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The Risk Management of Minimum Return
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Abstract
Contracts paying a guaranteed minimum rate of return and a fraction of a positive excess rate, which
is specified relative to a benchmark portfolio, are closely related to unit-linked life-insurance products
and can be considered as alternatives to direct investment in the underlying benchmark. They contain
an embedded power option, and the key issue is the tractable and realistic hedging of this option,
in order to rigorously justify valuation by arbitrage arguments and prevent the guarantees from
becoming uncontrollable liabilities to the issuer. We show how to determine the contract parameters
conservatively and implement robust risk-management strategies.

Keywords: Minimum return guarantee, defined-contribution pension plans, life-insurance, uncertain
volatility, conservative pricing, robust hedging, model misspecification, model risk

1 Introduction
Many modern life-insurance policies specify min-
imum-rate-of-return guarantees on the capital ac-
cumulated during the life of the contract. This and
other elements of optionality, such as bonus distri-
bution schemes and surrender possibilities, implic-
itly represent short positions in financial deriva-
tives and as such are liabilities, which constitute
a potential hazard to company solvency. Unfortu-
nately, up to recent times this hazard has remained
unrecognised or ignored, with often catastrophic
results for policy holders and insurance company
shareholders alike.1 It is safe to say that the tra-
ditional actuarial methods failed to keep up with
the complexity of the financial securities embed-
ded in the insurance policies. Once the potentially
disastrous consequences of mismanaging the risk
associated with these implicit options became obvi-

* The authors would like to thank Klaus Sandmann for fruit-
ful discussions. The usual disclaimers apply. The research
of the second author is supported under the Australian Re-
search Council’s Discovery funding scheme (project number
DP0559879).
† Corresponding author, Mercator School of Management, Uni-
versity of Duisburg-Essen, Lotharstr. 65, 47057 Duisburg, Ger-
many. Phone: +49-203-3792621, Fax: +49-228-3791402, E-
mail: antje.mahayni@uni-due.de
‡ Phone: +61-2-9514-7785, Fax: +61-2-9514-7711
1 A set of such cases is given by Grosen and Jørgensen (1999),
Briys and de Varenne (1997), Pelsser (2002) and Chen and
Suchanecki (2007).

ous, the ‘‘fair valuation’’ of these liabilities became
a focus of attention both in the insurance and the
accounting professions.2

Minimum-rate-of-return guarantees have also be-
gun to gain importance on another front. As ag-
ing populations increasingly put pressure on tra-
ditional defined-benefit pension plans, there is
a trend toward defined-contribution plans, in or-
der to reduce the risk borne by plan sponsors (be
they government organisations or private-sector
corporations). Countries such as Australia, Mex-
ico and Chile have moved or are in the process
of moving to defined-contribution plans, as are
many private-sector employers in the U.S. and
the U.K. This has the unfortunate side effect that,
as Bodie and Crane (1999) put it, ‘‘In defined-
contribution plans, investment risk is being passed
on to the parties who are the least knowledgeable
and the least able to bear it.’’ It seems reason-
able, as they suggest, that minimum-rate-of-return
guarantees on retirement savings plans have an
important role to play in addressing this prob-
lem. In order for this to be practicable, how-
ever, realistic valuation techniques and an imple-

2 This development is discussed in Jørgensen (2001), who also
gives further references. See in particular the report of the Fair
Valuation of Liabilities Task Force appointed by the American
Academy of Actuaries, reproduced in Vanderhoof and Altman
(1998).
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mentable risk-management methodology must be
available.
Past difficulties with the financial derivatives em-
bedded in life-insurance contracts are in part due
to the fact that the classical actuarial approach, i.e.
valuing liabilities by discounting expected payouts
with a fixed interest rate, is not applicable. Tradi-
tionally one could justify using expected payouts
by the law of large numbers, i.e. for a company with
a large number of policies outstanding, the mortal-
ity tables reflect nearly deterministic proportions
rather than probabilities. For claims depending on
one or few underlying financial variables, this is
not true. Rather, an approach based on arbitrage
arguments of the type pioneered by Black and
Scholes (1973) is required. Thus ‘‘fair valuation’’
becomes ‘‘pricing by arbitrage’’ where the embed-
ded options are concerned. This was recognised
early on by Brennan and Schwartz (1976, 1979)
and Boyle and Schwartz (1977).
In the present paper, we consider a savings plan
which yields a guaranteed interest rate plus a par-
ticipation in the positive excess return of a given
benchmark portfolio, in a slight modification of
the insurance contract studied by Miltersen and
Persson (2003). In fact, in the absence of a bonus
account to smooth realised returns, our results can
be mapped to their setting in a straightforward
manner. It is the bonus account and the associ-
ated distribution mechanism which distinguishes
what is commonly termed participating contracts
from unit-linked contracts. In a pure version of
the former, all return above the guaranteed level
is credited to a bonus account and distributed be-
tween the policy holder and the issuer at some later
date according to the contractual arrangement. We
consider the latter type, where the excess return
credited to the customer is linked directly to the
level of some reference portfolio, such as a mu-
tual fund (as commonly seen in practice), a certain
stock, a stock index, a foreign currency, etc. As
explained below, we envision a different potential
role for a bonus account.
Motivated by the realisation that when unhedged
and wrongly priced, the options embedded in in-
surance/savings products can become uncontrol-
lable liabilities and have led to the collapse of
some issuers, there has been a proliferation of
recent research on this topic. Unit-linked con-
tracts with minimum return guarantees are studied
by Bacinello and Ortu (1993), Nielsen and Sand-

mann (1995), Boyle and Hardy (1997), Bacinello
(2001), Grosen and Jørgensen (1997), Pelsser and
Schrager (2004) and Mahayni and Sandmann
(2006). What is common to this strand of lit-
erature is the use of martingale pricing theory
based on the works of Harrison and Kreps (1979)
and Harrison and Pliska (1981). However, a great
part of the existing literature is mainly concerned
with the correct valuation of insurance policies,
i.e. the pricing of the option component by stan-
dard Black/Scholes-type dynamic arbitrage argu-
ments.3 The risk management of insurance prod-
ucts is often considered to be the concern of
regulatory intervention. Thus there is a serious
gap, which we aim to fill in this paper: Even
if the options embedded in insurance products
are priced correctly, they still represent uncon-
trollable liabilities if unhedged. This argument
can be taken even further: the determination of
‘‘fair’’ prices according to standard theory is jus-
tified by the existence of hedging strategies, i.e.
self-financing trading strategies which replicate
the payoff of the derivative under consideration,
where the fair price is to be interpreted as the
initial investment in the self-financing strategy.
Consequently, in this paper we seek tractable
and realistic hedging strategies to justify mean-
ingful prices for options embedded in insurance
products.4

This is not simply an extension of existing valua-
tion results: Given the very long maturities of the
products under consideration, in order to be prac-
tically meaningful, prices and hedging strategies
must take into account a high degree of uncer-
tainty about the true dynamics of the underlying
asset. This ‘‘model risk’’ that undoubtedly exists
is even more important for hedging than for pric-
ing: While one might argue that for such long
maturities, using some sort of long-run ‘‘average’’
volatility will result in reasonable prices, it is local
(i.e. instantaneous) volatility that determines the
correct hedging strategy.

3 An exception is for example the paper of Coleman, Kim, Li
and Patron (2007). In contrast to our approach, the hedging
strategies which are used there depend on the real world mea-
sure, i.e. do not match the definition of robustness which is
used in the following.
4 In contrast, there is a strand of literature which instead
takes into account the possibility of a default, see Briys and de
Varenne (1994, 1997), Grosen and Jørgensen (2002), Bernard,
Le Courtois and Quittard--Pinon (2005) and Chen and Sucha-
necki (2007).
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While risk management under model misspecifi-
cation and model risk has received some attention
in the finance literature, this has not been suitably
applied to insurance products. For the purposes of
the present paper, the key result from the existing
literature is the observation that for convex payoffs
the Black/Scholes hedging strategy is robust with
respect to model misspecification if the assumed
Black/Scholes volatility dominates the true volatil-
ity (and vice versa for concave payoffs).5 Building
on the Uncertain Volatility Model of Avellaneda,
Levy and Parás (1995) and Lyons (1995), it al-
lows us to construct meaningful hedging strategies
using a minimum of assumptions on the stochas-
tic dynamics of the underlying asset, i.e. that the
volatility is bounded above and below.
The risk-management strategy thus constructed
represents a superhedge, i.e. under the assump-
tion of uncertain but bounded volatility the pay-
off from the hedge dominates the liability due
to the embedded option. However, the strategy
is no longer self-financing in the usual sense of
the word, as it will be possible to extract funds
from the hedge before maturity, depending on the
realised volatility of the underlying asset during
the life of the option. These funds could be dis-
tributed back to the insured as they are freed by
the risk-management strategy. In this sense, the
risk-management of minimum return guarantees
embedded in life-insurance products appears a far
more practicable application of superhedging us-
ing volatility bounds than it would be for pure
financial derivatives. For the latter, superhedges
are typically considered too expensive to imple-
ment at a marketable price.
In other words, the present paper can also be seen
as a suggestion on how to extricate pension plans
from the defined-benefit/defined-contribution di-
lemma. The contract considered here is of the
defined-contribution type, but the market risk
borne by the insured is limited by the minimum
return guarantee. The guarantee is risk-managed
and priced using a superhedging strategy, which is
robust against model misspecification, but the cost
of this to the insured can be mitigated by distribut-
ing funds freed from the risk-management strategy

