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Abstract

During the last decades, wage inequality in Germany has considerably increased both within
and across regions. Building on concepts of the task-based approach, this paper studies whether
and to what extent these developments are driven by technological change. We present novel
evidence that technological change is positively related to intra-regional wage inequality. This
is driven by increases in the compensation for non-routine cognitive tasks that are prevalent
at upper percentiles of the wage distribution combined with decreases in the compensation for
non-routine manual tasks, which are located at lower percentiles. Because there exists substan-
tial variation in the degree of technology exposure across German regions, technological change
can also explain part of the rise in inter-regional wage inequality.
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1 Introduction

The increase in wage inequality in many industrialized countries during the last decades has at-

tracted considerable attention from economists, policy makers and the general public alike. A con-

sensus view in the literature is that rising inequality is linked to differential demand shifts for high-

and low-skilled workers.1 Existing studies on the determinants of these shifts have mainly focused

on explaining developments at the aggregate level. However, there are substantial differences in the

evolution of wages across spatial units. To illustrate this fact, Figure 1 shows the evolution of the

mean and standard deviation of the composition-adjusted Gini-coefficient for wages in the 204 Ger-

man labor market regions. Between 1979 and 2006, the Gini-index rose by almost a quarter from

.19 to .24. At the same time, the standard deviation almost doubled, indicating that this average

rise occurs to varying degrees in different regions. These spatial disparities are sizable, for exam-

ple, the difference between the region with the lowest and the highest Gini-coefficient amounted

to .16 in 2006, while it was only .08 in 1979.2 Hence, the presence of rising regional dispersion

suggests that demand and supply shifts for skilled and unskilled workers also occur differentially

across spatial units.

Figure 1: Evolution of wage inequality over time
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Notes: N=204 labor market regions. In order to abstract from changes
in the workforce composition, we hold constant relative employment
shares of demographic groups, as defined by gender, education, nation-
ality and potential experience. Gini-coefficients are calculated, using the
average labor supply share for each subgroup over 1979 to 2006 as fix
weights.

This paper explores the spatial dimension of rising wage inequality in Germany between 1979

and 2006 and its determinants. We focus on the role of technological change, which has proven

a successful explanation for recent wage developments at the aggregate level. Our analysis builds

1Katz and Autor (1999) and Acemoglu and Autor (2011) offer an exhaustive overview of the facts.
2The same observation holds for alternative wage inequality measures, such as the Theil-index and the P85/P15 wage

ratio.
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upon a recent paper by Autor and Dorn (2013), who use the task-based approach to technological

change to explain employment and wage dynamics. They argue that technological progress is non-

neutral with respect to different job tasks that employees perform at the workplace (Autor et al.,

2003).3 Technological progress reduces the cost of automating codifiable, routine job tasks, which

can be performed either by computer capital or low-skilled labor. This induces substitution from

routine labor to computer capital and leads displaced workers to supply non-routine manual tasks

instead. These do not require a high skill level but situational adaptability and personal interac-

tion, thus rendering them unsuitable for substitution by technology. Simultaneously, technological

progress increases the productivity of workers who perform problem-solving, non-routine cognitive

tasks, which are complemented by technology, as they rely on information as an input. Techno-

logical change drives down the wages paid to routine tasks, and increases the compensation for

non-routine cognitive tasks. The impact of technology on the wages paid for non-routine manual

tasks is ambiguous, depending on whether the demand for these tasks rises enough to offset adverse

wage effects stemming from additional supply.

This paper studies the implications of the task-based approach for regional wage inequality at

the level of local labor markets. To do so, we exploit variation in the regional endowment of routine

task performing labor, resulting from regional differences in industry structures. This paper makes

a number of contributions to the existing literature. To our knowledge, we are the first to directly

relate technological change to developments in task-specific compensation patterns. Building upon

the results of this analysis, we provide novel evidence on the link between technological change

and developments of intra- and inter-regional wage inequality. Previewing our key results, we first

report that regions with high technology exposure experienced a greater relocation from routine

to non-routine employment. The rise in non-routine cognitive tasks was accompanied by an in-

crease in their compensation, while the decline in routine tasks came along with decreases in their

compensation. Further, increases in non-routine manual tasks coincided with a decline in their pay.

Given the fact that non-routine cognitive tasks are prevalent at the upper tail of the wage distri-

bution, while routine and non-routine manual tasks are most commonplace at the lower parts of the

distribution, changes in the compensation structure of tasks should manifest in an increase of over-

all wage inequality. We present evidence that local labor markets that were initially specialized in

routine intensive employment witnessed significant increases in local wage inequality as measured

by the Gini-coefficient. Our estimates suggest that a region at the 85th percentile of the routine

share distribution increases its Gini-coefficient by 16% more than a region at the 15th percentile.

We then address the question whether the spatial differences of technology exposure are an

important determinant for the development of inter-regional inequalities. To this end, we compare

wage developments, when hypothetically only one determinant of wage inequality is allowed to

vary across regions, while all other factors remain constant. This dispersion analysis suggests that

technology exposure is a relevant source of spatial disparities.

Our study combines literature on the labor market effects of technology with work in urban

economics on spatial dispersion of wages and skill premia. On the one hand, an extensive body

3Acemoglu and Autor (2011) define a task as a unit of work activity, that produces goods and services. Workers
allocate their skills to different tasks, depending on their comparative advantage in supplying them.
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of research has highlighted the importance of technological progress in explaining changes in the

aggregate wage and employment structure. Autor et al. (2006, 2008) show that both employment

and wage growth has been u-shaped across the skill distribution in the US. Similar employment

patterns have been also detected in other industrialized countries (Spitz-Oener, 2006; Goos and

Manning, 2007; Michaels et al., 2013; Senftleben-König and Wielandt, 2014). Yet, in contrast

to the US, these countries have witnessed wage inequality throughout the entire wage distribution

(Gernandt and Pfeiffer, 2007; Antonczyk et al., 2010b). So far, existing studies for the German labor

market did not establish a relationship between technological change and rising wage inequality

(Antonczyk et al., 2009, 2010a). Instead, they emphasize the role of composition effects and labor

market institutions Dustmann et al. (2009); Antonczyk et al. (2010b)

At the same time, a number of studies documents spatial persistence of wage differentials

(Combes et al., 2008; Moretti, 2011; Combes et al., 2012), where research primarily focuses on

the impact of agglomeration and urban wage premia (see Duranton and Puga (2004) and Rosen-

thal and Strange (2004) for an overview of the existing literature). Other explanations for regional

wage differences are related to the impact of international trade (Hanson, 1997; Autor et al., 2013),

and, more broadly, to the role of market access and infrastructure (Redding and Venables, 2004;

Breinlich et al., 2014). Yet, evidence on the connection between wage inequality and technology

at the regional level is sparse. One notable exception is a recent paper by Lindley and Machin

(2014), who investigate spatial variation in the college wage premium across US states and re-

port that relative demand increases for high-skilled labor are larger in states with higher increases

in R&D spending. Further, a study by Autor and Dorn (2013), which is most closely related to

our analysis, explores the role of technology for occupational employment and wage changes at

the commuting zone level. They find that regions that were particularly prone to computerization

experienced differential increases in non-routine occupations which coincided with wage gains in

these occupations, leading to job and wage polarization.

