlations,  
potential users are strongly encouraged to understand and appreciate the limits of DCC in order to be 
able to use it as a sensible filter or as a diagnostic check for estimating and forecasting dynamic 
conditional correlations. 
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