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Abstract

There is consensus that the recent �nancial crisis revolved around a crash of the short-term credit market.

Yet there is no agreement around the necessary policies to prevent another credit freeze. In this experiment we

test the e�ects that contract length (i.e. maturity mismatch) has on the market-wide supply of short-term credit.

Our main result is that, while credit markets with shorter maturities are less prone to freezes, the optimal policy

should be state-dependent, favoring long contracts and lower maturity mismatch when the economy is in good

shape, and allowing for short-term contracts when the economy is in a recession. We also report the possibility

of credit runs on �rms with strong fundamentals, something that cannot be observed in the canonical static

models of �nancial panics. Finally, we show that our experimental design produces rich learning dynamics, with

a text-book bubble and crash pattern in the market for short-term credit.
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1 Introduction

While the literature agrees on placing a run on short-term credit at the center of the recent �nancial crisis

(e.g. Brunnermeier (2009), Krishnamurthy (2010)), there is much less consensus on how to prevent another panic

from happening. Brunnermeier et al. (2009) suggest that extending the maturity of short-term credits might help

stabilize the market, while Farhi and Tirole (2012) advocate for putting a cap on the total amount of short-term

debt issued by �nancial �rms. In this paper we use experimental tools to test the e�ects that reducing maturity

mismatch has on the market for short-term credit. To be more precise, we use experimental tools to investigate the

e�ects of di�erent maturity lengths on a market for Asset Backed Commercial Paper (ABCP), which is a speci�c

type of short-term credit in which, if the issuing �rm does not ful�ll its promises, the holder of the ABCP can seize

the posted collateral.

In order to study this type of markets we design a continuous time experiment with staggered credit maturities

inspired on the model by He and Xiong (2012). Our results show that while on average markets with shorter credit

maturities (i.e. larger maturity mismatch) have a lower probability of freezing, a more detailed analysis of the

data indicates that the optimal policy should be state-dependent, favoring longer contracts when the economy is

in good shape, and allowing for shorter ones during a recession. We also observe for the �rst time in a controlled

lab experiment, a signi�cant number of runs on �rms with solid fundamentals1, a direct result of the staggered

maturities in the experimental design, and one of the most policy relevant predictions in He and Xiong (2012).

Finally, we show that in our setup there are rich experimental dynamics with the formation of credit booms and

busts across all sessions.

1.1 Why Run an Experiment on ABCP?

ABCP has been pointed out as the necessary transmitter of the housing bubble into the �nancial system, so

much that while short-term credit was not a problem per se, ABCP played a central role in the �nancial meltdown

and credit freeze of 2007 (Brunnermeier (2009)). The argument is that ABCP (usually supported by structured

subprime mortgages) took over the more �traditional� credit market in the years before the crisis, and by virtue of

being cheap and unregulated, it exposed the market to a credit bubble, and to �excessive mismatch in asset-liability

maturities�. In Figure 1 (borrowed from Brunnermeier (2009)) we see how the market for ABCP almost doubles

in size from 2005 to 2007 (the �nal years of the housing bubble), to crash and drop from an outstanding $1,200

billion to $750 billion in just six months in 2007. Yet, what is most interesting about this graph is not the increase

in ABCP, but rather how unsecured instruments were only slightly a�ected at the peak of the 2007 crisis. This

1We consider �rms with solid fundamentals to be those that can post enough collateral to pay back all of its creditors.
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Figure 1: Outstanding Asset backed and Unsecured Commercial Paper Comparison

suggests that the problem revolved more around a change in the perceived value of collateral than around the use

of short-term credit. In fact, even previous to the crash of the market, a literature had already developed around

the idea of regulating collateral (e.g., Geanakoplos (2009, 1996)).

In a more speci�c analysis, Shin (2009) looks at the particular case of Northern Rock, and explains the shift

in paradigm that modern �nancial markets have brought to our understanding of �bank runs�. As he puts it,

while we all remember the lines forming at the doors of Northern Rock, the real storm had occurred weeks before,

when non-depository creditors (mostly of ABCP) decided not to roll over their loans to the bank.2 The important

question, according to the author is thus �not so much why banks depositors are so prone to running, but instead

why the plentiful short-term funding (. . . ) suddenly dried up�.

Additionally, it appears that the Federal Reserve agrees with the necessity to control short-term credit, pointing

it as one of the main reason for the recent crisis (Bernanke (2008, 2009a,b)), and modifying its policy to a �credit-

easing strategy rather than a quantitative-easing approach� (Bernanke (2009a)). In fact, in a 2008 speech3 ,

Bernanke expressed this shift in the paradigm of �nancial crises:

2As Shin (2009) puts it �The depositor run, although dramatic, was an event in the aftermath of the liquidity crisis at Northern
Rock�.

3Given at the Federal Reserve Bank of Atlanta Financial Markets Conference on May 13 2008.
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�Bagehot de�ned a �nancial crisis largely in terms of a banking panic �that is, a situation in which

depositors rapidly and simultaneously attempt to withdraw funds from their bank accounts. In the 19th

century, such panics were a lethal threat for banks that were �nancing long-term loans with demand

deposits that could be called at any time. In modern �nancial systems, the combination of e�ective

banking supervision and deposit insurance has substantially reduced the threat of retail deposit runs.

Nonetheless, recent events demonstrate that liquidity risks are always present for institutions �banks and

nonbanks alike�that �nance illiquid assets with short-term liabilities.� (Emphasis added)

2 Our Experiment in the Context of the Experimental Literature

No experimental literature exists on the topic we are covering, so our references consist on two strands of exper-

imental research which are relatively close to our experimental design. The �rst one corresponds to continuous-time

experiments, the second to �timing experiments�, with a special emphasis on the experimental bank-runs litera-

ture. Continuous-time experiments, started a few years ago with Cheung and Friedman (2009) and Brunnermeier

and Morgan (2010) (whose working papers appeared around 2003/04), but it has not been until recently that this

experimental technique has taken o� with Oprea et al. (2009) and Anderson et al. (2010) looking into strategic

investment decisions, Oprea et al. (2011) studying the evolutionary equilibrium of the hawk and dove game, and

Friedman and Oprea (2012) experimenting with the e�ects of response delay in a repeated prisoners dilemma game.

While none of these papers directly address any of the questions of our paper, they are a good methodological

reference for the design of our experiment.

The other relevant strand of literature for our paper deals with experimental bank runs. To our knowledge, the

�rst paper on this topic is Madies (2006), which is based on the theoretical model of Diamond and Dybvig (1983)

(DD henceforth). The results show that (partial) deposit insurance cannot avoid bank runs, and that the more

experienced subjects are, the more often runs are observed. Garratt and Keister (2009) also test the DD setup

but turn it into a repeated game by giving subjects the opportunity to exit several times per round. Schotter and

Yorulmazer (2009) also adopt this technique. Both papers �nd that not only more experienced subjects are more

prone to runs, but that the more opportunities to run within each round, the more likely runs are. Surprisingly,

Garratt and Keister (2009) report having to exogenously force some subjects to exit, else no panics would occur.