The remainder of the paper proceeds as follows: Section 2 shortly presents the theoretical model

developed by Autor and Dorn (2013) (henceforth AD), a model of unbalanced productivity growth

upon which our empirical analysis is based, and its key implications. Further, we describe the empir-

ical approach used to test the model predictions and their consequences for the evolution of spatial

labor market inequality. Section 3 introduces the datasets employed and describes how we construct

our main explanatory variable, a measure to capture the impact of recent technological progress, as

well as measures of task supply and compensation. In Section 4, we assess the relationship between

technology exposure and regional developments in task supplies and task compensation patterns.

Based upon these results, we explore the role of technology for the evolution of overall regional

wage inequality in section 5. Section 6 concludes.
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2 Theoretical Model and Estimation Strategy

2.1 Theoretical Model and Implications

Our analysis is based on a model of unbalanced productivity growth by AD. In their model, techno-

logical change takes the form of a decline in prices for computer capital, which replaces routine-task

labor. The model features three task inputs, non-routine manual (Lm), routine (Lr) and non-routine

cognitive (Lc) tasks, either supplied by high-skilled (H) or low-skilled workers (L), employed in the

goods or the services sector ( j = g, s). High-skilled workers solely perform non-routine cognitive

tasks (Lc) while low-skilled workers supply routine and non-routine manual tasks (Lr , Lm). In addi-

tion, capital (K), that can be used to substitute for routine tasks, is used as an input in the production

of goods. The production of goods (Yg) combines non-routine cognitive and routine labor as well

as computer capital using the following technology:

Yg = L1−β
c

�

(αr Lr)
µ+ (αkK)µ

�β/µ ,(1)

where αr and αk reflect efficiency parameters. The service sector only employs non-routine manual

labor as an input factor:

Ys = αm Lm(2)

Consumers/workers have identical CES utility functions defined over the consumption of goods and

services:

u= (cρs + cρg )
1/ρ(3)

The elasticity of substitution between goods and services is given by σ = (1/(1−ρ)). As the price of

computer capital falls to zero asymptotically, the allocation of low-skill labor between non-routine

manual and routine tasks is determined as follows:

L∗m =











1 if 1
σ
>
β−µ
β

Lm ∈ (0, 1) if 1
σ
= β−µ

β

0 if 1
σ
<
β−µ
β

.

(4)

The allocation crucially depends upon the relative magnitude of the consumption
�

σ = 1/
�

1−ρ
��

and the production elasticities
�

1/
�

1−µ
��

, scaled by the share of the routine task input in goods

production
�

β
�

. That is, if the production elasticity exceeds the consumption elasticity, technologi-

cal change raises the relative demand for low-skill labor in service employment. In contrast, if the

reverse is true, low-skilled labor concentrates in the goods sector performing routine tasks.

The dynamics of the relative compensation paid to non-routine cognitive versus routine
�

wc

wr

�

and routine versus non-routine manual tasks
�

wm
wr

�

mirror the dynamics of labor flows between

goods and services. If the production elasticity exceeds the consumption elasticity, the compensa-
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tion for non-routine manual tasks rises relative to the wage paid to routine tasks. If instead, the

consumption elasticity is larger, demand for non-routine manual tasks does not rise sufficiently to

increase compensation paid to these tasks. In addition, the ratio between the compensation paid

for non-routine cognitive to routine tasks always goes to infinity as computer prices falls to zero.

wm

wr
=











∞ if 1
σ
>
β−µ
β

−log(1− Lm∗) if 1
σ
= β−µ

β

0 if 1
σ
<
β−µ
β

,

(5)

wc

wr
=∞.(6)

The AD model is then extended to a spatial equilibrium setting with a large set of regions

j ∈ J = (1, ...., |J |). The key feature is that technology has differential effects on local labor markets

depending on the amount of routine task inputs employed in goods production (β j). The results

from this spatial model closely resemble the closed economy model.

The theoretical framework in the AD model provides a number of predictions for the evolution

of task requirements and task compensation patterns and thus for regional wage inequality. First,

the model predicts a general downward trend in routine task inputs, as these are subject to substi-

tution by computer capital, where regions that were particularly exposed to technological change

should experience greater declines in routine task requirements. The model further predicts that

decreases in routine tasks come along with declines in the compensation paid for these tasks. Fur-

ther, because technological change increases the productivity of employees performing non-routine

cognitive tasks, wages paid to these tasks rise.

The model is less clear about the consequences for the non-routine manual task compensation,

as these depend on consumer preferences. In particular, if consumers do not admit close substitutes

for services (provided by manual tasks), technological change raises aggregate demand for non-

routine manual tasks and hence their compensation. Yet, if consumer preferences are different, the

model predicts that the compensation for manual tasks declines. Thus, the model is consistent with

wage polarization, as recently documented in the US for example by Autor et al. (2008) as well as

a monotonous increase of wage inequality throughout the skill distribution, a development that has

been observed in Germany during the last decades (Dustmann et al., 2009). In that case, the model

predictions are similar to the traditional skill-biased technological change hypothesis (Acemoglu

and Autor, 2011).

