
Boysen, Nils; Golle, Uli; Rothlauf, Franz

Article

The Car Resequencing Problem with Pull-Off Tables

BuR - Business Research

Provided in Cooperation with:
VHB - Verband der Hochschullehrer für Betriebswirtschaft, German Academic Association of
Business Research

Suggested Citation: Boysen, Nils; Golle, Uli; Rothlauf, Franz (2011) : The Car Resequencing Problem
with Pull-Off Tables, BuR - Business Research, ISSN 1866-8658, VHB - Verband der Hochschullehrer
für Betriebswirtschaft, German Academic Association of Business Research, Göttingen, Vol. 4, Iss. 2,
pp. 276-292,
https://doi.org/10.1007/BF03342757

This Version is available at:
https://hdl.handle.net/10419/103705

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/BF03342757%0A
https://hdl.handle.net/10419/103705
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 | December 2011 | 276-292

The Car Resequencing Problem with Pull-Off
Tables

Nils Boysen, Chair of Operations Management, Friedrich Schiller University Jena, Germany, E-Mail: nils.boysen@uni-jena.de

Uli Golle, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Germany,
E-Mail: golle@uni-mainz.de

Franz Rothlauf, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Germany,
E-Mail: rothlauf@uni-mainz.de
�
�

Abstract
The car sequencing problem determines sequences of different car models launched down a mixed-
model assembly line. To avoid work overloads of workforce, car sequencing restricts the maximum
occurrence of labor-intensive options, e.g., a sunroof, by applying sequencing rules. We consider this
problem in a resequencing context, where a given number of buffers (denoted as pull-off tables) is
available for rearranging a stirred sequence. The problem is formalized and suited solution procedures
are developed. A lower bound and a dominance rule are introduced which both reduce the running time
of our graph approach. Finally, a real-world resequencing setting is investigated.

�����������������������

Keywords: mixed-model assembly line, car sequencing, resequencing

Manuscript received October 27, 2010, accepted by Karl Inderfurth (Operations and Informa-
tion Systems) March 11, 2011.

1 Introduction
Most car manufacturers offer their customers
the possibility to tailor cars according to their
individual preferences. Usually, customers are
able to select from a given set of options like
different types of sunroofs, engines, or colors.
However, offering a variety of options makes
car production more demanding. For example,
when assembling cars on a mixed-model assembly
line, car bodies should be scheduled in such a
way that the work load of the workforce has no
peaks by avoiding the cumulated succession of
cars requiring work-intensive options. The car
sequencing problem (CSP), which was developed
by Parello, Kabat, and Wos (1986) and received
wide attention both in research and practical
application (Solnon, Cung, Nguyen, and Artigues
2008; Boysen, Fliedner, and Scholl 2009), returns
a production schedule where work overload is
avoided or minimized. It uses Ho : No-sequencing
rules, which restrict the maximum occurrence of a
work-intensive option o to at most Ho out of No

successive car models launched down the line.

Standard CSP approaches (for an overview see
Boysen, Fliedner, and Scholl 2009) assume that
a department’s production schedule can be fully
determined by the planner and no unforeseen
events occur. However, those assumptions are not
realistic. During production cars visit multiple
departments, i.e., body and paint shop, before
reaching final assembly. The sequence of cars in
each department cannot be arbitrarily changed
but depends on the sequence in the previous
department. This results in problems since a
sequence that might be optimal for the first
department is usually suboptimal for the following
departments. Furthermore, disturbances like
machine breakdowns, rush orders, or material
shortages affect the production sequence. For
example, in the paint shop small color defects
make a retouch or complete repainting necessary
resulting in disordered model sequences.

Therefore, automobile producers install large
automated storage and retrieval systems (AS/RS)
with hundreds of random access buffers to

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 | December 2011 | 276-292

Figure 1: Example on the use of a pull-off table of size one

decouple their major departments: body shop,
paint shop, and final assembly (Inman 2003).
With the help of AS/RS, manufacturers are able
to change the order of models between these
departments, allowing them to plan and reshuffle
optimal sequences according to each department’s
individual objectives and reconstruct desired
model sequences after disturbances during
production. Common and widespread forms
of resequencing buffers in the automobile
industry are selectivity banks (Spieckermann,
Gutenschwager, and Voß 2004) and pull-off tables
(Lahmar, Ergan, and Benjaafar 2003). Selectivity
banks consist of a set of parallel first-in-first-out
lanes. Models are assigned to one of the lanes,
enter the lane on, e.g., the left-hand side and move
forward to the right-hand side. Only models on
the right-hand side of each lane are accessible to
proceed downstream. Thus, the number of models
to choose from is bounded by the number of lanes.
In contrast, pull-off tables are direct accessible
buffers. A model in the sequence can be pulled
into a free pull-off table, so that successive models
can be brought forward and processed before the
model is reinserted from the pull-off table back
into a later sequence position.

Figure 1 gives an example how pull-off tables can
be used for reordering a sequence in such a way
that no sequencing rules are violated any more.
We assume an initial sequence of four models
at positions i =1,. . . ,4. There are two options
for each model: ‘‘x’’ and ‘‘-’’ denote whether
or not a model requires the respective option.

For the two options, we assume a 1:2- and a
2:3-sequencing rule, respectively. Figure 1(a)
depicts the initial sequence, which would result in
one violation of the 1:2-sequencing rule and one
of the 2:3-sequencing rule. The initial sequence
can be reshuffled by pulling the model at position
1 into the single pull-off table (Figure 1(b)). Then,
the models at positions 2 and 3 can be processed.
After reinserting the model from the pull-off
table (Figure 1(c)), the rearranged sequence <2,
3, 1, 4] of Figure 1(d) emerges, which violates no
sequencing rule.
Although pull-off tables as well as car-sequencing
rules are widely used in industry, no approaches
are available in the literature that address both
aspects at the same time and return strategies
for reordering car sequences in such a way that
violations of sequencing rules are minimized.
The use of pull-off tables is only considered
in specific mixed-model assembly line settings
neglecting the existence of sequencing rules. For
example, a variety of papers address sequence
alterations in front of the paint shop to build
larger lots of identical color (e.g., by Lahmar,
Ergan, and Benjaafar 2003; Epping, Hochstättler,
and Oertel 2004; Spieckermann, Gutenschwager,
and Voß 2004; Lahmar and Benjaafar 2007;
Lim and Xu 2009) or in front of final assembly
to level the material demand (Boysen, Fliedner,
and Scholl 2010). Other resequencing papers
either deal with buffer dimensioning (Inman
2003; Ding and Sun 2004), alternative forms of
buffer organization, e.g., mix banks (Choi and
Shin 1997; Spieckermann, Gutenschwager, and

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 | December 2011 | 276-292

Voß 2004), or virtual resequencing (Inman and
Schmeling 2003; Gusikhin, Caprihan, and Stecke
2008), where the physical production sequence
remains unaltered and merely customer orders
are reassigned to models.

This paper introduces the car resequencing prob-
lem (CRSP) which assumes a given model sequence
and returns a strategy how to use pull-off tables
to minimize violations of sequencing rules in the
resulting sequence. First, we develop a graph trans-
formation for the offline version of the problem and
present various solution approaches. Note that in
real-world applications resequencing is often an
online problem since, for instance, models leave
preceding production stages in unpredictable suc-
cession. Then, the offline problem version, where
a given static initial sequence is to be reshuf-
fled, needs to be applied in a rolling horizon. To
clarify the application of CRSP in an online en-
vironment, a real-world resequencing setting is
presented, which demonstrates the advantage of
the proposed solution approaches.
The paper is organized as follows: section 2 mod-
els the CRSP as a mathematical program. In sec-
tion 3, we develop a graph transformation, which
strongly reduces the size of the solution space.
With this graph transformation on hand, section
4 presents different exact and heuristic solution
approaches, which are tested in a comprehensive
computational study (section 5). To demonstrate
the applicability of the approach, section 6 presents
a real-world resequencing setting requiring only a
few simple modifications of our solution approach.
The paper ends with concluding remarks.