5 This robustness of the Black/Scholes model is discussed in
detail in El Karoui, Jeanblanc-Picqué and Shreve (1998) and
Dudenhausen, Schlögl and Schlögl (1998). It was first observed
by Avellaneda, Levy and Parás (1995).

during the life of the contract using a bonus dis-
tribution mechanism not unlike those currently
common in life insurance.
The rest of the paper is organised as follows.
Section 2 defines the payoff structure of a roll-
over savings plan, which can be interpreted as
a life-insurance product which pays out a mini-
mum rate of return g and a fraction α of a pos-
itive excess which is specified on the basis of
a benchmark portfolio. It is shown that the op-
tion implicit in the guarantee can be expressed
as a suitably specified power option, the valua-
tion of which in a Black/Scholes-type financial
market model is well-known in the finance litera-
ture. These results are used to determine the ‘‘fair’’
contract parameters (α, g) such that no additional
upfront premium is necessary. Section 3 is con-
cerned with model risk. We give a short review
of well-known results which are needed in order
to achieve the conservative contract specification
and robust hedging strategy, including the defi-
nition of the cost process for imperfect hedges.
Static hedges using standard options are discussed
in Section 4. These hedges are completely model-
independent and thus unaffected by model mis-
specification. In addition to giving useful intuition
for the dynamic strategies, the static hedges allow
us to imply bounds on the fair contract parameters
from market-quoted option prices. However, the
standard options are typically unavailable for very
long maturities, so Section 5 considers conserva-
tive contract specifications arising from dynamic
robust hedging strategies. The cost process of the
superhedge then describes how funds are freed
from the risk-management strategy during the life
of the contract. We conclude with some final re-
marks.

2 The Embedded Power Option
Along the lines of Miltersen and Persson (2003),
we assume that if the insured pays Ki at each time
ti, the payoff at maturity tN is6

(1) I(tN ) =
N−1∑
i=0

Ki egi(tN −ti)+α[δ(ti,tN )−gi(tN −ti)]+

6 tN can be interpreted as the ‘‘time of retirement’’, when pre-
mium payments cease and in the simplest case the accumulated
funds are paid out as a lump sum.
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where the + superscript denotes the positive part of
δ(ti, tN )−gi(tN −ti), i.e. max(0, δ(ti, tN )−gi(tN −ti)).
This is in effect a roll-over savings plan in which all
dividends and interest earned are reinvested: At
maturity tN the insured receives his insurance pre-
mium plus a guaranteed minimum rate of return
g and a fraction α of the positive excess rate of re-
turn, if any, calculated with respect to a benchmark
index X, i.e.

(2) δ(ti, tN ) := ln
XtN

Xti

.

Thus a return is guaranteed on each premium
payment individually, while still realistically mod-
elling the accumulation of funds during the life of
the contract.7 Consider the payoff which is directly
associated with the premium Ki, i.e.

(3) I(i)(tN ) := Ki egi(tN −ti)+α[δ(ti,tN )−gi(tN −ti)]+

.

It is immediately clear that the payoff function is
increasing with respect to the participation rate α,
while the effect of changing the guaranteed rate g
is twofold: Increasing g raises the level of the guar-
anteed payoff and the point at which the insured
begins to participate in gains of the benchmark
index. This is easily seen when notation is adjusted
to decompose the payoff into a guaranteed part
and an embedded option.

Lemma 2.1 For δ(ti, tN ) = ln
XtN
Xti

it holds

I(i)(tN ) =
Ki

G(ti, tN )
(4)

+ N (i)(α, gi)
[
Xα

tN
− K (i)(α, gi)

]+

where

G(ti, tN ) := exp {−gi(tN − ti)} ,

N (i)(α, gi) := Ki
Gα−1(ti, tN )

Xα
ti

,

K (i)(α, gi) :=
(

G(ti, tN )
Xti

)−α

.

7 Miltersen and Persson (2003) consider a contract which guar-
antees a minimum return for each individual year of the life
of the contract, i.e. ceteris paribus their guarantee dominates
the one given here. However, in keeping with the interpretation
that the contact represents savings toward retirement, we con-
sider the insured to be only concerned about the return over the
total life of the contract, and the specification given here is the
less expensive version of the guarantee. For the analysis below,
the results for both specifications are completely analogous.

Proof. See Appendix A.

With the above lemma it follows that the fair val-
uation of the MRRG (Minimum Rate of Return
Guarantee) is given by the present value of the
fixed amount plus the fair valuation of the embed-
ded power options, i.e. for ti ≤ t ≤ tN we have

MRRG(i)(t, tN ) = PV
(

Ki

G(ti, tN )

)
(5)

+ N (i)(α, gi)PO(α, t, tN , K (i)(α, gi))

where MRRG(i)(t, tN ) denotes the t-price asso-
ciated with the payoff I(i)(tN ), PV the present
value operator (for deterministic cashflows) and
PO(α, t, tN , K) the price of a power option with
power α, strike K and maturity tN on the index X.
In the following, we use standard theory from fi-
nancial economics, which is based on arbitrage
arguments, to calculate the fair price of a power
option.

Denote by B(t, T) the time t price of a zero-coupon
bond paying one monetary unit at maturity T . The
forward price process of the index X is modelled
as a lognormal martingale under the tN forward
measure PtN :8

(6) d
X(t)

B(t, tN )
=

X(t)
B(t, tN )

σ(t, tN )dWtN (t).

This removes the need to assume deterministic in-
terest rates, which would be unrealistic given the
long time horizon. σ(t, tN ) is the volatility of the
forward price process and for tractability reasons
we assume this volatility to be deterministic.9 One
(but not the only) modelling choice which sup-
ports this would be to have X follow a geometric
Brownian motion (i.e. a dynamic along the lines
of Black and Scholes (1973)) and interest rate dy-
namics given by a Gauss--Markov Heath, Jarrow
and Morton (1992) model.

8 This is the martingale measure associated with taking the
zero-coupon bond maturing in tN as the numeraire. For the
relationship between different numeraires and their associated
martingale measures, see Geman, El Karoui and Rochet (1995).
9 Note that this is the only assumption (and one that will be
relaxed below). The fact that (6) is driftless under PtN follows
from the no-arbitrage conditions. Furthermore, the calculations
presented below are valid in the general multifactor case, where
WtN is a d-dimensional Brownian motion under PtN and σ(t, tN )
is a deterministic, vector-valued function, with all products
between vectors interpreted as scalar (‘‘dot’’) products.
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Theorem 2.2 Consider an option on the asset
X where the payoff at maturity T = tN is given by
[Xα

T − K]+, i.e. an asymmetric call power option
with power α and strike K. In a model where
the forward index process X is a lognormal mar-
tingale under the tN forward measure PtN , as in
Equation (6), it holds that

(a) The price process PO = (POt)0≤t≤T of the power
option is given by

PO(t, Xt)(7)

= B(t, tN ) ×

[(
Xt

B(t, tN )

)α

e− 1
2

α(1−α)v2tN (t)

× N
(

h1

(
t,

Xt

B(t, tN ) α
√

K

)
− (1 − α)vtN (t)

)
− KN

(
h2

(
t,

Xt

B(t, tN ) α
√

K

))]
where N denotes the one-dimensional stan-
dard normal distribution function, σ(., tN ) is
the deterministic volatility of the forward in-
dex, and the functions h1,2 are given by

h1(t, z) =
ln z + 1

2
v2tN

(t)

vtN (t)
;

h2(t, z) = h1(t, z) − vtN (t)

and

vtN (t) =

√∫ tN

t
σ2(s, tN ) ds.

(b) The delta of the option is given by

ΔPO(t, Xt) = POx(t, Xt)(8)

= α
(

Xt

B(t, tN )

)α−1

e− 1
2

α(1−α)v2tN (t)

× N
(

h1

(
t,

Xt

B(t, tN ) α
√

K

)
− (1 − α)vtN (t)

)
.

(c) The gamma of the option is given by

γPO(t, Xt) = POxx(t, Xt)(9)

= α
1

B(t, tN )

(
Xt

B(t, tN )

)α−2

e− 1
2

α(1−α)v2tN (t)

×

[
(α − 1)N

(
h1

(
t,

Xt

B(t, tN ) α
√

K

)
− (1 − α)vtN (t)

)

+
N ′
(

h1
(

t, Xt

B(t,tN ) α√K

)
− (1 − α)vtN (t)

)
vtN (t)

]
.

(d) The vega of the option is given by

POvtN
(t, Xt) = vtN (t)X2t γPO(t, Xt)(10)

⇔ POσ̄tN
= σ̄tN (t)(tN − t)X2t γPO(t, Xt)

where σ̄tN is the per annum average volatility
over the life of the option.

(e) The theta of the option is given by

θPO(t, Xt) = POt(t, Xt)(11)

= rPO(t, Xt)

+ v′
tN

(t)vtN (t)X2t γPO(t, Xt)

where POt, POx, POxx denote the partial deriva-
tives.

Proof. The above theorem is a well-known result,
see for example Zhang (1998), p. 597, Equation
(30.3). The proof is easily done by using a change
of measure, as demonstrated in Esser (2003), and
given in Appendix B for the reader’s convenience.
The partial derivatives are derived in Appendix C
with respect to the forward prices, i.e.