2.2 Empirical Approach

In order to empirically test the relationships identified by the theoretical model in AD, we proceed

in three steps. First, we assess the relationship between technology exposure and changes in task

supplies across regions. Then, we explore the effects of computerization on the compensation
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of tasks. Finally, we quantify the role of technology for the evolution of overall regional wage

inequality. To do so, we set up an empirical model of the following form:

∆Yr = α+ β1RSHr + β2X r + γs + er .(7)

The dependent variable ∆Yr represents the first difference of the variable of interest in region r

between the base year 1979 and some subsequent year t. Depending on which hypothesis we test, it

represents (1) the regional supply of routine, non-routine manual and non-routine cognitive tasks,

(2) the region specific compensation of routine, non-routine manual and non-routine cognitive

tasks, and (3) different regional wage and wage inequality measures, i.e. the Gini-coefficient or

wages at different parts of the distribution.4

The main parameter of interest, β1, is the coefficient on the measure of regional routine intensity

in 1979, RSHr . This measure should be largely unaffected by technological progress as computer-

ization only started to spur during the 1980’s.5 All regressions include state dummies, γs, that

control for mean differences in employment and wages across states. In addition, all regressions

are weighted by the regional population size.

In order to control for potentially confounding factors, we augment the model with a vector

X r that includes additional covariates, reflecting differences in urbanity between regions, the local

human capital and demographic composition as well as local economic conditions in 1979.

3 Data, Construction of Variables and Descriptive Evidence

3.1 Data Sources: Employment and Wages

All information concerning local employment and wages is obtained from the Sample of Integrated

Labor Market Biographies Regional File (SIAB-R), a two percent random sample drawn from the

full population of the Integrated Employment Biographies, provided by the Institute of Employment

Research at the Federal Employment Agency. This highly reliable administrative data comprises

marginal, part-time and regular employees as well as job searchers and benefit recipients covering

the years 1975 to 2008 (for details, see Dorner et al. (2010)). It provides detailed information

on daily wages for employees subject to social security contributions (wages of civil servants or

self-employed workers are not included), as well as information on occupation, industry affiliation,

workplace location and demographic information on age, gender, nationality and educational at-

tainment. For our analysis, we restrict the sample to full-time workers between 20 and 60 years of

age working in West Germany. Whenever we construct aggregate or average outcomes, we weight

4Autor and Dorn (2013) employ stacked first differences over three time periods to estimate the relationship between
regional routine intensity and subsequent employment changes. In contrast, we restrict our analysis to the single differ-
ence based on the routine shares and regional covariates in 1979 as the explanatory variables to focus on the long-run
component of differences in regional task structures and thus circumvent the endogeneity problem related to the use of
subsequent routine shares. If we follow the approach of AD, we obtain very similar results in terms of effect size and
statistical significance.

5Nordhaus (2007) estimates that after a period of very modest price decreases in the 1960’s and 1970’s, the cost of
computation sharply declined thereafter.
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each employment spell by the number of days worked.6

For the analysis it is crucial to consider functionally delineated labor market regions. Hence, the

326 administrative districts in West Germany (excluding Berlin) are aggregated to 204 labor market

regions (Koller and Schwengler, 2000), which take commuter flows into account and therefore

reflect local labor markets more appropriately (Eckey et al., 2006; Eckey and Klemmer, 1991).

In 1979, these labor market regions have an average population of around 300,000 individuals,

although this varies from 55,000 to 2,5 million.

We use the wage data in the SIAB-R to compute the Gini-idex, an inequality measure commonly

used in the literature. The index ranges from 0 (total equality) to 1 (total inequality) and is com-

puted for every region and year. To test the robustness of our results, we alternatively consider the

Theil-index and the ratio of wages at the 85th percentile of the wage distribution and the 15th per-

centile. Table 1 summarizes the unconditional evolution of the different wage inequality measures

across labor market regions between 1979 and 2006.7

In order to construct regional control variables, we include information from the Establishment

History Panel (BHP), a 50 percent sample of all establishments throughout Germany with at least

one employee liable to social security, stratified by establishment size. The additional covariates are

chosen to control for the qualification structure as well as for the structural (firm size and industry

composition) and demographic (gender and nationality) composition at the local level. Further,

we include information on three basic area types (districts in urban, conurban and rural areas),

following a classification scheme by the German Federal Office for Building and Regional Planning

(BBR). Descriptive statistics for the regional covariates are summarized in Table 1.

3.2 Measuring Task Supplies

Construction and Trends

The information on task requirements of employees is derived from the BIBB/IAB Qualification

and Career Survey. The BIBB comprises five cross sections launched in 1979, 1985, 1992, 1998

and 2006, each covering approximately 30,000 individuals. The dataset is particularly well suited

for our research, as it includes detailed information on the activities individuals perform at the

workplace. For each individual i, these activities are pooled into three task groups: (1) non-routine

cognitive, (2) routine and (3) non-routine manual tasks. In the assignment of tasks, we follow

Spitz-Oener (2006) and construct individual task measures T M j
i for task j and time t according to

the definition of Antonczyk et al. (2009):

T M j
i t =

number of activities in category j performed by i in t

total number of activities performed by i over all categories in t
× 100,(8)

where j = C (non-routine cognitive), R (routine), M (non-routine manual) and t = 1979, 1985,

1992, 1998 and 2006. In order to match the task information to the SIAB-R, the individual task

measures are aggregated at the occupational level and the task input of individual i in occupation

6See the Data Appendix for more details on the sample selection and the basic processing of the SIAB-R.
7These numbers are similar to data provided by official OECD and EU statistics.
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Table 1: Descriptive statistics of variables employed

Variable 1979 1985 1992 1998 2006
Wage inequality measures

Gini coefficient .213 .219 .229 .242 .281
(.010) (.017) (.017) (.022) (.028)

Theil index .080 .086 .094 .106 .142
(.014) (.014) (.014) (.019) (.028)

Log mean wage 4.181 4.195 4.334 4.339 4.331
(.083) (.086) (.089) (.087) (.103)

Log P85 4.529 4.550 4.698 4.719 4.776
(.094) (.108) (.114) (.118) (.143)

Log P15 3.834 3.837 3.975 3.970 3.881
(.092) (.095) (.093) (.086) (.092)

Average task shares

Non-routine cognitive (T C ) .072 .021 .076 .136 .219
(.011) (.022) (.020) (.028) (.026)

Non-routine manual (T M ) .416 .406 .386 .388 .388
(.025) (.020) (.023) (.017) (.014)

Routine (T R) .512 .574 .538 .475 .393
(.020) (.020) (.024) (.028) (.022)

Average task compensation

Non-routine cognitive (W C ) 4.274 4.124 4.268 4.111 4.015
(.095) (.085) (.091) (.091) (.096)

