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Abstract
This paper treats the problem of setting the inventory level and optimizing the buffer allocation of
closed-loop flow lines operating under the constant-work-in-process (CONWIP) protocol. We solve a
very large but simple linear program that models an entire simulation run of a closed-loop flow line in
discrete time to determine a production rate estimate of the system. This approach introduced in Helber,
Schimmelpfeng, Stolletz, and Lagershausen (2011) for open flow lines with limited buffer capacities is
extended to closed-loop CONWIP flow lines. Via this method, both the CONWIP level and the buffer
allocation can be optimized simultaneously. The first part of a numerical study deals with the accuracy
of the method. In the second part, we focus on the relationship between the CONWIP inventory level
and the short-term profit. The accuracy of the method turns out to be best for such configurations that
maximize production rate and/or short-term profit.
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1 Flow lines with stochastic
processing times under CONWIP
control

A flow line with CONstant Work In Process
(CONWIP) is characterized by a constant num-
ber of workpieces (the CONWIP level) circulating
in the line. This constant number can be due to a
fixed number of pallets or production authoriza-
tion cards (PACs), see Buzacott and Shanthikumar
(1993: 490).

Figure 1: Example of a CONWIP system with
5 stations
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Such a CONWIP system is specified by k = 1, ..., K
serially arranged work stations M1, . . . , MK , each
followed by a corresponding (downstream) buffer
of size bk. See as an example in Figure 1 a sys-
tem with K = 5 stations depicted as squares and

buffers represented by circles. It is assumed that
in front of the first station an unlimited amount
of raw material is available. Each workpiece on a
machine or in a buffer is attached to a pallet so that
the total number of workpieces in the system is
constant and equals the CONWIP level. When fin-
ished workpieces reach the buffer behind the last
machine MK , they are unloaded from the pallets.
Then new workpieces are immediately loaded on
the pallets to be next processed at the first machine
M1. If the stations are arranged in a circle or as a U-
shape (which is often the case in practice), then the
unloading/loading can be combined and included
into the model with a single load/unload station.
The transportation times between the work sta-
tions as well as the times for (un)loading the pallets
are negligible and are assumed to be zero.
In this paper, we assume random effective process-
ing times at each station. The effective processing
time of a workpiece consists of the time to pro-
cess the workpiece, which can be random, e.g., due
to manual operations, and possibly also random
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repair times if the station is unreliable, e.g., due
to (random) machine failures. This can lead to
blocking and starving and a production rate of the
line below the capacity of the bottleneck station
if it operates in isolation. It is both economically
important and scientifically challenging to quan-
tify the impact of local buffer sizes and the global
CONWIP inventory level on the production rate of
the line.
Good surveys about methods for the analysis of
flow lines are found in Dallery and Gershwin (1992)
and Li, Blumenfeld, Huang, and Alden (2009). Re-
cent literature surveys of closed-loop systems are
given in Gershwin and Werner (2007) and Resano
and Luis Pérez (2008). There is a wide range of
applications of closed-loop flow lines in manufac-
turing. For example, Resano and Luis Pérez (2008)
analyzed real automobile assembly lines and pre-
assembly lines as a network of closed loops. Li,
Blumenfeld, Huang, and Alden (2009) gave exam-
ples of different applications of closed-loop lines
with a constant number of carriers for the auto-
motive industry. Hopp and Roof (1998) reviewed
different methods of setting the work-in-process
(WIP) level in pull systems and analyzed a dy-
namic control of the WIP level to reach a target
production rate within a given bound on the cycle
time. Onvural and Perros (1989) approximated the
throughput of a CONWIP system numerically and
present methods to optimize the CONWIP level.
In general, three approaches for the analysis of
stochastic flow lines have been widely established:
exact probabilistic analysis, decomposition meth-
ods, and discrete-event simulation (DES). Both
exact methods and (approximate) decomposition
approaches are typically very fast, but also in-
flexible as they rely on quite specific assumptions
about the stochastic behavior of the production
system. DES, on the other hand, is extremely flexi-
ble, but often requires a substantial computational
effort to evaluate a single configuration precisely.
Neither method can be easily combined with the
powerful optimization methodology of linear pro-
gramming, see Helber, Schimmelpfeng, Stolletz,
and Lagershausen (2011). Our objective in this pa-
per is therefore to close this gap for the particular
case of CONWIP flow lines.
The basic idea of our approach originally intro-
duced in Helber, Schimmelpfeng, Stolletz, and
Lagershausen (2011) is to approximate the stochas-
tic behavior of a discrete-material flow line operat-

ing in continuous time within a large discrete-time
linear program (LP). An attractive feature of this
approach is the possibility to combine simula-
tion and optimization within a single linear opti-
mization framework. Previous LP-based models of
stochastic flow lines were formulated in continu-
ous time, see Abdul-Kader (2006), Johri (1987),
Matta and Chefson (2005), and Schruben (2000).
Due to the continuous time modeling approach,
they could not easily model buffer sizes as decision
variables, which is possible in our approach and
important in the context of flow line optimization.
The main contribution of this paper is twofold:
First, we extend the linear programming approach
for open flow lines to analyze closed loops. This
results in a very flexible approach for the per-
formance analysis of stochastic CONWIP systems.
It can be applied to simultaneously optimize the
CONWIP level and the buffer allocation to max-
imize the average production rate or short-term
profit. Note that for a given buffer allocation, it
may also be possible to quickly determine an op-
timal CONWIP level via a limited number of DES.
However, as soon as the buffer allocation has to be
optimized as well, the search space explodes and
an enumeration based on DES becomes impracti-
cal. This difficulty is overcome via our approach.
To the best of our knowledge, it is the first 1-step
approach for the design of CONWIP systems that
prevents time-consuming DES of several configu-
rations of the flow line. The second contribution of
our paper is the practically very important result
that the accuracy of our method is actually best for
those CONWIP levels that maximize production
rate and/or profit! This is a non-obvious result
that we find very appealing from the application
point of view.
The remainder of the paper is organized as follows.
In Section 2, a discrete-time linear program is de-
veloped to evaluate CONWIP systems with a given
CONWIP level and either finite or infinite buffer
capacities. This evaluation model is extended to an
optimization model, where both the CONWIP level
and the buffer spaces are decision variables. In both
models, the objective is to maximize the respec-
tive production rate estimate. Another extension
deals with an economic objective function, which
is based on gross margins and holding cost per
product unit. The numerical studies in Section 3
present results on the accuracy of the method as
well as results for the economic optimization of
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CONWIP lines. In Section 4, we summarize the
most important findings of the paper and give an
outlook on further research topics.