PO*(t, X*
t ) =

PO(t, Xt)
B(t, T)

,(12)

where X*
t :=

Xt

B(t, T)
.

In particular, this implies

POx(t, Xt) = PO*
x(t, X*

t )(13)

POxx(t, Xt) =
1

B(t, T)
PO*

xx(t, X*
t )(14)

POt(t, Xt) = Bt(t, T)PO*(t, X*
t )(15)

+ B(t, T)PO*
t (t, X*

t )

= rtPO(t, Xt) + B(t, T)PO*
t (t, X*

t )

where rt is the continuously compounded short
interest rate at time t. �

Proposition 2.3 In a model where the forward
index process X is a lognormal martingale under
the tN forward measure PtN , as in Equation (6), it
holds that the arbitrage free (‘‘fair’’) price at time
t, (ti < t ≤ tN ), for the MRRG(i) on the premium Ki
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Fair Contract Parameter Combinations

Figure 1: Short maturity (T = 1, r = 0.1, σ = 0.1, σ = 0.2
(dashed line), σ = 0.4 (thick line))
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Figure 2: Long maturity (T = 30, r = 0.1, σ = 0.1, σ = 0.2
(dashed line), σ = 0.8 (thick line))
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Figure 3: Short maturity (T = 1, r = 0.08, g = 0 , g = 0.02
(dashed line))
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Figure 4: Long maturity (T = 15, r = 0.08, g = 0, g = 0.02
(dashed line))
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is given by

MRRG(i)(t, tN ) =
KiB(t, tN )
G(ti, tN )

(16)

×

⎡⎣1 +

⎛⎝ Xt
Xti

B(t,tN )
G(ti,tN )

⎞⎠α

e− 1
2

α(1−α)v2tN (t)

× N
⎛⎝h(i)

1

⎛⎝t,

Xt
Xti

B(t,tN )
G(ti,tN )

⎞⎠ − (1 − α)vtN (t)

⎞⎠
−N

⎛⎝h(i)
2

⎛⎝t,

Xt
Xti

B(t,tN )
G(ti,tN )

⎞⎠⎞⎠⎤⎦
where

h(1)(t, z) =
ln z + 1

2
v2tN

(t)

vtN (t)
,

h(2)(t, z) = h(1)(t, z) − vtN (t),

vtN (t) =

√∫ tN

t
σ2(s, tN ) ds.

Proof. See Appendix D.

It is worth mentioning that, without introducing an
additional upfront premium, the set of fair contract

parameters (α*, g*
i ) is restricted by the condition

that at time ti, the fair price of the MRRG(i) must
be given by Ki, i.e. we have

Corollary 2.4 If there is no upfront premium
for the embedded option to pay, i.e. at ti the
insured pays the amount Ki to achieve the payoff
I(i)(tN ) at tN , then the fair zero-premium contract
specification (α*, g*) has to satisfy the condition

1 =
B(ti, tN )
G(ti, tN )

[
1 +

(
G(ti, tN )
B(ti, tN )

)α

e− 1
2

α(1−α)v2tN (ti)(17)

× N
(

h(i)
1

(
ti,

G(ti, tN )
B(ti, tN )

)
− (1 − α)vtN (ti)

)
− N

(
h(i)
2

(
ti,

1

B(ti,tN )
G(ti,tN )

))]
Proof. The above corollary is a direct consequence
of the fair pricing condition

MRRG(i)(ti, tN ) = Ki

where MRRG(i)(ti, tN ) is given as in proposition
2.3, i.e. equation (16) with t = ti. �

Note that for α* = 0, (17) implies that g* must
equal the risk-free rate, or more accurately (to
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cover the case of stochastic interest rates) the con-
tinuously compounded yield implied by the zero-
coupon bond price B(ti, tN ) (or an appropriately
weighted average thereof when one contract cov-
ers multiple investment dates ti, 0 ≤ i < N). This
is also the maximum return than can be guaran-
teed without any additional upfront premium. For
α* = 1 (the maximum participation rate without
any additional upfront premium), no return can be
guaranteed, i.e. g* = −∞, and for 0 < α* < 1, we
have g* less than the risk-free rate.
The key parameter for the price of the option em-
bedded in the minimum rate of return guarantee
is the volatility σ(t, tN ) of the forward price pro-
cess of the benchmark index. Setting this to be
constant in t, Figures 1--4 show the effect of this
parameter on the fair combinations of participa-
tion rate and guaranteed return (α*, g*). Figures 1
and 2 plot the fair combinations (α*, g*) for three
different volatility levels, respectively. Note that
Figure 1 is in line with the initial intuition and
the claim in Miltersen and Persson (1998), that
the fair level of the guaranteed return is lower for
higher volatilities of the benchmark index. How-
ever, this is not true in general. Due to the fact
that the embedded option has a payoff that is con-
cave above the exercise price, there exist volatility
levels at which an increase in volatility leads to
an increase in the fair guaranteed return, as illus-
trated in Figure 2. Thus there are potentially two
very different volatility scenarios leading to the
same fair combination (α*, g*), as Figure 4 shows.
In other words, while for a given volatility of the
benchmark portfolio there is a uniquely defined
participation rate α which satisfies the fair pricing
principle, the converse is not true. The absence of
such a monotonicity of the value of the embedded
option with respect to volatility becomes partic-
ularly relevant when the assumption of known,
deterministic volatility is lifted and the more real-
istic case of uncertain volatility is considered, as
will be done from the next section onwards.

3 Hedging and Model Uncertainty
Due to the typically very long maturity of the
minimum-rate-of-return guarantees, there is a high
degree of model risk associated with the fair valua-
tion of these contracts. Pricing derivative financial
instruments by arbitrage crucially relies on a set
of assumptions on the evolution of the underly-

ing assets. In particular, the price of the MRRG
which is given in Proposition 2.3 is only valid for
a deterministic volatility of the forward price of
the benchmark index. Under this model assump-
tion, the payoff of the MRRG can be replicated by
continuously rebalancing a portfolio consisting of
a position φX in the index X and a position φB in
the zero-coupon bond maturing at tN . This hedging
strategy φMRRG = (φX , φB) is given by

Proposition 3.1 In a model where the forward
index process X is a lognormal martingale under
the tN forward measure PtN , as in equation (6),
it holds that the (perfect) hedging strategy φ =
(φt)ti≤t≤tN for the MRRG(i) in terms of the assets X
and B, i.e. φ = (φX , φB), is given by

φX
t = α

KiB(t, tN )
XtG(ti, tN )

⎛⎝ Xt
Xti

B(t,tN )
G(ti,tN )

⎞⎠α

e− 1
2

α(1−α)v2tN (t)(18)

× N
⎛⎝h(i)

1

⎛⎝t,

Xt
Xti

B(t,tN )
G(ti,tN )

⎞⎠ − (1 − α)vtN (t)

⎞⎠ ,

φB
t =

MRRG(i)(t, tN ) − φX
t Xt

B(t, tN )
.(19)

Proof. The delta of the MRRG(i) is obtained by
taking the partial derivative of equation (16) with
respect to X, i.e. in terms of the embedded power
option it holds

(20) φX
t = N(α, g)ΔPO(t, Xt; K(α, g))

By standard theory, i.e. Black and Scholes (1973),
Harrison and Pliska (1981) and onwards, this leads
to a self-financing portfolio strategy, which repli-
cates the payoff of the MRRG at maturity. �

Thus the fairness of the price of the MRRG is
justified by two arguments: Firstly, the portfolio
value V where

(21) Vt(φ) := φX
t Xt + φB

t B(t, tN )

is equal to the MRRG’s payoff at maturity tN ,
i.e. VtN (φ) = I(i)(tN ). Secondly, the incremental
change of the portfolio value V is determined by
the changes in the underlying asset prices, i.e.

(22) dVt(φ) = φX
t dXt + φB

t dB(t, tN ),

as the strategy is self-financing in the sense that
there are no further inflows or outflows of funds
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after the initial investment V0(φ). Thus, to prevent
arbitrage opportunities, the fair price must be

(23) MRRG(i)(t, tN ) = Vt(φ)

or may alternatively, as in Section 2, be calculated
using the martingale approach, i.e. by taking ex-
pectations under the appropriate equivalent mar-
tingale measure.10 It is worth mentioning that the
self-financing property is invariant with respect to
a change of numeraire, i.e. φ is self-financing iff

(24) dV *
t (φ) = φX

t dX*
t

where V *
t (φ) = φX

t X*
t + φB

t and X*
t = Xt

B(t,tN ) .
The self-financing property of the hedging strat-
egy crucially relies on the correctness of the model
assumptions used to derive the hedge, i.e. that the
forward price of the index evolves according to
Equation (6) with a known, deterministic volatility
σ(t, tN ). This is the Achilles’ Heel of Black/Scholes-
type pricing. The deterministic volatility assump-
tion has been repeatedly empirically invalidated
and in fact the ‘‘implied volatility smile’’ present in
traded option prices directly contradicts it. On the
other hand, none of the many models extending
Black/Scholes to supposedly more realistic volatil-
ity assumptions have gained dominant acceptance
in academia or in practice. Thus for any type of
volatility assumption we are faced with a consider-
able amount of risk that the model may be wrong
-- this is what is commonly termed ‘‘model risk’’.
Given the very long maturities involved, conserva-
tive hedging (and therefore pricing) of the MRRG
should be driven by a strategy which is robust with
respect to model misspecification.
To this end, suppose that the true dynamics of the
index process do not coincide with the assumed dy-
namics as given by Equation (6). To highlight the
difference of assumed and true volatility structure,
we use the convention that the assumed volatility
is denoted with a tilde, i.e. the volatility σ(t, tN ) of
Equation (6) is written in the following as σ̃(t, tN ).
The true process is specified to be as general as
possible while tractable, i.e. we assume that the
true index process is given by a diffusion process
not necessarily identical to the setting which is
described by Equation (6). A diffusion process set-