Non-routine manual (W M ) 3.884 3.847 3.924 3.712 3.273
(.053) (.055) (.051) (.085) (.195)

Routine (W R) 3.971 3.839 3.935 3.849 3.690
(.074) (.080) (.095) (.106) (.158)

Main explanatory variable

Routine share .416 – – – –
(.038) – – – –

Covariates

Fraction female employees .330 .328 .332 .325 .323
(.045) (.043) (.038) (.037) (.038)

Fraction foreign employees .081 .066 .090 .080 .108
(.048) (.039) (.044) (.041) (.052)

Share manufacturing .439 .428 .416 .385 .354
(.125) (.127) (0.120) (0.116) (0.118)

Fraction high-skilled employees 0.027 0.035 0.046 0.059 0.074
(.014) (.017) (0.022) (0.027) (0.034)

Fraction medium-skilled employees 0.679 0.724 0.759 0.783 0.804
(.054) (.051) (0.044) (0.041) (0.041)

Fraction low-skilled employees 0.294 0.242 0.195 0.158 0.122
(.058) (.054) (0.045) (0.039) (0.036)

Fraction small firms (<25 employees) 0.339 0.354 0.345 0.374 0.377
(.083) (.085) (0.076) (0.074) (0.077)

Average region population 297,494 296,688 305,698 308,443 313,296
(376,437) (393,948) (374,855) (348,248) (359,030)

Population density 301 299 311 316 317
(418) (403) (415) (408) (400)

Notes: N = 204 labor market regions. Standard deviations in parentheses. Descriptives are depicted for years
in which task information is available from BIBB/IAB data. All employment variables are based upon full-time
employment subject to social security contributions for a given region. Fractions are computed with respect to
total full-time employment. Task compensation is in constant 2000 Euro and corresponds to log daily returns.
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k at time t is weighted by its respective weekly working hours (Likt):

T I j
kt =

 

∑

i

h

Likt × T M j
ikt

i

! 

∑

i

Likt

!−1

.(9)

Table 2 provides an overview of the occupations with the highest non-routine cognitive, routine

and non-routine manual task contents in 1979. The most routine intensive occupations include

clerical and administrative occupations as well as blue-collar production occupations. Non-routine

manual task intensive occupations include less-skilled service occupations (nursing assistants, wait-

ers) as well as construction occupations (roofers). In contrast, occupations with a high non-routine

cognitive task content include high-education occupations, such as teachers, engineers and scien-

tists. Table 2 also shows the task shares of the respective occupations in 2006. Strikingly, the relative

task intensities vary significantly over time. Particularly the group of routine intensive occupations

witnesses substantial changes in the distribution, presumably as a consequence of technological

progress itself. Due to this substantial variation that occurs within occupations, it bears notice

that the natural dimension to test the predictions of the task-based framework is to explore direct

changes in regional task inputs instead of occupational shifts.

Table 2: Ranking of occupations according to their task content in 1979 and their task
intensities

1979 2006
Occupation abstract routine manual abstract routine manual

Five occupations with highest non-routine cognitive task intensity in 1979
Technical draughtpersons 0.90 0.10 0.00 0.88 0.12 0.00
University teachers 0.76 0.20 0.04 0.82 0.09 0.09
Mechanical, motor engineers 0.75 0.20 0.05 0.84 0.13 0.03
Electrical engineers 0.69 0.26 0.05 0.72 0.20 0.08
Survey engineers 0.66 0.29 0.05 0.77 0.17 0.06

Five occupations with highest routine task intensity in 1979
Cashiers 0.03 0.95 0.02 0.67 0.07 0.26
Office auxiliary workers 0.06 0.91 0.04 0.59 0.13 0.28
Stenographers, data typists 0.07 0.91 0.02 0.76 0.03 0.20
Cost accountants 0.09 0.90 0.01 0.81 0.10 0.09
Post masters 0.08 0.88 0.03 0.57 0.08 0.35

Five occupations with highest non-routine manual task intensity in 1979
Household and building cleaners 0.01 0.09 0.90 0.19 0.05 0.75
Nurses, midwives 0.12 0.14 0.75 0.46 0.16 0.38
Nursing assistants 0.08 0.18 0.74 0.34 0.14 0.52
Mechanics 0.10 0.19 0.72 0.28 0.39 0.33
Attending on guests 0.07 0.21 0.71 0.48 0.22 0.30

Notes: Task intensities are derived from BIBB-IAB data in 1979 and 2006 as defined in equation 8. The sample
includes full-time employees between 20 and 60 years of age working in West-Germany, excluding agricultural
and public sector employment.

Figure 2 provides stylized evidence on the systematic association between task intensities and

their prevalence across the skill distribution. It plots the distribution of task usage across the skill

distribution for 1979 and 2006, which is approximated by the occupational median wage in the re-
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Figure 2: Task intensity along the wage distribution, 1979 and 2006
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(b) Task intensity 2006

Notes: Share of workers performing routine, non-routine manual and non-routine cognitive tasks in 1979 and 2006,
respectively. Occupations are ranked according to their median wage in the respective year using the SIAB-R. Task
intensity is derived from BIBB and defined as in equation 9.

spective year. The figure clearly shows that non-routine cognitive tasks are prevalent in occupations

at the top of the skill distribution. In contrast, routine and non-routine manual tasks are mainly

performed by less-skilled employees. Interestingly, apart from a large level shift, this distributional

pattern remains relatively stable over the entire period.

Regional Quantities and Prices

To obtain task measures at the regional level, the occupational task information from the BIBB data

is matched to the SIAB-R, exploiting the fact that both datasets employ a time-consistent definition

of occupational titles according to the three-digit 1988 occupational classification provided by the

Federal Employment Agency.8

We construct composition-adjusted region-level task shares following Peri and Sparber (2009).

That is, we clean the task information of demographic characteristics, which may affect regional

task supply and hence be correlated with the routine share. To do so, we regress separately by BIBB

wave each T I j
kt on a gender dummy, potential experience and its square, a set of education fixed

effects and a dummy indicating German nationality.9 The region-level averages of the predicted

values, weighted by the length of respective employment spell, constitute the task supplies T j
r t for

each region r and year t. Summary statistics of the three task shares are displayed in Table 1. In line

with the predictions of the task-based approach, we observe a general downward trend of routine

task input over time. Simultaneously, the share of labor that performs non-routine cognitive tasks

is increasing, while non-routine manual task inputs remain relatively constant over time.