2 Problem Formulation
We assume an initial production sequence of length
T . Since it takes one production cycle to process a
car, the overall number of production cycles equals
the sequence length T . Two models are different,
if at least one option is different. Consequently,
there are M different models with M ≤ T . The
binary demand coefficients aom indicate whether
model m =1, . . . , M requires option o =1,. . . , O.
Furthermore, we assume a given set of sequencing
rules of type Ho : No which restrict the maximum
occurrence of option o in No successive cars to
at most Ho. The initial sequence, which results
from the ordering in the previous department or

Table 1: Notation
T number of production cycles (index t or i)
M number of models (index m)
O number of options (index o)
P number of pull-off tables
aom binary demand coefficient: 1, if model m

requires option o, 0 otherwise
Ho : No sequencing rule: at most Ho out of No suc-

cessively sequenced models require option
o

π0 initial sequence before resequencing (π0(i)
returns the number of the model that is
scheduled for the ith cycle)

π1 sequence after resequencing (π1(i) returns
the number of the model that is processed
at the ith cycle)

xitm binary variable: 1, if model number m at
cycle i before resequencing is assigned to
cycle t after resequencing, 0 otherwise

yot binary variable: 1, if sequencing rule defined
for option o is violated in window starting
in cycle t, 0 otherwise

BI Big Integer

from disturbances, typically violates some of the
sequencing rules. To reorder the initial sequence, P
pull-off tables can be used. Each pull-off table can
store one car. When pulling a car into a pull-off
table, subsequent models of the initial sequence
advance by one position. Thus, by using P pull-off
tables, we can shift a model at most P positions
forward and an arbitrarily number of positions
backward in the sequence. The CRSP returns a
reshuffled production sequence that minimizes the
number of violations of given car sequencing rules.
With the notation from Table 1, we can formulate
it as a binary linear program:

(1) CRSP: Minimize Z(X, Y) =
O∑

o=1

T∑
t=1

yot

subject to

(2)
∑T

i=1

∑M
m=1 xitm = 1 ∀ t =1,. . . ,T

(3)
∑T

t=1

∑M
m=1 xitm = 1 ∀ i =1,. . . ,T

(4)
∑T

t=1

∑M
m=1m · xitm = π0(i) ∀ i =1,. . . ,T

(5)
∑T

i=1

∑min{t+No−1,T}
τ=t

∑M
m=1 xiτm · aom

-(1 -
∑T

i=1

∑M
m=1 aom · xitm) · BI

≤ Ho + BI · yot ∀ o =1, . . . , O; t =1,. . . ,T

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 | December 2011 | 276-292

(6) xitm = 0 ∀m =1,. . . ,M;
i,t=1,. . . ,T; i-t > P

(7) xitm ∈ {0, 1} ∀m =1, . . . , M; i, t =1,. . . ,T

(8) yot ∈ {0, 1} ∀ o =1, . . . , O; t =1,. . . ,T

For an option o, the binary variable yot indicates
whether the sequencing rule Ho : No is violated
in the window starting at cycle t. The objective
function (1) minimizes the sum of rule violations
over all options o and cycles t. π0(i) and
π1(i) return the number of the model that is
processed at cycle i before and after resequencing,
respectively. Constraints (2) and (3) enforce
that at each cycle t, resp. i, exactly one model
is processed, while (4) ensures that each car of
the initial sequence π0 is assigned to a cycle. (5)
checks whether or not a rule violation occurs.
Here, we follow Fliedner and Boysen (2008) and
count the number of option occurrences that
actually lead to a violation of a sequencing rule.
(6) ensures that there is a maximum of P pull-off
tables and, therefore, a model at position i in the
initial sequence cannot be shifted to an earlier
sequence position than i − P.
This basic model and the graph approach
presented in the next section aim to minimize
sequencing rule violations counted with the
approach by Fliedner and Boysen (2008).
However, our model and the graph approach can
easily be adapted to other resequencing scenarios
as well, e.g., to incorporate other functions for
counting rule violations like the sliding-window
technique (Gravel, Gagne, and Price 2005), to
distinguish between hard- and soft-sequencing
rules (Solnon, Cung, Nguyen, and Artigues 2008),
to pursue alternative resequencing objectives
like leveling the required material (Drexl and
Kimms 2001) while avoiding rule violations or
to minimize the number of material deviations
between the resulting sequence and an original
planned sequence. An example for such a model
extension is presented in section 6.
In general, CRSP is NP-hard in the strong sense,
since for P ≥ T−1 (full resequencing flexibility) the
problem is equivalent to CSP, which was shown to
be NP-hard in the strong sense (Kis 2004).

3 Transforming CRSP into a
Graph Search Problem

Given an initial sequence π0 and P pull-off tables, a
model at position i can be shifted arbitrarily to the
back or up to P positions to the front. Thus, for each
position i in the reordered sequence π1, there are
P+1 choices (the model π0(i) or one of the following
models π0(i+1) . . . π0(i + P)). Since there are T po-
sitions to decide on, the solution space is bounded
by O(PT). Therefore, CRSP grows exponentially
with the number T of cycles. In the following para-
graphs, we transform the CRSP into a graph search
problem, where the objective is to find a shortest
path. The size of the resulting search space is
lower than the original CRSP which reduces the
effort of solution approaches. The transformation
is inspired by Lim and Xu (2009), who used a re-
lated approach for solving a resequencing problem
with pull-off tables for paint-shop batching. Since
Lim and Xu used another objective function, which
resulted in a different solution representation, fun-
damental modifications of the original approach of
Lim and Xu have been necessary.
The CRSP is modeled as a graph search problem,
where the graph is an acyclic digraph G(V , E, f)
with node set V , arc set E and an arc weighting
function f : E → N.

3.1 Nodes

Each node represents a state in the sequencing
process. It defines the models that are in the pull-
off tables and the sequence of models that have
not yet processed. Starting with the given initial
sequence, in each step we have three choices (Lim
and Xu 2009):

• If an empty pull-off table exists, we can move
the current model into it.

• We can process the current model and remove
it from the sequence.

• If not all pull-off tables are empty, we can select
an off-line model, remove it from its pull-off
table, and process it.

Consequently, each step (sequencing decision)
only depends on the current model at position
i and K , which is defined as the set of models
currently stored in the pull-off tables. At each
step, the decision maker has to check whether the
planned sequencing decision violates one of the

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 | December 2011 | 276-292

sequencing rules. To perform this check, he must
know how often an option o has been processed
in the last No−1 production decisions. Fliedner
and Boysen (2008) defined the last No−1 option
occurrences of all o=1,. . . , O options as the ‘‘active
sequence’’. acto

i denotes the active sequence of
length No−1 for option o at production cycle i.
Consequently, acto,t

i ∈ {0,1} is the tth position
of an active sequence acto

i . acto,t
i =1 indicates

that at production cycle i − t+1 option o has been
processed.
Thus, a node [i, Ki, ACTi] is defined by the number
i ∈ {1,. . . , T} of the production decision, the
set Ki of models (with | K |≤ P) stored in the
pull-off tables at production cycle i, and the set
ACTi = {act1i , act2i , . . . , actO

i } of active sequences
for the O different options at production cycle i.
Example: Consider the current decision point i =2
depicted in Figure 1(c). Note that a decision point
denotes a specific stage in the decision process
where an accessible model is finally assigned to
the next production cycle or intermediately stored
in an empty pull-off table. The final release of
the model at position 1 in initial sequence π0
is the third production decision of the decision
maker. Given two sequencing rules (1:2 and 2:3)
of length two and three, the active sequences
have length one and two, respectively. Therefore,
at decision point i =2, we have the two active
sequences act1

2
= {0} and act2

2
= {1,1}. The state

before finally assigning the current model is
defined as [2,{1}, {{0}, {1,1}}]. After production of
the model from the pull-off table, we have state
[3,{∅}, {{1}, {0,1}}].

Furthermore, we define a unique start and target
node. With ACT0 denoting a set of O active
sequences all filled with zeros, the start node is
defined as [0, ∅, ACT0] (for an example, Figure
1(a)); the (artificial) target node is defined as
[T+1,∅, ACT0].

Proposition: The number of states in
node set V is at most O(TOMP).

Proof: Overall there are T decision
points (production cycles) and the number of
possible sets K of models in the pull-off tables is(M+P−1

P

)
. The number of possible active sequences

ACTi is bounded by O· 2max {No}−1. Thus, including
the unique start and end node there are at most

T ·
(M+P−1

P

)
· O· 2max {No}−1+ 2 nodes. Recall that T ,

O and M denote the number of production cycles,
options and models, respectively.