10 The equivalence of the two approaches follows from Ito’s
lemma and the Feynman/Kac theorem. For further reading on
this topic, see for example the standard text of Musiela and
Rutkowski (1997).

ting is understood in the sense that the martingale
part dX*

t of the Doob--Meyer decomposition of the
process X* can be written in the form

(25) d
(
X*

t

)M
= X*

t σt(tN ) dW (t)

where σ is not necessarily equal to the σ̃ of Equa-
tion (6) and might, in particular, be stochastic. If
the true dynamics (25) are not identical to the dy-
namics (6) assumed in constructing the hedge, the
hedging strategy will no longer be self-financing.
Defining the in- and outflows of funds for the
strategy φ in terms of money paid at tN , we have
the ‘‘forward cost process’’

(26) L*
t (φ) = V *

t (φ) − V *
0(φ) −

∫ t

0

φX
u dX*

u

The self-financing property is equivalent to the
requirement that L*

t = 0 for all 0 ≤ t ≤ tN .
The results below are based on a well-known rep-
resentation of the cost process L*, which is sum-
marised in the following proposition.

Proposition 3.2 Consider a European contin-
gent claim C with underlying X. If the true for-
ward index dynamics X* are given by Equation
(25), while the hedging strategy is calculated on
the basis of Equation (6), then the costs of hedging
are given by

L*
t (φ) =

1

2

∫ t

0

(
X*

u

)2
C̃*

xx

(
u, X*

u

)
(27)

×
(

(σtN
u )2 − (σ̃2(u, tN ))

)
du,

where C̃* denotes the assumed forward price of the
claim C, C*

xx denotes the second partial derivative
with respect to X*, i.e. the assumed (forward)
gamma.

Proof. See Appendix E. �

It is worth mentioning that in case of a standard
option L* ≤ 0 (respectively L* ≥ 0) holds for σ̃ ≥ σ
(σ̃ ≤ σ). This is in fact true for all convex payoff
profiles, since in these cases the (assumed) gamma
does not change its sign. Similarly, the converse
holds for concave payoff profiles. Thus, if the as-
sumed volatility dominates the true volatility, the
assumed price is an upper (lower) bound for the
fair price of the convex (concave) payoff, and the
converse also holds. However, an application of
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proposition 3.2 to the payoff of the MRRG(i) re-
sults in

L*
t (φMRRG(i) ) =

1

2
N (i)(α, gi)(28)

×
∫ t

0

(
X*

u

)2 γPO
u (K = K (i)(α, gi))

B(u, tN )

×
(

σ2u (TN ) − σ̃2(u, tN )
)

du

where N (i)(α, gi) and K (i)(α, gi)) are given in Lemma
2.1; γPO is given in Theorem 2.2. Inserting N (i), K (i)

and γPO yields:

Proposition 3.3 Assume that the hedger uses
the misspecified volatility σ̃(t, tN ) instead of the
true volatility σtN

t . The discounted cost process L*

of the MRRG(i) is given by

dL*
t (φMRRG(i) ) = α

Ki

G(ti, tN )
e− 1

2
α(1−α)ṽ2tN (t) Zα

t

2
(29)

×

(N ′
(

h(i)
1

(t, Zt) − (1 − α)ṽtN (t)
)

ṽtN (t)

− (1 − α)N
(

h(i)
1

(t, Zt) − (1 − α)ṽtN (t)
))

×
(

(σtN
t )2 − σ̃2(t, tN )

)
dt,

where Zt :=
Xt/Xti

B(t,tN )/G(ti,tN ) .

Note that the gamma of the MRRG can indeed
change sign. This is due to the fact that the payoff
of the MRRG is convex over some regions of XT and
concave over others. Thus, neither does an overes-
timation of true volatility yield an upper arbitrage-
free price bound, nor does an underestimation of
the true volatility yield a lower arbitrage-free price
bound.
A conservative insurance company should take
into account the high degree of model risk due to
the fact that future volatility is uncertain. There-
fore the contract parameters (α*, g*

i ) need to be
chosen such that the premium Ki is given by the
(lowest) upper price bound of the MRRG(i). In
particular, inserting an upper volatility bound in
Equation (17) does not yield a conservative deter-
mination of contract parameters (α*, g*

i ). Along the
lines of the ‘‘uncertain volatility model’’ of Avel-
laneda, Levy and Parás (1995), assume that the
true asset price dynamics are given by Equation
25, with σt ∈ [σmin, σmax] a.s. for all t ∈ [ti, tN ]. It
is well known that the lowest upper price bound

for mixed payoff profiles is then the solution of
the Black/Scholes/Barenblatt (BSB) equation11, as
shown in Avellaneda, Levy and Parás (1995). Thus
in case of the MRRG(i) one would need to deter-
mine (α*, g*

i ) by solving a modified version of (17),
where the right-hand side is given in terms of the
solution to a BSB equation. This is not tractable.
The easiest alternative to incorporate the model
risk might be given by an additional up-front risk
premium Π(i) such that

(30) Π(i) = Lowest upper price bound − MRRG(i)

where the price of the MRRG(i) is calculated ac-
cording to a deterministic volatility structure and
(α*, g*

i ) are determined according to Equation (17).
However, besides raising an unwanted additional
up-front premium, this is still not easy to imple-
ment. Thus, the aim of the following sections is
firstly to establish a (meaningful) price bound,
which allows us to determine (α*, g*

i ) conserva-
tively, i.e. such that the conservative value of the
insurance contract is given by the premium Ki.
Secondly, the goal is to find a tractable and robust
hedging strategy under uncertain volatility.

4 Static Hedging

4.1 Hedging with standard options

The most straightforward and robust solution to
the hedging problem is possible if standard (call or
put) options on X with maturity tN are traded in the
market. By Lemma 2.1, we have a positive payoff of
the embedded option if XtN > Xti /G(ti, tN ). Writing
this positive payoff as a function of the terminal
index value,

(31) f (x) =
Ki

G(ti, tN )

((
G(ti, tN )

Xti

x
)α

− 1
)

This yields the lowermost curve in Figure 5. We see
that we can dominate this payoff by the payoff of
a number of call options with exercise price K̂0 =
Xti /G(ti, tN ) (the uppermost curve in Figure 5).
The number of call options required is given by the

11 In general, a Black--Scholes--Barenblatt equation is
a Hamilton--Jacobi--Bellman equation and is linked to
a stochastic control problem. The link between a smooth solu-
tion of a BSB equation and a superhedging strategy is discussed
in Vargiolu (2001). Details on the numerical solution are dis-
cussed in Pooley, Forsyth and Vetzal (2003). In case of convex
payoff profiles the solution is of course simply given by the
Black/Scholes price composed at the upper volatility bound.
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Table 1: Optimal adjustment of the static superhedge

Overpricing
m Call option short positions Call option strikes absolute relative (%)
1 2.37 465.4 20.7358 5.26998

2 1.66 1.42 322.3 1201.1 8.9823 2.282844

3 1.29 1.08 1.10 271.4 697.8 2014.0 5.0214 1.27617

4 1.06 0.89 0.84 0.92 246.3 524.5 1138.2 2890.8 3.2089 0.81553

5 0.89 0.76 0.71 0.71 0.81 229.4 428.8 801.8 1584.0 3700.0 2.2298 0.56669

Figure 5: Dominating the power option payoff with a long
position in a call option and with a long/short position in two
call options (parameter constellation as for Table 1)
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slope of the positive payoff in K̂0, i.e.