2 Linear programming modeling
of CONWIP flow lines

2.1 Outline of the approach

In our approach the behavior of a discrete-material
flow line operating in continuous time is approx-
imated by a linear program (LP) that includes
a discrete-time dynamic production-inventory
model with continuous production quantities. The
number of workpieces that can be processed at a
work station of the line during a period (i.e., the
production capacity) results from a simulation
run in continuous time. In this simulation run we
assume that the work station operates in isolation
so that it can neither be blocked nor starved. The
realizations of the stochastic processing times
are transferred via sampling to realizations of
maximum production capacities ckt for each work
station k and period t. If one considers a sequence
of simulated processing times or durations dkw to
process an ordered set of workpieces w at a work
station k, one just has to count the number of
finished workpieces within period t. An example
is shown in Figure 2, see Helber, Schimmelpfeng,
Stolletz, and Lagershausen (2011). In the upper
part of Figure 2, three discrete-time periods 1 to
3 are depicted. In the lower part, the durations
of seven consecutively processed workpieces are
shown. Three workpieces are finished during
period 1, one during period 2, and two during
period 3. This procedure yields the capacity of the
considered work station ckt for the periods 1 to 3
as the realization of a stochastic count process.

Figure 2: Sampling of discrete-time pro-
cessing rates
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Two conditions must hold so that this discrete-time
modeling approach based on production capacities
ckt can provide a reasonable picture of the produc-
tion process in continuous time. Firstly, the sam-

pling frequency must be high enough, i.e., the time
periods must be short enough to yield a reasonable
representation of the individual processing times.
Secondly, the simulation run must be long enough
and represent processing of enough workpieces to
get a stochastically valid picture of the random-
ness of the processing times. That means that a
substantial number of periods is required within
the linear program, each with a specific sampled
production capacity ckt. For a detailed discussion of
these aspects see Helber, Schimmelpfeng, Stolletz,
and Lagershausen (2011).
To explore the accuracy of that approach for flow
lines with limited buffer capacity (but without
CONWIP control), Helber, Schimmelpfeng, Stol-
letz, and Lagershausen (2011) analyzed a large
and systematically created set of flow lines both
via DES and the LP approach. That earlier paper
also presents a detailed discussion of the errors
induced by simulating a flow line that operates in
continuous time within a discrete-time linear pro-
gram, see Helber, Schimmelpfeng, Stolletz, and
Lagershausen (2011). The results showed that the
method has a reasonable degree of accuracy unless
buffers are very small and/or effective processing
times (including possible repair times of unreliable
machines) exhibit a high degree of variability with
a coefficient of variation greater than 1.

2.2 Performance evaluation of CONWIP
systems via linear programming

To model a CONWIP flow line system within a lin-
ear program, the following assumptions are made:

• A single product type is produced by the flow
line. (This can represent a constant mixture of
products for which the moments of the pro-
cessing time can be calculated.)

• The production system contains a cyclic trans-
portation system.

• There is a constant number, pal, of workpieces
in the system due to a fixed number of pallets
or PACs.

• The production capacity, ckt, for each station
k and period t is a realization of a stochastic
count process.

• A production quantity, Qkt, at a station during
a period can either be further processed at the
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Table 1: Notation for the linear program

Indices
k = 1, .., K Workstations
t = 1, .., T Periods

Input data
bk Number of buffer spaces available behind

station k
ckt Capacity, maximum number of work-

pieces that can be processed at station
k in period t, provided that station k is
neither blocked nor starved

pal Fixed number of workpieces in the system
(pallets or PACs)

T0 Number of warm-up periods

Non-negative decision variables
PR Production rate estimate
Qkt Production quantity of station k in period

t
Y0k Initial inventory behind station k
Ykt End-of-period inventory behind station k

in period t

next work station during the next period or be
stored in the downstream buffer.

• The buffer behind work station k can hold up
to bk workpieces.

• Transportation times as well as (un)loading
times of pallets are negligible.

Note that a CONWIP flow line with limited buffer
capacities behaves exactly like one with unlimited
buffer capacities if the smallest buffer in the line is
large enough to hold all workpieces circulating in
the line.
A simple approach to evaluate the performance of
such a system using linear programming is to max-
imize the production rate estimate for a given num-
ber of workpieces in the system. The constraints
which have to be respected concern the inventory
stored in the system, the production quantity (ca-
pacity given by the production system), the buffer
space, and the number of workpieces used in the
system.
Given the notation in Table 1 and the indicator
function

(1) {x} =

⎧⎨
⎩1, if x is true

0, otherwise,

the linear programming model can be stated as
follows:

(2) Max PR =
1

T − T0
·

T∑
t=T0+1

QKt

with respect to

Y0k · {t=1} + Yk,t−1 · {1<t≤T} + Qkt(3)

= Ykt + Qk+1,t+1 · {k<K ,t<T}

+ Q1,t+1 · {k=K ,t<T} ∀k, t

Qkt ≤ ckt ∀k, t(4)