8Due to data protection reasons the SIAB-R is anonymized and occupational information is aggregated to 120 occu-
pation groups. However, occupations are unambiguously assignable to the three-digit 1988 occupational classification.

9We calculate potential experience as current year minus year of birth minus age at the end of educational/vocational
training. The average age for each education level is set at 15 for individuals “without completed education”, 16 for
those “without A-levels and without vocational training”, 19 for those “without A-levels but with vocational training” or
“with A-levels but without vocational training”, 22 for those “with A-level and vocational training” and 25 for those “with
a (technical) college degree”.
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To obtain regional task compensation measures for each year, we follow a two step procedure

proposed by Peri and Sparber (2009). First, we construct average log wages in each region that

control for observable differences in demographic characteristics across local labor markets. To

obtain these cleaned wages we regress separately for each BIBB wave log daily real wages on the

same variables that are used for the adjustment of the task variables. The regressions further include

occupation by region dummies whose coefficients represent the estimates for the average cleaned

log-wage, ln(w̃kr t) for occupation k, region r and year t. In a second step, these cleaned wages are

transformed into levels and regressed on the occupation-specific task intensities T I j
kt . By separately

estimating the second-stage regression in equation 10 for each BIBB wave, we can identify the

region and year-specific task compensations, wC
r t , wR

r t and wM
rt , received for supplying one unit of

non-routine cognitive, routine and non-routine manual tasks.

w̃kr t = wC
r t × T IC

kt +wR
r t × T IR

kt +wM
rt × T I M

kt + ekr t .(10)

3.3 Measuring Technology Exposure

Our main explanatory variable is a measure that reflects the regional exposure to technological

progress. To generate this, we follow the approach of AD: we use the occupational routine task

index in 1979 (T IR
k1979) to identify the set of occupations that are in the upper third of the routine

task distribution.10 Using these routine-intensive occupations, we calculate for each labor market r

a routine employment share measure RSHr for the year 1979, equal to:

RSHr =

 

∑

k

Lkr × I
�

T IR
k > T IR,P66

k

�

! 

∑

k

Lkr

!−1

,(11)

where Lkr t is employment in occupation k in labor market r in 1979, and I[·] is an indicator

function, which takes the value one if the occupation is routine intensive. The average population

weighted regional routine share in 1979 is .42. A region at the 85th percentile of the routine share

distribution has a 8.1 percentage points higher routine intensity compared to a region at the 15th

percentile (RSHP15 = .379, RSHP85 = .460). To get an impression of the regional variation in

routinization exposure, Panel A of Figure 3a maps the geographic distribution of the regional rou-

tine intensity in 1979 across Germany. Routine intensive labor markets are industrial strongholds,

such as Wuppertal and Wolfsburg, as well as human capital intensive regions, such as Düsseldorf,

Bonn and Wiesbaden. Regions with a low routine share tend to be specialized in the tourism and

hospitality industry, such as Husum or Garmisch-Patenkirchen and are located near the Alps or the

sea. A potential concern is that the routine share largely reflects the degree to which labor markets

are specialized in manufacturing industries. In this case, it would be difficult to disentangle the

impact of technology from trade-related explanations. The simple population-weighted correlation

10Our results remain unchanged if we instead use occupations in the upper quarter or upper half of the routine task
distribution. Results are available from the authors upon request.
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Figure 3: Distribution of routine and manufacturing share in 1979

(a) Routine Share (b) Share Manufacturing

coefficient between technology exposure and the manufacturing share is moderate and amounts to

.255, indicating that the routine share is more related to the production technology than to industry

specialization. As a visualization, Panel B of Figure 3a shows the distribution of the manufacturing

share across German regions.

4 Results

4.1 Technology and Task Supply

We now turn to the main estimates, where we assess the impact of technological change on regional

task structures, compensation patterns and overall wage inequality. As a first step, we focus on

changes in regional task structures by fitting the following variant of equation 7:

∆T j
r,1979−2006 = α+ β1RSHr + β2X r + γs + er .(12)

The dependent variable is the change in the supply of task j between 1979 and 2006 in labor

market r, where j = R, C and M. The estimates from weighted-least squares regressions (WLS) are
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presented in Table 3.

Table 3: Technology and Task Supply, 1979-2006

(1) (2) (3) (4) (5) (6)

Panel A: ∆T R

RSH1979 -.359*** -.315*** -.327*** -.439*** -.232*** -.401***
(.070) (.064) (.054) (.035) (.063) (.035)

Rural area .032*** .007*
(.006) (.004)

Conurban area .037*** .006
(.007) (.004)

High-skilled -1.020*** -.356***
(.126) (.126)

Low-skilled .119*** .016
(.037) (.033)

Manufacturing empl. .161*** .133***
(.015) (.017)

Empl. in small estbl. .236*** .101***
(.022) (.025)

Female employment -.011 .115***
(.054) (.036)

Foreign employment -.369*** -.161***
(.071) (.038)

R2 .380 .520 .765 .783 .546 .848

Panel B: ∆T C

RSH1979 .091 .053 .063 .185*** -.040 .128***
(.064) (.063) (.043) (.035) (.063) (.036)

R2 .160 .308 .681 .686 .374 .778

Panel C: ∆T M

RSH1979 .267*** .262*** .265*** .255*** .272*** .273***
(.027) (.026) (.028) (.024) (.028) (.026)

R2 .603 .619 .605 .624 .619 .638

Notes: N=204 labor market regions. All models include dummies for the federal state in which
the region is located and regional covariates as indicated as well as a constant. Models are
weighted by start of period share of national population. Robust standard errors in parentheses.
* Significant at 10%, ** at 5%, *** at 1%.

As a baseline, the first column presents a specification with the regional routine share as the

variable of interest and a full set of state dummies. The estimated effect of technology on routine

tasks is negative and significant at the 1 percent level, implying that regions that were particularly

exposed to technology experienced greater declines in routine tasks.

To control for other factors that may explain regional changes in the task supplies, we augment

the model step-by-step with a number of additional explanatory variables. In column 2, we control

for differences in the degree of urbanization across regions by adding information on regions’ area

type. Numerous studies have found evidence for significant productivity differences between urban

and rural areas due to agglomeration economies (Bacolod et al., 2009; Glaeser and Resseger, 2010;

Davis and Dingel, 2012). Hence, it is likely that also task requirements evolve differently in regions

of different types. Indeed, the decline in routine task inputs is significantly less pronounced in rural
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and conurban regions (as compared to urban areas which constitute the baseline category).

To capture differences in the regional human capital structure, column 3 adds the share of

high-skilled and low-skilled employees in the local labor force. While regions with large shares of

low-skilled employees witness smaller declines in routine task requirements, somewhat surprisingly,

a greater initial supply of high-skilled employees predicts declining routine task inputs. In column

4, we further include two variables that reflect local economic conditions: the share of small estab-

lishments (< 25 employees), which leads to regional productivity disparities (Agrawal et al., 2014)

and the share of employment in manufacturing. Both variables enter with a positive sign, predicting

an increase in the subsequent input of routine tasks. Finally, column 5 considers the share of female

employees and the share of foreigners in the local labor force. Both variables are associated with

declining regional routine task requirements.

Notably, the inclusion of additional explanatory variables leaves the significant, negative rela-

tionship between technology exposure and routine task inputs largely unaffected. When all control

variables are simultaneously included (column 6), the point estimate increases slightly and the pre-

cision of the point estimate rises. To interpret the coefficient, we compare a region at the 85th

percentile with a region at the 15th percentile of the routine share distribution in 1979 and predict

their respective change in the input of routine tasks. The point estimate of -.401 implies a differen-

tial decline in routine tasks by 3.2 percentage points relative to a mean decrease of 11.9 percentage

points over 1979 and 2006.

Panel B and C present the results for the change in non-routine cognitive and non-routine man-

ual tasks between 1979 and 2006. The estimates on both task inputs are positive and statistically

significant.

Are the observed patterns consistent over time? To answer this question, we estimate models

following equation 12 separately for each outcome year and depict results in Table 4. The year 1979

remains the base year, such that the coefficients reflect how the impact of technology accumulates

over time. The effect of technology on routine tasks is negative and statistically significant in all

sample years after 1979, and most pronounced during the 1990’s. Similarly, both non-routine task

inputs have experienced a differential growth in initially routine intensive regions throughout the

observation period. The coefficients increase, indicating that the adaption in task supplies as a

result of technological change is a continuous process. However, it is noteworthy that the impact

of computerization on the regional task structure attenuates over time, since the coefficients on the

routine task share remain relatively stable in the later periods (column 3 and 4).

In order to detect possible heterogeneous effects of technology exposure across demographic

groups, Panel A of Appendix Table 1 depicts regressions bifurcated by gender, age and educa-

tion level. The estimated coefficients indicate that the effects of computerization are similar in

magnitude across all subsamples. One group exempted from the general patterns are high-skilled

employees, among whom computerization has left the requirements for non-routine manual tasks

unaffected. Instead, they exclusively increase their input of non-routine cognitive tasks, which is

consistent with theoretical considerations provided by AD.

So far, the results of our analysis strongly support the key implications of the tasks-based ap-
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Table 4: Technology and Task Inputs, Subperiods

Time period

1979-1985 1979-1992 1979-1998 1979-2006
(1) (2) (3) (4)

Panel A: ∆T R

RSH1979 -.264*** -.283*** -.402*** -.401***
(.028) (.030) (.040) (.035)

R2 .674 .693 .847 .848

Panel B: ∆T C

RSH1979 .098*** .114*** .159*** .128***
(.023) (.021) (.033) (.036)

R2 .731 .706 .820 .778

Panel C: ∆T M

RSH1979 .166*** .169*** .243*** .273***
(.022) (.023) (.026) (.026)

R2 .516 .330 .614 .638

Notes: N=204 labor market regions. All models include dummies
for the federal state in which the region is located and covariates
reflecting the human capital and demographic composition outlined
in column (6), Table 1 as well as a constant. Models are weighted by
start of period share of national population. Robust standard errors
in parentheses. * Significant at 10%, ** at 5%, *** at 1%.

proach, providing evidence for increasing specialization of employees in non-routine tasks as a

consequence of routine task substituting technological change.

4.2 Technology and Tasks Compensation

In this section, we explore whether the changes in the regional task structure are accompanied

by corresponding changes in the compensation paid to different tasks. To do so, we estimate the

following model:

∆ln(bw j
r) = α+ β1RSHr + β2X r + γs + er .(13)

The dependent variable represents the estimated change in the log compensation paid to task j =

R, C and M between the base year 1979 and each of the following BIBB waves. Task compensation

estimates are acquired for each labor market and year according to the methodology described in

section 3.2. To conserve space, Table 5 only reports the coefficient on the regional routine share

and omits the results on the vector of control variables.

In line with the theoretical model, the WLS estimates in the upper Panel of Table 5 indicate that

technological change had an adverse effect on the compensation of routine tasks. The estimated

coefficients are negative in the last three periods. However, it bears notice that this relationship is

longer statistically significant in column (4), which displays the estimated coefficient for the overall

observation period from 1979 through 2006.

Panel B and C present complementary estimates for the wages paid to non-routine cognitive
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Table 5: Technology and Task Compensation, Subperi-
ods

Time period

1979-1985 1979-1992 1979-1998 1979-2006
(1) (2) (3) (4)

Panel A: ∆ln(bwR)
RSH1979 .015 -.202* -.227* -.362

(.083) (.109) (.118) (.272)

R2 .298 .232 .343 .269

Panel B: ∆ln(bwC )
RSH1979 .198 .322** .301** .404**

(.133) (.137) (.132) (.174)

R2 .367 .413 .522 .547

Panel C: ∆ln(bwM )
RSH1979 -0.216** -0.208* -0.260* -.701

(.094) (.113) (.133) (.460)

R2 .272 .354 .352 .396

Notes: N=204 labor market regions. All models include dummies
for the federal state in which the region is located and covariates
reflecting the human capital and demographic composition outlined
in column (6), Table 1 as well as a constant. Models are weighted by
start of period share of national population. Robust standard errors
in parentheses. * Significant at 10%, ** at 5%, *** at 1%.

and non-routine manual tasks. The results in Panel B indicate that regions with a high technology

exposure witnessed significant increases in the compensation of non-routine cognitive tasks. The

coefficient of .404 implies a differential wage increase of 3.3% between a region at the 85th and the

15th percentile of the routine share distribution through 1979 to 2006. With respect to the dynamic

pattern of the effect, the coefficients suggest that the effect was strongest until the beginning of the

1990’s (columns 1 and 2) and increased only slightly thereafter (columns 3 and 4). The estimates

in Panel C indicate that the compensation for non-routine manual tasks has decreased differentially

in regions which were initially specialized in routine intensive employment. In contrast to the

results obtained for the other tasks, the dynamic pattern reveals that the effect of technology has

accelerated over time, although the estimate is statistically not different from zero when considering

the entire period (column 4). The point estimate of -.701 implies a differential wage decrease of

5.7% in a region at the 85th relative to a region at the 15th percentile between 1979 and 2006.

The result that computerization decreases the compensation for non-routine manual tasks suggests

that the rise in the supply of non-routine manual tasks was not met by a sufficient increase in the

demand for these tasks to offset negative wage effects. This finding stands in contrast to results for

the US as presented by AD, who document employment and earnings growth for occupations that

are characterized by a high non-routine manual task content.

Appendix Table 1 reports the coefficients of the models that are estimated separately by gender,

age and education. In the case of high-skilled employees, some region-occupation cells have very

few observations. Hence, we report the results for this subgroup only for the sake of completeness,

but they are to be interpreted cautiously. While the results for older and younger employees are
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relatively similar, we detect some substantial differences between changes in compensation patterns

for males and females.

5 Regional Wage Inequality

So far, our empirical analysis has found a robust relationship between the historical exposure to

technological change and subsequent changes in the structure and compensation of tasks across

regions. Can these findings help understanding the roots of increasing wage inequality within and

across regions? Recall that there exists a systematic association between the prevalence of tasks

across the skill distribution. That is, non-routine cognitive tasks are prevalent at the upper tail of

the wage distribution, whilst routine and non-routine manual tasks are predominantly performed

at lower parts. Hence, technological change should lead to an increases in wage inequality within

regions.

Prior to a regression analysis, we present some graphical evidence on this prediction. Figure 4

plots unconditional log wage changes between 1979 and 2006 at each percentile of the wage dis-

tribution for two sets of regions: those with an above average routine share in 1979 and those with

a routine share below it. As the Figure illustrates, wages have grown more at the upper part of the

wage distribution in both sets of regions. Yet, it is noticeable that the increase in wage inequality

is clearly more pronounced in routine intensive regions. For example, wages at the 85th percentile

have grown 8 percentage points more over the observed period in routine intensive regions.

Figure 4: Wage change by percentile, 1979-2006
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Notes: Percentile numbers refer to wage distribution in 1979.

To inspect the link between technology exposure and wage inequality in more detail, we perform

an econometric analysis, where income dispersion across local labor markets is measured by the

Gini-index. The scatterplot in Figure 5 depicts the bivariate relationship between the local routine

share in 1979 and changes in the Gini-coefficient over the subsequent 27 years and provides strong

initial support for the prediction that technological change has contributed to rising wage inequality.
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Figure 5: Change in Gini coefficient, 1979-2006, versus
Routine intensity in 1979
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Notes: Figure plots routine intensity in 1979 against the change in Gini
coefficient for 204 local labor markets. The size of the circles is pro-
portional to the regional population in 1979. The line is the predicted
change in the Gini coefficient from a weighted OLS regression, where the
weights are the regional population in 1979. The slope is .111 (.032).

The positively sloped regression line corresponds to the following WLS regression of the change in

the Gini-coefficient between 1979 and 2006 on the routine share, where weights are equal to the

regional population in 1979:

∆Ginir,1979−2006 = 0.01+ 0.11× RSHr + er , se = 0.032 n= 204(14)

The positive coefficient implies that the Gini-coefficient rose by 16% more in a region at the 85th

percentile than a region at the 15th percentile, indicating that the economic significance of the esti-

mate is substantial.11 Figure 6 provides some evidence on the dynamics of the routinization effect,

plotting estimated coefficients on an annual basis for the years 1980 through 2006. The equations

underlying this figure are identical to a version of equation 14, where the model is augmented by

the full set of controls used in earlier specifications and estimated separately for each year. Until

the mid 1980’s, the estimated effect is small in magnitude and statistically not different from zero.

Starting from that, the coefficient on technology exposure is positive and statistically significant in

almost all years. With respect to the time pattern, the estimates reveal that the effect of technolog-

ical change on the evolution of wage inequality roughly doubles during the 1990’s, and decreases

thereafter. In order to test the robustness of our results, we also estimated the computerization

effect on alternative wage inequality measures, i.e. the Theil-index and the 85th/15th percentile

wage ratio. The estimated coefficients are depicted in Appendix Fiugre 1 and reveal that the results

do not hinge a the particular inequality measure.

11This number is calculated by dividing the 85th/15th percentile difference of .9 percentage points by the average
predicted increase in the Gini-index of 5.6 percentage points.
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Figure 6: Gini Coefficient
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Notes: The figure plots the regression coefficients and 90% confidence
intervals obtained from up to 26 regressions. The regressions relate the
Gini-index during the year indicated, to the regional technology expo-
sure. All regressions include covariates reflecting the human capital and
demographic composition outlined in column (6), Table 1.

5.1 Dispersion Analysis

As discussed in the introduction, wage inequality has not also increased within regions, but also

to differential degrees across space. Thus, is interesting to ask whether differences in technology

exposure can help understanding the variation of wage inequality growth across Germany regions.

To answer this question, we perform a simple counterfactual exercise. That is, we predict changes

in the Gini-coefficient between 1979 and 2006, when only one component of regional wage devel-

opments is allowed to vary.

∆×Ginir = α+ β1RSHr + β2X .(15)

Then, ∆×Ginir is the change in the Gini-index that would prevail if the considered region r

differed from the regional average (X ) only with respect to its task structure. We perform this

exercise analogously for the other explanatory variables in our model. Thus, we obtain predicted

changes in wage inequality when we allow for variation in economic conditions (firm sizes and

industry structure), the qualification structure and the demographic composition (share of female

and share of foreign employees), as well as the area type.12 For each of these variables, Table 6

displays the highest and the lowest predicted change in the Gini-coefficient as well as its difference.

The results indicate that most regional disparities in wage inequality are generated by the eco-

nomic component, followed by the qualification component. The contribution of technological

12It bears notice that since the effects are not orthogonal, the sum of the partial effects is not equal to the overall
change in a region’s Gini-coefficient.
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Table 6: Results for the dispersion analysis

Technology Exposure Qualification Economic Demographic Urbanity
(1) (2) (3) (4) (5)

Min .044 .034 .035 .048 .045

Max .059 .073 .062 .052 .052

Range .015 .039 .027 .004 .007

change is the third most important source of wage dispersion across regions. Interestingly, the de-

mographic composition and the location of local labor markets are least important for explaining

wage dispersion across spatial units.