T ·
(M+P−1

P

)
· O· 2max {No}−1+ 2

= T · (M+P−1)·(M+P−2)...(M+1)·M
P! · O·2max {No}−1+ 2

≤ T · MP ·P!
P! · O· 2max {No}−1+ 2

which is bounded by O(TOMP).�

Hence, the size of the state space V in-
creases exponentially with the number of pull-off
tables P but only linearly with the number of
production cycles T . Since the length of the graph
is bounded by O(TOMP), a polynomial in the
input length, the optimal solution can be found in
polynomial time, provided P is a constant.

3.2 Arcs

Arcs connect adjacent nodes and thus represent
a transition between two states [i, Ki, ACTi] and
[j, Kj, ACTj]. An arc represents either a scheduling
decision or a combined scheduling and production
decision. Starting with state [i, Ki, ACTi], we can
distinguish three actions that can be performed:

1. If not all pull-off tables are filled (| K |< P),
the current model m at cycle i can be stored in
a free pull-off table. Note that current model
m = π0(i+ | K | +1) can directly be determined
with the help of the information stored with any
node. This scheduling decision adds model m
to K and leaves the active sequences untouched
resulting in node [i, Ki∪{m}, ACTi]. This (pure)
sequencing decision does not produce a model.

For an example, we study the first sequenc-
ing decision in Figure 1. We start with the
start node [0, ∅, {{0}, {0,0}}] (Figure 1 (a)).
By pulling model 1 into the pull-off table, we
branch into node [0, {1}, {{0}, {0,0}}] (Figure
1 (b)).

2. We leave the pull-off tables untouched and pro-
duce model m at cycle i. This operation modi-
fies the active sequences as it inserts all option
occurrences of model m at the first position in
the active sequences. The option occurrences
at position No−1 are removed from the active
sequences and all other option occurrences are
shifted by one position. The resulting node is
[i+1, Ki, ACTi+1].

��	

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 | December 2011 | 276-292

For an example, we study the second se-
quencing decision in Figure 1 which processes
model 2. The scheduling decision branches
node [0, {1}, {{0}, {0,0}}] (Figure 1 (b)) into
node [1, {1}, {{1}, {1,0}}].

3. If at least one model is stored in a pull-off
table (K ≠ ∅), we can pull a model from a
pull-off table and produce it. This combined
scheduling and production decision removes
model m from the set of models in the pull-off
tables and modifies the active sequences. The
resulting node is [i+1, Ki \ {m}, ACTi+1].

For an example, we study the third production
cycle in Figure 1 (c). We reinsert model 1 from
the pull-off table and process it. This opera-
tion branches node [2, {1}, {{0}, {1,1}}] (Figure
1 (c)) into the successor node [3, ∅, {{1}, {0,1}}].

In addition to these three transitions, we con-
nect all nodes [T , ∅, ACTT] with the unique target
node [T+1, ∅, ACT0]. Furthermore, we assign arc
weights f : E → N to each transition. The arc
weights measure the influence of the transition on
the overall objective value (number of violations
of sequencing rules). Since transition 1 (pulling a
model into a pull-off table) does not produce a
model (it is a pure sequencing decision), it cannot
violate a sequencing rule. Therefore, we assign an
arc weight of zero to all transitions of type 1. For the
transition of types two and three, which produce
a model, we use the number of violations of se-
quencing rules as arc weights. With the Heaviside
step function

Θ(x) =

{
1, if x >0

0, if x ≤0
,

we can calculate the weight of an production arc
from node [i, Ki, ACTi] to node [i+1, Ki+1, ACTi+1]
as

f =
O∑

o=1

Θ

(
aom · (

No−1∑
t=1

acto,t
i + aom − Ho)

)
.

With this graph problem formulation at hand, we
can solve the CRSP by finding the shortest path
from start to target node. However, instead of con-
structing the complete graph before computing the
shortest path in two successive steps, both steps
can be unified in a dynamic programming pro-
cedure. For this purpose node set V is subdivided

into T ·(P+1)+2 stages, where a stage (j, k) contains
all nodes V(j,k) ⊂ V , where j models are definitely
fixed and k =| K | models are stored in a pull-off
table (see Figure 2). This way, a forwardly directed
graph arises, which means that an arc can only
point from a node of stage (j, k) to a node of stage
(j′, k′), if j < j′∨ (j = j′∧k < k′) holds. In particular,
a node of stage (j, k) can only be connected with
nodes of the following stages: (j, k+1) (put current
model in pull-off table), (j+1, k−1) (reinsert model
from pull-off) or (j+1, k) (produce current model).
This way, a stage-wise generation of the graph and
a simultaneous evaluation of the shortest path to
any node is enabled, where j and k are brought into
lexicographic order. Thus, only two stages of the
graph have to be stored simultaneously, because
the shortest path to a node of stage t+1 is composed
of a shortest path to a node of stage t (already deter-
mined and stored) and the connecting arc. Among
all paths to a node, one with a minimal sum of arc
weights is to be selected. The length-minimizing
node is stored as the predecessor in the shortest
path together with the length of this path. After
reaching the final state in stage (T+1,0), the opti-
mal path can be retrieved in a backward direction
stage-by-stage using the stored predecessor nodes.

4 Search Algorithms for the CRSP
In section 3, we transformed CRSP into a graph
search problem, where the aim is to find a short-
est path from the start node to the target node. A
shortest path corresponds to an optimal solution to
CRSP. For finding a shortest path in a graph, differ-
ent exact and heuristic search strategies are avail-
able. We propose three exact approaches, namely
breadth-first search, iterative beam search, and A*
search, and one heuristic beam search approach.

4.1 Breadth-first search

For the breadth-first search (BFS), we subdivide
the node set V into T · (P+1)+2 different stages.
For all nodes in one stage, the number j of models
that are already processed and the number k =
| K | of models stored in the pull-off tables are
equal. Therefore, a stage (j, k) contains all nodes
V(j,k) ⊂ V . By subdividing V into different stages,
we construct a forwardly directed graph. An arc
can only point from a node of stage (j, k) to a node
of stage (j′, k′), if j < j′ ∨ (j = j′ ∧ k < k′) holds.
As outlined in section 3.2, a node of stage (j, k)

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

Figure 2: Example graph for BFS with UB = 1

can only be connected with nodes of the following
stages:

1. (j, k+1) (put current model in pull-off table),

2. (j+1, k) (produce current model), or

3. (j+1, k−1) (reinsert model from pull-off table
and produce it).

If we bring j and k into lexicographic order, a stage-
wise generation of the graph and a simultaneous
evaluation of the shortest path to any node is en-
abled. Starting with the start node [0,∅, ACT0] in
stage (0,0), we step-wise construct all nodes per
stage until we reach the target node [T+1, ∅, ACT0]
in stage (T+1,0). We obtain the reshuffled se-
quence of models by a simple backward recursion
along the shortest path.
In comparison to a full enumeration of all pos-
sible sequences, this BFS approach considerably
reduces the computational effort. We can obtain a
further speed-up by using upper and lower bounds.
For each node, we can determine a lower bound LB
on the length of the remaining path to the target
node. Furthermore, a global upper bound UB can
be determined upfront by, for example, a heuristic.
A node can be fathomed, if LB plus the length of
the shortest path to the node is equal to or exceeds
the UB.
We determine a simple lower bound based on the
relaxation of the limited resequencing flexibility.
Fliedner and Boysen (2008) showed for the CSP
that in a sequence of t remaining cycles the maxi-
mum number of cycles Dot, which may contain an

option o without violating a given Ho : No-rule, can
be calculated as Dot =
 t

No
� · Ho + min{max{Ho −

occt(acto
i),0}; t mod No}, where occt(acto

i) is the
number of occurrences of option o in the first
t mod No positions of acto

i . Consequently, Dot is
a lower bound on the remaining options not yet
scheduled. With π0(j), where j = i, . . . , T , denot-
ing the model at position j in the initial sequence,
we obtain for each node [i, K , act] a lower bound
on the number of violations of sequencing rules
caused by the not-yet-produced models:

(9) LB =
∑O

o=1 max{ 0;
∑T

j=i aoπ(j)+∑
m∈K aom − Do,T−i }

The first term (
∑T

j=i aoπ(j)) counts the options
necessary for the remaining models not yet
scheduled; the second one (

∑
m∈K aom) counts the

options necessary for the models stored in the
pull-off tables. The sum of both terms should be
smaller than the maximum number Dot of option
occurrences that are allowed for the remaining
t = T − i production cycles. To avoid that negative
violations of one option, i.e., excessive production
of a particular option, compensates violations of
sequencing rules for a different option, we use
an additional max function. The bound sums up
the rule violations over all available options. The
bound can be calculated very fast in O(O).