(32)
∂I(i)(tN )

∂XtN

∣∣∣∣
XtN ↘K̂0

= α
Ki

Xti

Thus by combining a short position in the min-
imum-rate-of-return guarantee with a long posi-
tion of αKi/Xti call options with strike K̂0, one could
do away with delta-hedging altogether: The pay-
off of the call options dominates the payoff of the
MRRG, so the position does not have any downside
risk. However, this is typically not practicable, as
the call option will be quite expensive compared to
the fair price of the MRRG.
On the other hand, any piecewise linear payoff
can be replicated by a portfolio of standard op-
tions, and the nonlinear payoff of the MRRG can
be approximated by a piecewise linear function.
The accuracy of the approximation is only limited
by the number different strikes in the portfolio of
standard options. Suppose that we have hedged
a short position in the minimum rate of return
guarantee with a long position of αKi/Xti call op-
tions with strike K̂0. We can now proceed to reduce
the cost of the hedge by going short call options
with higher strikes -- the payoff obtained by taking

a short position in call options of one additional
strike is given by the middle curve in Figure 5.
The procedure is as follows. Let x0 = K̂0. For
a given set of points {x1, . . . , xm} > K̂0, we can con-
struct a portfolio of short positions in call options
maturing in tN , such that the combined payoff of
this portfolio and the long position of αKi/Xti call
options with strike K̂0 dominates the payoff of the
MRRG and is tangent to f (x) in {x0, x1, . . . , xm}.
The corresponding strikes of the sold call options
are given by

x*
j =

f (xj−1) − f (xj) + f ′(xj)xj − f ′(xj−1)xj−1

f ′(xj) − f ′(xj−1)
,(33)

j > 0

and number of options sold at each strike is

(34) nj = f ′(xj−1) − f ′(xj), j > 0

For a given number of strikes, one can minimise
the total cost of hedging the MRRG by solving

max
{x1,...,xm}>K̂0

m∑
j=1

ni

[
Xti(35)

× N

⎛⎜⎝ ln
Xti

x*
j B(ti,tN )

+ 1

2
ṽ2tN

(ti)

vtN (ti)

⎞⎟⎠
− x*

j B(ti, tN )N

⎛⎜⎝ ln
Xti

x*
j B(ti,tN )

− 1

2
ṽ2tN

(ti)

vtN (ti)

⎞⎟⎠]

Obviously, as m → ∞, the cost of statically repli-
cating the MRRG approaches its fair value, but
already for small values of m the approximation
is quite good, as the following example illustrates
for the Black/Scholes case of known and constant
volatility.
Consider a minimum-rate-of-return guarantee of
g = 5% on an initial investment of Ki = 1000 at
time ti = 0 with maturity tN = 10 years. Let the
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Figure 6: Embedded option payoff approximated from above
by portfolios of standard options
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risk-free rate for this time horizon be 10%, the
current level of the benchmark index Xti = 100,
and the volatility of the index 40% per annum. The
‘‘fair price’’ participation rate is the α = 0.819768.
The value of the power option component of the
MRRG is then given by

(36) Ki − Kie
(g−r)(tN −ti) = 393.469

αKi/Xti = 8.19768 call options with strike K̂0 =
164.872 are worth 493.135, i.e. the superhedge
is too expensive by 99.6653 or 25.33%. Table 1
shows the optimal strikes and short positions in m
additional call options (for m = 1, . . . ,5) and the
remaining absolute and relative overpricing.

4.2 Bounds on contract parameters
implied by market prices

The static superhedge and an analogously con-
structed subhedge can be used to infer lower
and upper bounds on arbitrage-free zero-premium
combinations of participation rate and guaranteed
return. Since for exchange-traded options the exer-
cise prices are fixed by the contract specifications,
the construction of the hedge differs slightly from
the previous section.
To set up a superhedge, consider Figure 6. For
a given strike x*

0 ≤ K̂0, determine the line tangent
to f (x), which goes through the point (x*

0,0). This
is the payoff of N0 call options with strike x*

0, where
N0 = f ′(x0) and x0 solves

(37) f (x0) = (x0 − x*
0)f ′(x0)

Subsequently, from the set of strikes fixed by the
contract specifications, choose the next strike x*

i to
be the smallest available strike greater than xi−1

Figure 7: Embedded option payoff approximated from below
by a portfolio of standard options
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and go short Ni = f ′(xi−1) − f ′(xi) call options at
this strike, where xi solves

f (xi) = f (xi−1) + f ′(xi−1)(x*
i − xi−1)(38)

+ f ′(xi)(xi − x*
i )

Repeat this process until no further strikes are
available.
Figure 6 graphs the superhedge payoffs for three
different starting strikes x*

0. Clearly, the cheapest
superhedge is not necessarily given by starting with
the highest available strike less than or equal to
K̂0. Rather, this will depend on the position of the
other available strikes as well as the market prices
of the respective options.
For the construction of the subhedge, consider
Figure 7. Here, a long position is taken in the call
option with the smallest available strike x

0
≥ K̂0.

The number of options bought is given by

(39) N0 =
f (x
1
) − f (x

0
)

x
1

− x
0

where x
1

denotes the next-greatest available strike.
Short positions are then taken in call options for
all available strikes xi > x

0
, 1 ≤ i ≤ m, where the

number of options sold is given by

Ni =
f (xi) − f (xi−1)

xi − xi−1
−

f (xi+1) − f (xi)
xi+1 − xi

(40)

for 1 ≤ i < m and

Nm =
f (xm) − f (xm−1)

xm − xm−1
(41)

Applying this to market data, we use settlement
prices for options on Sydney Futures Exchange SPI
200 stock index futures to calculate the bounds
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Figure 8: Bounds on fair (g, α) combinations implied by index
option prices on the Sydney Futures Exchange on 30 March
2001.
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on arbitrage-free combinations of participation
rate and guaranteed return (α, g). Table 2 in Ap-
pendix G summarises the relevant market data
for 30 March 2001. The MRRG under considera-
tion is on a single premium payment made on 30
March 2001 and the contract matures at the end of
June 2002, the longest maturity for which market
data is available. For the purpose of this indicative
calculation, the distinction between futures and
forwards was ignored. The discount factor for the
June 2002 maturity was inferred from 90-day bank
accepted bills futures also traded on the SFE and
option prices were calculated using the forward
version of the Black/Scholes formula (for the call
options) and of (7) (for the embedded power op-
tion), i.e. substituting the June 2002 futures price
for Xt/B(t, tN ), thus making an explicit reference
to the dividend yield unnecessary.
Figure 8 plots the resulting bounds on the fair (g, α)
combinations. The outer bounds were calculated
using (17), inserting the maximum (lower bound)
and minimum (upper bound) implied volatility
from Table 2 for vtN .12 The inner bounds are those
given by the sub- and superhedge. The inner up-
per bound thus plots those combinations (g, α),
for which the right-hand side of (84) equals Ki,
with the value PO(t, Xt; K(α, g)) substituted by the
market value of the subhedge portfolio. Since the
superhedge portfolio depends on the choice of x0,
the inner lower bound plots the (g, α) satisfying the
above condition with PO(t, Xt; K(α, g)) substituted

12 As noted in Section 2, neither the fair return guarantee
nor the fair participation rate are necessarily monotonic in
the volatility parameter. However, monotonicity holds in the
particular example considered here.

by the smallest market value of the possible super-
hedge portfolios. For reference, the middle curve
plots the (g, α) satisfying (17) with vtN equal to
the implied volatility of the at-the-money futures
option.
We see that the static hedge bounds are quite tight.
They would be widened somewhat if one were to
take into account the bid-ask spreads, but they
are certainly much tighter than the outer bounds
given by the highest and lowest implied volatili-
ties for this maturity. Note that by constructing
static hedges of traded options for the MRRG,
one is effectively pricing it in a manner consistent
with the volatility ‘‘smile’’ observed in the market,
independent of the validity of any given model
assumptions.
There remains, however, the problem that this type
of hedging can only be implemented if options of
the desired maturity are traded in the market. For
the typically very long maturities of the MRRG
this is generally not the case, so we will look at
alternatives to static hedging in the next section.

5 Conservative contract
specification based on a robust
dynamic hedge

5.1 Robust hedging

As discussed in Section 3, one source of difficulty
in applying a dynamic delta-hedge is the poten-
tial for model misspecification. For options with
convex (concave) payoffs, this problem can be mit-
igated by calculating the delta-hedging strategy
using a higher (lower) volatility, resulting in a su-
perhedge. The payoff of a (long position in the)
minimum-rate-of-return guarantee is neither con-
vex nor concave, but can be made concave by com-
bining it with a short position of an appropriate
number of standard options with the appropriate
strike. First, note that the cost process given in
Proposition 3.3 can be written as

dL*
t = α

Ki

G(ti, tN )
e− 1

2
α(1−α)ṽ2tN (t) Zα

t

2
(42)

×

(N ′
(

h(i)
1

(t, Zt)
)

ṽtN (t)
e
1

2
α(1−α)ṽ2tN (t)Z1−α

t

− (1 − α)N
(

h(i)
1

(t, Zt) − (1 − α)ṽtN (t)
))

×
(

(σtN
t )2 − σ̃2(t, tN )

)
dt
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Combined payoffs of MRRG and standard option

Figure 9: Long MRRG (thin line) and combined position with
short call (thick line)
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Figure 10: Long MRRG (thin line) and combined position
with short put (thick line)
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=

(
1

2
α

Ki

Xti

(
Xt

B(t, tN )

)2
γ̃*

t

(
K̂ =

Xti

G(ti, tN )

)
− α

Ki

G(ti, tN )
e− 1

2
α(1−α)ṽ2tN (t) Zα

t

2
(1 − α)

× N
(

h(i)
1

(t, Zt) − (1 − α)ṽtN (t)
))

×
(

(σtN
t )2 − σ̃2(t, tN )

)
dt

where

γ̃*
t

(
K̂0 =

Xti

G(ti, tN )

)
denotes the gamma of a standard (call or put) op-
tion with strike K̂0, maturing at tN . The above cost
process results from hedging a short position in the
minimum rate of return guarantee, i.e. from cre-
ating a synthetic long position. Going long αKi/Xti

standard options at strike K̂0 and hedging this with
a synthetic short position results in an additional
cost process

−
1

2
α

Ki

Xti

(
Xt

B(t, tN )

)2
γ̃*

t

(
K̂ =

Xti

G(ti, tN )

)
(43)

×
(

(σtN
t )2 − σ̃2(t, tN )

)
dt

so the net cost process becomes

− α
Ki

G(ti, tN )
e− 1

2
α(1−α)ṽ2tN (t) Zα

t

2
(1 − α)(44)

× N
(

h(i)
1

(t, Zt) − (1 − α)ṽtN (t)
)

×
(

(σtN
t )2 − σ̃2(t, tN )

)
dt

and we achieve a superhedge if (σtN
t )2 ≥ σ̃2(t, tN ).