More recently Arifovic et al. (2013) look at how bank runs can be understood as a pure coordination problem. Also

Brown et al. (2012) and Chakravarty et al. (2012) have looked at bank run contagion across independent banks.

Finally, Klos and Sträter (2013) approach bank runs from a Global Games perspective.
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In summary, while there exists some experimental literature studying banking panics, most of it is based on

models of �classic� bank runs with simultaneous withdrawals and discrete timing, with no papers addressing the

intricacies of modern �nancial markets, in particular the markets for short-term credit. For a summary of the

existing literature on experimental �nance see Heinemann (2012) or Dufwenberg (2012).

3 Theoretical Benchmark

Our experiment is inspired on the continuous time model by He and Xiong (2012) (HX henceforth). In it, a

�rm �nances its long-term investment by issuing short-term credit to a continuum of creditors. Without loss of

generality we will assume this credit to be of $1. The value of the �rm4 follows a geometric Brownian motion and

is perfectly observable by all agents. The Brownian motion can be written as:

dy

y
= µdt+ σdZ (1)

Where yt is the value of the �rm, µ is the drift, σ the volatility, and Z the standard Brownian motion.

Each creditor's debt matures with the arrival of an independent Poisson shock of intensity κ > 0, creating a

uniform distribution of the maturities5 , with all contracts having an expected duration of 1/κ at any point in

time. This random-maturities system is a simplifying assumption akin to Calvo pricing (Calvo (1983)), and avoids

agents having to keep track of all other maturities when making the rollover decision, while still capturing all of

the �rst-order e�ects of other maturing contracts.

If within the time interval [t, t+dt] enough creditors decide not to rollover their credit, then the �rm draws from

its cash reserves6 (ϑ) and survives, on average, an extra 1/ϑκ. Once the �rm runs out of reserves it goes bankrupt

and liquidates its assets at a discount value α < 1, so the value of the asset is αF (yt), where F (yt) is the present

discounted value of the �rm.

As payo�s, agents receive a stream of interests r until τ = min(tm, tb, td) which is the earliest of three possible

events. The �rst event (tm) is the maturing of the long-term investment of the �rm, in which case the agent gets

back min(1, ytm) and the �rm ceases to exist. That is, the �rm pays back the full principal of the credit if it can,

or whatever it can pay back (never more than the original $1 credit). The second possibility (tb) is a bankruptcy

of the �rm, in which case the creditor gets back min[1, αF (yt)]. Finally, the short-term credit can mature (td), at

which point the creditor will decide to rollover his credit if the continuation value V (ytd ; y∗) is higher than getting

4We will assume that the �rm's only investment is on the long-term asset. Therefore, the value of the long-term asset is the total
value of the �rm.

5Most �rms spread out their maturities to avoid having large liquidity needs on a speci�c date.
6He and Xiong (2012) describe ϑ as unreliable credit lines that the �rm may tap, which is why the extra time is a function of the

contract length. We believe that describing ϑ as cash reserves is more intuitive for our experimental purposes.
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his credit back ($1), where ytd is the value of the �rm at the maturity point td, and y∗ is the stopping threshold of

other agents. The continuation value is thus written as:

V (yt; y∗) = Et

{ˆ τ

t

e(−ρ(s−t))rds+ e(−ρ(τ−t)) [min(1, yt)1τ=tm ]

}
+ (2)

min (1, αF (yt))1τ=tm + max
rollover or run

{0, 1−V (yt; y∗)}1τ=td

In equation (2) ρ is the discount value of the agent, and 1{.} is an indicator function which takes value 1 whenever

the subscript is true, zero otherwise.

By evaluating the change in value of the continuation value (2) over a small time interval [t, t+dt] the Hamilton-

Jacobi-Bellman equation can be written as:

ρV (yt; y∗) = µytVy +
σ2

2
y2t Vyy + r + φ [min (1, yt)− V (yt; y∗)] + (3)

κδ1{yt<y∗} + δ max
rollover or run

{0, 1−V (yt; y∗)}

The left hand side represents the required return to the creditor, the �rst two terms in the right hand-side

evaluate the �uctuation in the value of the �rm. The equation also contains the continuation values of each of the

three outcomes (long-term maturity, bankruptcy, short-term maturity) weighted by the probability of each one.

Finally, from equation (3) HX show that agents will rollover the credit if and only if V (yt; y∗) > 1, that is,

if the continuation value is greater than getting back the principal of the credit and �walking away�. This results

in a unique symmetric equilibrium determined by the condition V (y∗; y∗) = 1, where no subject rolls over the

short-term loan to a �rm whose value is below y∗, and always does so for values above y∗.

What we should understand from this model is that, unlike global games models, subjects do not get a noisy

signal, but a precise one. The strategic uncertainty comes from the asynchronous structure of the maturities, and

the frequent change in value of the �rm. It is precisely from these two key elements that agents can coordinate on

a unique equilibrium, and this is why we can have results that would never happen in classic static models.

4 Experimental Implementation

4.1 Basic Design

Our experiment considers groups of subjects where each member of the group provides a $1 short-term credit
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to a �rm which has made a time-varying long-term investment. Each group is composed of 4 subjects (which is a

number close to the 5 individuals in the groups of Garratt and Keister (2009)), and the composition of the groups

remains invariable during all of the 60 rounds that a session lasts. All subjects are informed of the size of their

group and of its unchanged composition.

The time units of our experiment are ticks. Following Anderson et al. (2010), each tick is 1/5 of a second (i.e.,

200 milliseconds). Each of the 60 rounds has a random end which is governed by a Poisson process, and has an

expected length of 150 ticks (30 seconds), at which point the long-term investment matures and the �rm ceases to

exist. In HX, the value of the long-term investment (yt) follows a geometric Brownian motion. Given the discrete

nature of computer internal clocks, we will need to discretize this Brownian motion, and for that purpose we use

the procedure described in Anderson et al. (2010).

In each of the 60 rounds we will ask subjects to make one and only one decision, namely, whether or not to

continue rolling over their credit to the �rm7. If at any time 2 subjects decide not to rollover their credit, then the

�rm will continue to run for a �xed θ of ticks before it goes bankrupt and has to liquidate its assets at a �re-sale

value. This �extra time� θ is a linear function of the duration of short-term contracts and can be interpreted as

the cash reserves of the �rm8. The decision to choose 2 out of 4 subjects as the threshold for bankruptcy is again

inspired by Garratt and Keister (2009), where the bank goes bankrupt if 3 out of 5 subjects decide to run.

The payo�s for each round will depend on the value of the �rm at time t, (yt), and the decisions made by each

subject in the group. To be precise, each round's individual payo�s will accrue from two di�erent sources:

1. Flow payo� : For each tick that a subject keeps his investment in the �rm she receives $0.004 (i.e., $0.6 for

every 30 seconds invested).

2. End of round status: Depending on the decisions of the particular subject and the decisions of the other

members of the group, the round could end in three di�erent ways.

(a) Exit: if a subject exits the project at time te, then she gets back her initial investment of $1, independently

of the value y(te)of the project at that point.

(b) Bankruptcy: if at time tb two subjects have stopped rolling over their credit, then the �rm will run on

its cash reserves for θ ticks, until �nally going bankrupt at tb+θ, being forced to sell its assets in the

secondary market at a valueα(F (yt(b+θ))) , where F (.) is the present discounted value of the �rm and

7Once a subject decides to stop rolling over the credit that round is over for him (i.e. the decision to stop rolling over credit is �nal).
8This parameter comes directly from HX. In a future experiment we want to test the e�ects of changing θ.
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Figure 2: Screen-shot

0 < α < 1 . At this point the �rm will pay all subjects still invested Min[1, αF (ytb+θ )] and will cease to

exist.

(c) Natural Ending: If the �rm reaches its random �natural� ending tnwithout going bankrupt, then all

subjects still invested in the �rm get Min[1, ytn ].

Subjects can keep track of both the �rm's value (green jagged line in Figure 2), and of the �re-sale value (golden

jagged line with dots in Figure 2) in the graphical interface on their screen. Other useful information appearing

on the screen are the values at which subjects in the group decided to stop rolling over their credit in the previous

15 rounds (upper right box in Figure 2, the $1 threshold under which payo�s would be <$1 (horizontal red line in

Figure 2), and the moment they had exited, if they had decided to do so (vertical green line in Figure 2).

4.2 Credit Rollover and Credit Maturities

The maturities system of this experiment is one of its unique aspects when compared to the experimental bank

run literature, since in our game subjects decisions are not simultaneous. This creates several problems. The �rst

one is how to keep the game �owing when all subjects have to decide asynchronously and every few seconds (see

8



Figure 3: Image of random maturity mechanism

parameters below) whether or not to keep rolling over their credit. If we stopped the game at each point to have

each individual subject ponder her decision, the experiment would be impossible to run. Our solution consists in

having the credits roll over by default at each maturity point, unless the subject decides otherwise.

To stop this automatic rollover, subjects will have to �connect� three (consecutively) numbered buttons on

the screen by hovering over them from left to right. The hovering idea comes from Brunnermeier and Morgan

(2010), who introduce this mechanism to avoid subjects making inferences from clicking sounds coming from other

terminals. We add the requirement that the hovering should be made following a certain gradient (from left to

right), to avoid accidental stopping orders by subjects that inadvertently hover over the �stopping area�, a prevalent

problem reported in Brunnermeier and Morgan (2010).

Subjects can decide to stop rolling over their credit at any time during the experiment. If they decide so, at the

next maturity point this decision will be implemented. In fact, the second problem we confronted with our staggered

maturity system was how to avoid turning the maturity of credits into focal points. Because the proximity of a

maturity point and the value of the collateral could interact in the decision-making of our subjects (and because

we are only interested in decisions based on the value of the collateral), we hide the contract maturity points from

our subjects.

To hide the maturity points, we �x the length of credits to be δ ticks and have the computer randomly assign

in each round j, and for each subject i, a random starting point t1ij within the �rst δ ticks. From this initial

9



Figure 4: Semi-Strategy Method Screen

(individual) point, maturities will happen every δ ticks. So, for example, for subject i in round j his �rst maturity

point will be at t1ijε[0, δ], his second maturity point t2ij at t2ij = t1ij + δ, the third maturity t3ij at t3ij = t2ij + δ,

etc. (see Figure 3). As a result, at every point in time the expected maturity of every subject is δ/2 ticks away,

akin to a Poisson shock of intensity δ/2 in the HX model, and avoiding a focal point problem.

Finally, we borrow the idea of the �semi-strategy method� from Anderson et al. (2010) and let all rounds play

until their random ending without providing any information to subjects of what other members of their group

are doing. Once the round ends, all subjects are informed about all the events in the round (Figure 4), including

other subjects (and own) requests to exit (green vertical lines), other subjects (and own) actual exit (orange vertical

line), as well as round length and �nal payo�s, and a bankruptcy point (if there was one) shown as a red vertical

line. This informational system allows us to gather more information than ending a round whenever a bankruptcy

occurs.

4.3 Parameters and Hypotheses

As mentioned above, the goal of this experiment is to test the e�ects that maturity lengths have on the market

for short-term credit. Therefore, we implement two treatments:

� Long treatment: Each contract is 8 seconds long (i.e., δ = 40 ticks), and cash reserves last for 15 extra ticks

10



Table 1: Parameter Values
Parameter Long Contract Short Contract Comment

δ 40 ticks 10 ticks Contract Length
θ 15 ticks 3 ticks Cash reserves
µ 0.0024 0.0024 Drift of the GBM
r $0.004 per tick $0.004 per tick Per-tick �ow payo�
σ2 1.1 1.1 Volatility

after 2 subjects exit the market.

� Short treatment: Each contract is 2 seconds long (i.e., δ = 10 ticks), and cash reserves last for 3 extra ticks

after 2 subjects exit the market.

Plugging these parameters into the He and Xiong (2012) model, it predicts that the optimal stopping threshold

in the Short treatment will be higher than in the Long treatment. Therefore, we make the following prediction:

� Prediction 1: Subjects will stop rolling over their credit at higher values of the �rm in the Short treatment

than in the Long treatment.

Our second prediction is that we will see subjects stopping their rollover at values of the �rm where, in case of a

�re-sale, creditors would get back all of their investment (i.e.,Min[1, αF (y(t(b+θ)))] ≥ 1). Such a prediction is also

in He and Xiong (2012).

� Prediction 2: Credit freezes will happen for values of the collateral such that, even at a �re-sale prices, the

�rm would be able to pay back all creditors in full.

5 Experimental Results

All session were run at the LEEPS lab of the University of California Santa Cruz, and all subjects were under-

graduates from this institution. In total 92 subjects participated in the experiment, spread into 7 di�erent sessions,

and no subject played the game twice. In each session we had either 12 or 8 subjects for a total of 5,520 decisions

11



(60 rounds Ö 92 subjects)9. Among these observations we will ignore all stopping decisions for a value above $4, a

value for which it is impossible to lose money in the Short treatment, and for which the probability of losing money

in the Long treatment is <0.1%. In total we end up with 5,274 observations. In Figure 5 we plot the CDF for both

treatments along with the theoretical stopping threshold from HX (vertical dotted lines) where a horizontal orange

line indicates the median value of the distribution. As we can see in the left pane of Figure 5, the observed stopping

values in the Long treatment are much lower than those in the Short treatment (Kolmogorov-Smirnov p-value =

0.000), which is in line with Prediction 1.

Figure 5: CDF plots for both treatments

In addition, since we expect some learning from our subjects we break the experiment into quarters (15 periods

in each quarter) to analyze the evolution of the stopping thresholds in the game. In the right pane of Figure 5 we

show the CDF's for both treatments in the last quarter. As in the left pane, the stopping values across the two

treatments continue to be widely separated in the fourth quarter (Kolmogorov-Smirnov corrected p-value = 0.008).

But most interestingly, the stopping values for both treatments in the last quarter are signi�cantly shifted to the

right, which means that in the last quarter subjects stop rolling over their credit to the �rm at much higher values

9Each session begins with some practice rounds whose results are not used in the analysis.
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Table 2: Regression of stopping values and treatment

(1) (2)
Stopvalue Stopvalue

1.short 0.363∗∗ 0.928∗∗∗

(0.066) (0.116)

2.quarter -0.234∗∗∗ -0.2395∗∗∗

(0.0013) (0.0457)

3.quarter -0.218∗∗∗ -0.200∗∗

(0.0022) (0.0502)

4.quarter 0.0320∗∗∗ -0.0786
(0.0015) (0.0532)

_cons 2.010∗∗∗ 1.807∗∗∗

(0.0336) (0.0729)
N 1533 1533
adj. R2 0.059 0.197
Group dummies No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

of the collateral10.

To have a more precise idea of how the behavior of subjects varies across quarters, we run a regression of the

stopping value (Stopvalue), on our treatment variable (�1.short�) and dummies for each quarter (Table 2). The

results con�rm that the length of the contract has an e�ect on the stopping decisions of our subjects, and show

that there are statistically signi�cant di�erences in behavior across quarters11.

Table 2 con�rms Prediction 1, namely, that Short contracts have signi�cantly higher stopping values than Long

ones. Yet, more interestingly, the second and third quarters dummies are signi�cant and negative (i.e. subjects are

taking higher risks in the second and third quarters by stopping their rollover at very lower values of the collateral),

while fourth quarter stopping decision are not signi�cantly di�erent from those in the �rst quarter12.

Plotting the kernel density estimates for each quarter in both treatments (Figure 6) we see a text-book boom

and crash pattern for the credit market13. In the Long treatment the �rst quarter is similar to a left skewed plateau,

while in the Short treatment, the initial stopping decisions follow a bimodal distribution with a higher right peak.

Yet, if we look at the second quarter kernel density estimates, it appears that subjects in the �rst quarter follow

10If we compare the CDF's for the last quarter to aggregate stopping values of the rest of the session we get Kolmogorov-Smirnov
p-value = 0.022 in the Short treatment, and p-value = 0.000 in the Long treatment.

11In Model 1, group dummies are not included in the regression, so clustering is at the quarter level. In Model 2, we include group
dummies and cluster at the quarter-group interaction.

12A Kolmogorov-Smirnov comparing the CDF's of �rst and fourth quarter con�rms this; p-value = 0.248, and p-value = 0.182 in the
Short and Long treatments respectively.

13Appendix A has kernel densities broken into �ner slices for a more precise description of the timings in the experiment
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a �tâtonnement� learning process trying to get better acquainted with both the mechanics of the game and the

strategy of other members of the group, leading them to realize after the �rst quarter that by taking higher risks

they can earn more money. This signi�cantly shifts the distribution of stopping values from their original starting

points to much lower values (i.e. to the left).

This excessive risk-taking results in a series of costly bankruptcies that start a preemption race between subjects

in the same group who, in order to avoid being caught in a costly �re-sale are start running for higher values as

the experiment progresses, resulting in a shift of the overall stopping decisions to the right. So, as we can see in

the third and fourth quarters, there is a �rebound e�ect�, where subjects, after having taken excessive risk in the

second quarter, are now being excessively cautious and sub-optimally stopping their credit too early.

Figure 6: Kernel density by quarter for Long and Short treatments

Table 3: Mean and SD of observed stopping values for each quarter by treatment
Quarter Mean Long Mean Short

1 1.92±0.898 2.26±0.901
2 1.35±0.887 2.11±0.924
3 1.48±0.839 2.23±0.893
4 2.02±0.774 2.35±0.851

In Table 3 we report the mean stopping values for each quarter and treatment. This table con�rms the bubble
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and crash story, and suggests why we didn't see a signi�cant di�erence across the �rst and fourth quarter (Table 2);

the �rebounding� leaves the �nal stopping threshold very close to the starting average14.

Given the parabolic evolution of the stopping values, we call these dynamics the �boomerang e�ect�. We can

state now:

� Result 1: The dynamics of stopping values does not move in one direction, but rather we show a bubble followed

by a crash of the credit market; a �boomerang e�ect�.

And, while this �rst result is an interesting starting point for research in the dynamics of market bubbles, it is

beyond of the scope of this paper to go into more detail, leaving the analysis of its potential applications to detect

and prevent bubbles to future research.

A second important result of the experiment is the high number of credit runs on �rms with strong fundamentals.

We can see this at the bottom panels of Figure 6, where all stopping decision to the right of the dashed line

are decisions to stop running even when the �rm can pay all of its creditors in case of a �re-sale (i.e. cases

whereαF (yt) ≥ $1). These runs are called �frantic runs� in HX, and are a direct result of the staggered maturities.

To our knowledge this is the �rst time that frantic runs are reported in any laboratory experiment.

� Result 2: Overall, 60% of the decisions to stop rolling over the credit are made when �rms have strong

fundamentals, and can pay back the entire investment to all subjects even in the case of a �re-sale. In other

words, the frantic runs predicted by HX occur in a laboratory setting with staggered maturities.

Both Result1 and Result 2, as well as Table 2 and Table 3 are a �rst approximation to the results of our experiment.

So far we have only used the information contained in the decisions to stop rolling over the credit. Yet, if a subject

decides not to stop rolling over her credit, she is in fact telling us that her �stopping threshold� for that round

is below the minimum value achieved by the collateral (for that round). Therefore, by only using the �observed�

actions of subjects, we will only be reporting the decisions of those subjects more prone to run (i.e., those with the

highest running thresholds), biasing or results upwards.

The unobserved stopping actions are what the survival literature would consider �censored observations�. To

overcome this censoring problem and avoid the bias of our estimates, we will have to use the product limit estimator15

(Kaplan and Meier (1958)), a technique used to estimate survival functions that incorporates also the censored data.

14A Mann-Whitney test con�rms that there is no signi�cant di�erence between the �rst and last quarter, yet second and fourth are
signi�cantly di�erent in both treatments.

15Also known as the Kaplan-Meier estimator.
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5.1 Hazard Rates and the Product Limit Estimator

The product limit (PL) estimator is a non-parametric Maximum Likelihood Estimator of the distribution which

is adapted to dealing with censored data. We will have a censored observation when for a given threshold of subject

i in round j, (tij), the sequence of values of the �rm for that round (yj) never gets below that threshold (i.e. when

Min[yj ] ≥ tij).

Usually censored data are right-censored, and using the PL estimator with such data is pretty straightforward.

But, our data set is left-censored, requiring us to ��ip� the data to work with their mirror image. To do this we

need to �nd a constant, S, large enough so that S > max[yj ]. As explained in some detail in Appendix C, we

decided to give this constant a value 4, so S = 4.

In Figure 7 we present the hazard and the cumulative hazard estimates for the �ipped data of each treatment.

The hazard function can be understood as the �probability�16 that a subject that has not stopped rolling her credit,

decides to do so. To be more precise, the instantaneous hazard rate (h(y)) is a measure of the probability that a

subject will decide to stop rolling over her credit within the (limiting) interval 4y of collateral values, conditional

on her not having already stopped rolling over her credit. Formally:

h(y) = lim
4y→0

e[y, y +4y]/N(y)

4y
(4)

Where e[y, y +4y] is the number of observed rollover stops in the interval [y, y +4y], and N(y) is the number

of subjects at risk17 for the value of the collateral y. From Equation 4 it is clear that if we do not take into account

the censored observations, then N(y) would be too high, bringing down the real hazard rate for the in�nitesimal

value of the collateral 4y, consequently biasing the hazard curve.

The Nelson-Aalen cumulative hazard estimate is an estimation of the cumulative hazard of the collateral for

each of these limiting collateral values18. As shown in Figure 7 there is a strong interaction between the treatment

hazard ratios and the value of the collateral. While for high values of the collateral Long contracts are more likely

to be rolled over, when the collateral value falls, then Short contracts reduce the probability of a credit dry-up. This

interaction between contract length and the value of the collateral seems to indicate that reducing the maturity

mismatch in the market for short-term credit will not necessarily reduce the odds of sudden dry-ups. Rather, that

the e�ects of this decision will di�er depending on the state of the economy (in our case the value of the collateral).

Therefore, our results suggests that, whenever feasible, the optimal approach to regulating short-term credit should

16Actually it is the ratio between the probability density function of the event (stopping the rollover) and the survivor function.
17Subjects at risk are all subjects that can still decide to stop rolling the credit, that is those that have either not stopped rolling or

have not been censored.
18Note that because this is an accumulated measure, the estimate can go above the value of 1. The interpretation is that for those

values above one, subjects would stop rolling their credit more than once if that were possible.
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Figure 7: Cumulative hazard and hazard estimates for both treatments

follow a dynamic policy favoring longer contracts (therefore lower maturity mismatch) when the economy is in good

shape, while allowing for shorter-term contracts (therefore higher maturity mismatch) when the economy is in a

recession. In summary:

� Result 3: Our data show crossing hazard functions for the di�erent treatments, with a higher hazard estimate

for the Short treatment when the value of the collateral is high, but a (much) higher hazard estimate for the

Long treatment when the value of the collateral is low. This suggests that regulating the maturity mismatch

of �nancial institutions could have opposite e�ects depending on the state of the economy.

Next we want to test whether or not both hazard functions are di�erent across treatments. To do so we cannot

simply compare the mean of each treatment through a t-test, as the survival curves might behave very similarly

for some values of the collateral, but very di�erently for some others. To overcome this problem, survival analysis

generally uses a weighted di�erence between expected and observed hazard rates across all the possible values of

the collateral. These weights are used to give more or less importance in the statistical test to the di�erent areas

according to the priorities of the research.
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In general, the most common test is the logrank test, which gives the same weight to all observations inde-

pendently of the value of the collateral. Yet Fleming et al. (1980) show that this test is not appropriate when

the proportional hazards assumption is not satis�ed19, or when there is heavy data censoring. Because the hazard

functions of our two treatments cross, and because of the heavy right-hand censoring of our data20, we cannot use

the logrank test, leaving us with no systematic way to decide which are the best weights for our data analysis (Suciu

et al. (2003)).

Yet, the selection of the appropriate weights and weight functions is central for the correct analysis of the

survival data when the proportional hazards assumption is not met. In fact, Suciu et al. (2003) report that 96% of

the papers appearing in major medical journals between 1999 and 2001, and using survival analysis to test crossing

survival curves, use �inappropriate or questionable tests� for their tests of equality21. That is why we follow Gaugler

et al. (2007) to select the best weight function for our crossing survival curves (see Appendix C for details).

We observe that the weight function that has more consistent p-values across the whole span of tested weight

combinations is a modi�ed Peto and Peto (1972) and Prentice (1978) function, which is exactly the same result

reached by Gaugler et al. (2007)22. Using this weight function we �nd that for any combination of weights that

emphasizes the low values of the collateral, the hazard curves of our treatments are signi�cantly di�erent (p-

value=0.000)23.

Unfortunately, if there is too much censoring in the data set at study, then both the hazard functions and the

Kaplan-Meier survivor function estimates will be biased in the direction of the censored data points (Moeschberger

and Klein (1985); Klein and Moeschberger (2003), Miller (1983)). Moreover, as shown in Moeschberger and Klein

(1985) if there are censored points beyond the last precise observation (i.e., the last observed stopping value), then

this right-hand bias will be even stronger. With almost 70% of our data censored, and with some of these censored

values below the lowest observed stopping value, we will need to �nd a rule to reduce the censoring in our sample

as in Anderson et al. (2010).

19In our case, the proportional hazards assumption would hold if the relation between both hazard curves in our experiment could
be described for all values of the collateral as HL = θHS where θ is any constant, and HL and HS the hazard functions for the Long
and Short treatments respectively. That is, if the ratio between both hazard curves were the same across all values of the collateral. As
it is clear from Figure 7, this is not the case in our data. For a lengthier discussion on the proportional hazards assumption see Suciu
et al. (2003).

20See section 5.1.2.
21They suggest that the main reason for this misuse of statistical tests might be due to the fact that most statistical analysis software

packages o�er the logrank test as their default tool for survival analysis.
22The Peto and Peto (1972) and Prentice (1978) weight function uses an estimate of the survivor function to distribute the weights

of the test statistic. Two parameters allow us to put or less weight at the beginning or the end of the estimated survivor functions. For
a formal de�nition of the function see Appendix C.

23In fact, only when we put all the weight on the observations for high values of the collateral can we not reject the null hypothesis
of equality between both hazard function estimates. See appendix C for a breakdown of di�erent p-values.
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5.1.1 Subset of the data

We start by dropping all observations that are censored below the latest observed stopping value in all sessions

(34 observations). Then, following Anderson et al. (2010), we eliminate all observations in the sessions where the

minimum value of the collateral was (strictly) greater than $0.9 (in total 3,921 observations). Finally, we also need

to drop the subjects who run only two or fewer times in the whole session (180 observations). So, in total, we are

left with a sub-sample of 1,128 observations, where 563 are stopping decisions and 565 are censored observations

(almost a 50% ratio of censored data).

A graphical comparison between the survival curves of the full data set and the subset shows that the right-hand

censoring bias in the PL estimator has been eliminated, with an increase in the steepness, and a shift to the left, of

both treatment survival curves (see Appendix D for a graphical comparison of the survival curves between the full

and partial data sets).

The results show that when using the modi�ed Peto-Peto weight function for our statistical test we continue to

have signi�cant di�erences between the hazard curves (p-value=0.000 for weights on low values of the collateral,

see Appendix E for a graph of the weight functions).

� Result 4: There is a clear treatment e�ect, with the null being rejected for all the tested p and q tuples.

Therefore, changing the length of the contracts has a signi�cant e�ect on the behavior of subjects.

Together, Result 5 and Result 3 show that while changing the maturity mismatch in the credit markets can have

a large impact on the subjects behavior, such change should be done with extreme care since there is a strong

correlation between the state of the economy and the e�ects it might have on the credit market. Speci�cally, while

it might be a good idea to reduce the maturity mismatch when the economy is booming, the same intervention in

the midst of a crisis could have extremely counter-productive e�ects.

Table 4: Mean and Bootstrapped SE of the estimated mean stopping value
Quarter Mean Long Mean Short

1 1.16±0.046 1.10±0.050
2 1.00±0.042 1.08±0.034
3 0.92±0.071 0.85±0.058
4 0.93±0.774 0.84±0.851

Finally, we use the PL estimator on the full data-set to calculate the mean stopping value for each quarter. The

Short treatment has mean stopping values that are (in general) lower than in the Long treatment. 4 presents the

results of the sub-sample estimates with their bootstrapped standard errors, indicating that if a dynamic policy like
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the one suggested in Result 3 were not possible to implement, then a market with short contracts appears to be,

on average, less prone to credit dry-ups.

� Result 5: The PL estimator shows that Short contracts have, on average, a lower mean stopping value than

Long contracts.

6 Conclusion

Al Roth, in the introduction to the Handbook of Experimental Economics Kagel and Roth (1995) describes

several reasons for running experiments. Among them, to o�er policy advice (�whisper in the ear of princes�). This

is exactly what we try to do in this paper.

To be speci�c, we try to compare the e�ects that maturity lengths have on the functioning of ABCP markets.

Building on the theoretical model of He and Xiong (2012), we compare two markets where the only di�erence is

the maturity of ABCP. Our main result is that while, on average, ABCP markets with short contracts are less

prone to freezes (Result 6), the optimal policy is state-dependent, favoring long contracts when the economy is

in good shape and short-term contracts when the economy is in a recession (Result 4). This latter result comes

from estimating the hazard curves of the two di�erent markets, and observing that while the value of the collateral

remains high, the hazard curve for the Short markets is above that of the Long market, while, for low values of the

collateral, not only does the hazard estimate for Long contracts overtake the Short market estimate, but it shoots

up spectacularly, indicating an extreme risk of credit dry-up in the former market when the value of the collateral

is low.

Our second important result (Result 2) is having shown, for the �rst time in a laboratory setting, runs on �rms

that can pay all their debts even in a �re-sale (i.e., runs on �rms with strong fundamentals); what He and Xiong

(2012) call �frantic runs�. This is an important outcome, since it cannot be observed in the canonical static models

of �nancial panics. As Bernanke (2008) puts it, the loss of access too secured borrowing during the 2007 crisis was

�surprising� and �rms had no contingency plans prepared to face this situation. Being possible now to reproduce

them in the lab is a �rst step to better understand how they work, and how they can be prevented.

Finally, we also report rich experimental dynamics, with a consistent bubble-and-crash pattern across our sessions

(Result 1). And, while studying the learning dynamics behind these results is beyond the scope of this paper, we

believe that our experiment can be an interesting starting point to analyze sophisticated learning in any kind of

dynamic markets.

It is our hope that a future buildup of experimental papers similar to ours will allow economists to whisper with

20



more con�dence in the ear of �nancial princes.
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Appendix A: Detailed Kernel Density

Figure 8: Density estimates for both treatments

If we break up the sessions into sixth's (1/6) of a session, we have a more cluttered graph, but a more precise

description of the dynamics of the experiment. As we can see, the underlying dynamics are the same, with the

�boomerang e�ect� taking place. The di�erence now is that we can better see the timing of events. While the �rst

sixth is again of a plateau-like shape, we see that risk taking actually starts by the second sixth (earlier than we

expected) taking place by the second sixth. On the other hand, our �rst guess of a panic taking place by the end

of the second quarter, and across the next periods was correct, as we can see from the fourth and �fth sixth of the

data.

A very interesting result of this more detailed breakdown of estimated CDF's is that we can better appreciate

how polarized are the stopping thresholds in the Short treatment. This is clear when observing that most sixths

have a bimodal shape, especially in the �panic� (third) one, but also in the �nal ending distribution. While in the

Long treatment this distribution is a sharp hill, in the Short treatment we see a more spread-out result.
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Appendix B: Data Flipping

Flipping the data is a simple procedure where we just need to �nd a constant, S, large enough such that S > maxyij

for all subject i and round j. Since all data are in the interval [0, 4), S = 4 can be used to �ip the data. Therefore,

for every subjecti and round j, we can de�ne zij such that zij = 4− yij . A graphical explanation of the process is

found in the Appendix B �gure.

Figure 9: Left to right censoring switch
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Appendix C: Picking the Correct Weight Function

Because the hazard functions cross each other, we need to take a �search and �nd� approach to choose the best

non-parametric comparison method for our analysis. To do so we will need a set of di�erent weight functions to

compose our test statistic, and compare the �smoothness� of the resulting p-values for the di�erent possible weights

using bootstrapping techniques.

Following Gaugler et al. (2007) notation, we de�ne the logrank statistic comparing the data from both Long

and Short treatments as:

Aw =

l∑
i=1

Wi

[
di −

niDi

Ni

]
(5)

Where di is the number of subjects that stopped rolling over their credit in the Long treatment at a value of the

collateral t = i, ni is the number at risk at t = i in the same group, Di the pooled (both Long and Short treatments)

number of stopping decisions until t = i, and N = i is the number of pooled subjects at risk at t = i. Finally, Wi

is the weight function for the statistic at t = i. The weight functions are critical in determining the results of the

test, and should be used in accordance with the needs of the researcher. Some examples are the Logrank which

uses Wi = 1, where all observations have the same weight, the Gehan (Wi = Ni), or the Tarone-Ware
(
Wi = N

1/2
i

)
,

both of which are designed to give more emphasis to the regions that contain more observations.

In our case we will study variations of an extremely versatile and well known weight function, the Fleming-

Harrington weight function (Harrington and Fleming (1982)) which includes many other well-known weight functions

as special cases24:

Wi =
[
Ŝ (ti−1)

]p [
1− Ŝ (ti−1)

]q
(6)

The Fleming-Harrington weight function for the statistic at t = i is a function of the Kaplan-Meier survivor

function estimate25 at t = i − 1, (Ŝ (ti−1)), and two parameters, p and q which are used to give more or less

importance to the di�erent areas of study. In particular, when q = 0 and p > 0 more weight is given to rollover

stops for high values of the collateral, and when q > 0 and p = 0 more weight is assigned to stopping decisions for

low values of the collateral.

In the following we will study di�erent weight functions as suggested in Gaugler et al. (2007) by modifying the

time dependence of the Fleming-Harrington weight function at t = i from t = i − 1 to t = i, so, fromŜ (ti−1) to

24For example, when p = 0 and q = 0 the Fleming Harrington weight function turns into the the logrank test (Wi = 1).
25The K-M survivor function estimate is de�ned as Ŝ =

∏
ti≤t

(
1− bi

mi

)
.
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Table 5: Asymptotic p-values

p q Ŵpq (ti−1) Ŵpq (ti) W̃pq (ti−1) W̃pq (ti)

1.00 0.00 0.244 0.245 0.244 0.245

0.97 0.03 0.140 0.159 0.139 0.158

0.90 0.10 0.038 0.043 0.038 0.043

0.80 0.20 0.003 0.003 0.003 0.003

0.70 0.30 0.000 0.000 0.000 0.000

0.50 0.50 0.000 0.000 0.000 0.000

0.30 0.70 0.000 0.000 0.000 0.000

0.00 1.00 0.000 0.000 0.000 0.000

0 0 0.013 0.013 0.013 0.013

Table 6: Bootstrapped p-values

p q Ŵpq (ti−1) Ŵpq (ti) W̃pq (ti−1) W̃pq (ti)

1.00 0.00 0.246 0.227 0.237 0.259

0.97 0.03 0.159 0.139 0.133 0.170

0.90 0.10 0.049 0.042 0.045 0.050

0.80 0.20 0.003 0.007 0.006 0.003

0.70 0.30 0.000 0.000 0.000 0.000

0.50 0.50 0.000 0.000 0.000 0.000

0.30 0.70 0.000 0.000 0.000 0.000

0.00 1.00 0.000 0.000 0.000 0.000

0 0 0.016 0.014 0.017 0.016

Ŝ (ti), and by changing the Kaplan-Meier estimate
(
Ŝ (·)

)
by the Peto-Peto estimate

[
S̃ (·)

]
26. This will leave us

with four di�erent weight functions; the original F-H
(
Ŵpq (ti−1)

)
, a modi�ed F-H

(
Ŵpq (ti)

)
, the original P-P(

W̃pq (ti−1)
)
), and a modi�ed P-P

(
W̃pq (ti)

)
(Equation 7):

Kaplan−Meier =


Ŵpq (ti−1) =

[
Ŝ (ti−1)

]p [
1− Ŝ (ti−1)

]q
Ŵpq (ti) =

[
Ŝ (ti)

]p [
1− Ŝ (ti)

]q Peto−Peto


W̃pq (ti−1) =

[
S̃ (ti−1)

]p [
1− S̃ (ti−1)

]q
W̃pq (ti) =

[
S̃ (ti)

]p [
1− S̃ (ti)

]q
(7)

In Figure 10 we present the plots, for di�erent p and q values, for the four weight functions27. As we can

see the logrank weight function gives the same weight (1) to all observations in the data, while all other weight

functions seem to converge at giving a weight of 0.5 to those observations at the lowest values of the collateral. This

convergence is due to the heavy right-hand censoring observed in our data (see section 5.1.2). Notice also that for

the weight functions that use the survivor estimate evaluated at t = i− 1we see a jump at t = 0. This jump could

be problematic if we were interested in the di�erences of our hazard curves for high values of the collateral, yet we

are interested in the lower values of the collateral, so our choice should a priori favor the cases where p < 0.5 and

q > 0.5 which are not a�ected by the jump. For a longer discussion on the implication of these weight jumps see

Gaugler et al. (2007).

Next we compare the evolution of p-values across the weight functions, for the di�erent values of p and q

(Table 6)28. In addition we also compare the bootstrapped p-values to the asymptotic p-values (Table 5).

26The Peto-Peto as survivor function estimate is de�ned as S̃ =
∏

ti≤t

(
1− bi

mi+1

)
.

27Following Gaugler et al. (2007)we have limited the values of p and q to those where p+ q = 1.
28To �nd the p-values we follow Gaugler et al. (2007) and create a 1000 bootstrap synthetic data-sets to then calculate for each of

them the test statistic (A∗
1, ..., A

∗
1000) following Equation 5. Finding the bootstrap p-value as p∗ =

∑1000
i=1 I

{
A∗

I ≥ Aorg
}
/1000 where

Aorg is the value of the test statistic calculated from the original data set.
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Figure 10: Four di�erent weight functions

As we can see, the bootstrapped p-values are similar to those coming from the asymptotic theory. In both cases,

the results show that we cannot reject the null hypothesis of equality between both survivor curves when we place

all the weight on the early stopping decisions, but that once we move away from p = 1.00 and q = 0.00, there is

a sharp drop in p-values with signi�cant di�erences for all weight functions where p ≤ 0.9. This abrupt drop in

p-values is consistent with 7, where the divergence between both hazard functions is clearly higher for the lower

values of the collateral. Therefore, not only are the bootstrapped p-values of all weight functions aligned with their

asymptotic counterparts, but the results match a graphical inspection of the data.

Like in Gaugler et al. (2007), the jump in p-values is much smoother in both Ŵpq (ti) and W̃pq (ti) than in the

cases where the weight function is based on the survivor estimate at ti−1. And between the two, the best choice

for is the Peto-Peto weight function with no time lag (Wpq (ti)), as it has the least variation in p-values across all

the tested weight combinations. This turns out to be the same conclusion that Gaugler et al. (2007) reach in their

own analysis of all the above weight functions.

� Result: Like in Gaugler et al. (2007) the weight function that seems most appropriate for our test if the

modi�ed Peto-Peto: W̃pq (ti) =
[
S̃ (ti)

]p [
1− S̃ (ti)

]q
.
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Appendix D: Full Data Set and Subset Comparison

As the PL estimates graphed below show, our dropping of some data does not a�ect the underlying relationship of

the hazard functions but, as predicted by the theory, it shifts the estimates in the opposite direction of the censoring

Figure 11: KM Survival estimates for all data and subset
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Appendix E: Weight Function Graphs for Full Data and Subset of the

Data

Plotting the four weight functions (Figure 12) we can observe that the weight functions behave di�erently than

when we use the full data-set, and look very much like the similar weight functions studied in Gaugler et al. (2007),

Suciu et al. (2003), or Klein and Moeschberger (2003), con�rming that the our data subset has corrected for the

bias in the PL estimator and behaves much more the typical right-censored data set.