Example: Figure 2 shows the resulting graph
for our aforementioned example, when BFS is
applied with UB =1. We start with the initial state

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

[0,∅, {{0}, {0,0}}]. If model 1 is produced (instead
of pulling it into the pull-off table), we would
reach node [1,∅, {{1}, {0,0}}]. Then, with regard
to option 2, three option occurrences need to
be scheduled in the remaining three production
cycles. However, since only D23 =
3

3
�·2+ min{2;

3 mod 3 } =2 options can be scheduled, one
rule violation is inevitable and the lower bound
on the number of rule violations caused by the
remaining models becomes LB =1 for node
[1,∅, {{1}, {0,0}}]. Therefore, it is optimal to put
model 1 into the pull-off table and end up in
node [0,{1}, {{0}, {0,0}}]. Then, model 2 is finally
released and stage (1,1) is reached. Here, pulling
model 1 online from pull-off table would cause
a rule violation, so that the given upper bound
cannot be improved and instead model 3 is
produced. Then, producing model 4 would lead to
a rule violation, so that model 1 is pulled online
and the shortest path from the start to the target
node is obtained by producing models 2 and 3
first, then model 1 out of the pull-off table and
finally model 4.
We want to further speed up the search by
defining dominance rules. Dominance rules allow
fathoming of nodes if other nodes, which have
already been inspected, lead to equal or better
solutions. For specifying a dominance rule, we
introduce two definitions, which are an adoption
of the concepts developed by Fliedner and Boysen
(2008) for the CSP.

Definition 1: An active sequence ACTi is
less or equally restrictive than an active sequence
ACTj, denoted by ACTi � ACTj, if it holds that
acto,t

i ≤ acto,t
j ∀ o =1,. . . , O; t =1,. . . , No−1.

Definition 2: The content Ki of a node’s
pull-off tables is less or equally demanding
than content Kj of another node, denoted by
Ki � Kj, if there exists a mapping between Ki

and Kj (with | Ki |=| Kj |) such that for each pair
of models m ∈ Ki and m′ ∈ Kj of this mapping
aom ≤ aom′∀ o =1,. . . , O holds.

Dominance rule: A node s = [i, Ki, ACTi] with
rule violations f (s) (length of shortest path to s)
dominates another node s′ = [i, K ′

i , ACT ′
i] with

f (s′) and | Ki |=| K ′
i |, if it holds that f (s) ≤ f (s′),

Ki � K ′
i , and ACTi � ACT ′

i .

Proof: The proof consists of two parts:
First, we show that a node s = [i, Ki, ACTi]
dominates another node s′ = [i, K ′

i , ACT ′
i], if

f (s) ≤ f (s′), Ki = K ′
i , and ACTi � ACT ′

i . Then,
we prove that s dominates s′, if f (s) ≤ f (s′),
ACTi = ACT ′

i , and Ki � K ′
i . If both parts hold, the

combination of them, as defined in the dominance
rule, also holds.

(First part) Since the models stored in the pull-off
tables are the same for both nodes s and s′

(Ki = K ′
i), the same remaining models have to be

processed. If we assume that ACTi � ACT ′
i , for

any possible sequence of the remaining models,
ACTi leads to a lower or at most the same number
of rule violations than ACT ′

i . Since f (s) ≤ f (s′), s
leads to a solution better than or equal to s′.

(Second part) Deleting option occurrences from
a sequence of remaining models (for example, by
storing models in pull-off tables) leads to fewer
or at most the same number of rule violations
caused by the remaining models that have to
be processed. With Ki � K ′

i , we can construct
for any sequence of remaining models, which is
possible for s′, a counterpart sequence for s with
this condition. Therefore, starting with the same
active sequence (ACTi = ACT ′

i), s leads to a lower
or equal number of rule violations than s′. With
f (s) ≤ f (s′), s results in a solution better than or
equal to s′. �

Example: Consider two pull-off tables and an ini-
tial sequence of four models. We have two options
for which a 1:2- and a 2:3-rule holds, respectively.
Figure 3 depicts two decision points and their re-
spective nodes s and s′. s dominates s′, because
f (s) = f (s′) = 0, the contents of the pull-off tables
are equally demanding, and the active sequence of
s is less restrictive than that of s′.

4.2 Beam Search

Beam Search (BS) is a truncated BFS heuristic and
was first applied to speech recognition systems by
Lowerre (1976). Ow and Morton (1988) were the
first to systematically compare the performance of
BS and other heuristics for two scheduling prob-
lems. Since then, BS was applied within multiple
fields of application and many extensions have
been developed, e.g., stochastic node choice (Wang

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

Figure 3: Example for dominance rule

and Lim 2007) or hybridization with other meta-
heuristics (Blum 2005), so that BS turns out to be
a powerful meta-heuristic applicable to many real-
world optimization problems. A review of these
developments is provided by Sabuncuoglu, Goc-
gun, and Erel (2008).
Like other BFS heuristics, BS uses a graph formu-
lation of a problem and searches for the shortest
path from a start to a target node. However, unlike
BFS or a breadth-first version of Branch&Bound,
BS is not optimal since the number of nodes that
are branched in each stage is bounded by the beam
width BW . If BW is equal to the maximum number
of nodes in a stage, BS becomes BFS. The BW nodes
to be branched are identified by a heuristic in a fil-
tering process. Starting with the root node in stage
0, all nodes of stage 1 are constructed. Then, the fil-
tering process of BS selects all nodes in stage 1 that
should be branched. Typical approaches are the use
of priority values, cost functions, or multi-stage
filtering, where several filtering procedures are
consecutively applied (Sabuncuoglu, Gocgun, and
Erel 2008). The BW best nodes found by filtering
form the promising subset of stage 1. These nodes
are further branched. The filtering and branching
steps are iteratively applied until the target node is
reached. Analogously to other tree search methods
like BFS, we can use the bounding argument and
dominance rule formulated in section 4.1 for BS
to reduce the number of nodes to be branched. To
apply BS, we must define a proper graph structure
and a filtering mechanism:

Graph structure: For BS, we can use the acyclic
digraph G(V , E, r) introduced in section 3. BS ex-
amines the T(P+1)+2 stages in lexicographic order.

Filtering: For each node, we calculate the objec-
tive value (number of rule violations) of the current
partial solution, which is the sum of arc weights

along the shortest path from the root node to the
current node, and add the lower bound argument
of equation (9), which is the estimated path weight
from the current node to a target node. Then, we
order the nodes according to the estimated overall
cost and select the BW nodes with lowest cost.

4.3 Iterative Beam Search

Iterative Beam Search (IBS) is conducted by ap-
plying a series of n BS iterations with gradually
increasing beam width BW . With larger beam
width, more nodes are explored, which increases
the probability of finding the optimal path. If the
beam width of the nth iteration is equal to the
maximum number of nodes in a stage, a BFS is
conducted and IBS is optimal. To speed up the
search, the solution found by the ith Beam Search
BSi, with i =1,. . . , n−1, is used as an upper bound
for the subsequent Beam Search BSi+1.

4.4 A* Search

Unlike the aforementioned algorithms, A* search
(Hart, Nilsson, and Raphael 1968) does not per-
form a stage-wise exploration of the decision tree
but traverses the tree along the nodes that appear
to be most likely on the shortest path from the
start to the target node. For each explored node
during the search process, we calculate the costs
g of the path from the start node to the current
node and add a heuristic function h, which esti-
mates the remaining path costs from the current
to the target node. The search examines the nodes
in ascending order, according to their overall cost
value g + h, and returns the first solution found.
When using the lower bound argument (9) for the
heuristic function h, h is admissible, hence never
overestimates the remaining costs to the target
node. Therefore, A* becomes an exact algorithm
and returns the global best solution.