Ykt ≤ bk ∀k, t(5)

Y0k ≤ bk ∀k(6) ∑
k∈K

(
Y0k + Qk,1

)
= pal ∀t(7)

∑
k∈K

(
Ykt + Qk,t+1

)
= pal ∀t \ {T}(8)

Ykt, Y0k, Qk,t ≥ 0 ∀k, t(9)

(10) PR ≥ 0
∑

a

The objective function (2) maximizes the produc-
tion rate estimate at the last work station K . The
production rate PR is determined by dividing the
total production of the last work station K in pe-
riods T0 + 1 to T by the length of that time span.
Equations (3) are classical inventory balance equa-
tions. For each work station k and period t, the
end-of-period inventory of the previous period t−1
plus the production quantity of the current period
equals the current end-of-period inventory plus the
production quantity of the following period t +1 at
the next work station. Note that this ‘‘next’’ work
station of the last work station K is station 1. Re-
strictions (4) state that the number of workpieces
processed at station k must not exceed the max-
imum period-specific capacity ckt from the count
process described in Section 2.1. The inventory
to be stored behind station k must not exceed the
number of buffer spaces bk as stated in Restrictions
(5) and (6). Equations (7) and (8) ensure that the
number of workpieces within the system meets the

���



BuR -- Business Research
Official Open Access Journal of VHB
Verband der Hochschullehrer für Betriebswirtschaft e.V.
Volume 4 | Issue 1 | March 2011 |������

given total CONWIP level, pal, during each period.
From a mathematical point of view, Equations (8)
are redundant because they are already implied by
Equations (3) in combination with Equation (7).
Considering the case of k = K and t > 1, Equations
(3) turn to YK ,t−1+QK ,t = YK ,t +Q1,t+1. This is equiv-
alent to YK ,t−1 − YK ,t + QK ,t = Q1,t+1. The left-hand
side represents the number of finished workpieces
which leave the CONWIP line in period t. Accord-
ing to the CONWIP protocol, the same number of
workpieces has to be sent to machine 1 in period
t + 1. As we already guarantee the proper initial
inventory with Equations (7), Equations (8) are re-
dundant, but help to explain the logic of the model.
Last, all decision variables must be non-negative,
see Restrictions (9) and (10).

2.3 Optimization-oriented models

The basic (evaluation) model presented in Subsec-
tion 2.2 can be extended in different ways.

1. In the formulation given above, the number
of workpieces pal in the system is assumed to
be a parameter, determined by the number of
pallets. To be able to optimize this number,
the parameter pal has to be replaced by a non-
negative decision variable PAL in Equations
(7) and (8). The resulting new constraints are
given in Restrictions (11) to (13).

∑
k∈K

(
Y0k + Qk,1

)
= PAL ∀t(11)

∑
k∈K

(
Ykt + Qk,t+1

)
= PAL ∀t(12)

PAL ≥ 0(13)

Note that via this modeling approach, a single
discrete-time simulation run within a linear
program based on a sample of realized pro-
duction capacities ckt can be used to optimize a
stochastic CONWIP flow line, here with respect
to the production rate.

2. The model presented so far yields a produc-
tion rate estimate for the system characterized
by a given CONWIP level pal or a production
rate maximizing CONWIP level PAL. In a more
economic perspective, it is interesting to find
the profit-maximizing number of workpieces
in the system. The solution of such a model

depends on the cost of capital tied up in the
work-in-process and the value of the produced
workpieces. Let hc denote the holding cost per
product unit and time period and gm the gross
margin per product unit. Now the objective
is to maximize the profit per time unit which
depends on the gross margin of the finished
workpieces and the holding cost of all work-
pieces in the system:

Max Profit =(14)

gm · (
1

T − T0
·

T∑
t=T0+1

QKt) − hc · PAL

The Restrictions (3) to (6) and (9) to (13)
remain the same.

3. Similar to the first extension, the model can be
used to optimize the distribution of buffers for
a given total buffer capacity btot. The parameter
bk for local buffer capacities in Restrictions (5)
and (6) has to be replaced by non-negative
decision variables Xk as shown in Restrictions
(15), (16) and (18):

Ykt ≤ Xk ∀k, t(15)

Y0k ≤ Xk ∀k(16) ∑
k∈K

Xk = btot(17)

Xk ≥ 0(18)

Furthermore, Constraint (17) has to be added
to guarantee that the total number of buffers
allocated behind the different stations k in
the system meets the total number of buffers
available btot

Other modifications of this generic model are pos-
sible as well.

3 Numerical results

3.1 Accuracy of production rate estimates

3.1.1 Outline of the numerical study

In order to evaluate the accuracy and the numerical
effort of our method, we performed a numerical
study considering CONWIP lines. The design of
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this study is based on the results presented by Hel-
ber, Schimmelpfeng, Stolletz, and Lagershausen
(2011). One result of that paper is that an aver-
age processing rate of about 1.0 workpieces per
(discrete) time unit combined with a length of
a ‘‘simulation run’’ of 10,000 discrete-time units
yields a reasonable balance between the sampling
frequency, the number of sampled events and the
size of the matrix of the linear program embedding
such a ‘‘simulation run’’. A further result of that
paper is that the method is not accurate for very
small buffer sizes and/or coefficients of variation
of the effective processing times greater than 1.
As the measure of accuracy, we use the relative
deviation of the production rate estimates of the
discrete-time linear program from the ‘‘true value’’
(gained by an extremely long and very precise
discrete-event simulation). We compare the re-
sults of our method to those obtained from a
discrete-event simulation model coded in C, see
Helber (1999: 114). The LP models from Sections
2.2 and 2.3 were implemented in GAMS. Cplex
11.0.0 was used on a Dual Core Pentium IV ma-
chine with 2.8 GHz and 2 GB RAM to solve the
models.
We investigate the impact of the following aspects
of the problem instances on the accuracy of our
method:

• Number of stations

• Number of buffer spaces for each buffer be-
tween the machines in the flow line

• Average processing rates at the machines

• Location of the bottleneck (if any) in the line

• Variability of the effective processing times

• Number of pallets (relative to the number of
spaces for pallets in the system)

• Exogenously given even distribution of
buffer spaces vs. endogenously determined
(production rate maximizing) allocation of
buffer spaces.