Unsurprisingly, the strike of the standard option

is the point above which the holder of the MRRG
begins to participate in gains of XtN and the number
of standard options required corresponds to the
initial slope of the participation, i.e.

(45)
∂I(i)(tN )

∂XtN

∣∣∣∣
XtN ↘K̂0

= α
Ki

Xti

The resulting payoff of a long position in the MRRG
combined with a short position in the standard
option is concave, as Figures 9 and 10 illustrate for
the call and put, respectively.

Proposition 5.1 If the ‘‘true’’ model is given by
Equation (25) with σt(tN ) ∈ [σmin, σmax] for all
ti ≤ t ≤ tN , it holds that

(a) A conservative upper price bound of the
MRRG(i) is given by

α
Ki

Xti

Call
(

t, tN ; K̂0 =
Xti

G(ti, tN )
; σmax

)
(46)

+

[
MRRG(i)(t, tN ; σmin)

− α
Ki

Xti

Call
(

t, tN ; K̂0 =
Xti

G(ti, tN )
; σmin

)]
where MRRG(i)(·) is given by (16) and Call(·)
denotes the Black/Scholes call option pricing
formula.

(b) A the conservative choice of (α*, g*
i ) is given

such that

Ki = MRRG(i)(ti, tN ; σmin)(47)

+ α
Ki

Xti

[
Call(ti, tN ; K̂0; σmax)

− Call(ti, tN ; K̂0; σmin)
]
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Conservative Contract Parameter Combinations
(Guaranteed return g versus participation rate α)

Figure 11: For σmin = σmax = 0.1 (thin line),
σmin = σmax = 0.8 (dashed line) and σmin = 0.1 combined
with σmax = 0.8 (thick line)
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Figure 12: For σmin = 0.1while σmax = 0.4 (thin line),
σmax = 0.5 (dashed line) and σmax = 0.8 (thick line)
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(c) A conservative robust hedging strategy in
terms of the assets X and B is given by

ΔX
t = α

Ki

Xti

(
N (t, Xt; vmax(t)

)
(48)

− N (t, Xt; vmin(t))
)

+ φX
t

(
vmin(t)

)
ΔB

t =
(46) − ΔX

t Xt

B(t, tN )

where φX
t is given as in Proposition 3.1, h1(t, z)

as in Theorem 2.2 and

vmax(t) :=

√∫ tN

t
σ2max(s, tN )ds;

vmin(t) :=

√∫ tN

t
σ2min(s, tN )ds.

(d) The cost process for the above strategy is given
by

dL*
t =

[
1

2
α

Ki

Xti

(
Xt

B(t, tN )

)2
(49)

× Callxx(t, tN ; K̂0; σmax)
(
(σtN

t )2 − σ2max(t, tN )
)

− α
Ki

G(ti, tN )
e− 1

2
α(1−α)ṽ2min(t) Zα

t

2
(1 − α)

× N (h(i)
1

(t, Zt) − (1 − α)ṽmin(t)
)

×
(
(σtN

t )2 − σ2min(t, tN )
)]

dt

Proof. See Appendix F.

Figures 11 and 12 illustrate the conservative
contract parameter combinations resulting from

Proposition 5.1(b). The thick line of Figure 11
plots combinations of participation rates α and
minimum-rate-of-return guarantees g, which sat-
isfy Equation (47) and thus represent conservative
contract specifications with respect to an uncertain
volatility model in the sense of Equation (25),
where σ ∈ [σmin, σmax]. The parameters r and tN

are chosen as in Figure 2, i.e. r = 0.1 and tN = 30.
Figure 11 also contrasts the conservative contract
combinations to those resulting from the fair
pricing condition of Equation (17), when volatility
is set to the upper (dashed line) or lower (thin
line) volatility bound. Note that the participation
rate for a given guarantee is substantially reduced
compared to the fair combinations calculated
at either volatility bound and, as illustrated in
Figure 12, the effect increases as the width of the
uncertain volatility interval increases. On the one
hand, this clearly demonstrates the importance
of a careful choice of participation rate and
guaranteed return on the part of the insurer.
On the other hand, it means that although this
approach to conservatively determining contract
parameters is very tractable, it should only be
seen as a first step toward calculating the ‘‘best’’
conservative parameter combination.

5.2 Improving the price bounds

In a sense, the robust dynamic hedge proposed
above is closely related to the construction of
a static superhedge in Section 4. Instead of buy-
ing a number of call options with strike K̂0 (since
supposedly options with the desired maturity are
not available in the market), a synthetic long po-
sition in these options is superreplicated by a dy-
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Figure 13: Straight line dominating f (x)

x

g,f

namic delta-hedging strategy at the upper volatil-
ity bound. Instead of reducing the total cost of the
hedge by going short (market traded) call options,
the initial investment in the hedge is reduced by
a synthetic short position in the call option, su-
perreplicated by a dynamic strategy at the lower
volatility bound.
Taking this analogy to the static hedge further,
the price bound resulting from a robust dynamic
(Black/Scholes-type) hedge can be improved by
optimising the choice of the dominating payoff.13

As before, denote by f (x) the positive part of the
payoff of the embedded power option, i.e.

f (x) =
Ki

G(ti, tN )

((
x G(ti, tN )

Xti

)α

− 1
)

(50)

= N (i)(α, gi)
(

xα − K (i)(α, gi)
)

x ≥ K̂0 =
Xti

G(ti, tN )

Thus the payoff can be written as max(0, f (x)).
This payoff cannot be dominated by a concave
function because of the max(0, ·) condition. Thus
we must dominate f (x) by a convex function, the
tightest of which will be (by the separating hyper-
plane theorem) a straight line. When combined
with the max(0, ·) requirement, this will be the
payoff of a vanilla call with some strike less than
or equal to K̂0, as one can see in Figure 13.
As in Section 4, if the dominating payoff is tan-
gent to f (x) in x0, the strike of the corresponding

13 Branger and Mahayni (2006) call a hedging strategy which
can be represented as the sum of Black/Scholes strategies
a tractable hedge. They give a characterization of the optimal
dominating payoff for arbitrary European claims. In particular,
the cheapest tractable hedge for a power option is treated as an
example.

standard call is given by

(51) x*
0 = K̂(x0) = x0 −

f (x0)
f ′(x0)

and the number of options required is N0 = f ′(x0).
Writing the dominating payoff as

(52) g(x) = f ′(x0)[x − K̂(x0)]+

we can represent the difference between the two
payoffs as

(53) g(x) − f (x) = R(x) = R0(x) − R1(x)

where

R0(x) = f ′(x0)[x − K̂(x0)]1{K̂(x0)≤x<K̂0}(54)

+
(

f ′(x0)[x − K̂(x0)] − f (x)
)
1{K̂0≤x<x0}

R1(x) =
(
f (x0) + f ′(x0)[x − x0] − f (x)

)
1{x≥x0}(55)

= [x − x0]+f ′(x0) − [f (x) − f (x0)]+

The initial investment in the superhedge can be
reduced by going short the residual R1(x). Note
that R1(x) is convex (R0(x) is a mixed payoff), so
we can superreplicate the short position in R1(x)
by hedging it at the lower volatility bound. Let
P(x0, R1(x), σmin) denote the value of the payoff
R1(x) for a given choice of x0, calculated using
the lower volatility bound. The problem of finding
the cheapest possible superhedge then becomes:
Solve, for a given Xt,

x̂0 = arg min
x0≥K̂0

f ′(x0)Call(Xt, K̂(x0), σmax, tN )(56)

− P(x0, R1(x), σmin)

If the optimal K̂(x̂0) lies below K̂0, there is also
a residual for the interval [K̂(x̂0), x̂0], i.e. R0(x).
Since we cannot use this residual to reduce the
cost of the hedge further, it is tempting to suggest
that the optimal solution is given for K̂(x̂0) =
K̂0, i.e. x̂0 = K̂0 and thus to propose the price
bound and robust hedging strategy as presented in
proposition 5.1. However, in general the optimum
in (56) is achieved for K̂(x̂0) < K̂0, i.e. x̂0 > K̂0. This
is due to the fact that in order to superreplicate long
(short) positions of convex payoffs, the hedging
strategy must be set up based on the maximum
(minimum) possible volatility. To formalise this,
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Figure 14: Price bounds for different choices of x0.
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note that

R1(x) = [x − x0]+f ′(x0) − [f (x) − f (x0)]+(57)

= [x − x0]+f ′(x0) −
Ki

G(ti, tN )

×
[(

x G(ti, tN )
Xti

)α

−
(

x0 G(ti, tN )
Xti

)α]
1{x>x0}

= [x − x0]+f ′(x0) −
Ki Gα−1(ti, tN )

Xα
ti

[
xα − (x0)α

]+

= [x − x0]+f ′(x0) − N (i)(α, gi)
[
xα − (x0)α

]+

P(x0, R1(x), σmin) is calculated using the lower
volatility bound, i.e. we have

P(x0, R1(x), σmin) = f ′(x0)C(Xt, x0, σmin, tN )(58)

− N (i)(α, gi)PO(Xt, (x0)α, σmin, tN )

where PO(Xt, (x0)α, σmin, tN ) denotes the price of
a power option with power α and strike equal
to (x0)α composed at the lower volatility bound,
calculated using (7). Finally, with

f ′(x0) = α
Ki Gα−1(ti, tN )

Xα
ti

(x0)α−1(59)

= N (i)(α, gi)(x0)α−1

we get an alternative formulation of (56), i.e. for
a given Xt we need to solve

x̂0 = arg min
x0≥X̂0

N (i)(α, gi)
[

(x0)α−1(60)

×
(

C(Xt, K̂(x0), σmax, tN ) − C(Xt, x0, σmin, tN )
)

+ PO(Xt, (x0)α, σmin, tN )
]

The minimum is not always achieved for K̂(x0) =
K̂0, i.e. x0 = K̂0. This is illustrated in Figure 14.