��

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

A* requires a large number of nodes to be stored
during the search process since all explored nodes
have to be stored in a list ordered with respect to the
estimated overall cost. We can reduce this number
by removing all nodes from the list whose overall
cost is equal to or exceeds a global upper bound
UB. In addition, the dominance rule introduced in
section 4.1 can also be used to reduce the number
of stored nodes.

5 Computational Study

5.1 Experimental Setup

We study the performance of the search
approaches and the influence of the number of
pull-off tables with two sets of car sequencing
instances. To apply CRSP on a car sequencing
instance, an initial sequence π0 is constructed
randomly which is then resequenced using P
pull-off tables. As a first set, we use the test
instances provided by Fliedner and Boysen
(2008). These 18 instances have 10-50 production
cycles, 3-7 options, and 5-28 models. The second
set stems from the CSPLib and contains 9 larger
instances with 100 production cycles and 5
options each, and 19-26 models. All algorithms
were implemented with VB.Net. Throughout the
experiments, violations of instances in the first set
are measured using the approach by Fliedner and
Boysen (2008) and violations of the second set
are counted with the Sliding-Window approach
(Gravel, Gagne, and Price 2005). The experiments
run on a Pentium 2.5 Ghz processor with 2GB
RAM.

5.2 Algorithmic Performance

First we compare the performances of the proposed
search algorithms on both problem sets. We also
apply the commercial standard solver CPLEX 12.2
with our binary linear model from section 2 as a
benchmark, to better assess the solution qualities
of the algorithms. For each instance of the problem
sets, ten different initial sequences are constructed
randomly. The number of rule violations of each
initial sequence serves as an initial global upper
bound UB. We use a fixed number of pull-off tables
P =4. We set the time limit to solve each of the ten
sequences to 600 seconds and stop an algorithm if
it exceeds this limit. BFS, IBS and A*, are applied
with the dominance rule from section 4. IBS is

conducted with four iterations and beam widths
BW1 = 10, BW2 = 100, BW3 =1000, BW4 = ∞.
Since BW4 = ∞, IBS returns the optimal solution.
For BS, we set BW =300.

Table 2 compares the average performance of the
search algorithms for solving one problem in-
stance. An instance is characterized by the number
of production cycles T , the number of options O
and the number of models M. For the different
search algorithms, we list the average objective
value obj, average CPU time consumed in seconds,
and the average number of explored nodes. BFS,
A*, IBS and CPLEX return the optimal solution, if
the search does not exceed the time limit, otherwise
BFS and A* return no solution at all. Comparing the
optimal algorithms, A* is slightly favored for small
problem instances; for large problem instances,
IBS shows the best results and outperforms BFS,
A* and CPLEX in terms of solution quality and
runtime. Although BS is a heuristic and we have no
guarantee of finding the optimal solution, the so-
lutions found are close to the optimum, whereas it
explores only a fraction of nodes and, thus, requires
less CPU time compared to the optimal algorithms.
Since the performances of BFS, A* and CPLEX are
worse compared to IBS and BS, we do not consider
these algorithms for further experiments.
On problem set two we study how the performance
of BS and IBS depends on the number of pull-off
tables P and the number of production cycles T .
Figure 4(a) shows the average time consumed with
varying P. BS performs best since the time required
is low and increases approximately linearly with
increasing P. In contrast to BS, the solution time
grows approximately exponentially for IBS.
To study how algorithm performance depends on
T , we simply duplicate for every instance the de-
mand of each model by a factor λ ∈ {1,. . . ,4}.
Thus, for, e.g., λ = 2 each instance in set two
has 200 production cycles. All other parameters
of the problem instances remain unaffected and
the number of pull-off tables is set to P =3. Figure
4(b) shows the average time over the number of
production cycles T derived from λ. Certainly, T
increases linearly with λ. When modeling the CRSP
as a graph problem (see section 3), the time neces-
sary for the algorithms increases roughly linearly
with T .
Finally, we study the influence of the beam width
BW on the performance of BS. We set P =4 and

����

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

T
a

b
le

2
:

A
v

e
ra

g
e

p
e

rf
o

rm
a

n
ce

s
o

v
e

r
10

ru
n

s
(P

=
4

)

P
ro

bl
em

T
O

M
U

B
B

F
S

A
*

IB
S

B
S

C
P

L
E

X
ob

j
ti

m
e(

s)
n

od
es

ob
j

ti
m

e(
s)

n
od

es
ob

j
ti

m
e(

s)
n

od
es

ob
j

ti
m

e(
s)

n
od

es
ob

j
ti

m
e(

s)
n

od
es

C
A

R
_

3_
10

10
3

5
5.

7
1.

0
0

.0
6

10
8

1
1.

0
<

0
.0

1
8

3
1.

0
0

.0
4

43
7

1.
0

0
.1

3
47

0
7

1.
0

0
.0

4
20

C
A

R
_

5_
10

10
5

5
8

.3
1.

2
0

.4
2

35
6

5
1.

2
<

0
.0

1
75

1.
2

0
.0

5
37

9
1.

2
0

.2
5

59
23

1.
2

0
.0

6
17

C
A

R
_

7_
10

10
7

9
11

.9
2.

4
4.

0
4

9
72

6
2.

4
0

.0
2

21
6

2.
4

0
.0

6
6

6
5

2.
4

0
.4

2
6

8
72

2.
4

0
.1

1
23

C
A

R
_

3_
15

15
3

5
10

.2
2.

4
0

.2
7

34
9

0
2.

4
<

0
.0

1
24

6
2.

4
0

.1
0

8
8

5
2.

4
0

.3
4

11
30

8
2.

4
0

.2
5

23
8

C
A

R
_

5_
15

15
5

7
15

.0
3.

4
6

.7
18

8
4

3
3.

4
0

.0
4

42
1

3.
4

0
.1

0
12

0
2

3.
4

0
.6

8
13

59
2

3.
4

0
.9

0
41

9
C

A
R

_
7_

15
15

7
13

21
.7

6
.6

20
9

.7
3

8
6

71
9

6
.6

2.
2

40
32

6
.6

1.
20

8
39

1
6

.6
1.

0
5

14
26

0
6

.6
2.

0
6

73
7

C
A

R
_

3_
20

20
3

6
14

.9
3.

8
0

.7
7

6
9

12
3.

8
0

.0
8

10
8

4
3.

8
0

.1
6

28
8

2
3.

8
0

.6
3

18
9

43
3.

8
1.

22
8

18
C

A
R

_
5_

20
20

5
7

20
.8

6
.1

19
.2

7
39

55
6

6
.1

0
.8

2
36

6
8

6
.1

0
.9

8
10

21
2

6
.1

1.
0

8
20

8
19

6
.1

3.
74

12
6

7
C

A
R

_
7_

20
20

7
15

25
.8

-
>

6
0

0
-

7.
1

14
.6

6
14

8
12

7.
1

8
.3

1
27

8
0

2
7.

1
1.

78
21

6
53

7.
1

16
.9

5
42

6
1

C
A

R
_

3_
30

30
3

6
21

.6
6

.1
11

.6
4

29
0

46
2

6
.1

0
.2

3
25

17
6

.1
0

.4
5

74
10

6
.1

1.
0

8
31

72
4

6
.1

15
.3

2
48

79
C

A
R

_
5_

30
30

5
11

30
.4

8
.8

58
8

.0
1

6
50

9
51

6
8

.8
51

.4
6

43
9

9
2

8
.8

34
.4

7
73

27
8

8
.8

2.
13

35
70

4
8

.8
27

6
.6

9
47

6
48

C
A

R
_

7_
30

30
7

23
45

.6
-

>
6

0
0

-
-

>
6

0
0

-
14

.4
32

3.
9

4
19

58
74

14
.5

3.
47

36
42

4
14

.8
43

2.
75

54
0

11
C

A
R

_
3_

40
40

3
7

31
.7

11
.9

31
.8

2
72

55
0

2
11

.9
2.

47
29

10
11

.9
3.

30
31

0
8

1
12

.2
1.

6
4

45
14

5
11

.9
38

.5
2

9
6

9
7

C
A

R
_

5_
40

40
5

13
41

.9
-

>
6

0
0

-
13

.8
30

7.
6

3
14

37
9

9
13

.8
21

5.
42

21
37

72
14

.4
3.