For reasons of transparency we first discuss these
aspects briefly: We expect to find larger deviations
for increasing numbers of stations, given the
results for open lines in Helber, Schimmelpfeng,
Stolletz, and Lagershausen (2011). As buffers re-
duce blocking and starving and our method only

approximates the true movement of finished work-
pieces in Equations (3), we expect to achieve more
precise results for problem instances with larger
numbers of buffers.
The number of periods in the discrete-time linear
program and the processing rates determine
the total production quantity within the solution
of the linear program. To create comparable con-
ditions in our experiments, we set the number of
simulated periods (after a warm-up period) and
the processing rate of the machines in such a way
that expected numbers of approximately 10,000
workpieces could be processed by the line after an
initial warm-up period of T0 = 500 periods. Let μ*

denote the rate at which the bottleneck machine of
the line operates. Then the number of periods in
the discrete-time linear program was determined
as follows:

(19) T = T0 + T1 = 500 + �10,000
1

μ*
�

Given the circular structure of CONWIP flow lines,
we expect that the accuracy of the method does not
depend on the location of a bottleneck in such a
line.
With respect to the variability of processing
times, we conjecture to find an increasing ac-
curacy with decreasing variability as we did in
the study for open flow lines, see Helber, Schim-
melpfeng, Stolletz, and Lagershausen (2011).
As the number of workpieces in a CONWIP line is
restricted by the number of pallets, we investigate
their influence controlled by a pallets factor.
It calculates the number of pallets based on the
number of buffer spaces plus the number of spaces
at the work stations. For a given pallets factor, pf ,
the number of pallets in the system is therefore
computed as follows:

(20) pal = pf ·

(
K +

K∑
k=1

bk

)

The previous experiments presented in Helber,
Schimmelpfeng, Stolletz, and Lagershausen (2011)
revealed that the accuracy of the production rate
estimates for open flow lines is similar for an ex-
ogenously given (even) buffer allocation and an
endogenously determined (uneven) buffer allo-
cation. We wanted to check if this holds for CON-
WIP lines as well.
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Table 2: Test Bed for the analysis of CON-
WIP lines (2430 cases)

Parameter type No. Parameter value
cases per case

Number of 3 5, 7, 9
stations
Buffer spaces per 3 4, 8, 16
buffer
Base processing 3 0.5, 1.0, 2.0
rates
Bottleneck factor 3 (f. m.: 0.9; o. m.: 1.0),

(balanced line,
all machines 1.0),
(l. m.: 0.9; o. m.: 1.0)

Processing time 3 0.25, 0.5, 1.0
variability (SCV)
Pallets factor 5 0.2, 0.35, 0.5, 0.65, 0.8
Buffer allocation 2 even vs. production-

rate maximizing

‘‘f. m.’’ means ‘‘first machine’’, ‘‘l. m.’’ means ‘‘last machine’’,‘‘o.
m.’’ means ‘‘other machines’’

For all the parameter types described, we system-
atically explored a range of parameter values, to
find out under which conditions the method yields
reasonably precise production rate estimates.

3.1.2 Comparison with continuous time
simulation results

To evaluate the performance of our method for
CONWIP lines, we used a test bed consisting of all
possible combinations of the parameters described
in Table 2. We compared the results of our method
to those computed with a discrete-event simulation
for the test bed consisting of 2430 (= 3·3·3·3·3·5·
2) cases. Given the results of the method for open
flow lines, we considered in this paper minimum
buffer sizes of4 and maximum squared coefficients
of variation (SCV) of processing times of 1.0. (The
SCV of a random variable is the squared ratio of its
standard deviation to its expected value.) The last
line in Table 2 indicates that for each line we first
evaluated a given even distribution of the buffer
spaces in the line and then sought the production-
rate maximizing buffer allocation as described in
Sections 2.2 and 2.3.
Figure 3 shows a diagram with the frequencies of
absolute values of relative deviations of production
rate estimates obtained by the LP approach from

Figure 3: Percentage of cases over relative
deviations for all 2430 cases of CONWIP
lines
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those of the DES. The maximum relative devia-
tion is about 60%, the mean value of the relative
deviation is about 5.7%. It also reveals that in
70.78% of the cases there is a deviation of less
than 5%. Considering the average of the relative
deviation of the production rate estimate as shown
in Tables 3 to 8, our method tends to underesti-
mate the production rate. This is a consequence
of our discrete-time approach which assumes in
Equations (3) that workpieces always have to wait
for the end of a period to move to the next work
station.
To lay open the impact of the parameters listed in
Table 2, their effect on the results is shown in the
following Tables 3 to 8. We always report

• RelDev = PRLP−PRSim

PRSim , the average of the relative
deviation of the production rate estimate,

• AbsRelDev, the associated average over abso-
lute values of relative deviations, and

• CPU , the time (in seconds) to solve the linear
program.

The upper part of the tables is dedicated to the
cases in which the buffer allocation is exogenously
given and buffer spaces are evenly distributed. The
lower part includes the results for the optimized
(production rate maximizing) buffer allocation.