Here, the dashed line corresponds to the upper
price bound, which is obtained for x0 = K̂0, while
the dotted line corresponds to the upper price
bound, which is obtained for an x0 > K̂0. The thick
lines are obtained by inserting solely the upper
(lower) volatility bound into (7). In particular, the
price bound can be improved in the middle of the
range.
Thus, the conservative price bound for the MRRG(i)

given in Proposition 5.1 can be improved by using

Upper price bound at t = B(t, tN )
Ki

G(ti, tN )
(61)

+ N (i)(α, gi)
[
(x̂0)α−1

(
C(Xt, K̂(x̂0), σmax, tN )

− C(Xt, x̂0, σmin, tN )
)

+ PO(Xt, (x̂0)α, σmin, tN )
]

where x̂0 is determined by (60) (or equivalently
(56)). An adjustment of the robust hedging strategy
to match the improved upper price bound as well
as the an adjustment of the resulting conservative
contract parameters is straightforward.
(61) gives the cheapest possible superhedge if (for
reasons of tractability) we restrict ourselves to
strategies where the payoff of the MRRG is decom-
posed into convex and concave components, which
are then superhedged separately. If one instead
superhedges the MRRG in the uncertain volatility
model by dynamically switching between σmin and
σmax as required by what Avellaneda, Levy and
Parás (1995) call the Black/Scholes/Barenblatt
(BSB) equation, the initial investment in the hedge
(i.e. the price of the superhedge) can be reduced
further. However, this entails a considerable loss of
tractability, as one must repeatedly solve the BSB
equation numerically when searching for a valid
zero-premium combination of participation rate
and guaranteed return. The superhedge suggested
here offers a reasonable compromise between
tractability and tightness of the pricing bound.
The cost process L*

t corresponding to the super-
hedge is monotonically decreasing over time t,
i.e. funds are continually freed from the hedging
strategy. Viewed another way, −L*

t can be inter-
preted as the forward value of a bonus account,
which accumulates the funds no longer needed to
superreplicate the minimum return guarantee. If
this surplus is passed on to the insured, the con-
tract value calculated using the upper bound (61)
is ‘‘fair’’.
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6 Conclusion
The present paper has analysed a minimum-rate-
of-return guarantee combined with participation
in the excess return of a given benchmark portfolio.
By casting the embedded option as a power option
with power equal to the participation rate, some
interesting features are uncovered. For example,
in a Black/Scholes-type model framework, an in-
crease in the volatility of the benchmark portfolio
does not necessarily lower the annual minimum-
rate-of-return guarantee, ceteris paribus.
The main focus, however, is on the derivation of
meaningful and tractable pricing bounds on the
basis of hedging strategies which are robust with
respect to uncertain volatility, thus explicitly ac-
knowledging the considerable model risk involved
in pricing derivative financial instruments with
very long maturities. Basing contract valuation and
the determination of fair zero-premium contract
parameters on viable hedging strategies recognises
that correct pricing alone is insufficient to manage
the risk to the insurance (i.e. option) writer.
The fact that the derivative is embedded in an
insurance product also means that the ‘‘overpric-
ing’’, which is the necessary consequence of our
insistence on a superhedge, is less of an issue here
than it would be for a financial derivative offered in
a competitive environment. Not only are the poten-
tial premia for the former traditionally higher, but
also the insurer could mitigate the overpricing by
passing funds from the superhedge to the insured
as soon as these funds are no longer required,
perhaps in a manner analogous to a bonus ac-
count of undistributed surplus customary in many
life-insurance products. In the extreme this would
eliminate ‘‘overpricing’’ altogether.
Thus the analysis of the savings plan presented
here can also be seen as of a normative nature. By
choosing a combination of guaranteed return and
participation rate consistent with the initial invest-
ment required for a superhedge and passing on the
surplus from the superhedge to the customer at the
end of the life of the contract, the arguably best pos-
sible combination of two objectives is realised: On
the one hand, the embedded option no longer rep-
resents an uncontrollable liability to the insurer,
while, on the other hand, the hedgeable market risk
is eliminated for the insured. The latter only re-
mains exposed, via the uncertainties of the surplus
credited to a bonus account, to the unhedgeable

risk of uncertain volatility. This is becoming par-
ticularly relevant at a time when more and more
pension schemes are fully funded through invest-
ment portfolios and a properly hedged minimum
return guarantee seems politically desirable in or-
der to protect future pensioners from excessive
market risk.

Appendix

A Proof of theorem 2.1
Notice that the payoff which is directly associated
with the premium Ki can be represented as

I(i)(tN ) := Ki exp
{

gi(tN − ti)
}

(62)

where

gi = gi +
α

tN − ti

(
ln

XtN

Xti

− gi(tN − ti)
)+

Defining

(63) G(ti, tN ) := exp {−gi(tN − ti)}

we have

I(i)(tN ) =
Ki

G(ti, tN )
(64)

×

(
1 +

[(
XtN G(ti, tN )

Xti

)α

− 1
]+
)

Thus, the embedded option is a so-called asym-
metric power option (PO), i.e. characterised by the
payoff profile

(65) [Xα
T − K]+.

In the case of the above payoff I(i)(tN ) we have
a strike which depends on the power α and the
guaranteed minimum rate of return gi, i.e.

(66) K (i)(α, gi) :=
(

G(ti, tN )
Xti

)−α

The number N of power options embedded into
the insurance contract also depends on α and gi,
i.e.

(67) N (i)(α, gi) := Ki
Gα−1(ti, tN )

Xα
ti

�
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B Proof of theorem 2.2
Pricing by no arbitrage implies that the power
option price at t is given by

PO(t, Xt) = B(t, tN ) EtN

[
(Xα

T − K)+|Ft
]

(68)

= B(t, tN )
[
EtN

[
Xα

T1{Xα
T >K}|Ft

]
− KPtN (Xα

T > K |Ft)
]

With Equation (6) it follows

X(tN )
B(tN , tN )

=
X(t)

B(t, tN )
(69)

× exp
{

−
1

2

∫ tN

t
σ2(s, tN ) ds

+
∫ tN

t
σ(s, tN )dWtN (s)

}
and therefore

PtN (Xα
T > K |Ft) = PtN

(
α ln XT > ln K |Ft

)
(70)

= PtN

(
ln

X(t)
B(t, tN )

−
1

2

∫ tN

t
σ2(s, tN ) ds

+
∫ tN

t
σ(s, tN )dWtN (s) >

1

α
ln K |Ft

)

= N
(

ln Xt

B(t,tN ) α√K
− 1

2
vt2N (t)

vtN (t)

)
,

where

vtN (t) =

√∫ tN

t
σ2(s, tN ) ds

An application of Ito’s lemma gives(
X(tN )

B(tN , tN )

)α

=
(

X(t)
B(t, tN )

)α

(71)

× exp
{

−
1

2
α(1 − α)vtN (t)

}
DtN (tN )
DtN (t)

where

DtN (t) := exp
{

α

t∫
0

σ(s, tN ) dWtN (s)(72)

−
1

2
α2

t∫
0

σ2(s, tN ) ds
}

such that with dQtN
t = DtN

t dPtN
t we have

EtN

[
Xα

T1{Xα
T >K}|Ft

]
=
(

X(t)
B(t, tN )

)α

(73)

× exp
{

−
1

2
α(1 − α)vtN (t)

}
QtN (Xα

T > K |Ft)

Finally, using that

(74) W
QtN
t = W

PtN
t − α

t∫
0

σ(s, tN ) ds

is Brownian Motion with respect to QtN it follows

QtN (Xα
T > K |Ft) = QtN

(
α ln XT > ln K |Ft

)
(75)

= QtN

(
ln

X(t)
B(t, tN )

−
1

2

∫ tN

t
||σ(s, tN )||2 ds

+
∫ tN

t
σ(s, tN )

(
dW Q

tN
(s) + α σ(s, tN ) ds

)
>
1

α
ln K |Ft

)

= N
(

ln Xt

B(t,tN ) α√K
− 1

2
vt2N (t)

vtN (t)
+ αvtN (t)

)

= N
(

ln Xt

B(t,tN ) α√K
+ 1

2
vt2N (t)

vtN (t)
− (1 − α)vtN (t)

)

C Partial derivatives of the power
option pricing formula

Lemma C.1 Define

f (t, z) := zα e− 1
2

α(1−α)v2(t)(76)

× N
(

h1

(
t,

z
α
√

K

)
− (1 − α)vtN (t)