6 Conclusion

This paper examines the spatial dimension of labor market inequality in Germany in recent decades

at the level of local labor markets, focusing on the role of technological change. The analysis builds

on concepts of the task-based view of technological progress, which has proven to be successful in

explaining wage and employment trends at the aggregate level. We document substantial differ-

ences in both, the evolution of labor market inequality across space and the degree to which regions

are exposed to technology. We show that regions that were prone to computerization witnessed

a more pronounced relocation from routine to non-routine task inputs together with differential

changes in task compensation. Despite rising non-routine cognitive task inputs, wages paid to these

tasks have increased suggesting that the demand for them has risen. On the contrary, increases in

the input of non-routine manual tasks were accompanied by wage decreases. While the negative

compensation effect of routine tasks is limited to the early 1980’s and 1990’s, it is attenuated over

time and becomes insignificant thereafter. These developments translate into the regional wage

structure resulting in an increase in wage inequality within and between labor markets, driven by

opposing dynamics at both tails of the wage distribution. These findings complement the existing

empirical literature that so far has primarily focused on deunionization as a main explanatory factor

for recent developments at the lower tail of the German wage distribution.

Our study underlines the importance of demand side factors when exploring the impact of tech-

nological change on wage and employment patterns. Contrary to the U.S., technological progress

did not benefit low-paid employees in Germany which implies that demand for non-routine manual

tasks has not risen sufficiently to offset declining wages.
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Data Appendix

Processing SIAB data and sample description

All information concerning local employment and wages were obtained from the Sample of In-

tegrated Labor Market Biographies Regional File (SIAB-R), a two percent random sample drawn

from the full population of the Integrated Employment Biographies. We exclude public sector and

agricultural workers from our sample and focus on full-time employment only. As employment

and wage information is reported on a daily basis and lacks information on hours worked, wages

for part-time employment are measured less accurately. Furthermore, we exclude marginal em-

ployment as this information is only available from 1999 onwards and delete parallel employment

spells. If available, missing values for the nationality of an individual are imputed based on the most

recent spells of the same individual. Education levels are aggregated into three groups: employees

with no occupational training are considered as having a low level of education; employees with

a vocational occupation who have completed an apprenticeship or graduated from a vocational

college are classified as medium educated and employees holding a university or technical college

degree are considered highly educated. Workers are classified based on their vocational education

using the imputation algorithm proposed by Fitzenberger (1999).

All wages are converted to Euros at constant year 2000 prices using the German consumer price

index (CPI) for all private households. As price level data and price indices are not available at

the regional level we are forced to use a common deflator for all labor market regions. We correct

for the right-censoring of wage records at the social security contribution threshold by imputing

and replacing the topcoded wages following Gartner (2005). We run a series of tobit regressions

of log wages in each year, separately by gender and the three education groups, including age

and its square, a vector of region fixed effects, and a set of industry and occupational fixed effects.

Topcoded wages are then replaced by draws from normal distributions that are truncated and whose

moments are determined from the tobit estimation. Since 1984, one-time and bonus payments have

been included in the wage measure, resulting in a spurious increase in earnings inequality (Steiner

and Wagner, 1998). We account for this structural break by correcting the wage observations

before 1983 following Fitzenberger (1999) and Dustmann et al. (2009). As the additional payments

generally only affect relatively high wages, it is assumed that only wages above the median need

to be corrected. Hence, we run a linear regression of wage growth, where wage growth up to the

median is assumed to be constant. The percentage difference between the quantile from the upper

half of the distribution and the median can be interpreted as “excessive” wage growth and is used

to correct wages before 1983. We thank Bernd Fitzenberger and Christian Dustmann for making

the correction program available to us. Results of these regressions are available upon request.
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Table Appendix

Table 1: Technology and Task Inputs, 1979 - 2006

Outcome Measures Among

All Males Females Age<40 Age>40 Less-skilled High-skilled
(1) (2) (3) (4) (5) (6) (7)

Panel A: Results for Task Supplies

∆T R

RSH1979 -.401*** -.382*** -.439*** -.404*** -.395*** -.397*** -.474***
(.035) (.040) (.050) (.044) (.038) (.036) (.111)

R2 .848 .765 .696 .797 .811 .854 .444

∆T C

RSH1979 .128*** .126*** .115** .125*** .126*** .116*** .448***
(.036) (.038) (.045) (.048) (.035) (.037) (.109)

R2 .778 .707 .733 .712 .720 .796 .342

∆T M

RSH1979 .273*** .256*** .324*** .279*** .269*** .281*** .026
(.026) (.029) (.043) (.032) (.035) (.026) (.045)

R2 .638 .555 .402 .577 .496 .623 .122

Panel B: Results for Task Compensation

∆ln(wR)

RSH1979 -.362 -.265 -.360 -.312 -.495* -.389 -.516
(.272) (.292) (.407) (.313) (.277) (.243) (1.636)

R2 .269 .386 .248 .311 .296 .330 .120

∆ln(wC )

RSH1979 .404** .202 1.079*** .383 .495** .444** .426
(.174) (.177) (.284) (.236) (.208) (.199) (.407)

R2 .547 .367 .412 .438 .476 .439 .155

∆ln(wM )

RSH1979 -.701 -.230 -2.895*** -.990 -.750 -1.850** 3.740
(.460) (.764) (.910) (.955) (.736) (.884) (4.028)

R2 .396 .393 .334 .283 .229 .471 .297

Notes: N = 204 labor market regions. All models include dummies for the federal state in which the
region is located and covariates reflecting the human capital and demographic composition outlined
in column (6), Table 1 as well as a constant. Models are weighted by start of period share of national
population. Robust standard errors in parentheses. * Significant at 10%, ** at 5%, *** at 1%.

Figure Appendix
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Figure 1: Dynamic Wage Patterns of the Routinization Effect
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Notes: Each panel plots the regression coefficients and 90% confidence intervals obtained from up to 26 regressions. The
regressions relate each outcome measured during the year indicated, to the regional technology exposure. All regressions
include covariates reflecting the human capital and demographic composition outlined in column (6), Table 1.
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