Against our expectations we did not observe a
strong impact of the number of stations in the
CONWIP line on the accuracy of the production
rate estimate for our instances. Here the results
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Table 3: Impact of the number of stations
in the line

Stations 5 7 9
Even buffer allocation
RelDev [%] -5.0 -5.0 -5.3
AbsRelDev [%] 5.4 5.7 5.9
CPU [sec.] 18.7 32.4 49.8

Optimized buffer allocation
RelDev [%] -4.7 -4.8 -5.3
AbsRelDev [%] 5.7 5.9 5.8
CPU [sec.] 30.7 52.2 80.9

Table 4: Impact of the number of buffer
spaces per buffer

Buffer spaces per buffer 4 8 16
Even buffer allocation
RelDev [%] -10.9 -3.5 -1.0
AbsRelDev [%] 11.7 4.1 1.3
CPU [sec.] 31.4 33.6 35.9

Optimized buffer allocation
RelDev [%] -10.7 -3.5 -0.6
AbsRelDev [%] 11.8 4.0 1.5
CPU [sec.] 53.5 53.7 56.6

differ from those for open flow lines in Helber,
Schimmelpfeng, Stolletz, and Lagershausen (2011)
where the accuracy decreased with an increasing
number of stations. The results in Table 3 indicate
that the CPU time rises as the size of the LP grows
with the number of stations.
The results in Table 4 reveal that the accuracy of
the method increases with an increasing number
of buffer spaces. The range of chosen parameter
values does not seem to have a strong influence on
the CPU times.
Table 5 shows the impact of the base processing

Table 5: Impact of the base processing rate

Base processing rate 0.5 1.0 2.0
Even buffer allocation
RelDev [%] -6.1 -3.7 -5.5
AbsRelDev [%] 6.5 4.0 6.6
CPU [sec.] 53.0 32.1 15.8

Optimized buffer allocation
RelDev [%] -6.0 -3.3 -5.5
AbsRelDev [%] 6.5 4.3 6.6
CPU [sec.] 92.3 48.4 23.1

Table 6: Impact of the bottleneck location

Bottleneck location f.m. b. l. l.m.
Even buffer allocation
RelDev [%] -5.0 -5.3 -5.0
AbsRelDev [%] 5.7 5.8 5.7
CPU [sec.] 35.3 30.4 35.2

Optimized buffer allocation
RelDev [%] -4.8 -4.9 -5.1
AbsRelDev [%] 5.8 6.1 5.6
CPU [sec.] 56.8 48.0 59.0

‘‘f. m.’’ means ‘‘first machine’’, ‘‘b. l.’’ means ‘‘balanced line’’, ‘‘l.
m.’’ means ‘‘last machine’’

Table 7: Impact of the squared coefficient
of variation

SCV 0.25 0.5 1.0
Even buffer allocation
RelDev [%] -2.9 -4.6 -7.8
AbsRelDev [%] 3.8 5.1 8.3
CPU [sec.] 37.6 33.8 29.5

Optimized buffer allocation
RelDev [%] -2.8 -4.1 -7.9
AbsRelDev [%] 3.7 5.5 8.1
CPU [sec.] 58.2 54.2 51.4

rate. For the production of one workpiece per time
unit, the method appears to yield the best results.
We cannot yet explain this observation. The CPU
time decreases with increasing base processing
rates because the number of periods (T − T0) after
the T0 warm-up periods decreases (see Section
3.1.1).
As expected, the location of a bottleneck in a CON-
WIP line does not seem to have a strong influence
on the accuracy of the results, see Table 6.
Table 7 reveals the strong impact of the variability
of the effective processing times. The lower the
SCV, the more accurate the production rate esti-
mates are. The CPU times decrease as the SCV
increases. We conjecture that a higher volatility
of the sampled production capacities ckt leads to
more ‘‘extreme’’ restrictions of the solution space
so that the optimum of the LP can be found more
quickly.
Table 8 indicates that the relative number of pallets
in the system (related to the number of buffers and
stations) is very important. In cases with a low
(0.2) or a high pallets factor (0.8), the results are
less accurate than in the other cases.
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Table 8: Impact of the pallets factor

Pallets factor pf 0.2 0.35 0.5 0.65 0.8
Even buffer allocation
RelDev [%] -7.7 -3.8 -2.3 -2.6 -9.2
AbsRelDev [%] 8.5 4.0 2.4 3.0 10.5
CPU [sec.] 33.7 34.9 34.9 34.4 30.2

Optimized buffer allocation
RelDev [%] -7.9 -3.8 -2.2 -2.3 -8.4
AbsRelDev [%] 8.4 3.9 2.4 3.3 10.9
CPU [sec.] 49.1 53.8 62.3 56.0 51.8

Figure 4: Percentage of cases over relative
deviations for the subset of 1458 cases
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For a low pallets factor, the system has relatively
few pallets so that starving occurs frequently. By
the same token, a high pallets factor leads to fre-
quent blocking. If the system is starved or blocked
often, the discrete-time LP modeling ‘‘defect’’ that
pallets can only move to the next station at the
end of the period (see Equation (3)) becomes more
important than if these events occur less often for
medium pallets factors.
As this seems to be a major finding of the study
we used the method again for a subset of the test
bed shown in Table 2. We created this subset by
eliminating the two parameter values 0.2 and 0.8
of the pallets factor. The results obtained for the
remaining 1458 cases (= 3 · 3 · 3 · 3 · 3 · 3 · 2) are
shown in Figure 4. The method yields much more
accurate results for this subset of the test bed. Now
the maximum relative deviation is about 20%, the
mean value of the relative deviation is 3.18%. In
79.7% of the cases, there is a deviation of less than
5%.
The results show that our method works well for a
wide range of relevant parameter settings.

3.2 Optimizing CONWIP levels via the lin-
ear programming approach

In the previous section, we asked for the accuracy
of the production rate estimates for given numbers
of pallets. Now we treat the number of pallets as a
decision variable. To study the problem of optimiz-
ing inventory levels with respect to the production
rate or the profit, we consider a balanced five-
machine CONWIP line as depicted in Figure 1. The
gross margin gm per workpiece is 100 monetary
units.
With respect to the inventory cost parameter we
study two cases. In the first case, we assume that
the holding cost hc per unit and (discrete) time
period is 0.1 monetary units. Note that this first in-
ventory cost parameter already implies that hold-
ing inventory in the flow line is very costly. In
addition, we study a second case with an extremely
high inventory cost parameter of 1.0 monetary
units per material unit and time period. (The case
of hc = 0 only leads to a re-scaling of the graphs
for the production rate in Figures 5 to 7.) We chose
the extreme value of hc = 1 to show cases with a
distinct peak in the function of the profit over the
number of pallets even in cases with unlimited lo-
cal buffer sizes. The average processing rates of the
machines are 1.0 workpieces per time unit and the
squared coefficients of variation of the processing
times at all machines in the line are either 0.1, 0.5,
or 1.0, respectively, as for these values the method
worked well for open flow lines, see Helber, Schim-
melpfeng, Stolletz, and Lagershausen (2011). With
respect to buffer sizes, we consider two cases: In
the first case, we assume a buffer capacity of 10
workpieces behind each machine. In the second
case, we set all the buffer capacities to 100. The
CONWIP level varies from 1 to 50.
If each buffer can hold up to 10 workpieces, block-
ing can occur for CONWIP levels above 10 work-
pieces. However, deadlock cannot occur for the
assumed maximum CONWIP level of 50 work-
pieces as machines and buffers can (together) hold
up to 55 workpieces. The other case with buffer
capacities of 100 workpieces behind each machine
and a maximum CONWIP level of 50 workpieces
models the infinite buffer capacity case as blocking
cannot occur.
For each buffer capacity case and CONWIP level,
we determine a production rate estimate via our
LP method and via the discrete-event simulation
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(DES) in continuous time. Based on these produc-
tion rate estimates for different CONWIP levels,
the short-term profit is computed as specified in
Equation (14).
We first vary the CONWIP level from 1 to 50 to
show the production rate and the profit as a func-
tion of the number of pallets. Then we ask how
reliably our LP approach can find the number of
pallets that maximizes the production rate or the
profit. For that purpose, we repeatedly solved the
models for 10 different realizations of the simu-
lated processing times.
The graphs for the production rate estimates as de-
termined via our method and via a discrete-event
simulation are depicted in Figures 5 to 7. They show
that the production rate decreases as processing
time variability increases and that CONWIP lines
with unlimited buffer capacities are more produc-
tive than those with limited buffer capacities. They
also show that for peak production rates, the re-
sults of the discrete-time model (LP) are very close
to those of the continuous time simulation (Sim).
The results for the profit in Figures 8 to 13 show
a very similar picture. The CONWIP line reaches
its peak profitability in situations where blocking
and starving rarely occur. Under these conditions,
however, our method is apparently relatively accu-
rate.
Note that the profit functions in Figures 8 to 13 ex-
hibit a---from a practical point of view---extremely
nice feature: As the variability of the effective pro-
cessing time increases, the profit function becomes
flatter around its maximum. While our method
yields less accurate production rate estimates as
the variability increases, the profit estimates are
therefore still relatively exact and the solutions can
be expected to be close to optimal. It should also
be noted that our method always slightly underes-
timates the profit associated with a given CONWIP
level as it tends to underestimate the production
rate, see above.
In the last part of the numerical experiment, we
address the question of how reliably our method
can find the number of pallets that maximizes the
production rate or the profit for a given line without
enumerating all pallet levels as shown in Figures 5
to 13. We also want to quantify how precise the
production rate or profit estimate is around the
‘‘true optimum’’. For that purpose we studied the
same cases that led to the results presented in
Figures 5 to 13 and now make the number of

pallets PAL a decision variable.
Remember that each single optimization for the
linear program is based on different realizations of
random variables for production capacities. There-
fore, each optimization run leads to different es-
timates of the production rate and/or profit as-
sociated with a particular line. It also leads to
different estimates of the respective optimal num-
ber of pallets. For this reason, we performed 10
independent optimization runs for each of the six
systems and both objectives (production rate or
profit maximization), leading to specific estimates
of the optimal number of pallets. We then asked

• how strongly the estimated optimum objective
function value (from the discrete-time LP) de-
viates from the ‘‘true’’ optimum as obtained via
the DES and

• how close the ‘‘optimal’’ number of pallets PAL
as determined via the LP comes to the ‘‘true’’
production rate or profit-maximizing number
of pallets and

• how much of the true optimum of the respec-
tive objective function is sacrificed if the pallet
numbers as determined via the LP are imple-
mented.

The results are presented in Tables 9 to 11. Note
that maximizing the production rate as a func-
tion of the number of pallets is only a reasonable
objective for the case of limited buffer capacities.
Therefore we do not report results for unlimited
buffer capacity.
For each squared coefficient of variation we first
report the maximum of the considered objective
value from the continuous time simulation, i.e.,
in Table 9 the production rate maximum PRSim

from the continuous time simulation and the corre-
sponding ‘‘true’’ optimal number of pallets PALSim.
The lower part of the table reports results from our
linear programming approach. We start with the
range of production rate estimates PRLP over the
10 independent replications of the LP optimiza-
tion. The respective range of relative deviations
from the true optimum is labeled RelDev1. We
next present the range of pallet numbers PALLP

that were considered to be ‘‘optimal’’ within the 10
replications of the optimization. In the bottom part
of the table we finally report for that range of pallet
numbers the corresponding range of production
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Figure 5: Production rate for small resp. infinite buffers and low variability
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Figure 6: Production rate for small resp. infinite buffers and moderate variability
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Figure 7: Production rate for small resp. infinite buffers and high variability
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Figure 8: Profit for small resp. infinite buffers and low variability (hc = 0.1)
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Figure 9: Profit for small resp. infinite buffers and moderate variability (hc = 0.1)
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Figure 10: Profit for small resp. infinite buffers and high variability (hc = 0.1)
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Figure 11: Profit for small resp. infinite buffers and low variability (hc = 1.0)
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Figure 12: Profit for small resp. infinite buffers and moderate variability (hc = 1.0)
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Figure 13: Profit for small resp. infinite buffers and high variability (hc = 1.0)
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Table 9: Production rate maximization for finite buffer cases: Accuracy of the estimated
optimal number of pallets

SCV 0.1 0.5 1.0
Continuous time simulation:
PRSim(PALSim) 0.982 0.922 0.861
PALSim 30 30 30

LP-Approach:
PRLP(PALLP) 0.980 · · · 0.983 0.912 · · · 0.925 0.841 · · · 0.854
RelDev1 -0.2% · · · 0.1% -1.1% · · · 0.3% -2.3% · · · -0.8%

PALLP 29 · · · 31 28· · · 30 28· · · 30

PRSim(PALLP) 0.982 · · · 0.982 0.920 · · · 0.922 0.860 · · · 0.861
RelDev2 ≈ 0% -0.2% · · · 0% -0.1% · · · 0%

Table 10: Profit maximization for finite buffer cases: Accuracy of the estimated optimal
number of pallets

SCV 0.1 0.5 1.0
Continuous time simulation:
ProfitSim(PALSim) 84.1 72.0 64.0
PALSim 10 14 16

LP-Approach:
ProfitLP(PALLP) 82.7 · · · 83.4 70.3 · · · 71.5 61.5 · · · 62.4
RelDev1 -1.7% · · · -0.8% -2.4% · · · -0.7% -0.2% · · · -2.5%

PALLP 10 · · · 11 15 · · · 16 17 · · · 18

ProfitSim(PALLP) 84.1 · · · 83.8 71.9 · · · 71.7 63.9 · · · 63.7
RelDev2 0% · · · -0.4% -0.1% · · · -0.4% -0.2% · · · -0.5%

Table 11: Profit maximization for infinite buffer cases: Accuracy of the estimated optimal
number of pallets

SCV 0.1 0.5 1.0
Continuous time simulation:
ProfitSim(PALSim) 84.1 72.0 64.0
PALSim 9 13 15

LP-Approach:
ProfitLP(PALLP) 82.9 · · · 83.3 69.9 · · · 71.1 60.8 · · · 63.2
RelDev1 -1.4% · · · -1.0% -2.9% · · · -1.3% -5.0% · · · -1.3%

PALLP 10 · · · 11 all 15 17 · · · 18

ProfitSim(PALLP) 84.1 · · · 83.8 all 71.9 63.9 · · · 63.8
RelDev2 0% · · · -0.4% all -0.1% -0.2% · · · -0.3%
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rates PRSim(PALLP) from the DES and the respec-
tive range of relative deviations from the true op-
timum PRSim(PALSim). This last number RelDev2
indicates by how many percent we actually miss
the optimum value by setting the inventory level
PAL via our LP method. The structure of Tables 10
and 11 related to profit maximization is identi-
cal. Tables 9 to 11 show that in our examples we
never miss the optimum objective function value
by more than about 0.5%. This is due to the fact
that both the production rate and the profit are flat
around the optimum number of pallets, see Hopp
and Spearman (2000: 358).
Some results from these tables deserve a more de-
tailed discussion. Note that in Table 9, the number
of pallets that maximizes the production rate is
always 30, for any variability of the effective pro-
cessing times. This is plausible as in the balanced
five-machine line with identical buffer sizes, five
workpieces are required at the machines and the
remaining 25 workpieces use exactly 50% of the
5 · 10 = 50 buffer spaces in the line and make
blocking and starving of machines equally likely,
and hence maximize the production rate.
As we expected, maximum production rates and
profit levels decrease as the variability of process-
ing times increases. It is also interesting to note
that both the maximum profit and the correspond-
ing number of pallets in Tables 10 and 11 are
almost identical. This has a potentially important
managerial implication. If pallets are expensive
and one seeks a profit-maximizing configuration
of a flow line, it might be worthwhile to study the
infinite buffer case first and determine an estimate
of the optimal number of pallets. This helps to set
an upper bound on the number of buffer spaces
that may be required between any two adjacent
machines and thus speed up the search process for
a good buffer allocation.

3.3 Optimizing the buffer allocation

For open (i.e., non-CONWIP) flow lines that face
unlimited raw material at the first station and
unlimited demand at the the last station, some
structural insights about the production-rate max-
imizing allocation of buffers have been established,
see Hillier, So, and Boling (1993): If all stations are
stochastically identical, the production-rate maxi-
mizing allocation of buffers resembles the shape of
a bowl turned upside down. Stations in the interior

of the line have the highest risk of being starved
or blocked and hence attract more buffer spaces
than the first (or the last) stations. If a particular
station is a clear bottleneck, this station attracts
many buffer spaces to protect the valuable bottle-
neck resource from blocking or starving. However,
many different allocations of buffers can lead to a
very similar performance of the line and therefore
very precise simulations or analytical performance
evaluation methods are required to find the opti-
mal allocation. If, as in our numerical study, only
the production of 10,000 workpieces is simulated,
this is a rather rough simulation and hence one
can only expect to find a reasonable, but not the
truly optimal allocation of buffers. In addition,
we terminated the solution of the linear program
when the integrality gap was below 0.5%, which
also induces some inaccuracy. However, from a
practical point of view, the value of finding the true
optimum may be limited, as the production rate
differences of similar buffer allocations are often
relatively small.
To show this effect, consider out of the test bed in
Table 2 of Section 3.1.2 the case of the five-machine
line with 8 buffer spaces per line, a base processing
rate of 1.0 workpieces per period and a bottleneck
with only 90% capacity at the last station of the
line. Remember that we have already shown that
our method is most accurate for medium CON-
WIP levels that also lead to the highest production
rate, see Table 8 and the results in Section 3.2.
In Tables 12 to 14 we show for this five-machine
line the results for the even and the optimized
buffer allocation for medium pallet factors of 0.35,
0.5 and 0.65. In a five-station line with 8 buffer
spaces behind each station, the system can hold
45 workpieces. The three different pallet factors of
0.35, 0.5 and 0.65 lead to pallet numbers between
�0.35 · (40 + 5)� = 15 and �0.65 · (40 + 5)� = 29.
For squared coefficients of variation of 0.25, 0.5
and 1.0, we hence consider pallet numbers of 15,
22 and 29 with either an even or (immediately be-
low) an optimized buffer allocation. We report the
production rate estimate from the linear program
(PRLP), the average as well as (in brackets) the 95%
confidence interval of the production rate estimate
PRSim from the discrete-event simulation and the
relative deviation of the estimates.
The tables show that if the buffer allocation is
optimized, the number of buffer spaces in front
and behind the fifth station (i.e., the bottleneck)
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Table 12: Even vs. optimized buffer allocation (SCV=0.25)

Pallets Buffer allocation PRLP PRSim RelDev[%]

15 (8, 8, 8, 8, 8) 0.878330 0.885587 [ 0.885157, 0.886017] -0.82

15 (8, 6, 7, 8, 11) 0.883459 0.885678 [ 0.884945, 0.886411] -0.25

22 (8, 8, 8, 8, 8) 0.891109 0.894996 [ 0.894268, 0.895724] -0.43

22 (6, 6, 6, 9, 13) 0.893089 0.896015 [ 0.895339, 0.896691] -0.33

29 (8, 8, 8, 8, 8) 0.891379 0.894565 [ 0.893972, 0.895157] -0.36

29 (6, 8, 6, 10, 10) 0.898308 0.895494 [ 0.894773, 0.896216] 0.31

Table 13: Even vs. optimized buffer allocation (SCV=0.5)

Pallets Buffer allocation PRLP PRSim RelDev[%]

15 (8, 8, 8, 8, 8) 0.823704 0.841433 [ 0.840882, 0.841983] -2.11

15 (8, 7, 7, 10, 8) 0.834773 0.841598 [ 0.841012, 0.842184] -0.81

22 (8, 8, 8, 8, 8) 0.866811 0.86786 [ 0.867266, 0.868454] -0.12

22 (6, 6, 7, 10, 11) 0.863031 0.869983 [ 0.869487, 0.870479] -0.80

29 (8, 8, 8, 8, 8) 0.850612 0.866426 [ 0.865676, 0.867175] -1.83

29 (7, 8, 7, 9, 9) 0.854212 0.868125 [ 0.867548, 0.868703] -1.60

Table 14: Even vs. optimized buffer allocation (SCV=1.0)

Pallets Buffer allocation PRLP PRSim RelDev[%]

15 (8, 8, 8, 8, 8) 0.736861 0.767438 [ 0.766885, 0.76799] -3.98

15 (7, 8, 7, 9, 9) 0.742351 0.768198 [ 0.767312, 0.769083] -3.36

22 (8, 8, 8, 8, 8) 0.796076 0.807794 [ 0.8069, 0.808689] -1.45

22 (7, 8, 6, 10, 9) 0.788427 0.807912 [ 0.807013, 0.808812] -2.41

29 (8, 8, 8, 8, 8) 0.779698 0.804565 [ 0.803814, 0.805315] -3.09

29 (8, 7, 8, 9, 8) 0.781677 0.805266 [ 0.804573, 0.805959] -2.93
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is slightly larger than in the rest of the system,
i.e., the bottleneck station attracts more buffer
spaces than the non-bottleneck stations. However,
the impact of the buffer allocation optimization
on the production rate is only minimal. In most
cases it is not even statistically significant as most
of the 95% confidence intervals of the production
rate estimates from the very precise discrete-event
simulation overlap. Our impression is that the total
number of buffer spaces and the number of pallets
in the system is very important for the production
rate of the system, but the value of fine-tuning the
buffer allocation appears to be limited.

4 Conclusion and further research
In this paper we analyzed the performance eval-
uation and optimization of stochastic flow lines
under the CONWIP protocol. We used a simple
linear program that models an entire simulation
run of the closed-loop system in discrete time.
This way, it is possible to evaluate and optimize
the production rate and/or short-term profit of the
CONWIP system.
Our approach offers the optimization power of
(mixed-integer) linear programming in combina-
tion with the flexibility of stochastic simulation
with respect to probability distributions of stochas-
tic processing times. It avoids the disadvantages of
the established approaches (e.g., difficulty to op-
timize based on DES, special knowledge require-
ments and restrictive assumptions within queueing
models). The accuracy of the method depends es-
pecially on the variability of the processing times
and the number of pallets in the CONWIP line.
In particular for profit-maximizing CONWIP lev-
els, the approach appears to be remarkably accu-
rate unless buffers are very small and/or effective
processing times are highly variably. As hardware
and software continue to become more and more
powerful, it will be possible to study longer lines
and systems with higher degrees of variability of
the effective processing times using our method.
Our future work will address flow line configu-
ration and design problems from an investment
perspective.
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