)
− KN

(
h2

(
t,

z
α
√

K

))
,

where

h1(t, z) =
ln z + 1

2
v2tN

(t)

vtN (t)
;

h2(t, z) = h1(t, z) − vtN (t)

then it holds

fz(t, z) = αz(α−1) e− 1
2

α(1−α)v2(t)(77)

× N
(

h1

(
t,

z
α
√

K

)
− (1 − α)vtN (t)

)
fzz(t, z) = α zα−2e− 1

2
α(1−α)v2tN (t)(78)

×

[
(α − 1)N

(
h1

(
t,

z
α
√

K

)
− (1 − α)vtN (t)

)

+
N ′
(

h1
(

t, z
α√K

)
− (1 − α)vtN (t)

)
vtN (t)

]
ft(t, z) = vtN (t)v′

tN
(t)z2fzz(t, z)(79)

72



BuR -- Business Research
Official Open Access Journal of VHB
Verband der Hochschullehrer für Betriebswirtschaft e.V.
Volume 1 | Issue 1 | May 2008 | 55-76

Proof. Note that

N ′
(

h1

(
t,

z
α
√

K

)
− (1 − α)vtN (t)

)
(80)

= N ′
(

h2

(
t,

z
α
√

K

)
+ αvtN (t)

)
=
1√
2π

exp

{
−
1

2

(
h2

(
t,

z
α
√

K

)
+ αvtN (t)

)2}

= Kz−αe
1

2
α(1−α)v2(t)N ′

(
h2

(
t,

z
α
√

K

)
,

which immediately gives (77). Using (77) we have

fzz(t, z) = α e− 1
2

α(1−α)v2tN (t)

[
(α − 1)zα−2(81)

× N
(

h1

(
t,

z
α
√

K

)
− (1 − α)vtN (t)

)
+ zα−1N ′

(
h1

(
t,

z
α
√

K

)
− (1 − α)vtN (t)

)

×
∂h1

(
t, z

α√K

)
∂z

]

Notice that with

∂h1
(

t, z
α√K

)
∂z

=
∂
∂z

(
ln z − 1

α ln K + 1

2
v2tN

(t)

vtN (t)

)
(82)

=
1

zvtn (t)

we have (78). Finally, it holds

ft(t, z) = zαe− 1
2

α(1−α)v2tN (t)

[
− α(1 − α)vtN (t)(83)

× v′
tN

(t)N
(
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(
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z
α
√
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)
− (1 − α)vtN (t)

)
+ N ′

(
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(
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z
α
√
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)
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)
×
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h(2)
t

(
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t

(
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)]

Using (80) gives (79).

D Proof of theorem 2.3
Pricing under No-Arbitrage implies

MRRG(i)(t, tN ) =
KiB(t, tN )
G(ti, tN )

(84)

×

(
1 + EtN

[[(
XtN G(ti, tN )

Xti

)α

− 1
]+
∣∣∣∣∣Ft

])

=
KiB(t, tN )
G(ti, tN )

+ N (i)(α, gi)PO(t, Xt; K (i)(α, gi))

where

K (i)(α, gi) :=
(

G(ti, tN )
Xti

)−α

,(85)

N (i)(α, gi) := Ki
Gα−1(ti, tN )

Xα
ti

with

(86)
Xt

B(t, tn) α
√

K(α, g)
=

Xt
Xti

B(t,tN )
G(ti,tN )

the above proposition is an immediate conse-
quence of theorem 2.2. �

E Proof of theorem 3.2
For a detailed proof see for example El Karoui,
Jeanblanc-Picqué and Shreve (1998) or Duden-
hausen, Schlögl and Schlögl (1998). However, the
proof can easily be sketched as follows. Assuming
lognormal forward index dynamics X* implies in
particular that the assumed forward price C̃* is
a function of time and X* such that Itô’s lemma
gives

dV *(Φ) = dC̃*(t, X*)(87)

= C̃*
x(t, X*) dX*

t +
1

2
C̃*

xx(t, X*) d〈X*〉t

+ C̃*
t (t, X*) dt,

i.e. we have

(88) dL*
t (Φ) =

1

2
C̃*

xx(t, X*) d〈X*〉t + C̃*
t (t, X*) dt.

Note that the assumed forward price C̃* satisfies
the Black/Scholes equation, i.e.

(89) C̃*
t (t, z) +

1

2
z2σ̃2(t, tN )C̃*

xx(t, z) = 0.

Using

(90) C̃*
t (t, X*) = −

1

2

(
X*

t

)2
σ̃2(t, tN )C̃*

xx(t, X*),
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Table 2: Prices and implied volatilities for options on Sydney Futures Exchange SPI 200
stock index futures on 30 March 2001.

Strike Settlement Volatility Strike Settlement Volatility Strike Settlement Volatility

2200 1061.2 23.64 2875 514.4 21.94 3550 135.1 17.35

2225 1038.6 23.64 2900 496.4 21.77 3575 125.9 17.18

2250 1016.1 23.64 2925 478.7 21.6 3600 117.1 17.01

2275 993.9 23.64 2950 461.3 21.43 3625 108.6 16.84

2300 971.8 23.64 2975 444.1 21.26 3650 100.5 16.67

2325 950 23.64 3000 427.1 21.09 3675 92.8 16.5

2350 928.3 23.64 3025 410.5 20.92 3700 85.5 16.33

2375 906.9 23.64 3050 394.1 20.75 3725 78.5 16.16

2400 885.7 23.64 3075 378.1 20.58 3750 72 15.99

2425 864.8 23.64 3100 362.3 20.41 3775 65.7 15.82

2450 844.1 23.64 3125 346.8 20.24 3800 59.8 15.65

2475 823.7 23.64 3150 331.7 20.07 3825 54.3 15.48

2500 803.5 23.64 3175 316.8 19.9 3850 49.1 15.31

2525 783.6 23.64 3200 302.3 19.73 3875 44.3 15.14

2550 763.9 23.64 3225 288.1 19.56 3900 41.2 15.14

2575 744.5 23.64 3250 274.2 19.39 3925 38.4 15.14

2600 725.5 23.64 3275 260.7 19.22 3950 35.7 15.14

2625 706.6 23.64 3300 247.5 19.05 3975 33.2 15.14

2650 686.5 23.47 3325 234.6 18.88 4000 30.8 15.14

2675 666.5 23.3 3350 222.1 18.71 4025 28.6 15.14

2700 646.7 23.13 3375 210 18.54 4050 26.5 15.14

2725 627.2 22.96 3400 198.2 18.37 4075 24.6 15.14

2750 607.8 22.79 3425 186.7 18.2 4100 22.8 15.14

2775 588.7 22.62 3450 175.7 18.03 4125 21.1 15.14

2800 569.7 22.45 3475 165 17.86 4150 19.6 15.14

2825 551.1 22.28 3500 154.6 17.69 4175 18.1 15.14

2850 532.6 22.11 3525 144.7 17.52 4200 16.7 15.14

The options as well as the underlying futures expired at the end of June 2002. The settlement price of the underlying
futures was 3239; the spot price inferred from the immediately expiring futures contract was 3148; the continuously
compounded yield for the June 2002 maturity inferred from 90-day bank accepted bills futures also traded on the
SFE was 4.7%. Source: Sydney Futures Exchange.

immediately gives

dL*
t (Φ) =

1

2

(
X*

t

)2
C̃*

xx(t, X*)(91)

×
(

σ2t (TN ) − σ̃2(t, tN )
)

dt. �

F Proof of theorem 5.1
An easy way to establish an upper price bound is the
decomposition of I(i)(tN ) into a linear combination
of convex and concave payoffs, i.e.

I(i)(tN ) = α
Ki

Xti

[
XtN −

Xti

G(ti, tN )

]+

+ M(i)(tN )(92)

where

M(i)(tN ) = I(i)(tN ) − α
Ki

Xti

[
XtN −

Xti

G(ti, tN )

]+

The first part of the decomposition is equal to the
payoff of α Ki

Xti
call options with strike K̂0 =

Xti
G(ti,tN )

and therefore convex. The upper price bound for
this part is thus α Ki

Xti
times the price of the call

option composed at the upper volatility bound
σmax. To see that M(i)(tN ) is indeed concave (and
therefore its upper price bound can be calculated
using the lower volatility bound σmin), note that it
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can be represented as

Ki

G(ti, tN )

(
1 +

[(
XtN G(ti, tN )

Xti

)α

(93)

− α
XtN G(ti, tN )

Xti

+ α − 1

]
1{

XtN >
Xti

G(ti ,tN )

}
)

such that it is enough to show that the function ψ
with

(94) ψ(x) :=
(x

b

)α
− α

x
b

+ α − 1

satisfies the conditions (i) ψ(b) = 0, (ii) ψ′(x) < 0
for x > b and α < 1 and (iii) ψ′′(x) < 0 for x > b
and α < 1. (i) is trivial, (ii) follows from

(95) ψ′(x) =
αxα−1

bα
−

α
b

=
α
b

[(
b
x

)1−α

− 1

]
,

and (iii) results from

(96) ψ′′(x) =
α(α − 1)xα−2

bα
= −

α(1 − α)
b2

(x
b

)α−2
.

The above proves that a conservative price bound
of the MRRG(i) is in fact given by equation (46).
Statements (b) and (c) are direct consequences of
(a) and (d) follows from Proposition 3.2. �

G Market data used in section 4
Please refer to Table 2.
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