Figure 12: Four Di�erent Weight Functions
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Instructions

Timing of the Experiment:

The session we will be running today has 60 rounds. At the beginning of the session you will be grouped with

3 other subjects with whom you will play all 60 rounds of the session.

The time units of the round are �ticks� (1/5 of a second). Each round has a probability of 1/150 per tick of

maturing; this means that on average each round will last 30 seconds.

The Common Project:

In each round, everyone in your group will start by investing 1 �orin (lab currency) into a common project.

Every tick the value of the common project will change. To be precise:

� The value of the common project will go up with probability: 0.5001, and down with probability: 0.4999.

� The change in value (whether up or down) will always be 7% of the current value of the investment.

You will be able to track the value of the �rm on your screen:

[Image on projector]

Your Decision:

In each round you will make only ONE decision:

� To stay in the common project

� To exit the common project

How to exit a project: To exit the common project you will need to slide (not click) your mouse over the counter

at the bottom of your screen and connect the numbers 3, 2, and 1

[Image on projector]

Once you have done so a green line will appear on your screen. This green line marks your �exit request� and

you will exit at the next �exit gate� after your exit request.

Exit gates are individual (so no two players share the same exit gate), and happen every 8 seconds. To be more

precise:

� In each round, every member of a group is assigned a �rst �exit gate� within the �rst 8 seconds

� After that, his next exit opportunities will happen every 8 seconds.
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� Example: imagine your �rst exit opportunity is in second 2 of the round, then your next exit opportunity will

be in second 10, then 18, then 26 etc.

[Image on projector]

To stay in the project you do not have to do anything.

Overview:

1. In this experiment you are grouped with three other subjects across 60 rounds.

2. In each round you all start with an investment of 1 �orin in the common project

3. Each round you are asked to make one decision: whether or not to stay invested in the common project

4. To exit you need to swipe your mouse over the 3,2,1 countdown area.

5. This swiping will record an exit request and you will exit at your next exit gate

6. To stay you do not need to do anything

Payo�s:

Your payo� in each round will come from two di�erent sources:

� Constant Return

� Original investment return

How much you make from each income source will depend on your decision to stay or to exit, and on the staying

or leaving decisions of the other investors in your group.

Constant Return: For every �tick� that you keep your investment in the project, you will get a constant return.

This constant return is of 0.004 �orins per tick. This means that if you keep your investment for 30 seconds you

will get 0.6 �orins from the constant return (so a 60% return for every 30 seconds).

Original investment of 1 �orin: Of the original investment of 1 �orin that you made at the beginning of the

round you can get back either the original �orin you invested, or a part of the �orin you invested, but never more.

This payo� will depend on:

1. Your decision to stay or to exit

2. The decisions of the other investors in your group
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3. When and how the round ends.

The round can end in three di�erent ways:

1. You Exit the project: if, at some point, you decide to exit the project, and are able to do so, you will get your

1 �orin back independently of the value of the common project. On the other hand, you will stop getting paid

the constant return per tick for the rest of the round.

2. Premature end of the project: if 2 investors in your group exit the project, then the project will continue

running for 2 extra seconds before it �ends early� and pays all of the remaining investors a �staying value�.

How much the staying value pays back will depend on where the jagged yellow line is at the moment of the

premature ending: a) If the jagged yellow line is above 1, then you will be paid 1 �orin. b) If the jagged

yellow line is below 1, then you will be paid the value of the line at that point.

3. Maturation of the project: as mentioned, the common project has a probability of 1/150 per tick of maturing.

If the common project matures before an early stop happens, then all investors will be paid depending on the

value of the common project (green jagged line): a) If the jagged green line is 1 or greater than 1, then all

players that are still invested get their 1 �orin back b) If the value of the common project is below 1, then all

players that are still invested will get back the value of the common project at that point.

You can track both the value of the project and the premature ending value of the project on your screen.

[Image on projector]

Overview of the payo�s:

1. Your payo�s come from two di�erent sources: a. Constant payo� b. Individual end of the round

2. The constant payo� gives you 0.004 �orins per tick as long as you are invested and the round has not �nished

(there has not been a premature ending or a maturation of the project)

3. Individual end of projects has 3 di�erent ways of taking place: a.

� You withdraw your investment and get back your entire 1 �orin independent of the value of the common

project

� The project has a premature ending, in which case those investors that are still in the project get back 1 �orin

if the yellow jagged line is above 1, or the value of the jagged line if it is below the value of 1
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� The project matures, at which point all those still invested get back 1 �orin if the green line was above 1, the

value of the green line if it was below 1

Important things to notice:

All rounds will continue ticking until the project's maturation, so even if there are premature ending, you will

not be given this information until the end of the round. You will also not be told when other investors are leaving

the common project nor will you be told where your exit gates are. The information that you will see while the

round is ticking will be:

� Value of the project

� Staying value

� Past exit requests by all investors in your group (upper right corner of screen)

[Image on projector]

Once the project has matured, then a screen will appear showing the whole unraveling of the round which

includes:

� The exit requests made by all players (green lines)

� The actual exits at each individual exit gate (yellow lines)

� You will also be informed about your exit request and your allowed exit tick.

� Finally, if there was an premature ending it will be shown as a red line.

[Image on projector]

In summary:

Your goal each round is to decide whether you leave or not the project balancing the advantages and disadvan-

tages of staying invested, the probability of a natural end and the behavior of other investors.

But not all rounds are paid. Not all rounds will count for your �nal payo�s. Although you will see how much

you made at the end of each round, 10 of the 60 rounds will count towards your �nal payo�s. These 10 rounds are

randomly chosen by the computer.

Practice: Before the session properly begins, we will have 6 practice rounds so that you get used to the mechanics

of the session, so you should practice exiting. These rounds will be shorter than the rounds during the experiment.
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While the instructions are somewhat long and complex, it is very important that you understand how the game

works. You don't need to really understand all of the probabilities and numbers that we give you, as you can learn

from experience, but you should make sure that you understand the mechanics of the game.

FAQ:

1) Is there a pattern in the change of value of the common project? No, we really tried to make it random. No

matter what is the history of values that the common project took the probabilities of going up or down on value

are always the same.

2) If values over the threshold of 1 always pay me back 1 Florin, why do you show them to me? We show you

these values because we think you might be interested in knowing how far away you are from the 1 �orin threshold.

Please feel free to ask as many questions as necessary to make sure that you have a full understanding of the

instructions. To ask a question, just raise your hand to call my attention.
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