17
50

27
7

14
.4

59
9

.3
8

59
74

8
C

A
R

_
7_

4
0

40
7

26
57

.5
-

>
6

0
0

-
-

>
6

0
0

-
19

.6
>

6
0

0
-

20
.4

5.
15

51
24

4
21

.7
>

6
0

0
38

16
2

C
A

R
_

3_
50

50
3

7
40

.8
17

.2
48

.7
10

79
20

6
17

.2
8

.0
2

28
44

6
17

.2
11

.1
3

6
42

11
17

.2
2.

17
58

8
18

17
.2

13
6

.4
8

20
22

8
C

A
R

_
5_

50
50

5
14

54
.0

-
>

6
0

0
-

-
>

6
0

0
-

21
.0

57
7.

27
39

75
9

4
21

.7
4.

22
6

46
38

22
.7

>
6

0
0

40
18

6
C

A
R

_
7_

50
50

7
28

79
.4

-
>

6
0

0
-

-
>

6
0

0
-

30
.9

>
6

0
0

-
32

.5
6

.8
7

6
58

9
1

34
.0

>
6

0
0

30
50

4
4

-7
2

10
0

5
22

13
1.

1
-

>
6

0
0

-
-

>
6

0
0

-
37

.8
>

6
0

0
-

40
.9

12
.2

2
13

79
77

41
.7

>
6

0
0

8
10

7
6

-7
6

10
0

5
22

11
8

.8
-

>
6

0
0

-
-

>
6

0
0

-
27

.5
>

6
0

0
-

30
.0

12
.1

0
13

6
8

12
31

.2
>

6
0

0
75

8
5

10
-9

3
10

0
5

25
15

6
.0

-
>

6
0

0
-

-
>

6
0

0
-

53
.7

>
6

0
0

-
57

.7
12

.9
0

13
8

44
7

58
.2

>
6

0
0

75
52

16
-8

1
10

0
5

26
13

9
.6

-
>

6
0

0
-

-
>

6
0

0
-

43
.2

>
6

0
0

-
47

.4
13

.2
2

13
8

6
0

8
49

.4
>

6
0

0
70

9
1

19
-7

1
10

0
5

23
15

1.
4

-
>

6
0

0
-

-
>

6
0

0
-

47
.2

>
6

0
0

-
51

.7
11

.9
3

13
6

50
9

53
.3

>
6

0
0

8
9

79
21

-9
0

10
0

5
23

13
9

.6
-

>
6

0
0

-
-

>
6

0
0

-
42

.8
>

6
0

0
-

46
.0

12
.3

3
13

73
76

46
.2

>
6

0
0

8
8

6
9

36
-9

2
10

0
5

22
14

5.
6

-
>

6
0

0
-

-
>

6
0

0
-

46
.7

>
6

0
0

-
49

.9
11

.8
5

13
72

0
9

50
.3

>
6

0
0

8
8

0
5

41
-6

6
10

0
5

19
11

9
.8

-
>

6
0

0
-

-
>

6
0

0
-

35
.5

>
6

0
0

-
37

.7
11

.0
3

13
6

9
16

38
.0

>
6

0
0

70
8

5
26

-8
2

10
0

5
24

13
4.

3
-

>
6

0
0

-
-

>
6

0
0

-
37

.0
>

6
0

0
-

39
.6

12
.2

8
13

77
79

41
.0

>
6

0
0

75
9

9
�

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

Figure 4: Performance of BS and IBS against P and T

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4

tim
e

(s
)

P

IBS
BS

(a) average time against P

 1

 10

 100

 1000

 10000

 100 200 300 400

 1 2 3 4

tim
e

(s
)

T

�

IBS
BS

(b) average time against T

Figure 5: Performance of BS against beam width BW

 0

 5

 10

 15

 20

10 100 200 300 400

tim
e

(s
)

beam width BW

(a) time against BW

 40

 45

 50

 55

10 100 200 300 400

�
 o

bj

beam width BW

(b) deviation from optimum against BW

Figure 6: Resequencing flexibility

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 20 35 50

�
 o

bj

P

Problem Set 1
Problem Set 2

(a) deviation from optimum against P

 1

 10

 100

 1000

 5 20 35 50

tim
e

(s
)

P

Problem Set 1
Problem Set 2

(b) time against P

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

varied BW between 10 and 400. Figure 5(a) shows
the time consumed against BW , which increases
approximately linearly with increasing BW . Fig-
ure 5(b) shows the average absolute deviation
Δobj = objBS − obj* between the objective values
objBS produced by BS and the best known objec-
tive values obj* as stated in the CSPLib. Therefore,
Δobj measures the number of additional rule vi-
olations in comparison to the sequence obtained
when solving the original CSP. Solution quality of
BS slightly increases with larger BW . Since a larger
beam width (BW ≥ 300) only has a minor effect on
the solution quality, we see a beam width of 300
sufficient for the studied problem instances.
In summary, BS performs well in comparison to the
exact search approaches. BS finds solutions close to
optimal solutions, but explores considerably fewer
nodes and, therefore, requires less CPU time.

5.3 Resequencing Flexibility

We focus on BS and study on both problem sets
how solution quality depends on the number of
pull-off tables P. With increasing P, planning flex-
ibility increases, we are less dependent on the
initial sequence π0, and we are able to build better
sequences more similar to solutions of the CSP.
For our study, we construct ten random initial se-
quences π0 per instance and set BW = 300. The
number P of pull-off tables varies between 5 and
50 in steps of 5.
Figure 6(a) shows the average absolute deviations
Δobj = objBS − obj* between the solution found by
BS and the best known objective value of the CSP
for both problem sets. For low P, a randomly cre-
ated initial sequence π0 has a large impact on the
resulting sequence and the deviation is high. With
increasing P, π0 has a lower impact and we can
construct a better new sequence with fewer rules
violations by using the pull-off tables. For larger P,
the resulting sequences become more similar to the
optimal sequence of the CSP. The plot shows that
increasing P up to approximately 20 for set one
increases solution quality. Adding pull-off tables
give us more flexibility and allow us finding better
sequences. For example, for P =20, BS finds for
problem set one sequences that violate on average
Δobj = 0.09 more sequencing rules than the best
known sequence of the CSP. Using larger number
of pull-off tables (P >20) does not improve solu-
tion quality on set one. For problem set two, an

increase of the solution quality can be observed up
to P =30 where on avg. an additional 2.83 sequenc-
ing rules are violated compared to the optimum.
For larger P(>30), the solution quality can only
be slightly further improved. The remaining devi-
ation from the optimal solution comes from the
heuristic character of BS. Regarding figure 6(b),
all instances can be solved within the 600-seconds
time limit. For example, on set 2 with P =50, BS
requires 424.3 seconds on avg. Again, it can be ob-
served that the solution time of BS increases about
linearly with increasing P.
Table 3 lists the best average results found for each
instance and the minimum number P′ of pull-off
tables leading to this result. Note that for instances
CAR_7_40 and CAR_7_50 (marked with * in Ta-
ble 3), we were able to find a new best solution with
only 7, resp. 11, rule violations. Clearly, the prac-
titioner when deciding on an appropriate buffer
dimension has to balance the elementary trade-off
between investment cost for pull-off table instal-
lation and the gains of additional resequencing
flexibility. Especially, the latter effect is hard to
quantify, since determining an appropriate option-
specific cost factor for a sequencing rule violation
is hardly possible (Boysen, Fliedner, and Scholl
2009). However, our results reveal that the num-
ber of pull-off tables to be installed heavily depends
on the number M of models to be considered and
number T of production cycles. Especially, it can
be concluded that adding more than P′ = T

2
pull-off

tables does not seem advisable, since on average
over all instances P′ =0.459 T leads to (nearly) full
resequencing flexibility.

6 Comparison with a real-world
scheduling rule

For the production of large commercial vehicles
like trucks, buses, or construction vehicles, invest-
ment costs for conventional AS/RS having multiple
buffer places (see section 1) are prohibitively high;
therefore only a few random access buffers are
installed, e.g., to decouple paint shop and final
assembly. In this context, the following resequenc-
ing setting is taken from a major German truck
manufacturer.
To regain a desirable model sequence after paint
shop and before final assembly, the manufacturer
installed a resequencing system consisting of 118
buffer places. Since quality defects in the paint shop

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

Table 3: Average best results of BS

problem T O M obj* BS
obj P′ time nodes

CAR_3_10 10 3 5 1 1 5 0.16 5422
CAR_5_10 10 5 5 1 1 5 0.30 6714
CAR_7_10 10 7 9 2 2 10 0.72 9055
CAR_3_15 15 3 5 2 2 10 0.80 22315
CAR_5_15 15 5 7 2 2 10 1.73 23384
CAR_7_15 15 7 13 4 4 10 3.06 24754
CAR_3_20 20 3 6 3 3 10 1.86 37349
CAR_5_20 20 5 7 3 3 10 3.17 39602
CAR_7_20 20 7 15 3 3 20 9.08 51027
CAR_3_30 30 3 6 4 4 10 3.57 67906
CAR_5_30 30 5 11 3 3 15 11.77 96315
CAR_7_30 30 7 23 4 4.7 25 36.57 123211
CAR_3_40 40 3 7 5 5 15 9.39 138435
CAR_5_40 40 5 13 5 5 25 33.36 198632
CAR_7_40 40 7 26 9 7.7* 20 52.72 176986
CAR_3_50 50 3 7 6 6 20 17.38 229299
CAR_5_50 50 5 14 8 9 25 51.29 276400
CAR_7_50 50 7 28 12 11.4* 40 149.07 350858
4-72 100 5 22 0 3 50 416.05 1124836
6-76 100 5 22 6 6.1 45 355.56 1046226
10-93 100 5 25 3 6.7 50 452.48 1125511
16-81 100 5 26 0 3.1 45 426.51 1048913
19-71 100 5 23 2 6.5 30 218.97 772178
21-90 100 5 23 2 3.8 45 384.86 1049156
36-92 100 5 22 2 3.6 35 288.51 871502
41-66 100 5 19 0 0.5 25 156.78 665434
26-82 100 5 24 0 3.6 30 246.20 774043

cause a rework rate of about 85%, sequences are
heavily stirred up and a resequencing is inevitable.
As many buffer places are occupied over a longer
period by driving cabs waiting for critical parts not
yet delivered, only 10 to 20 of these buffer places
are actually available for resequencing. Typically,
there are about 50 cabs in the overlap area between
paint shop and final assembly.
As the model variation is large (for example,
trucks have a different number of aisles which
makes some trucks more than twice as long as
others), production times of different models are
very heterogeneous. To deal with the variation,
the manufacturer considers 20 sequencing rules
as hard constraints which have to be considered
for resequencing. However, resequencing also
affects material supply. The originally planned
sequence π−1, which was disordered to initial
sequence π0 within paint shop, was propagated to

the suppliers and material supply was organized
on the basis of the planned sequence. Therefore,
parts are stored next to the line according to the
planned sequence of trucks (just-in-sequence).
Creating a reordered sequence π1 that strongly
differs from the originally planned sequence π−1,
makes a reordering of these parts to be executed
by additional logistics workers necessary. To
minimize the effort for material reshuffling
resequencing aims at approximating the original
material demand induced by the planned
sequence as close as possible. For this purpose, a
deviation measure rmt can be computed, which
measures the number of deviations between the
material demand aom of a model m and the
original material demand aoπ−1(t) planned for the
production cycle t =1, . . . , T within the original
sequence π−1 as follows:

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

(10) rmt =
∑O

o=1 | aoπ−1(t) − aom |
∀m =1,. . . , M; t =1,. . . , T .

Note that other deviation measures can be em-
ployed and facultative parts can be considered,
i.e., not necessarily those for which sequencing
rules are defined. Up to now, the resequencing
decision is made by a dispatcher who makes an
online decision for the next model to be fed into
final assembly. The decision process is based on
the following simple rules:

• Fill strategy: The dispatcher subsequently
draws cabs from the waiting queue into a
buffer until all buffer places are fully occupied.

• Release strategy: The dispatcher selects a
model for production from the currently
available models, which violates no sequencing
rule and minimizes material deviations for
current production cycle.

The current selection policy suffers from the my-
opic choice of only a single model. Alternatively,
our car resequencing approach can be adapted
for determining a complete (reshuffled) model se-
quence, which minimizes reshuffling effort and
avoids sequencing rule violations. The objective
function (1) and constraint (5) of our model (see
section 2) have to be modified with (11) and (12),
resp.:

(11) Minimize Z(X) =
∑T

i=1

∑M
m=1

∑T
t=1 xitm · rmt

(12)
∑T

i=1

∑min{t+No−1,T}
τ=t

∑M
m=1 xiτm · aom

≤ Ho ∀ o =1,. . . , O; t =1,. . . , T

(11) minimizes the number of material deviations
and (12) ensures that no sequencing rule is vi-
olated. Additionally, some modifications of our
graph approach are required as well:

• Only those nodes s are feasible that cause no
sequencing rule violation (f (s) =0). The lower
bound (9) can still be used. Therefore, any
node with LB ≥1 can be fathomed.

• The weight of an arc is defined as the con-
tribution rmt of current model m chosen for
production at decision point t. The shortest
path from the start to the target node returns
a sequence with minimum overall material de-
viations.

• A lower bound on the overall deviations can be
determined by relaxing car-sequencing rules.
In the unconstrained case, the optimal assign-
ment of models to cycles can simply be deter-
mined by solving an assignment problem (see,
e.g., Kuhn 1955) minimizing realized deviation
measures rmt. The lower bound fathoms nodes
which cannot result in a better solution value
than the incumbent (upper bound) solution.

• The dominance rule (section 4.1) cannot be
used since it can exclude optimal solutions.

To compare our resequencing approach with the
real-world (human) decision rule, we construct
ten test problems each with 50 production cy-
cles, 20 options, and 15 buffers (pull-off tables).
Sequencing rules are constructed randomly with
No = {2. . .10} and Ho = {1. . . No}. An optimal se-
quence is obtained by randomly assigning options
to cycles, such that no sequencing rule is violated.
The average usage rate for the options is 25%.
This optimal sequence of models serves as initially
planned sequence π−1. To simulate rework in the
paint shop, the optimal sequence is modified by
randomly pulling models out of the sequence (on
average 85% of the models) and reinserting them
into the sequence in a random position between
their original position and the 25 following posi-
tions. This leads to the initial sequence π0, which
has to be reshuffled. For every problem, we create
ten different initial sequences π0 leading to 100
problem instances overall. For resequencing, we
apply BS with BW =300 on the graph modified
according to the aforementioned suggestions.
For each instance, Table 4 compares the average
material deviation obj of the solution found by
BS with the solution using the real-world decision
rule. We also show the improvement (in %) and
the avg. time and avg. nodes needed for solving the
instance. Clearly, BS finds better sequences and
considerably reduces the number of material devi-
ations. On average, BS overcomes about 29% of the
currently necessary effort for material reshuffling.
Note, that all instances can be solved within the
time limit of 600 seconds.
In the real world, our resequencing approach
should be applied in a rolling horizon, where only
a subset of models, e.g., the first 10, are definitely
fixed and the remaining (about 40) models are
reinserted into the successive planning run. In
this case, our graph approach must not be started

��	

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

Table 4: average overall material deviations r

instance decision rule BS
obj obj time (s) nodes improv.

1 41.2 26.4 553.37 164308 35.9 %
2 45 29.6 599.60 176294 34.2 %
3 25.4 14.8 557.45 170522 41.7 %
4 39.8 31 558.41 172775 22.1 %
5 11 8.4 504.19 167743 23.6 %
6 47.8 29.4 538.41 167793 38.5 %
7 46.8 35.4 548.39 164162 24.4 %
8 23.2 16.8 571.80 168192 27.6 %
9 61.4 43.4 576.91 163506 29.3 %
10 49.6 42.8 473.98 159186 13.7 %
avg. 39.12 27.8 548.25 167448 28.9 %

with the initial node (empty pull-off tables) but
with the one representing current buffer content,
when starting the planning run. Note that our
basic graph structure can also be applied for solv-
ing related resequencing problems. As the adop-
tions are truly straightforward, e.g., to incorporate
other functions for counting rule violations like
the sliding-window technique (Gravel, Gagne, and
Price 2005), to distinguish between hard- and soft-
sequencing rules (Solnon, Cung, Nguyen, and Ar-
tigues 2008) or to pursue alternative resequencing
objectives like leveling the required material (Drexl
and Kimms 2001) while avoiding rule violations,
we abstain from a detailed description.

7 Conclusion
This paper deals with the car resequencing prob-
lem, where a number of pull-off tables can be used
to reshuffle an initial sequence of car models in
such a way that violations of car sequencing rules
are minimized. We transform the car resequenc-
ing problem into a graph search problem, which
considerably reduces solution effort, and develop
efficient exact and heuristic solution approaches.
To further speed up search, we develop a lower
bound as well as a dominance rule which both can
be used for fathoming nodes in the search graph.
For a set of test instances, we compare the perfor-
mance of problem-specific variants of breadth-first
search, iterated beam search, A* search, and a

beam search heuristic. The computational effort
of breadth-first search is higher than iterated
beam search or A* search. A* needs less effort
for small problem instances than iterated beam
search, whereas iterated beam search is faster
than A* for larger problem instances. The heuristic
beam search approach finds solutions very close
to the optimal ones but needs much less compu-
tational effort in comparison to the exact search
approaches. Studying how the number of pull-off
tables influences the quality of the reshuffled se-
quence reveals that about T

2
pull-off tables are suf-

ficient to reach nearly full resequencing flexibility
for the considered problem instances.
Finally, we present a real-world resequencing set-
ting from a major German truck producer and
illustrate how the approach can be adapted for
solving the respective problem. In comparison to
the currently used real-world scheduling approach,
our new resequencing approach can improve solu-
tion quality by on average about 29%.
There are several ways to build on our research. On
the one hand, future research could approach the
car resequencing problem applying different forms
of buffer organization, e.g., mixed banks (Spieck-
ermann, Gutenschwager, and Voß 2004). On the
other hand, alternative sequencing objectives, like
mixed-model sequencing (Boysen, Fliedner, and
Scholl 2009) could be modified to cope with lim-
ited resequencing flexibility due to a given number
of pull-off tables.

���

BuR -- Business Research
Official Open Access Journal of VHB
�������	
�����
�	�
����������������������
�������
Volume 4 | Issue 2 |���
������� !!����$&#�%�

References

Blum, Christian (2005): Beam-ACO - Hybridizing Ant colony Opti-
mization with Beam Search: An Application to Open Shop Scheduling,
Computers & Operations Research, 32 (6): 1565-1591.

Boysen, Nils, Malte Fliedner, and Armin Scholl (2009): Sequencing
Mixed-Model Assembly Lines: Survey, Classification and Model Critique,
European Journal of Operational Research, 192 (2): 349-373.

Boysen, Nils, Malte Fliedner, and Armin Scholl (2010): Level Scheduling
under Limited Resequencing Flexibility, Flexible Services and Manu-
facturing Journal, 22 (3-4): 236-257.

Choi, Wonjoon and Hyunoh Shin (1997): A Real-Time Sequence Control
System for the Level Production of the Automobile Assembly Line,
Computers & Industrial Engineering, 33 (3-4): 769-772.

Ding, Fong-Yuen and Hui Sun (2004): Sequence Alteration and Restora-
tion Related to Sequenced Parts Delivery on an Automobile Mixed-Model
Assembly Line with Multiple Departments, International Journal of
Production Research, 42 (8): 1525-1543.

Drexl, Andreas and Alf Kimms (2001): Sequencing Jit Mixed-Model
Assembly Lines under Station-Load and Part-Usage Constraints, Man-
agement Science, 47 (3): 480-491.

Epping, Thomas, Winfried Hochstättler, and Peter Oertel (2004): Com-
plexity Results on a Paint Shop Problem, Discrete Applied Mathematics,
136 (2-3): 217-226.

Fliedne����+���� and����Nil�����Boysen��(2008):���Solving����he���¡ar���Sequencing
Problem via Branch Bound, European Journal of Operational Research,
191 (3): 1023-1042.

Gravel, Marc, Caroline Gagne, and Wilson Price (2005): Review and
Comparison of Three Methods for the Solution of the Car Sequencing
Problem, Journal of the Operational Research Society, 56 : 1287-1295.

Gusikhin, Oleg, Rahul Caprihan, and Kathryn E. Stecke (2008): Least
In-Sequence Probability Heuristic for Mixed-Volume Production Lines,
International Journal of Production Research, 46 (3): 647-673.

Hart, Peter, Nils Nilsson, and Bertram Raphael (1968): A Formal Basis
for the Heuristic Determination of Minimum Cost Paths, IEEE Trans-
actions on Systems Science and Cybernetics, 4 (2): 100-107.

Inman, Robert R. (2003): ASRS Sizing for Recreating Automotive As-
sembly Sequences, International Journal of Production Research, 41
(5): 847-863.

Inman, Robert R. and D. M. Schmeling (2003): Algorithm for Agile
Assembling-To-Order in the Automotive Industry, International Jour-
nal of Production Research, 41 (16): 3831-3848.

Kis, Tamás (2004): On the Complexity of the Car Sequencing Problem,
Operations Research Letters, 32 (4): 331-335.

Kuhn, Harold W. (1955): The Hungarian Method for the Assignment
Problem, Naval Research Logistics Quarterly, 2 (1-2): 83-87.

Lahmar, Maher and Saif Benjaafar (2007): Sequencing with Limited
Flexibility, IIE Transactions, 39 (10): 937-955.

Lahmar, Maher, Hakan Ergan, and Saif Benjaafar (2003): Resequenc-
ing and Feature Assignment on an Automated Assembly Line, IEEE
Transactions on Robotics and Automation, 19 (1): 89-102.

Lim, Andrew and Zhou Xu (2009): Searching Optimal Resequencing
and Feature Assignment on an Automated Assembly Line, Journal of
the Operational Research Society, 60 (3): 361-371.

Lowerre, Bruce T. (1976): The Harpy Speech Recognition System, Ph.D.
Thesis, Carnegie Mellon University.

Ow, Peng Si and Thomas E. Morton (1988): Filtered Beam Search
in Scheduling, International Journal of Production Research, 26 (1):
35-62.

Parrello, Bruce D., Waldo C. Kabat, and Larry Wos (1986): Job-Shop
Scheduling Using Automated Reasoning: A Case Study of the Car-
Sequencing Problem, Journal of Automated Reasoning, 2 (1): 1-42.

Sabuncuoglu, Isan, Yasin Gocgun, and Erdal Erel (2008): Backtracking
and Exchange of Information: Methods to Enhance a Beam Search Algo-
rithm for Assembly Line Scheduling, European Journal of Operational
Research, 186 (3): 915-930.

Solnon, Christine, Van Dat Cung, Alain Nguyen, and Christian Artigues
(2008): The Car Sequencing Problem: Overview of State-of-the-Art
Methods and Industrial Case-Study of the ROADEF2005 Challenge
Problem, European Journal of Operational Research, 191 (3): 912-927.

Spieckermann, Sven, Kai Gutenschwager, and Stefan Voß (2004): A
Sequential Ordering Problem in Automotive Paint Shops, International
Journal of Production Research, 42 (9): 1865-1878.

Wang, Fan and Andrew Lim (2007): A Stochastic Beam Search for the
Berth Allocation Problem, Decision Support Systems, 42 (4): 2186-2196.

Biographies

Nils Boysen is Professor of Operations Management at the
Friedrich-Schiller-University of Jena (Germany). He received a
Diploma Degree and a Ph.D. in Business Administration from the
University of Hamburg. During the period 2000-2002 he worked for
IBM Global Services. His main research interests are production and
operations management as well as optimization techniques.

Uli Golle is a research assistant at the Department of Information
Systems at the University of Mainz. He graduated in information
systems in summer 2007. His research interests include combinatorial
optimization problems, especially scheduling problems and
evolutionary algorithms.

Franz Rothlauf received a Diploma in Electrical Engineering from
the University of Erlangen, a Ph.D. in Business Administration from the
University of Bayreuth, a Habilitation from the University of Mannheim,
in 1997, 2001, and 2007, respectively. Since 2007, he has had a chair in
Information Systems at the University of Mainz. His main research inter-
ests are combinatorial optimization problems, optimization algorithms
especially evolutionary algorithms, and E-Business.

���

